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ABSTRACT 

In this paper, we develop a set of conditions 
under which a sequence is uniquely specified by the 
phase or samples of the phase of its Fourier trans- 
form. These conditions are applicable to mixed- 

phase one-dimensional and multi-dimensional se- 

quences. Under the specified conditions, we also 

present several algorithms which may be used to 
reconstruct a sequence from its phase. 

INTRODUCTION 

In a variety of practical applications, it would 
be desirable to be able to reconstruct a sequence 
from the phase of its Fourier transform. For 

example, in blind deconvolution a desired signal is 
to be recovered from an observation which is the 

convolution of the desired signal with some unknown 

signal. Since little is usually known about either 
the desired signal or the distorting signal, decon- 
volution of the two signals is generally a very 
difficult problem. However, consider the special 
case in which the distorting signal is known to 
have a phase which is identically zero. Such a 
situation occurs, at least approximately,in long- 
term exposure to atmospheric turbulence or when 

images are blurred by severely defocused lenses 
with circular aperture stops (1). In this case, 

except for phase reversals, the phase of the 
observed signal is identical to the phase of the 

original signal. Therefore, if phase-only signal 
reconstruction were possible, the deconvolution 
could be performed exactly. In a related problem, 
phase-only signal reconstruction might also be 
used in the estimation of the frequency response 
of a linear time-invariant system if, for example, 
the symmetry of an input to the system could be 
controlled. As another example, in a Fourier 
transform coding system, both the magnitude and 

phase are usually coded and transmitted (2) 
However, for signals which can be recovered from 

only the phase, unnecessary redundancy is inherent 
in the coder. Therefore, for these signals it may 
be possible to realize a significant bit-rate 
reduction by simply coding the phase and then 

reconstructing the sequence at the receiver from 
the coded phase. Thus, it is of considerable 

importance to determine conditions under which a 
sequence is uniquely specified by its phase and to 

develop techniques to reconstruct a sequence from 
it phase under such conditions. 

*This work was sponsored by the Dept. of the Air Force 

In general, a sequence is not uniquely defined 
by its phase, as is illustrated by the observation 
that a sequence convolved with any zero phase 
sequence will produce another sequence with the 
same phase. Thus, without some assumptions about 
the sequence, the phase may, at best, uniquely 
specify a sequence only to within an arbitrary 
zero-phase factor. However, if some additional 

knowledge is available about a sequence, then under 
certain conditions the sequence may be uniquely 
defined by its phase. For example, if it is known 
that all the poles and zeroes of a sequence are 
within the unit circle, then the sequence is mini- 
mum phase and thus uniquely defined to within a 
scaling factor by its phase (3). 

Recently (4), we have developed new conditions 
under which a sequence is uniquely defined by its 
phase. These conditions, which are applicable to 
both one-dimensional (l-D) and multi-dimensional 

(n-D) sequences, are potentially applicable toa 
variety of practical problems. Furthermore, we 
have developed several numerical algorithms to 
reconstruct a sequence from its phase under the 

specified conditions. The purpose of this paper 
is to review some of these recent results. In 

the next section, we summarize the theoretical 
results pertaining to the phase-only signal recon- 
struction problem. In the final section, we describe 
two numerical algorithms which have been developed 
to perform this reconstruction. 

THEORETICAL RESULTS 

As mentioned in the introduction, a sequence 
is not uniquely defined by its phase without some 
additional knowledge about the sequence. However, 
it has recently been shown that under relatively 
loose constraints, a finite length sequence is 
recoverable from its phase. More specifically, a 

phase-only reconstruction theorem has been develop- 
ed (4) which states: 

Theorem 1: A l—D sequence which is finite 
in length and has a z-transform with no 
zeroes on the unit circle and no zeroes in 

conjugate reciprocal pairs in uniquely 
specified to within a scaling factor by the 
phase of its Fourier transform (or by the 
tangent of its phase). 
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The condition which excludes zeroes from the unit 
circle is made only for convenience. The condition 
which excludes zeroes in conjugate reciprocal pairs, 
however, is necessary to eliminate the possible am- 

biguity due to zero-phase components. This theorem 
is also applicable to all-pole sequences since the 
convolutional inverses of these sequences are 
finite in length. 

Although Theorem 1 is formally stated for l-D 

sequences, an extension to n-D sequences has been 

accomplished by using the projection-slice theorem. 
This theorem establishes the result that an n-D 

sequence having a rational z-transform may be mapped 
into a 1-fl sequence (projection) by means of an in- 
vertible transformation (5) . This transformation 
has the important property that the phase of the 

projection is uniquely defined by the phase of the 
n-D sequence. Specifically, the phase of the pro- 
jection is equal to a slice of the phase of the n—fl 
sequence. Consequently, the multi-dimensional 

phase-only problem can be mapped into a one-dimen- 
sional phase-only problem and the phase-only re- 
construction theorem for 1-U sequences may be used. 

The approach of transforming n-fl sequences 
into 1-fl projections provides at least a partial 
solution to the multi-dimensional phase-only 
problem. 1-lowever, this approach circumvents the 
fundamental issues involved in multi-dimensional 

phase-only signal reconstruction. For example, this 

approach imposes constraints on a projection of an 
n-D sequence rather than directly on the n-D 
sequence. In addition, although it may not be 
possible to perform a phase-only reconstruction 
of an n-D sequence from a particular projection, 
this does not preclude the possibility that there 
exists another projection for which the reconstruc- 
tion is possible. Therefore, with this approach 
it is difficult to determine which multi-dimensional 
sequences may be reconstructed from their phase. 
Recently, however, an extension of Theorem 1 to 
n-fl sequences has been developed. This theorem 
states: 

Theorem 2: An n-D sequence which is 
finite in extent is uniquely specified 
to within a scale factor by its phase 
if its n-dimensional z-transform, X(z), 
cannot be factored as 

X(z) = F(z) G(z) 
where F(z) and G(z) are non-trival 

polynomials of finite order in 

z and z with F(i)=F(z). 
Clearly, Theorem 1 is a special case of this theorem 
however, because of the absence of a Fundamental 
Theorem of Algebra for polynomials in more than one 
variable the proof of the general n-dimensional 
theorem is more abstract than that required in the 
one-dimensional case (the detailed proof will be 

published separately), 

Although the phase-only reconstruction theorems 

specify a set of conditions under which a sequence 
is uniquely specified to within a scale factor by 
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its phase, it is assumed that the phase is known 
for all frequencies. Since any practical algor- 
ithm for reconstructing a sequence from its phase 
will base the reconstruction on only a finite set 
of samples of the phase, the 1--fl theorem has been 
extended to consider the uniqueness of a sequence 
based only on samples of its phase. Specifically, 

Theorem 3: A sequence which is known to 
be zero outside the interval 0 < n <(N-i) is 
uniquely specified to within a scale factor 

by (N-i) distinct samples of its phase (or 
tangent of its phase) in the interval O<w<a 
if it has a z-transform with no zeroes on the 
the unit circle or in conjugate reciprocal 
pairs. 

This theorem forms the basis for demonstrating the 
existence and uniqueness of solutions to the signal 
reconstruction algorithms which are described in the 
next section. Unfortunately, however, Theorem 3 
can not be directly extended to n-fl sequences. In 
other words, an n-fl sequence which is uniquely 
defined by its phase for all frequencies under the 
conditions of Theorem 2 is not, in general, uniquely 
defined by an arbitrary finite set of phase samples 
in the open region 0 < to < a. The existence of such 
a set and a method for finding it is currently 
being investigated. 

ALGORITHMS 

Consider a finite duration sequence x[n], which 
is zero outside the interval 0 < n <(N_l) and has no 
zeroes on the unit circle or in conjugate reciprocal 
pairs. From Theorem 3, we know that x[nI is uniquely 
specified to within a scale factor by (N-i) distinct 
samples of its phase in the interval 0 < a < iT. In 
this section, we describe two numerical algorithms 
which have been developed to recover x[n] from samples 
of its phase. The first algorithm is an iterative 
procedure for which the total squared error is non- 

increasing with each iteration. The second algor- 
ithm is a closed form solution which involves 
solving a set of linear equations. 

Iterative Algorithm 

The mathematical problem to be solved in the 
phase-only signal reconstruction problem defined 
above is to find a Fourier transform pair which is 
consistent with the known constraints: The frequency 
domain constraint that the sequence has the appro- 
priate phase samples and the time domain constraint 
that the sequence is zero outside the interval 
O < n < (N-i) . An interative approach to finding 
x[bj i3 a modified version of the Gerchberg-Saxton 
algorithm (6) which is a special case of the more 
general error-reduction approach proposed by 
Fienup (7) . This method involves repeated trans- 
formation between the time and frequency domains 
with the appropriate constraints imposed in each 
domain. Thus, at the kth iteration, the current 
estimate of the sequence is Fourier transformed 
and the resulting phase is replaced with the correct 

phase. Inverse Fourier transforming, the (k+l)st 
estimate is formed by setting the points outside 
the interval 0 a a <(N-i) equal to zero. An 



illustration of this iterative algorithm using the 
Discrete Fourier Transform (DFT) and Inverse Dis— 
Crete Fourier Transform (IDFT) in shown in Figure 
1. 

C(k)=IG(k) e3g) 
DFT 

g[nJ 

> 

Jr 

F Replace 
Phase 1j j (k) H(k)=IH(k)Ie x 

Figure 1: Iterative Algorithm 

Since (N-l) distinct phase samples in the in- 
terval 0 < w < n are obtained when a DFT of length 
M > 2N is used in the iteration, a unique solution 
tothe phase-only problem exists in this case. 
However, the conditions under which the convergence 
of this iterative procedure is guaranteed are not 
presently known. In spite of this, it has been 
shown (4) that the total squared error between the 
kth estimate and the sequence x[n} is non-increasing 
with each iteration. Furthermore, it has also been 
shown that if the iteration converges and if x{O] 
0, then it converges to a scaled version of x{n]. 

In the examples which we have considered so 
far, the iteration has always converged to a scaled 
version of x[n] when M > 2N and x[0] 0. An example 
is shown in Table 1 for a mixed phase sequence of 
length 8 using a OFT of length 16. The initial 
estimate of x[n] was formed by using the correct 
phase samples and a DFT magnitude equal to a con- 
stant. In addition, at each iteration the 
sequence estimate was appropriately scaled so that 
the value at n=O was equal to x[O]. As illustrated 

by this example, the number of iterations required 
to reach a convergent solution is, in general, 
very large. It is possible, however, to increase 
the rate of convergence. For example, using a 
"first-order adaptive acceleration technique" (8), 
the number of iterations required to achieve a 
given squared error is significantly reduced as 
shown in Table 1. 

Closed Form Solution 

A closed form solution to the phase-only sig- 
nal reconstruction problem has been developed which 
involves finding the solution to a set of linear 

equations. The equations are derived from the 
definition of the phase function. Specifically, 
with (w) representing the phase of the sequence, 
x[n], it is easy to show (4) that 

N-l 

x[n] sini I (w) + nu = 

n=l x 

-x[O] sin 

When sampled at (N-l) distinct frequencies in the 
interval 0 < w < r, this equation can be written 
in matrix form as 

Sy=b (2) 

where y represents the vector of elements of x[n] 
excluding the first element of the sequence, x[O]. 
It has been shown (4) that a unique solution to 
eq. (2) exists if x[0] 0. In this case, the 

NUMBER OF 
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ORIGINAL 
SEQUENCE 

Table 1: Iterative Phase-Only Signa1 Reconstruction 

(1) 

x[O] x[l) x[2] x[3] x{4] 
SQUARED 

x[5] x[6] x[7) ERROR 

o e -o> 
-H 0 

ceo 

10 

100 

1000 

4.000 

4.000 

4.000 

1.535 

1.972 

2.015 

-8.451 

-9.886 

-10.904 

2.733 

3.152 

4.757 

4.428 

4.743 

4.110 

6.061 

6.615 

5.239 

11.907 

13.371 

14.825 

4.329 

-5.228 

-5.935 

2.552lO 

l.lO7lO 

-1 
l.729.lO 

c 

one 
0 4-- 0,0 

• 

10 

30 

SO 

4.000 

4.000 

4.000 

1.895 

2.093 

1.998 

-9.545 

-10.533 

-10.901 

2.942 

3.730 

4.858 

4.749 

4.599 

4.027 

6.648 

6.289 

5.077 

12.995 

14.129 

14.840 

-5.003 

-5.675 

-5.949 

l.465.lO 

4.725 

6.492.lO 

4.0 2.0 -11.0 5.0 4.0 5.0 14.0 -6.0 

439 



solution to the phase-only problem can be ex- 

pressed as 

1 

x=P 
S1 b 

where x represents the vector of elements of xjjn] 
and =x[O} is the arbitrary scaling factor. 

The views and conclusions contained in this 
document are those of the contractor and should 
not be interpreted as necessarily representing 
the official policies, either expressed or 

implied, of the United States Government. 

(3) 

Compared with the iterative algorithm, the 
closed form solution guarantees the correct solution 
without any iterations and provides the added 

flexibility of non-uniform sampling of the phase 
function. The primary disadvantage, however, is 
that the inverse of an (N-l)x(N-l) matrix must be 

computed which, as N gets large, becomes more 
difficult and subject to serious round-off errors. 

Finally, an example of the closed form solution 
is shown in Figure 2 in which a 16xl6 2-D array 
was reconstructed from its phase using the pro- 
jection-slice approach. The reconstructed image, 
expanded for visual purposes by a zero-order hold, 
is indistinguishable from the original. 
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Figure 2: Phase-Only Signal Reconstruction 

Using Closed Form Solution 
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