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ABSTRACT 
In this paper we consider the generic problem of detecting 

a transmitted signal when one of M known signals is transmit- 
ted. Instead of using a classical matched filter (MF) detector, 
matched to the transmitted signals, we propose using an orthog- 
onal matched filter (OMF) detector, which is matched to a set of 
orthogonal signals that are closest in a least-squares sense to the 
transmitted signals. We show that this approach is equivalent to 
optimally whitening the output of the MF demodulator, and then 
basing the detection on the whitened output. We provide simu- 
lation results that suggest that in many cases the OMF detector 
outperforms the MF detector. 

1. INTRODUCTION 

Signal detection in Gaussian and non-Gaussian noise has been 
studied extensively in the literature (see e.g., [3] and references 
therein). A generic problem is one of detecting the transmitted 
signal when one of M known signals is transmitted. The detection 
is based on the received signal which is typically modeled as the 
output of an additive noise channel with the transmitted signal as 
its input. 

When the additive noise is white and Gaussian, it is well known 
(see e.g., [4]) that the optimal signal demodulator consists of a 
bank of matched filters, referrcd to as a matched filter (MF) de- 
modulator, followed by an optimal detector that is designed to min- 
imize the probability of error. The detector chooses as the detected 
signal the one for which the output of the matched filter is maxi- 
mized. We refer to this combined demodulator and detector as the 
MF detector. 

If the noise is not Gaussian, then the MF detector does not 
necessarily minimize the probability of error. However, it is still 
used as the detector of choice in many applications. One justifi- 
cation for its use is that if a signal is corrupted by additive white 
noise, then the filter matched to that signal maximizes the output 
signal-to-noise ratio (SNR). 

In this paper we propose an orthogonal matched filter (OMF) 
detector for detecting signals in additive white non-Gaussian noise. 
Specifically, we propose filtering the signals with a bank of filters 
matched to a set of orthogonal signals that are closest in a least- 
squares sense to the given signals. We show that this approach is 
equivalent to optimally whitening the output of the MF demodula- 
tor, and then basing the detection on the whitened output. We pro- 
vide simulation results that suggest that in certain cases the OMF 
detector outperforms the MF detector. 
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2. PROBLEM FORMULATION 

Suppose we have a transmitter that transmits one of M ’  signals 
{ s m ( t ) ,  1 5 m 5 M }  with equal probability, where the signals 
lie in a real Hilbert space 31 with inner product ( z ( t ) , y ( t ) )  = s z ( t ) y ( t )d t .  We assume that the signals are linearly independent 
and normalized so that .f sL  ( t ) d t  = 1 for all m. .The more gen- 
eral case of linearly dependent signals is considered in [ 11. The 
received signal r ( t )  is modeled as r ( t )  = sm(t) + n(t) ,  where 
n(t)  is a stationary white noise process with zero mean and spec- 
tral density U * .  

We demodulate the signal r ( t )  using a correlation demodu- 
lator as depicted in Fig. 1: The received signal ~ ( t )  is cross- 
correlated with M normalized signals h,(t) E 31 so that a ,  = 
(h , ( t ) ,r( t ) ) ,  where the signals h,(t) are to be determined. The 
detected signal is s i ( t )  where i = argmaxa,. The difference 
between the OMF detector and the MF detector lies in the choice 
ofthe signals h,(t). 

Figure 1 : Correlation demodulator. 

If the transmitted signal is s l ( t ) ,  then 

am = ( L ( t ) , r ( t ) )  = (h,(t),st(t)) + (hm( t ) , n ( t ) ) .  (1) 

The detected signal will be the transmitted signal s t ( t )  if 
maxm (h,(t), s, ( t )  + n(t))  = (h , ( t ) ,  s i ( t )  + n(t)) .  There- 
fore we would like to choose the signals h,(t) to maximize 
(hm( t ) ,  sm(t)) for 1 5 m 5 M .  It is well known that the sig- 
nals h,(t) = sm(t) maximize this inner product. The resulting 
demodulator is then equivalent to the well known MF demodula- 
tor [4]. We note that h,(t) = s m ( t )  also maximizes the sum 
Rhs = E,”==, (hm(t) ,s , ( t ) ) ,  since the individual terms are 
maximized by this choice. We will see shortly that when addi- 
tional constraints are imposed it will be useful to consider maxi- 
mizing the sum rather than the individual terms. 

In general, the outputs a ,  of the demodulator are correlated 
since they share information regarding the noise process n(t) .  In- 
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tuitively, it seems that eliminating this common (linear) informa- 
tion can improve the performance of the detector. We therefore 
would like to choose the signals hm(t )  so that the outputs a ,  are 
uncorrelated. We will show that when the noise is non-Gaussian 
this approach does in fact lead to improved performance over con- 
ventional MF detection in many cases. 

Let cov(a,, a & )  denote the cross-covariance of a ,  and a k .  

Then, 

From (2) it follows that the outputs of the demodulator are uncor- 
related if and only if the signals h,(t) are orthonormal, i.e., if and 
only if (h,(t), h k  ( t ) )  = b,k for all m, k. We therefore propose 
to choose the signals h, ( t )  to be orthonormal. 

As before, we would also like to choose the signals h,(t) 
to maximize ( h m ( t ) , s m ( t ) )  for 1 5 m 5 M .  However, we 
now have an additional constraint, namely that the signals h, ( t )  
are orthonormal. If the signals sm( t )  are not orthonormal, then 
we cannot maximize the inner products individually subject to this 
constraint. Instead, we consider maximizing the sum of the inner 
products. Thus we seek a set of signals {h,(t), 1 5 m 5 M }  
such that 

M 

is maximized, subject to the constraint 

3. EQUIVALENT PROBLEMS 

In this section we formulate the design problem of (3) and (4) in 
two equivalent ways that provide further insight into the problem. 
Specifically, we show that the following problems are the same: 

1. Find a set of orthonormal signals { h , ( t ) ,  1 5 m 5 M }  
that maximize Rha = E, (s,( t) ,  h,(t)); 

2. find an optimal whitening transformation W that mini- 
mizes the total mean squared error (MSE) between the 
whitened output b = W5 and the input 5, where 5 denotes 
the vector output of the conventional h4F demodulator. 
Then choose the signals {h,(t), 1 5 m 5 M }  to be the 
orthonormal signals given by h,(t) = E, W 2 k s k ( t ) ;  

3. find a set of orthonormal signals {h,(t), 1 5 m 5 M }  
that are closest in a least-squares sense to the signals 
{ s , ( t ) ,  1 5 m 5 M } ,  namely that minimize = 

In section 4 we determine the signals hm(t )  through problem 
2 above, i.e., by first determining the optimal whitening transfor- 
mation. Problem 3 has been solved in [2] in the context of quantum 
detection. 

In the remainder of this section we show the equivalence be- 
tween the three problems above. 

Let S :  C: --+ U denote the linear transformation defined 
by Sx = z,.s,(t), where x E C M  is an arbitrary M -  
dimensional vector and z, denotes the mth component of x. Let 
S': 3-1 + C M  denote the adjoint transformation so that if x = 
S*y(t) for arbitrary y(t) E U ,  then zm = (s , ( t ) ,  y ( t ) ) .  Let 5 
denote the vector with mth component a,, where ELm is the output 

E, (sm( t )  - hm(t ) ,  .sm(t) - hm(t)) .  

2 
of the correlation demodulator when h,(t) = sm(t) .  From (2) it 
follows that the covariance matrix of 5, denoted C,, is given by 

c, = 02S*S, ( 5 )  

where the mkth element of S'S is ( s m ( t ) ,  s k ( t ) ) .  If the signals 
sm( t )  are not orthonormal, then C, is not diagonal and the ele- 
ments of 5 are correlated. Suppose we whiten ii using a whitening 
transformation W to obtain the random vector b = W i i ,  where 
the covariance matrix of b is given by C b  = 0'1, and then base 
our detection on b. Thus the components b, of b are the inputs 
to the detector, and the detected signal is s1 ( t )  if i = arg max b,. 
Since the detector bases its decision on the vector b, we choose a 
whitening transformation W that minimizes the MSE given by 

M 

Emse = C E ((b; - 6;)') , (6)  
,=l 

where 6& = 6, - E(6,) and b& = b, - E(b,). That is, from 
all possible whitening transformations we seek the one that results 
in a white vector b as close as possible to the original vector 5. 

Figure 2: Correlation demodulator followed by whitening. 

We now show that the demodulator depicted in Fig. 2 is equiv- 
alent to the correlation demodulator of Fig. 1 where the signals 
h,(t) are orthonormal and given by h,(t) = E, W k k s k ( t ) ,  
where w , k  denotes the mkth element of W. In other words, 
the outputs of Fig. 1 and 2 are equal, provided that h,(t) = 

W k k S k ( t ) .  
The output b of Fig. 2 is given by 

b = W5 = W S * r ( t )  = H * r ( t ) ,  (7) 

where H :  C M  --+ 31 is given by H = S W ' .  Therefore, b can 
be viewed as the output of a correlation demodulator with signals 
hm(t)  = E, WkkSk(t) .  

We now need to show that the signals h, ( t )  are orthonormal. 
It is sufficient to show that H'H = WS*SW* = I. By def- 
inition, c b  = 21. In addition, c b  = WC,W* and from ( 5 )  
C, = a2S'S. Therefore H*H = WS*SW* = 1/0'Cb = I. 

In summary, the output of Fig. 2 may be obtained using the 
correlation demodulator of Fig. 1, where the signals h, ( t )  are 
orthonormal and given by h,(t) = E, W;,sk(t). 

given by (6),  is equiv- 
alent to maximization Of Rhs given by ( 3 ) .  Using (7) we have 

b - 5 = (H' - S*)r ( t )  = ( H *  - S*)(s,( t )  + n( t ) )  

We now show that minimization of 

(8) 
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Letem = E (( .%(t)  - h,(t),n(t))’). Then 

= U 2  bsm(t) - h,(t)ydt 

= 2 ( s m ( t )  - h,,(t),s,(t) - h,(t)). (1 1) 

Combining (10) and (1 1) we see that minimization of E ~ . ~ ~  is 
equivalent to minimization of &is, where 

M 

E l s  =.e ( s m ( t )  - hm(t),s ,( t)  - hm( t ) ) .  (12) 
m=l 

Therefore, the optimal whitening problem is equivalent to the 
problem of finding a set of orthonormal signals {h,(t), 1 I 
m 5 M )  that are closest in the least-squares sense to the signals 

Finally, we show that this least-squares problem is equivalent 
to our original design problem of (3) and (4). Expanding &la we 
have 

{ s m ( t ) , l  5 m I W .  

&Is = 

= e ( ( s m ( t ) ,  s m ( t ) )  + (hm(t ) ,  hm(t))  - 2(.sm(t), hm(t ) ) )  

= 5 (2  - 2 ( s , ( t ) , h m ( t ) ) ) .  

m=l 

(13) 
m=l  

From (3) and (1 3) it follows that minimization of is equivalent 
to maximization of Rha. Since minimization of is equivalent 
to minimization of & l s r  we conclude that these three problems are 
equivalent. 

Note, that if the transmitted signals s m ( t )  are orthonormal, 
then the output of the MF demodulator a is white. Thus, in 
this case W = I and the OMF detector is equivalent to the 
MF detector. Altematively, if the signals sm( t )  are orthonor- 
mal then the residual least-squares error & l s  is minimized when 
h,(t) = sm( t ) ,  and again the OMF detector reduces to the MF 
detector. 

4. OPTIMAL WHITENING 

Since the optimal whitening problem is equivalent to the 
problem of (3)-(4), we choose to determine the signals 
{h ,  ( t ) ,  1 5 m 5 A4 j by solving this problem. 

We first restate the optimal whitening problem in its most gen- 
eral form. Let a E E M  be a random vector with mth com- 
ponent a ,  and positive-definite covariance matrix C , ,  and let 

3 
a:, = a ,  - E(am). We seek a whitening transformation W such 
that the white vector b = Wa has a covariance matrix cb = u21, 
and is as close as possible to a in the MSE sense. Thus, we seek 
the transformation W that minimizes 

M 

Emse = E ( (ah  - b’,)’) , (14) 
m=l 

where b ,  is the mth component of b, and bk = b, - E(bm), 
subject to the constraint 

Cb = w c a w *  = 2 1 ,  (15) 

where C b  is the covariance matrix of b. Since W must be invert- 
ible (1 5 )  reduces to 

o 2 ( w * w ) - ’  = ca. (16) 

We solve this minimization problem using the eigendecompo- 
sition of C ,  and the singular value decomposition (SVD) [5] of 
W. 

Let the vectors V k  denote the orthonormal eigenvectors of c,, 
so that 

where x k  > 0. We can then decompose c, as ca = VDV* 
where V denotes the unitary matrix of columns v k ,  and D denotes 
the diagonal matrix with diagonal elements x k .  Then 

C a V k  = x k v k ,  1 5 k 5 bf (17) 

w * w v k  = U ’ C , - ’ v k  U’x; ’Vk.  (18) 

From the properties of the SVD (see, e.g., [ 5 ] )  it then follows that 

W V k  = U k U k ,  15 k 5 M (19) 

where U k  = a/& and the vectors u k  are orthonormal. 
Since the M vectors v k  E CM are orthonormal, they. span 

the space C M ,  and any x E C M  may be expressed as x = 
( V k , X ) V k ,  where the inner product on C M  is defined as 

( v k ,  x) = v i x .  Let a’ = a - E(a) and b’ = b - E(b). Then 
a‘ = ck ( v k , a ’ ) v k  and 

b’ - a’ = wa’ - a’ = ( V k , a ’ ) ( U k u k  - V k ) ,  (20) 
k 

where we used (19). We can now express cmse of (14) as 

= E((b’ - a’, b’ -a‘)’) 

= C E ( ( v , , , a ’ ) ( a ’ , v k ) ) ( U k u k  - V k , ~ . m U m - v m ) .  (21) 
k , m  

Now, 

E ( ( V m , a ’ ) ( a ’ , V k ) )  = (Vm,  C a V k )  = X k ( V m , V k )  = X k J m k .  

(22) 
Substituting (22) in (2 1) results in 

E m s e  - - c x k ( U k u k  - V k r o k u k - V k )  

k 

= x k  (gk” + 1 - 2 o k % ( ( u k ,  v k ) ) )  1 (23) 
k 

where R(.) denotes the real part. From ( 2 3 )  it follows 
that minimizing is equivalent to maximizing A = 
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C k  U k ! J ? ( ( U k ,  V k ) ) .  Using the Cauchy-Schwartz inequality we 
have, 

Gaussian 
Mixture 

k 

Beta f l  with 
equal prob. 

k k 

with equality in (25) if and only if ( u k , v k )  is real and non- 
negative, and equality in (26) if and only if u k  = C k V k  for 
some nonzero constants c k .  Since the vectors U k  are orthonor- 
mal ( u k ,  u k )  = 1. We therefore conclude that A 5 Uk with 
equality if and only if U k  = v k .  Thus is minimized when 
W is given by 

(27) 

(28) 

U 
w v k  = U k V k  = - v k  6 

or w = gVD-‘/2V’ = uc,-’ /2 .  

In summary, the optimal whitening transformation that min- 
imizes the MSE defined in (14) for an input a with co- 
variance ca and an output b with covariance c b  = 0’1, is 

In Fig. 2 the input to the whitening transformation is a = 5 
with C, = u 2 S * S .  Thus, the optimal whitening transformation in 
this case is W = (S*S)-’l2,  and the optimal orthonormal signals 
hm(t) that maximize Rhs are given by h,(t) = W k k S k ( t ) ,  

or h,(t) = Hi, where H = S(s*s)-’/2 andi,(k) = 6 , k .  

w = uca-1’2 .  

5. SIMULATION RESULTS 

In this section we provide simulation results suggesting the behav- 
ior and performance of the OMF detector, in comparison to the MF 
detector. 

We compared the performance of the OMF and MF detectors 
‘for random signal constellations. Specifically, we generated ran- 
dom covariance matrices C, = c2S*S with uniformlydistributed 
elements. We then generated 1000 realizations of random noise 
vectors (from a given distribution) with zero mean and covariance 
C,, for each realization of C a .  The vector output of the MF de- 
modulator was then taken to be the sum of one of the columns of 
C, and the random noise. To obtain the output of the OMF de- 
tector, the output of the MF demodulator was whitened using the 
whitening transformation W = uCa-’/’. We then determined 
the probability of error for both the MF and the OMF detector by 
recording the number of successful detections. 

In Table 1 we show the fraction of the simulations for which 
the ratio of the probabilities of error using the MF and OMF detec- 
tors was found to be in the given ranges. We denote the probability 
of error using the OMF and the MF detectors by Po and P ,  re- 
spectively. The results are shown for three noise distributions, (a) 
a Gaussian mixture of two components with variance .2 centered 
at f l ,  (b) a Beta distribution with parameters A=.  1 and R=. 1, and 
(c) a discrete-time signal taking on the values f l  with equal prob- 
ability. The parameters of the distributions were chosen such that 
the SNR is Odb. For each distribution we evaluated the probability 
of error by generated 1000 random covariance matrices C,, and 
corresponding to each C, we generated 1000 random noise vec- 
tors with zero mean and covariance C,. The probability of error 

for each distribution was determined as the fraction of successful 
detections. The simulation results summarized in Table 1 suggest 
that the OMF detector outperforms the MF detector in many cases. 
The simulations were repeated for various SNRs and the results 
indicate that the relative improvement in performance of the OMF 
detector over the MF detector increases with increasing SNR. 

More extensive simulations are presented in [I ] ,  which 
strongly suggest that when the additive noise is non-Gaussian the 
OMF detector can significantly decrease the probability of error 
over the MF receiver and when the additive noise is Gaussian, the 
degradation in performance using the OMF detector is minor. 

6. CONCLUSION 

We considered the problem of detecting a transmitted signal when 
one of A4 known signals is transmitted. We proposed an orthogo- 
nal matched filter detector, which can be viewed as a MF demod- 
ulator followed by optimal whitening of the demodulators output. 
Alternatively, we may view the OMF detector as a bank of filters 
matched to a set of orthogonal signals that are closest in the least- 
squares sense to the transmitted signals. We provided simulations 
that suggest that the OMF detector outperforms the MF detector in 
many cases. 
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