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Abstract

In this paper we propose a new linear multiuser detector for synchronous CDMA systems. Speci.cally, the received signal
is demodulated using an orthogonal multiuser (OMU) receiver that is matched to a set of orthogonal vectors that are closest
in a least-squares sense to the signature vectors. We show that this approach is equivalent to optimally whitening the noise
component in the output of the decorrelator prior to detection. We provide simulation results suggesting that in many cases the
OMU detector outperforms the matched .lter detector and the decorrelator. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multiuser detectors for the detection of CDMA sig-
nals try to mitigate the e6ect of multiple-access inter-
ference (MAI) and background noise. These include
the optimal multiuser detector, the linear minimum
mean-squared error (MMSE) detector, the decorrela-
tor, and the matched .lter (MF) detector [8].
Both the optimal detector and the linear MMSE

detector require knowledge of the noise level and the
received amplitudes of the users’ signals. In this paper
we focus our attention on linear receivers that only
require knowledge of the signature vectors. Two such
receivers are the MF and the decorrelator. The MF
optimally compensates for the white noise, but does
not exploit the structure of the MAI; the decorrelator
optimally rejects the MAI but does not consider the
white noise.
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In this paper we propose a new linear multiuser de-
tector, which we refer to as the orthogonal multiuser
(OMU) detector. The OMU detector tries to mitigate
both the e6ect of the MAI and the white noise, by opti-
mally whitening [5,4] the noise component in the out-
put of the decorrelator prior to detection. Similar ideas
have been explored in the context of multi-signature
detection [6,0]. We show that this approach is equiv-
alent to correlating the received signal with a set of
orthonormal vectors that are closest in a least-squares
(LS) sense to the signature vectors [1]. We provide
simulation results that suggest that in many cases the
OMU detector outperforms the MF detector and the
decorrelator.

2. Problem formulation

Consider an M-user white Gaussian synchronous
CDMA system. The discrete-time model for the re-
ceived signal r is given by

r= SAb+ n; (1)
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where S is the matrix of signatures sm ∈CN , A =
diag(A1; : : : ; AM ) where Am¿ 0 is the received ampli-
tude of the mth user’s signal, b is the data vector with
elements bm ∈{1;−1}, and n is a noise vector whose
elements are independent CN(0; 	2). We assume that
all data vectors are equally likely with covariance I,
and that s∗msm=1 for all m. For simplicity, we further
assume that the vectors sm are linearly independent.
The more general case of linearly dependent signals
is considered in [0].
Based on the observed signal r we design a re-

ceiver to demodulate the information transmitted by
each user. We restrict our attention to linear receivers
that do not require knowledge of the received ampli-
tudes or the noise level. The simplest such receiver
is the single user MF, which consists of correlating
the received signal with each of the signature vectors,
and then detecting the mth user’s bit as b̂m=sgn(s∗mr).
The MF detector optimally compensates for the white
noise on the channel, however, it does not take the
structure of the MAI into account.
A linear multiuser detector that exploits the MAI

structure without knowledge of the channel parameters
is the decorrelator [7], which consists of correlating
the received signal with each of the columns vm of
V = S(S∗S)−1, so that am = v∗mr. The mth user’s bit
is then detected as b̂m = sgn(am). The decorrelator
optimally rejects the MAI, but does not compensate
for the white noise.
It was noted in [7] that the decorrelator does not

generally lead to optimal decisions, since in general
the noise components in the outputs am of the decor-
relator are correlated. This correlation is due to the
fact that the outputs am share information regarding
the noise n. In our modi.cation of the decorrelator
we propose decorrelating the noise components in the
outputs prior to detection.
Let a denote the vector output of the decorrelator

receiver. Then,

a = V∗r= Ab+ V∗n: (2)

The covariance of the noise component V∗n in a is
equal to the covariance of a − a′ where a′ = E(a|b),
and is given by

Ca = 	2V∗V = 	2(S∗S)−1: (3)

From (3) it follows that the noise components in a
are uncorrelated if and only if the signature vectors

Fig. 1. Decorrelator receiver followed by whitening and detection.

sm are orthogonal. In this case the decorrelator does
in fact lead to optimal decisions [8]. To improve the
detection performance when the signatures are not
orthonormal, without estimating the variance of the
noise or the received amplitudes of the user’s signals,
we propose whitening 1 the output of the decorrelator
receiver prior to detection, as depicted in Fig. 1. We
will show that this approach does lead to improved
performance over the MF detector and the decorrela-
tor in many cases.
Suppose we whiten the output of the decorrelator

receiver a using a whitening transformation (WT) W,
to obtain the random vector x = Wa, where the co-
variance matrix of the noise component in x is given
by Cx = 	2I, and then base our detection on x. Thus
the mth user’s detected bit is b̂m = sgn(xm). Since the
detection is based on x, we choose a WT W that min-
imizes the mean-squared error (MSE) given by


MSE =
M∑

m=1

E((x′m − a′m)2); (4)

where a′m = am − E(am|b) and x′m = xm − E(xm|b).

3. Equivalent problems

In this section we formulate the problem of (4) in
two equivalent ways that provide further insight into
the problem. Speci.cally, we show that the following
problems are the same:
(1) Find an optimal WT W that minimizes the MSE

de.ned by (4) between the whitened output x =

1 In this paper when we refer to whitening of a random vector
a we explicitly mean whitening the noise component in a. Equiv-
alently, this corresponds to whitening a−E(a|b). Similarly, when
we say that a random vector x is white we explicitly mean that
the noise component in x is white, i.e., the covariance matrix of
the noise component in x, x− E(x|b), is proportional to I.
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Fig. 2. Orthogonal multiuser detector.

Wa and the input a, where a is the vector output
of the decorrelator receiver.

(2) Find a set of orthonormal vectors {hm; 16m6M}
that are closest in an LS sense to the vec-
tors {vm; 16m6M}, namely that minimize∑

m(vm − hm)∗(vm − hm). Then correlate the
received signal with each of the vectors hm to
obtain the whitened output x.

(3) Find a set of orthonormal vectors that are clos-
est in an LS sense to the signature vectors
{sm; 16m6M}. Then correlate the received
signal with these vectors to obtain the whitened
output x.

In the remainder of this section we show the equiva-
lence between the problems above, and discuss their
solution. In Section 4 we brieLy discuss the perfor-
mance of the resulting detector, which we refer to as
the orthogonal multiuser (OMU) detector.
We .rst show that the detector depicted in Fig. 1 is

equivalent to the detector of Fig. 2, where the vectors
hm are orthonormal and are given by hm=

∑
k W

∗
kmvk ,

where W∗
km denotes the kmth element of W∗.

The output of the WT x in Fig. 1 is given by

x =Wa =WV∗r=H∗r; (5)

where H = VW∗. Therefore, x can be viewed as the
output of a bank of correlators with vectors hm =∑

k W
∗
kmvk , as depicted in Fig. 2. Furthermore, us-

ing (3) we have H∗H=WV∗VW∗=1=	2WCaW∗=
1=	2Cx = I, so that the vectors hm are orthonormal.
We now show that minimization of 
MSE given

by (4) is equivalent to minimization of the LS error

LS({vm}; {hm}), where


LS({vm}; {hm}) =
M∑

m=1

(vm − hm)∗(vm − hm): (6)

Using (2) and (5),

x− a = (H − V)∗r= (H − V)∗(SAb+ n) (7)

and x′m − a′m = (hm − vm)∗n. Substituting into (4),


MSE =
M∑

m=1

E((vm − hm)∗nn∗(vm − hm))

= 	2
M∑

m=1

(vm − hm)∗(vm − hm): (8)

Comparing (8) with (6) establishes the equivalence of
problems (1) and (2).
Finally, we show that problems (2) and (3) are the

same by proving that the orthonormal vectors hm that
minimize 
LS({vm}; {hm}) and 
LS({sm}; {hm}) are
equal. To this end we rely on the following lemmas.

Lemma 1. Let {ym; 16m6M} be a set of or-
thogonal vectors with y∗k ym = c2m�km. Then the
orthonormal vectors hm that minimize 
LS({ym};
{hm}) are hm = ym=|cm|.

Proof. Sinceh∗mhm=1;minimizationof 
LS({ym};{hm})
is equivalent to maximization of

∑M
m=1 R{h∗mym}.

Using the Cauchy–Schwarz inequality;
M∑

m=1

R{h∗mym}6
M∑

m=1

|h∗mym|6
M∑

m=1

(y∗mym)
1=2 (9)

with equality if and only if hm = ym=|cm|.

As a result of Lemma 1, we have the following
corollary.

Corollary 2. Let {y′m = dmym; 16m6M}; where
dm¿ 0 are arbitrary constants and the vectors ym
are orthogonal. Then the orthonormal vectors hm
that minimize 
LS({ym}; {hm}) and 
LS({y′m}; {hm})
are the same.

Lemma 3. Let ym and y′m denote the columns of Y
and Y′ = YU; respectively; where U is an arbitrary
unitary matrix. Let the columns of H and H′ be
the orthonormal vectors hm and h′m that minimize

ls({ym}; {hm}) and 
ls({y′m}; {h′m}); respectively.
Then H′ =HU.

Proof. Since (H′)∗H′ = U∗H∗HU = I; the vec-
tors h′m are orthonormal. The lemma then follows
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from


ls({ym}; {hm}) = Tr((Y −H)∗(Y −H))

= Tr(U(Y −H)∗(Y −H)U∗)

= 
LS({y′m}; {h′m}): (10)

Combining Corollary 2 and Lemma 3 it follows that
if we .nd a unitary matrix such that the columns of
V′ = VU and S′ = SU are both orthogonal and pro-
portional to each other; then the orthonormal vectors
minimizing 
LS({vm}; {hm}) and 
LS({sm}; {hm}) are
the same. Let S = Q'Z∗ be the SVD of S; where
Q and Z are unitary matrices and ' is a diagonal
N ×M matrix with diagonal elements 	m¿ 0. Then
V=S(S∗S)−1=Q'̃Z∗; where '̃ is a diagonal N ×M
matrix with diagonal elements 1=	m. Now; letV′=VZ
and S′=SZ. Then the columns v′m and s′m ofV′ and S′;
respectively; are both orthogonal; and v′m=dms

′
m where

dm=1=	2m. Thus; the orthonormal vectors minimizing

LS({vm}; {hm}) and 
LS({sm}; {hm}) are the same.

This completes the proof that the three problems
outlined at the beginning of this section are equivalent.
The optimal whitening problem has been solved in its
most general form in [5,0], from which it follows that
the WT minimizing (4) is

W = 	C−1=2
a = (S∗S)1=2: (11)

The orthonormal vectors that minimize 
LS({vm}; {hm})
and 
LS({sm}; {hm}) are then the columns of

H = VW∗ = V(S∗S)1=2 = S(S∗S)−1=2: (12)

We note that this solution has been obtained in the
context of quantum detection [3] and in the context of
general inner product shaping [1].

4. Illustration of performance

In Fig. 3, the bit-error rate in the in.nite-user limit
for the OMU detector is compared to the single-user
MF, the decorrelator, and the linear MMSE detector,
for � = M=N = 0:95. The elements of the signature
matrix S are mutually independent CN(0; 1=N ). For
the SNR range shown, the OMU detector performs
better than the decorrelator and the MF. At low SNR,
the performance of the OMU detector is close to that
of the linear MMSE receiver.
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Fig. 3. Probability of bit error in the large-system limit, with
equal-power users, random signatures, and � = 0:95.
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Fig. 4. Probability of bit error for two users and cross-correlation
� = 0:8. The SNR of the desired user is 10 dB.

Fig. 4 evaluates the theoretical probability of bit er-
ror of the OMU detector in the special case of two
users with cross-correlation � = 0:8, where the de-
sired user has an SNR of 10 dB. The probability of bit
error of the OMU detector is plotted as a function of
the near–far ratio A2=A1, where A1 is the amplitude
of the desired user. The corresponding curves for the
single-user MF, decorrelator, and linear MMSE detec-
tors are plotted for comparison. We see that the OMU
detector performs better than the decorrelator when
the interferer power is roughly less than the power
of the desired user. When the power of the interferer
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is negligible, the MF performs better than the OMU
detector which is expected since the MF is optimal
in the absence of MAI. Thus, the OMU detector per-
forms better than both the decorrelator and the MF
when A2=A1 is roughly between 0:3 and 0:9. In this
regime, the OMU detector performs similarly to the
linear MMSE receiver.
More extensive simulation and analysis are pre-

sented in [0].
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