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Abstract

This paper considers the generic problem of detecting in the presence of additive noise, which one from a set of known
signals has been received. In place of the classical matched #lter (MF) receiver we propose a modi#ed receiver. When the
transmitted signals are linearly independent this receiver is referred to as an orthogonal matched #lter (OMF) receiver, and
when the transmitted signals are linearly dependent it is referred to as a projected orthogonal matched #lter (POMF) receiver.
Two equivalent representations of the receiver are developed with di<erent implications in terms of implementation. In the
#rst, the demodulator consists of a MF demodulator followed by an optimal whitening transformation on a space formed
by the transmitted signals, that optimally decorrelates the MF outputs prior to detection. In the second, the demodulator
consists of a bank of correlators with correlating signals that are projections of a set of orthogonal signals, and are closest in
a least-squares sense to the transmitted signals. We provide simulation results that suggest that in certain cases the OMF and
POMF receivers can signi#cantly increase the probability of correct detection over the MF receiver in non-Gaussian noise
with only a minor impact on performance in Gaussian noise.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A generic problem which has been studied exten-
sively is that of detecting which one of a set of known
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equal-energy signals is received over an additive noise
channel. This problem arises in a wide variety of con-
texts including target classi#cation, signature analysis,
and other multi-signature problems.
When the additive noise is white and Gaussian and

the signals have equal prior probabilities, it is well
known (see, e.g., [26,27]) that the receiver which max-
imizes the probability of correct detection consists of
a demodulator comprised of a bank of correlators with
correlating signals equal to the transmitted set, fol-
lowed by a detector which chooses as the detected
signal the one for which the output of the correlator is
maximum. This demodulator, referred to as a matched
#lter (MF) demodulator, is alternatively implemented
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using a bank of #lters with impulse responses matched
to the transmitted set.
If the noise is not Gaussian, then the MF receiver

does not necessarily maximize the probability of cor-
rect detection. However, it is still used as the receiver
of choice in many applications since the optimal detec-
tor for non-Gaussian noise is typically nonlinear (see,
e.g., [23] and references therein), and depends on the
noise distribution which may not be known. One jus-
ti#cation often given for its use is that if a signal is
corrupted by Gaussian or non-Gaussian additive white
noise, then the #lter matched to that signal maximizes
the output signal-to-noise ratio (SNR) from all linear
#lters [26].
In this paper we propose a modi#cation of the MF

receiver which again consists of a bank of correla-
tors followed by the same detector used in the MF
receiver. This receiver depends only on the transmit-
ted signals, so that it does not require knowledge of
the noise distribution or the channel SNR. The sim-
ulations presented in Section 7 strongly suggest that
when the additive noise is non-Gaussian this modi-
#ed receiver can signi#cantly increase the probability
of correct detection over the MF receiver, particularly
when the probability of correct detection with the MF
is marginal. When the additive noise is Gaussian, the
reduction in performance over the MF receiver is mi-
nor. Applications of these ideas to a communication
problem have also been explored [8,14].
Two equivalent representations of the modi#ed de-

modulator are developed in the paper. In the #rst, de-
veloped in Sections 3 and 4, the demodulator consists
of a MF demodulator followed by an optimal whiten-
ing transformation on a space formed by the trans-
mitted signals [15]. This whitening transformation is
designed to optimally decorrelate the outputs of the
MF prior to detection. In the second, developed in
Section 5, the demodulator consists of a bank of cor-
relators with correlating signals that are projections
of a set of orthogonal signals, and are closest in a
least-squares sense to the transmitted signals. These
two representations are mathematically equivalent but
may have di<erent implications in terms of implemen-
tation.
The development of the modi#ed receiver consid-

ers separately the case in which the transmitted signals
are linearly independent and the case in which they
are linearly dependent. The receiver for the #rst case

is referred to as an orthogonal matched #lter (OMF)
receiver and the receiver for the second case as a
projected orthogonal matched #lter (POMF) receiver.
This choice of terminology is based on the interpre-
tation of the receivers in terms of orthogonal signals,
developed in Section 5.
In Section 6 we show that if the transmitted sig-

nals have a strong symmetry property called geomet-
ric uniformity [6,9,17], then the OMF and POMF de-
modulators maximize the total output SNR subject to
the constraint that the outputs of the demodulator are
uncorrelated on the appropriate space. This provides
some additional justi#cation for this class of receivers.
Before proceeding to the detailed development, in

Section 2 we #rst provide an overview of the notation,
problem and main results.

2. Problem formulation and main results

We denote vectors in Rm (m arbitrary) by boldface
lowercase letters, and matrices in Rm×m by boldface
uppercase letters. General linear transformations are
denoted by uppercase letters. PU denotes the orthog-
onal projection operator onto the subspace U, and Im
denotes the m×m identity matrix. The adjoint and the
Moore-Penrose pseudo-inverse of a transformation are
denoted by (·)∗ and (·)† respectively, and ( ·̂) denotes
an optimal signal or transformation. The unique sym-
metric square root of a matrix is denoted by (·)−1=2.
The variance of a random variable a is denoted by
var(a), and the cross-covariance of a and b is denoted
by cov(a; b). A prime attached to a random variable
or vector denotes the variable or vector with the mean
subtracted, e.g., a′ = a − E(a). The set transforma-
tion X :Rm → H corresponding to a set of signals
{xk(t)∈H; 16 k6m} is de#ned as 2

X z =
m∑

k=1

xk(t)zk (1)

for any vector z∈Rm, where zk denotes the kth el-
ement of z. The adjoint transformation X ∗ :H →
Rm is de#ned by 〈X z; y(t)〉 = 〈z; X ∗y(t)〉 for any
z∈Rm; y(t)∈H, which implies that if a = X ∗y(t)

2 In [2] the set transformation corresponding to the signals xk (t)
is referred to as a hypervector and denoted by (x1(t); : : : ; xm(t)).
We prefer the more compact transformation notation.



Y.C. Eldar et al. / Signal Processing 84 (2004) 677–693 679

Fig. 1. Correlation demodulator.

then

ak = 〈xk(t); y(t)〉; (2)

where ak is the kth element of a.

2.1. Problem formulation

Suppose that one of m signals {sk(t); 16 k6m}
is received over an additive noise channel with equal
probability, where the signals lie in a real Hilbert space
Hwith inner product 〈x(t); y(t)〉=∫∞

t=−∞ x(t)y(t) dt,
and span a subspace U ⊆ H. We assume that the
signals are normalized 3 so that

∫∞
t=−∞ s2k(t) dt=1 for

all k. The received signal r(t) is also assumed to be in
H, and is modelled as r(t)=sk(t)+n(t) for one value
k, where n(t) is a stationary white noise process with
zero mean and spectral density �2, and with otherwise
unknown distribution.
The receiver we design consists of the correlation

demodulator depicted in Fig. 1, that cross-correlates
the received signal r(t) with each of the m signals
{qk(t)∈U; 16 k6m} so that ak = 〈qk(t); r(t)〉,
where the signals {qk(t)} are to be determined. The
declared detected signal is si(t) where i=argmax ak .
(We can equivalently obtain ak by #ltering r(t) using
a #lter with impulse response given by qk(−t), and
sampling the output at t=0.) The essential di<erence

3 The normalization assumption as well as the assumption that
the signals are transmitted with equal probability is for notational
convenience only. As we discuss in Section 8, the results readily
extend to the more general case of unequal norms and unequal
probabilities.

Fig. 2. Equivalent representation of a correlation demodulator. The
linear transformation T is a function of the transmitted signals
sk (t) and the correlating signals qk (t) of Fig. 1.

between the OMF and POMF receivers proposed in
this paper and the MF receiver lies in the choice of
the signals qk(t).
If we choose the signals qk(t)= sk(t) in Fig. 1, then

the resulting demodulator is equivalent to the MF de-
modulator [26]. If the noise is not Gaussian, then the
MF receiver does not necessarily minimize the prob-
ability of a detection error. However, it is still used
as the receiver of choice in many applications since
the optimal receiver for non-Gaussian noise is typi-
cally nonlinear, and requires knowledge of the noise
distribution.
In this paper we propose a class of correlation

receivers that, like the MF receiver, depend only
on the transmitted signals, and that can lead to im-
proved performance over the MF for some classes of
non-Gaussian noise, with essentially negligible loss
of performance for Gaussian noise. We develop two
mathematically equivalent forms of these receivers
with di<erent implications in terms of implementa-
tion. Speci#cally, since the signals sk(t) span U it is
straightforward to show that a correlation demodu-
lator as depicted in Fig. 1 with signals qk(t)∈U is
equivalent to a MF demodulator followed by a lin-
ear transformation T on the MF outputs, as depicted
in Fig. 2, where the transformation T is constructed
from the signals sk(t) and the correlating signals qk(t)
of Fig. 1. The representation of Fig. 2 is of interest,
since in many practical receivers the MF demodulator
serves as a front-end whose objective is to obtain a
vector representation of the received signal. Thus, in
many applications we do not have control over the
correlating signals of the correlation demodulator, but
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rather we are given the MF outputs. We may then
choose to process these outputs prior to detection.
If we restrict our attention to linear processing, then
the overall demodulator may be expressed as a linear
transformation T of the MF outputs, which results
in a demodulator of the form depicted in Fig. 2. We
#rst consider this representation of the correlation
demodulator.
For a correlation demodulator in the form of Fig. 2,

we would like to choose the transformation T so that
when the noise is non-Gaussian the resulting detector
leads to improved performance over MF detection. In
the remainder of this section and in Sections 3 and 4
we focus on methods for choosing the transformation
T in Fig. 2. In Sections 5 and 6 we address the design
problem associated with the correlation demodulator
of Fig. 1, i.e., we consider methods for choosing the
signals qk(t).

In the system of Fig. 2, if the signals sk(t) are not
orthonormal, then the outputs ãk of the MF demodu-
lator are correlated:

cov(ãk ; ãl) = E(〈sk(t); n(t)〉〈n(t); sl(t)〉)
= �2〈sk(t); sl(t)〉: (3)

Intuitively it seems plausible that eliminating this com-
mon (linear) information may potentially improve the
performance of the detector. Therefore, in our modi#-
cation of the MF demodulator, we propose decorrelat-
ing the outputs prior to detection. The simulations in
Section 7 show that when the noise is non-Gaussian
this approach can in fact lead to improved performance
over conventional MF detection.
Data whitening arises in a variety of signal pro-

cessing and communication contexts in which it may
be useful to decorrelate a data sequence either prior to
subsequent processing, or to control the spectral shape
after processing. Examples in which data whitening
has been used to advantage include enhancing direc-
tion of arrival algorithms by pre-whitening [18,25].
Rather than choosing the whitening transformation
arbitrarily, below we suggest choosing an optimal
whitening transformation that whitens the MF output
and at the same time minimizes the distortion to the
unwhitened vector.
When the signals sk(t) are linearly independent, we

may decorrelate the outputs of the MF demodulator by
choosing T in Fig. 2 to be a whitening transformation

T=W. Speci#cally, let ã denote the vector output of
the MF demodulator, with components ãk . We pro-
pose whitening 4 ã using a whitening transformation
T=W to obtain the random vector b=Wã, where the
covariance matrix of b is given by Cb=�2Im. The de-
tection is then based on the components bk of b, so that
the declared detected signal is si(t) if i = argmax bk .
Since the detector bases its decision on b, we choose a
whitening transformation W that minimizes the total
MSE given by

�MSE =
m∑

k=1

var(ãk − bk) =
m∑

k=1

E((ã′
k − b′

k)
2)

= E((ã′ − b′)∗(ã′ − b′)); (4)

where ã′
k and b′

k are the kth components of ã′ = ã −
E(ã) and b′ =b−E(b), respectively. That is, from all
possible whitening transformations we seek the one
that results in a white vector b that is as close as
possible in a MSE sense to the output ã of the MF
demodulator.
We refer to the demodulator of Fig. 2 with T =

W chosen as the minimum MSE (MMSE) whitening
transformation as the orthogonal matched #lter (OMF)
demodulator. This choice of terminology will become
clear in Section 5, where we show that this demodula-
tor is equivalent to a correlation demodulator matched
to a set of orthogonal signals.
If the signals sk(t) are linearly dependent, then the

outputs ãk of the MF demodulator are (deterministi-
cally) linearly dependent. In this case, the vector out-
put ã of the MF demodulator lies in a subspaceV of
Rm. Since the elements of ã are linearly dependent,
the elements of b = Wã are also linearly dependent
and therefore cannot be statistically uncorrelated, so
that in this case we cannot whiten ã in the conven-
tional sense. Instead, we propose whitening ã on the
subspace V in which it lies, which is referred to as
subspace whitening [15]. The resulting demodulator
has the form depicted in Fig. 2, where T = Ws is a
subspace whitening transformation. As in the linearly
independent case, we use a subspace whitening trans-
formation Ws such that (4) is minimized.
We refer to the demodulator of Fig. 2 with T =

Ws chosen as the MMSE subspace whitening trans-

4 In this paper we de#ne a random vector a to be white if the
covariance of a, denoted Ca, is given by Ca=c2I for some c¿ 0.
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formation as the projected orthogonal matched #lter
(POMF) demodulator. This choice of terminology is
based on the discussion in Section 5, where we show
that this demodulator is equivalent to a correlation de-
modulator matched to a set of signals that form what
we de#ne as a projected orthogonal basis (POB) for
the space spanned by the transmitted signals.

2.2. Summary of the main results

1. In Sections 3 and 4 we specify the OMF and POMF
demodulators in terms of the implementation of
Fig. 2.

2. In Section 5 we show that:

(a) The OMF demodulator is equivalent to a corre-
lation demodulator for which the signals qk(t)
are chosen as a set of orthonormal signals ĝk(t)
that are closest to the transmitted signals sk(t)
in a least-squares sense (Section 5.1).

(b) The POMF demodulator is equivalent to a
correlation demodulator with signals f̂k(t) that
form a POB for the space spanned by the
transmitted signals, and is closest to the signals
sk(t) in a least-squares sense (Section 5.2).

(c) The OMF and POMF signals may equivalently
be obtained by maximizing the sum of the in-
ner products Rk = 〈qk(t); sk(t)〉, subject to the
constraint that the outputs of the demodulator
are uncorrelated on V (Sections 5.1 and 5.2).

3. In Section 6 we show that when the transmitted
signals have a symmetry property that is common
to most signal sets used in digital communication
[17], the OMF and POMF demodulators maximize
the total output SNR subject to the decorrelation
constraint.

3. The orthogonal matched �lter demodulator

To specify the OMF demodulator for the case in
which the signals {sk(t); 16 k6m} are linearly in-
dependent, we need to specify the MMSE whiten-
ing transformation T = W of Fig. 2. The solution to
the general MMSE whitening problem has been ob-
tained in [13,15], and is incorporated in the following
theorem:

Theorem 1 (MMSE whitening transformation
[13,15]). Let z∈Rm be a zero-mean random vec-
tor with positive-de=nite covariance matrix Cz with
eigendecomposition Cz = UDU∗, where U is a uni-
tary matrix and D is a diagonal matrix. Among all
possible whitening transformations, let Ŵ denote the
whitening transformation that minimizes the total
MSE,

�MSE =
m∑

k=1

E((zk − hk)2) = E((z − h)∗(z − h));

between the input z with elements zk and the output
h = Wz with covariance Ch = c2Im; c¿ 0, and ele-
ments hm. Then

Ŵ = cUD−1=2U∗ = cC−1=2
z :

Now, let S :Rm → H be the set transformation
corresponding to the signals sk(t). From (3) it follows
that the covariance matrix of the input ã to the whiten-
ing transformation of Fig. 2 is given by

Ca = �2S∗S; (5)

where the klth element of S∗S is 〈sk(t); sl(t)〉, and
the covariance of the output b is Cb = �2Im. The
MMSE whitening transformation then follows from
Theorem 1,

Ŵ = (S∗S)−1=2: (6)

Thus, the OMF demodulator consists of a MF demod-
ulator followed by the optimal whitening transforma-
tion given by (6).

4. The projected orthogonal matched �lter
demodulator

We now consider the case in which the transmit-
ted signals {sk(t); 16 k6m} are linearly dependent,
and span an n-dimensional subspace U ⊂ H, where
n¡m.
As in the linearly independent case, we would like

to whiten the output ã of the MF demodulator prior to
detection. However since the signals sk(t) are linearly
dependent, the components of ã and consequently of
b = Wã, are linearly dependent and therefore can-
not be statistically uncorrelated. Equivalently, the co-
variance matrix Ca = �2S∗S of ã is not invertible
and therefore there is no whitening transformation W
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such thatWCaW∗=�2Im. Instead, we propose whiten-
ing ã on the space in which it is contained. Speci#-
cally, letV ⊂ Rm denote the range space of S∗, which
from (5) is equal to the range space of Ca. Then we
propose whitening ã on the subspaceV, which is re-
ferred to as subspace whitening [15]. The output of
the subspace transformation b is said to be white on
V if its covariance matrix Cb is given by

Cb = �2PV = �2VĨV∗; (7)

where the #rst n columns of V form an orthonormal
basis for V, and Ĩ is the m × m matrix

Ĩ =

[
In 0

0 0

]
: (8)

Condition (7) implies that the representation of b in
terms of any orthonormal basis for V is white in
the conventional sense. A more detailed discussion on
subspace whitening can be found in [15].
The solution to the generalMMSE subspace whiten-

ing problem has also been obtained in [15], and is
incorporated in the following theorem:

Theorem 2 (MMSE subspace whitening [15]). Let
z∈Rm be a zero mean random vector with covari-
ance matrix Cz=UDU∗, with rank(Cz)=n¡m. Let
V denote the range space of Cz. Let Ŵs be any sub-
space whitening transformation that minimizes the
total MSE between the input z and the output h with
covariance Ch= c2PV= c2UĨU∗, where Ĩ is given by
(8) and c¿ 0. Then

1. Ŵs is not unique;
2. Ŵs = cU(D1=2)†U∗ = c(C1=2

z )† is an optimal sub-
space whitening transformation.

Furthermore, let WV
s = ŴsPV where PV is an

orthogonal projection ontoV and Ŵs is any optimal
subspace whitening transformation. Then

1. WV
s is unique, and is given byW

V
s =cU(D1=2)†U∗=

c(C1=2
z )†;

2. Ŵsz =WV
s z w.p. 1;

3. h = Ŵsz is unique w.p. 1.

In Fig. 2 the input to the whitening transformation
T=Ws is ã=S∗r(t) with Ca=�2S∗S. From Theorem
2 the optimal subspace whitening transformation in

this case is

Ŵs = ((S∗S)1=2)†: (9)

Thus, the POMF demodulator consists of a MF de-
modulator followed by an optimal subspace whitening
transformation given by (9).
Note, that in Fig. 2 ã is restricted to the range space

V ofCa, sinceV is also the range of S∗ and ã=S∗r(t).
Consequently the output b is not a<ected by the action
of Ŵs on V⊥.

5. Correlation demodulator representation of the
OMF and POMF demodulators

5.1. Correlation demodulator representation of the
OMF demodulator

The output of Fig. 2 can be expressed as
b = TS∗r(t) = Q∗r(t) where Q = ST∗. Therefore, a
demodulator of the form depicted in Fig. 2 is equiv-
alent to a correlation demodulator with correlating
signals qk(t)=Qik = ST∗ik , where the lth component
of ik is  kl. If T in Fig. 2 is a whitening transfor-
mation W, then the demodulator is equivalent to a
correlation demodulator with signals denoted by gk(t)
corresponding to G = SW∗. Since Ca = �2S∗S, W
must satisfy WS∗SW∗ = Im, so that

G∗G =WS∗SW∗ = Im: (10)

In Appendix A we show that a set transformation G
corresponding to signals gk(t) satis#es (10) if and only
if the signals gk(t) are orthonormal. We therefore con-
clude that a MF demodulator followed by a whitening
transformation is equivalent to a correlation demodu-
lator with orthonormal signals gk(t).

5.1.1. OMF signals
The OMF demodulator consists of a MF demodu-

lator followed by the MMSE whitening transforma-
tion Ŵ given by (6), and is therefore equivalent to
a correlation demodulator with orthonormal signals
qk(t) = ĝk(t), where ĝk(t) = Ĝik and

Ĝ = SŴ∗ = S(S∗S)−1=2: (11)

We refer to the signals ĝk(t) as the OMF signals.
Since every whitening transformation de#nes a set

of orthonormal correlating signals, and the MMSE
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transformation is optimal in some sense, we expect the
OMF signals to also have some form of optimality.
Indeed, we now show that the OMF signals are the
closest orthonormal signals to the signals sk(t) in a
least-squares sense.
Let bk denote the kth output of the demodulator

of Fig. 2, where T = W is an arbitrary whitening
transformation. Then bk = 〈gk(t); r(t)〉, where gk(t)
are the orthonormal signals corresponding to the set
transformation G = SW∗. Let ãk = 〈sk(t); r(t)〉 de-
note the kth output of the MF demodulator. Then,
ã′
k = 〈sk(t); n(t)〉; b′

k = 〈gk(t); n(t)〉 and
E((ã′

k − b′
k)

2)

=E(〈sk(t) − gk(t); n(t)〉〈n(t); sk(t) − gk(t)〉)

=E

((∫ ∞

t=−∞
(sk(t) − gk(t))n(t) dt

)2)

=�2
∫ ∞

t=−∞
(sk(t) − gk(t))2 dt

=�2〈sk(t) − gk(t); sk(t) − gk(t)〉: (12)

From (12) we conclude that minimizing the MSE
de#ned by (4) is equivalent to minimizing the
least-squares error �LS({sk(t)}; {gk(t)}), where
�LS({sk(t)}; {gk(t)})

=
m∑

k=1

〈sk(t) − gk(t); sk(t) − gk(t)〉: (13)

Thus, seeking a whitening transformation to mini-
mize the MSE de#ned by (4) is equivalent to seeking
a set of orthonormal vectors gk(t) that are closest to
the signals sk(t) in a least-squares sense. This problem
has also been solved in the context of quantum detec-
tion [9] and in the context of general inner product
shaping [6]; the solution in [6,9] is equal to the OMF
signals corresponding to the set transformation given
by (11). We may then interpret the OMF demodulator
as a correlation demodulator matched to a set of or-
thonormal signals that are closest in the least-squares
sense to the signals sk(t). These closest orthonormal
signals are the OMF signals.
An alternative method for designing the OMF

signals that does not make use of the equivalence
between the correlation demodulator and the demod-
ulator of Fig. 2 is developed in [13]. This method is

based on the observation that if the transmitted signal
is si(t), then in Fig. 1, ak = 〈gk(t); r(t)〉 and the de-
clared detected signal will be the transmitted signal if
maxk〈gk(t); si(t)+ n(t)〉= 〈gi(t); si(t)+ n(t)〉. There-
fore a reasonable approach is to choose the signals
gk(t) to be orthonormal, so that the outputs ak are
uncorrelated, and to maximize the sum of the inner
products,

R({gk(t)}; {sk(t)}) =
m∑

k=1

〈gk(t); sk(t)〉: (14)

Since 〈gk(t); gk(t)〉 = 1 independent of the choice
of signals gk(t), maximizing R({gk(t)}; {sk(t)})
is equivalent to minimizing the least-squares error
�LS({sk(t)}; {gk(t)}) de#ned by (13). Thus, the or-
thonormal signals gk(t) that maximize (14) are equal
to the OMF signals.

5.2. Correlation demodulator representation of the
POMF demodulator

If T = Ws is a subspace whitening transformation
on the range space V of S∗, then in a manner sim-
ilar to the discussion in Section 5.1 it follows that
the corresponding correlating signals are the signals
denoted fk(t) corresponding to F , where F = SW∗

s .
Since Ws is a subspace whitening transformation on
V; WsS∗SW∗

s = PV, and

F∗F =WsS∗SW∗
s = PV: (15)

In Section 5.2.1 we de#ne a projected orthogonal basis
(POB) and show that although the signals fk(t) are
not orthonormal, (15) implies that they form a POB.
From this we can then conclude that aMF demodulator
followed by a subspace whitening transformation is
equivalent to a correlation demodulator with signals
that form a POB.

5.2.1. Projected orthogonal basis
Let U be an n-dimensional subspace ofH, and let

M be an m-dimensional subspace of H containing
U, so that m¿n. Suppose we project a set of sig-
nals {xk(t); 16 k6m} which are orthonormal in the
larger spaceM onto the smaller space U, to form the
projections

zk(t) = PUxk(t); 16 k6m: (16)
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With X and Z denoting the set transformations cor-
responding to the signals xk(t) and zk(t) respectively,
it follows from (16) that Z = PUX . Since the vectors
xk(t) form an orthonormal basis for M; XX ∗ = PM,
and

ZZ∗ = PUXX ∗PU = PUPMPU = PU; (17)

where the last equality follows from the fact that
U ⊂ M. Equivalently, for any y(t)∈U we have

y(t) = PUy(t) = ZZ∗y(t) =
m∑

k=1

〈zk(t); y(t)〉zk(t):

(18)

The expansion of (18) is reminiscent of a basis ex-
pansion of y(t) in terms of an orthonormal basis for
U. However, while the signals in an expansion in an
orthonormal basis are linearly independent, the m¿n
signals zk(t) in (18) are linearly dependent and con-
sequently do not form a basis for U. Instead, they are
de#ned as a POB for U since they span U and are
projections of an orthonormal basis onto U.
We therefore have the following de#nition: The sig-

nals {zk(t)∈U; 16 k6m} form a projected orthog-
onal basis (POB) for an n-dimensional space U, with
n¡m, if

ZZ∗ = PU; (19)

where Z is the set transformation corresponding to the
signals zk(t).
The signals {zk(t)∈U; 16 k6m} form a scaled

POB for U if ZZ∗ = cPU for some c¿ 0.
We note that a POB for U constitutes a tight frame

[1,4] for U; furthermore, any tight frame for U is a
scaled POB for U [10]. Thus, a POB is a tight frame
with a normalization constraint. We prefer the nomen-
clature POB since frames are typically associated with
redundant expansions, while in this paper scaled tight
frames arise more naturally as projections of orthog-
onal bases; the redundant expansion property of tight
frames is not relevant to our presentation.
It can be shown that any POB for U can be ex-

pressed as the projection of a set of m orthonormal
signals in an m-dimensional space M onto U, where
U∈M [10]. Thus, if Z satis#es (19) then there is
some set transformation X corresponding to a set of
orthonormal signals such that Z = PUX . It then fol-
lows in a straightforward way that Z∗Z = X ∗PUX
is a projection operator. Indeed, X ∗PUXX ∗PUX =

X ∗PUPMPUX=X ∗PUX . Thus any set transformation
Z that satis#es (19) also satis#es

Z∗Z = PZ∗ ; (20)

where PZ∗ is an orthogonal projection onto the range
of Z∗, so that the signals {zk(t)∈U; 16 k6m} form
a POB for the space they span if and only if Z∗Z is a
projection operator.
Comparing (15) with (20) we conclude that the

signals fk(t) corresponding to a set transformation
F that satis#es (15), forms a POB for the space
they span.

5.2.2. POMF signals
The POMF demodulator is equivalent to a correla-

tion demodulator with signals that form a POB, and
are given by f̂k(t) = F̂ ik where

F̂ = SŴ∗
s = S((S∗S)1=2)†; (21)

and Ŵs is the optimal MMSE whitening transforma-
tion given by (9). We refer to the signals f̂k(t) as the
POMF signals. Since the signals f̂k(t) span U (the
space spanned by the transmitted signals), the POMF
demodulator is equivalent to a correlation demodula-
tor with signals qk(t) =f̂k(t) that form a POB for U.
If T = Ws is an arbitrary subspace whiten-

ing transformation in the system of Fig. 2, then
bk = 〈fk(t); r(t)〉, where fk(t) is the POB corre-
sponding to the set transformation F = SWs. Sub-
stituting fk(t) for gk(t) in (12) we conclude that
the signals f̂k(t) minimize the least-squares error
�LS({sk(t)}; {fk(t)}). Thus, the POMF demodulator
may be interpreted as a correlation demodulator with
signals f̂k(t) that form a POB that is closest in a
least-squares sense to the signals sk(t).
As in the case of linearly independent signals, we

may derive the POMF signals by seeking a set of sig-
nals {fk(t); 16 k6m} that form a POB and such
that R({fk(t)}; {sk(t)}), de#ned by (14), is maxi-
mized. Note that contrary to the linearly independent
case, here 〈fk(t); fk(t)〉 depends on the choice of
fk(t). In Appendix B we show that maximizing
R({fk(t)}; {sk(t)}) subject to the constraint that the
signals fk(t) form a POB, is equivalent to minimiz-
ing �LS({sk(t)}; {fk(t)}) subject to this constraint.
Therefore, the POB signals fk(t) that maximize
R({fk(t)}; {sk(t)}) are equal to the POMF signals.
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5.3. Matrix representation of the OMF and POMF
signals

To implement the OMF and POMF demodulators in
practice, we may #nd it more convenient to reformu-
late the OMF and POMF signals in terms of their co-
eNcients in a basis expansion for the spaceU spanned
by the transmitted signals. These coeNcients can be
viewed as vectors in a coeNcient spaceRp, withp=m
for the OMF signals and p= n for the POMF signals.

5.3.1. Matrix representation of the OMF signals
Let U denote the m-dimensional subspace spanned

by the signals sk(t), and let X :Rm → U denote a set
transformation corresponding to a set of m signals that
form an orthonormal basis for U. Then sk(t) = X sk
for some sk ∈Rm, and S = XS where S is the m × m
matrix of columns sk . We may then express Ĝ of (11)
in terms of X and S as

Ĝ = S(S∗S)−1=2 = XS(S∗S)−1=2; (22)

where we used the fact that X ∗X = Im. Thus, ĝk(t) =
X ĝk where ĝk is the kth column of the m × m matrix
Ĝ, and

Ĝ = S(S∗S)−1=2: (23)

Since (23) has the same form as (22), we conclude
that the vectors {ĝk ; 16 k6m} are the closest or-
thonormal vectors to the vectors {sk ; 16 k6m}, in
the least-squares sense. We may therefore determine
the OMF signals by solving the least-squares problem
of (13) in the coeNcient space Rm.
We may express Ĝ in terms of the polar decomposi-

tion [22] and the singular value decomposition (SVD)
[19] of S. Rearranging (23) we have

S= Ĝ(S∗S)1=2 = ĜA; (24)

where Ĝ is a partial isometry 5 and A is a symmetric
positive-de#nite matrix, so that (24) is the polar de-
composition of S. Thus, Ĝ is just the partial isometry
in this decomposition. Next, let the SVD of S be given
by S = U*V∗, where U and V are unitary matrices

5 A partial isometry is a matrix H that satis#es H∗H= I, where
H is not necessarily a square matrix.

and * is diagonal. Substituting into (23) we have

Ĝ =UV∗: (25)

Using (24) and (25), the OMF signals may be com-
puted very eNciently exploiting the many known
eNcient algorithms for computing the polar decom-
position and the SVD (see, e.g., [19,21,29]).

5.3.2. Matrix representation of the POMF signals
If the signals sk(t) are linearly dependent, then they

form an n-dimensional subspaceU, where n¡m. Let
X :Rn → U denote a set transformation correspond-
ing to a set of n signals that form an orthonormal basis
forU. Then sk(t)=X sk for some sk ∈Rn, and S=XS
where S is the n × m matrix of columns sk . We can
now express F̂ in terms of X and S as

F̂ = S((S∗S)1=2)† = XS((S∗S)1=2)†: (26)

Thus, f̂k(t) = X f̂k where f̂k is the kth column of the
n × m matrix F̂, and

F̂= S((S∗S)1=2)†: (27)

Since (27) has the same form as (26), we conclude
that the vectors {f̂k ; 16 k6m} form the closest POB
to the vectors {sk ; 16 k6m}, in the least-squares
sense. We may therefore determine the POMF signals
by solving the least-squares problem of (13) in the
coeNcient space Rn, subject to the POB constraint.
We may express F̂ in terms of the SVD of S; S=

U*V∗, where U and V are unitary matrices and * is
diagonal, as

F̂=UInmV∗; (28)

where Inm is the n × m matrix given by

Inm = [In 0n×(m−n)]: (29)

In this case it can be shown that F̂ is the projection
onto the space spanned by the vectors sk of the partial
isometry in a polar decomposition 6 of S. In practice,
we may #nd it convenient to compute the POMF
signals through the use of (28).

6 If the columns sk of S are linearly dependent, then the partial
isometry in the polar decomposition of S is not unique; however
its projection onto the space spanned by the signals sk is unique
[6].
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6. Summary of the OMF and POMF
demodulators

We summarize our results regarding the OMF and
POMF demodulators in the following theorems:

Theorem 3 (OMF demodulator): Let {sk(t); 16
k6m} denote a set of m transmitted signals in a
Hilbert space H that span an m-dimensional sub-
space U ⊆ H. Let {ĝk(t); 16 k6m} denote the
OMF signals that are the correlating signals of the
OMF demodulator. Let S :Rm → H and Ĝ :Rm →
H denote the set transformations corresponding to
the signals sk(t) and ĝk(t), respectively. Then

Ĝ = S(S∗S)−1=2:

Let X denote a set transformation corresponding to
an orthonormal basis for U, let sk(t) = X sk , and let
S be the matrix of columns sk with SVD S=U*V∗.
Then ĝk(t)=X ĝk where the vectors ĝk are the columns
of Ĝ, and

Ĝ = S(S∗S)−1=2 =UV∗:

In addition,

1. the OMF demodulator can be realized by
a conventional MF demodulator followed by
the MMSE whitening transformation Ŵ =
(S∗S)−1=2 = (S∗S)−1=2;

2. the signals ĝk(t) minimize the least-squares error
given by (13), i.e., they are the closest orthonormal
signals to the signals sk(t);

3. the vectors ĝk are the closest orthonormal vectors
to the vectors sk , and are the columns of the partial
isometry in the polar decomposition of S;

4. the signals ĝk(t) maximize the sum of the inner
products R({gk(t)}; {sk(t)}) given by (14).

Theorem 4 (POMF demodulator): Let {sk(t); 16
k6m} denote a set of m transmitted signals in a
Hilbert space H that span an n-dimensional sub-
space U ⊂ H. Let {f̂k(t); 16 k6m} denote the
POMF signals that are the correlating signals of the
POMF demodulator. Let S:Rm → H and F̂ :Rm →
H denote the set transformations corresponding to
the signals sk(t) and f̂k(t), respectively. Then

F̂ = S((S∗S)1=2)†:

Let X denote a set transformation corresponding to
an orthonormal basis for U, let sk(t) = X sk , and let
S be the matrix of columns sk with SVD S=U*V∗.
Thenf̂k(t)=X f̂k where the vectors f̂k are the columns
of F̂, and

F̂= S((S∗S)1=2)† =UInmV∗;

where Inm is given by (29). In addition,

1. the POMF demodulator can be realized by
a conventional MF demodulator followed by
an optimal subspace whitening transformation
Ŵs = ((S∗S)1=2)† = ((S∗S)1=2)†;

2. the signals f̂k(t) minimize the least-squares error
�LS({sk(t)}; {fk(t)}) given by (13), i.e., they form
the closest POB to the signals sk(t);

3. the vectors f̂k form the closest POB to the vectors
sk , and are the projections onto U of the columns
of the partial isometry in a polar decomposition
of S;

4. the signals f̂k(t) maximize the sum of the inner
products R({fk(t)}, {sk(t)}) given by (14).

Finally, we note that based on results derived in the
context of quantum detection [9] it can be shown that
in many cases the OMF and POMF demodulators have
an additional property, analogous to the SNR property
of the MF demodulator.
Speci#cally, it is well known that choosing

qk(t) = sk(t) in Fig. 1 maximizes the SNR of ak , and
also of course maximizes the total SNR de#ned by
SNRT =(1=�2)

∑m
k=1 |〈qk(t); sk(t)〉|2, since the indi-

vidual terms are maximized by this choice. To design
our receiver, we may therefore seek a set of signals
that maximize SNRT subject to the orthogonality
constraint or the POB constraint, so as to ensure that
the outputs are uncorrelated on the space in which
they lie. Although this is a reasonable approach to
choosing the signals qk(t), this problem is hard to
solve analytically.
However, we can formulate this problem within

the framework of quantum detection, and then rely
on results obtained in that context [5]. Speci#cally
based on the results in [5,9,12], it can be shown
that when the signals sk(t) have a strong symmetry
property called geometric uniformity [17] or com-
pound geometric uniformity [7] the OMF and POMF
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signals maximize SNRT subject to the constraint that
the outputs of the demodulator are uncorrelated on the
space in which they lie. In [17] it is claimed that most
practical signal sets used in digital communication are
indeed geometrically uniform. Thus, in a communica-
tions context the POMF and OMF demodulators have
a property analogous to the MF demodulator, namely
they typically maximize the total SNRT subject to the
decorrelation constraint.
Further results regarding the orthogonal or POB

signals that maximize SNRT that follow from results
pertaining to quantum detection are that if the signals
are nearly orthogonal, then the OMF and POMF sig-
nals maximize SNRT [5,20]. Iterative algorithms for
maximizing SNRT for arbitrary signal sets are given
in [6,11,20].

7. Simulation results

In this section we provide simulation results sug-
gesting the behavior and performance of the OMF de-
tector, in comparison to the MF detector. Although
the simulation results do not prove that the OMF de-
tector outperforms the MF detector, they suggest that
the OMF detector may hold considerable promise in
a variety of applications.
The behaviors of the detectors were simulated in

non-Gaussian and Gaussian noise using random signal
constellations. The signals in the constellation have
dimension m equal to the number of the signals in the
constellation, and the samples of the signals are mu-
tually independent zero-mean Gaussian random vari-
ables with variance 1=

√
m, scaled to have norm 1.

We considered two di<erent distributions for the
non-Gaussian noise. The #rst is a Gaussian mixture
of two components with equal weights. This choice
of distribution is motivated by the fact that Gaus-
sian mixtures have been used extensively to model
non-Gaussian noise [16,24,28], and in part because the
Gaussian mixture model is capable of closely approx-
imating many non-Gaussian distributions. The second
distribution is the Beta distribution, which is chosen
since it is very Oexible and capable of attaining a wide
variety of shapes by varying its two parameter values
a and b. Depending on the values of these parame-
ters the Beta distribution will have the “U”, the “J”,
the triangle or the general bell shape. In addition, the

Beta distribution can model the e<ect of several noise
components since the sum of N Gamma-distributed
random variables is Beta-distributed, if N is not too
large [3].
We generated 500 realizations of signals. For each

particular signal realization, we determined the prob-
ability of correct detection for the detectors in both
types of noise by recording the number of successful
detections over 500 noise realizations. We then plot-
ted histograms of the probability of correct detection
Pd for the di<erent detectors, which indicated that Pd

has a unimodal distribution with a bell-shaped appear-
ance. Therefore, it is reasonable to compactly present
the results in terms of the mean and standard deviation
of Pd for the various detectors.
We note that the probability of correct detection

levels we obtain in the simulations below are gener-
ally unacceptable in a communication context. How-
ever, we stress that the primary applications of the
OMF detector are not in the context of communica-
tion, but rather other multi-signature scenarios such
as target classi#cation and signature analysis. In these
contexts the probability of correct detection levels we
obtain are useful. Applications of the ideas presented
in this paper to a communication problem are consid-
ered in [8].

7.1. Gaussian mixture noise

We #rst considered a Gaussian mixture of two com-
ponents each with standard deviation 0.25 centered at
±1, corresponding to an SNR close to 0 dB.
In Fig. 3 we plot the mean of Pd for the OMF de-

tector and the MF detector as a function of the number
of signals in the transmitted constellation. The verti-
cal lines indicate the standard deviation of Pd. From
the #gure it is evident that at this SNR the OMF
detector outperforms the MF detector, where the rel-
ative improvement in performance of the OMF de-
tector over the MF detector increases for increasing
constellation size.
We repeated the simulations for di<erent param-

eters of the Gaussian mixture components, again at
an SNR of 0 dB. In general we found that the rela-
tive improvement of the OMF detector over the MF
detector increased as the separation between the mix-
tures increased. When the separation is decreased
relative to the mixture standard deviation the relative
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Fig. 3. Comparison between the OMF and MF in Gaussian mixture
noise, as a function of the number of signals in the transmitted
constellation. The mixture components have standard deviation of
0.25 and are centered at ±1. The dashed line is the mean Pd
using the OMF detector, and the solid line is the mean Pd using
the MF detector. The vertical lines indicate the standard deviation
of the corresponding Pd.

improvement in performance using the OMF de-
tector decreases, consistent with the fact that the
Gaussian mixture distribution approaches a Gaussian
distribution. The same behavior is evident when vary-
ing the standard deviation of the mixture components
for #xed mean separation. In Fig. 4 we plot the mean
of Pd for the OMF and MF detectors for constella-
tions of 13 signals in Gaussian mixture noise of two
components each with standard deviation � centered
around ±), as a function of �=). The vertical lines
indicate the standard deviation of Pd. As the stan-
dard deviation of the mixture components increases
relative to the mixture mean, the Gaussian mixture
distribution approaches a Gaussian distribution, in
which case the relative improvement in performance
using the OMF detector decreases.
In general we observed that the relative improve-

ment in performance of the OMF over the MF detector
increased with decreasing SNR, and is predominant
for large signal constellation size. For increasing val-
ues of SNR the relative improvement in performance
using the OMF detector decreases.
The qualitative behavior of the POMF detector

in comparison to the MF detector when varying the
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Fig. 4. Comparison between the OMF and MF detectors for trans-
mitted constellations of 13 signals in Gaussian mixture noise with
mixture components with standard deviation � centered at ±),
as a function of �=). The dashed line is the mean Pd using the
OMF detector, and the solid line is the mean Pd using the MF
detector. The vertical lines indicate the standard deviation of the
corresponding Pd.

Gaussian mixture parameters and the SNR is similar
to that of the OMF detector.

7.2. Beta distributed noise

We next consider Beta-distributed noise with a va-
riety of parameter values.
In Fig. 5 we plot the mean of Pd for the OMF de-

tector and the MF detector in Beta-distributed noise
with a= b=1, as a function of the number of signals
in the transmitted constellation. The vertical lines in-
dicate the standard deviation of Pd. From the #gure
it is evident that the OMF detector outperforms the
MF detector, where the relative improvement in per-
formance of the OMF detector over the MF detector
increases for increasing constellation size.
We repeated the simulations for di<erent parame-

ter values. In general we found that the relative im-
provement of the OMF detector over the MF detector
increased as the distribution became more bimodal.
In Figs. 6–8 we plot the mean of Pd for the OMF
and MF detectors for constellations of 13 signals in
Beta-distributed noise with varying parameters. The
vertical lines indicate the standard deviation of Pd. As
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Fig. 5. Comparison between the OMF and MF detectors in
Beta-distributed noise, as a function of the number of signals in
the transmitted constellation. The parameters of the distribution are
a=b=0:1. The dashed line is the mean Pd using the OMF detec-
tor, and the solid line is the mean Pd using the MF detector. The
vertical lines indicate the standard deviation of the corresponding
Pd.
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Fig. 6. Comparison between the OMF and MF detectors for trans-
mitted constellations of 13 signals in Beta-distributed noise, as
a function of the parameters with a = b. The dashed line is the
mean Pd using the OMF detector, and the solid line is the mean
Pd using the MF detector. The vertical lines indicate the standard
deviation of the corresponding Pd.

the b parameter increases, the Beta distribution ap-
proaches a unimodal distribution, in which case the
relative improvement in performance using the OMF
detector decreases.
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Fig. 7. Comparison between the OMF and MF detectors for trans-
mitted constellations of 13 signals in Beta-distributed noise with
b = 0:1, as a function of the parameter a. The dashed line is the
mean Pd using the OMF detector, and the solid line is the mean
Pd using the MF detector. The vertical lines indicate the standard
deviation of the corresponding Pd.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b

P d

13 signals, SNR = 0dB, a = 0.1

orthogonal matched filter
matched filter           

Fig. 8. Comparison between the OMF and MF detectors for trans-
mitted constellations of 13 signals in Beta-distributed noise with
a = 0:1, as a function of the parameter b. The dashed line is the
mean Pd using the OMF detector, and the solid line is the mean
Pd using the MF detector. The vertical lines indicate the standard
deviation of the corresponding Pd.

In Fig. 9 we plot the mean and standard deviation
of Pd for the OMF and MF detectors as a function of
SNR for transmitted constellations of 13 signals, in
Beta-distributed noise with a = b = 0:1. The SNR is
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Fig. 9. Comparison between the OMF and MF detectors for trans-
mitted constellations of 13 signals in Beta-distributed noise with
a = b = 0:1, as a function of the SNR. The dashed line is the
mean Pd using the OMF detector, and the solid line is the mean
Pd using the MF detector. The vertical lines indicate the standard
deviation of the corresponding Pd.

given by 10 logPs=�2, where Ps is the signal power
and the variance of the Beta distribution is given in
terms of the parameters a and b as

�2 =
ab

(a+ b)2(a+ b+ 1)
: (30)

The improvement in performance of the OMF over the
MF detector is predominant for low to intermediate
values of SNR.

7.3. Gaussian noise

We repeated the simulations leading to the results
previously presented with zero-mean Gaussian noise.
In Fig. 10 we plot the mean of Pd for the OMF detector
and the MF detector in Gaussian noise, as a function of
the number of signals in the transmitted constellation.
The vertical lines indicate the standard deviation of
Pd. In Fig. 11 we plot the mean of Pd using the OMF
and MF detectors for transmitted constellations of 7
signals in Gaussian noise, as a function of SNR.
As expected, for Gaussian noise the MF detector

outperforms the OMF detector. This is consistent with
the fact that the MF detector maximizes the probabil-
ity of correct detection for Gaussian noise. However,
it is evident from Figs. 10 and 11 that the relative
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Fig. 10. Comparison between the OMF and MF detectors in zero
mean, unit variance Gaussian noise, as a function of the number
of signals in the transmitted constellation. The dashed line is the
mean Pd using the OMF detector, and the solid line is the mean
Pd using the MF detector. The vertical lines indicate the standard
deviation of the corresponding Pd.
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Fig. 11. Comparison between the OMF and MF detectors for
transmitted constellations of 7 signals in Gaussian noise, as a
function of SNR. The dashed line is the mean Pd using the
OMF detector, and the solid line is the mean Pd using the MF
detector. The vertical lines indicate the standard deviation of the
corresponding Pd.

improvement in performance using the MF detector
over the OMF is not very signi#cant. Speci#cally, in
Fig. 11 note that the maximum (mean) di<erence in
probability of correct detection is less than 0.08. These
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results are encouraging since they suggest that if the
receiver is designed to operate in di<erent noise envi-
ronments, or in an unknown noise environment, than
we may prefer using an OMF or POMF detector since
for certain non-Gaussian noise distributions these de-
tectors may result in a substantial improvement in per-
formance over a MF detector, without signi#cantly
degrading the performance if the noise is Gaussian.
The performance trend of the OMF relative to that

of the MF for the Gaussian case generally holds for
other distributions that are unimodal, even when the
distribution is asymmetric or has heavy tails.

8. Conclusion

We considered the problem of detecting a transmit-
ted signal when one of m known signals is transmitted
over a white noise channel. To improve the perfor-
mance over MF detection for non-Gaussian noise, we
proposed whitening the output of the MF demodula-
tor on an appropriate subspace, prior to detection. The
whitening transformation was chosen to minimize the
MSE between the input and the output.
If the transmitted signals are linearly independent,

then this approach results in a demodulator that is
equivalent to a correlation demodulator with orthonor-
mal signals that are closest in a least-squares sense to
the transmitted signals, and is therefore referred to as
an OMF demodulator. If the transmitted signals are
linearly dependent, then this approach results in a de-
modulator that is equivalent to a correlation demod-
ulator with signals that form a projected orthogonal
basis for the space spanned by the transmitted signals,
and is closest in a least-squares sense to the transmit-
ted signals. This demodulator is therefore referred to
as a POMF demodulator.
We provided simulations that suggest that the OMF

and POMF detectors signi#cantly outperform the
MF detector for some classes of non-Gaussian noise.
When the noise is Gaussian the loss in performance
using the OMF and POMF detectors in comparison
with the MF detector is negligible.
In this paper, the performance improvement

using the OMF receiver was demonstrated through
simulation only. An important direction for future re-
search is to analyze the behavior of the OMF receiver
analytically. Of related interest is the development

of analytical methods for determining under which
non-Gaussian distributions the modi#ed receivers
lead to improved performance over the MF receiver,
for example using large deviation theory and the
Cherno< bound.
In our closing remarks, we note that we can readily

extend the results developed in this paper to the case
in which the signals sk(t) have unequal norm, or the
case in which the signals are transmitted with unequal
probability. In such cases, we may choose the correlat-
ing signals qk(t) to minimize a weighted least-squares
error, where the weights may be chosen to reOect the
signal priors, or the signal norms.

Appendix A. Orthonormal set transformations

In this appendix we prove that a set transformation
X corresponding to the signals {xk(t); 16 k6m} sat-
is#es X ∗X = Im if and only if the signals xk(t) are
orthonormal.
Suppose the signals xk(t) are orthonormal. For any

a∈Rm, let y(t)=X a and b=X ∗y(t)=X ∗X a. Then

bl = 〈xl(t); y(t)〉 = 〈xl(t);
m∑

k=1

akxk(t)〉

=
m∑

k=1

ak〈xl(t); xk(t)〉

=
m∑

k=1

ak lk = al: (A.1)

Since bl=al for all l, X ∗X a=a for any a∈Rm; thus
X ∗X = Im.
Next, suppose X ∗X = Im. Then X ∗X a = a for any

a∈Rm. In particular, let a= el, where el is the vector
with kth component  kl. Then

X ∗X el = el; 16 l6m: (A.2)

Now,

X el =
m∑

k=1

xk(t) kl = xl(t): (A.3)

Substituting (A.3) into (A.2) we have

X ∗xl(t) = el; 16 l6m: (A.4)
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Since the kth element of X ∗xl(t) is given by
〈xk(t); xl(t)〉, from (A.4) we conclude that

〈xk(t); xl(t)〉 =  kl; ; 16 k; l6m; (A.5)

and the signals xk(t) are orthonormal.

Appendix B. Equivalence of minimizing �LS({sk(t)};
{fk(t)}) and maximizing R({sk(t)}; {fk(t)})

Expanding �LS({sk(t)}; {fk(t)}) we have
�LS({sk(t)}; {fk(t)})

=
m∑

k=1

〈sk(t) − fk(t); sk(t) − fk(t)〉

=
m∑

k=1

(1 + 〈fk(t); fk(t)〉

−2〈sk(t); fk(t)〉): (B.1)

Since the signals {fk(t); 16 k6m} form a POB for
the n-dimensional spaceU ⊆ H; fk(t)=PUxk(t) for
some orthonormal set of signals {xk(t); 16 k6m}.
Let F :Rm → H and X :Rm → H denote the set
transformations corresponding to fk(t) and xk(t), re-
spectively. Then, F = PUX and
m∑

k=1

〈fk(t); fk(t)〉 = Tr(F∗F) = Tr(X ∗PUX ): (B.2)

Let the signals {zk(t); 16 k6 n} be a set of or-
thonormal signals that span U, and let Z be the set
transformation corresponding to the signals zk(t).
Then PU = ZZ∗. Since U is a subset of the span
of the vectors xk(t), any zk(t) can be expressed as
zk(t)=XZk for some Zk ∈Rm. Thus, Z =XZ where
Z is the matrix of columns Zk . Since the vectors xk(t)
and zk(t) are orthonormal, X ∗X = Im and Z∗Z = In.
But Z∗Z = Z∗X ∗XZ= Z∗Z; so Z∗Z= In. Then
m∑

k=1

〈fk(t); fk(t)〉=Tr(X ∗PUX )

= Tr(X ∗XZZ∗X ∗X )

= Tr(In) = n; (B.3)

so that minimizing �LS({sk(t)}; {fk(t)}) is equivalent
to maximizing R({sk(t)}; {fk(t)}).
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