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Optimal Tight Frames and Quantum Measurement

Yonina C. Elday Student Member, IEEEBNnd G. David Forney, Jr=ellow, IEEE

Abstract—Tight frames and rank-one quantum measurements to quantization degradations [11], [12]. Recently, frames have
are shown to be intimately related. In fact, the family of normal-  peen applied to the development of modern uniform and nonuni-
ized tight frames for the space in which a quantum-mechanical form sampling techniques [13], to various detection problems

system lies is precisely the family of rank-one generalized quantum : .
measurements on that space. Using this relationship, frame-theo- [14], [15], and to the analysis and design of packet-based com-

retical analogs of various quantum-mechanical concepts and re- Mmunication systems [16].
sults are developed. The analog of a least-squares quantum mea- A tight frameis a special case of a frame for which the re-

surement is a tight frame that is closest in a least-squares senseconstruction formula is particularly simple. As we show in Sec-
to a given set of vectors. The least-squares tight frame is found tion IV, a tight frame expansion of a signal is reminiscent of an

for both the case in which the scaling of the frame is specified th | basi . th h the f t .
(constrained least-squares frame (CLSF)) and the case in which orthogonal basis eéxpansion, even thoug € frame vectors in

the scaling is chosen to minimize the least-squares error (uncon- the expansion are linearly dependent. Tight frames are particu-
strained least-squares frame (ULSF)). The well-known canonical larly popular, and will be the focus of this paper.
frame is shown to be proportional to the ULSF and to coincide with Frame-like expansions have been developed and used in a
the CLSF with a certain scaling. wide range of disciplines. Many connections between frame
Index Terms—Canonical frames, least-squares frame, least- theory and various signal processing techniques have been re-
squares quantum measurement, Neumark's theorem, tight cently discovered and developed. For example, the theory of
frames. frames has been used to analyze and design oversampled filter
banks [17]-[20] and error-correction codes [21]. Wavelet fami-
|. INTRODUCTION lies have been used in quantum mechanics and many other areas
of theoretical physics, particularly in the study of semiclassical

F RAMES are generalizations of bases which lead to redugﬁproximations to quantum mechanics [5]

. dant signal expansion§ [l]_’ [2]. Af_rame for a Hilbert space In this paper, we explore yet another connection between
U is a set of not necessarl_ly linearly mdgpendent vectors t_ antum mechanics and tight frames. Specifically, we show that
spand{ and has some additional properties. Frames were an £ family of (normalized) tight frames for a subspdén

introduced by Duffin and Schaeffer [1] in the context of nonha(ﬂ/hich a quantum-mechanical system is known to lie is pre-

monic Fqurler Senes, and play an Important rolg in the theo&'sely the family of possible positive operator-valued measures
of nonuniform sampling [1]-[3]. Recent interest in frames h

b . di by their utility i i | a(%’OVMs)onL{. Exploiting this equivalence, we can apply ideas
pgﬁ;(r)rr“zt'[\f]‘te[s]'n part by their utility in analyzing wavelet X3, yeqits derived in the context of guantum measurement to

. the theory of frames andce versa
Many efforts have been made to construct bases with SpeCiyye begin in Section Il by characterizing quantum mea-
fied properties. Since the conditions on bases are quite String%ﬂtrements With each rank-one quantum measurement we

in many applications it is hard to find “good” bases. The COMissociate a measurement matrix. Using the measurement
ditions on frame vectors are usually not as stringent, allowi

X A ) . "Watrix representation, we give a simple and constructive
for increased flexibility in their design [4], [6]. For example of of Neumark’s theorem [22], [23], which relates general

. o . ’pro,
frame expansions admit signal representations that are locali %%ntum measurements to orthogonal measurements. We then
in both time and frequency [5], as well as sparse representati iscuss the problem of constructing measurements optimized

71 . . . distinguish between a set of nonorthogonal pure quantum
Frame expansions have many other desirable properties. (%ﬁ

coefficients may be computed with less precision than the coe We then follow a similar path in Section IV for tight frames.

ﬁCie*_“_S in a basis expansion f_o_r a giv_en desired recqqstructig% associate a frame matrix with every tight frame, which as we
precision [5]; the eﬁect Of. additive NOISE on the_ coefﬂqents %how has essentially the same properties as a quantum measure-
the recqnstructed signal is reduced in comparison with a baﬁ{gnt matrix. Next, we derive an analog of Neumark's theorem
expansion [5], [8]-[10]; and the coefficients are more robu%r tight frames, which expresses tight frame vectors as orthog-

onal projections of a set of orthogonal vectors in a larger space.
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construction from a given set of vectors is the canonical frangenjugate transpose ¢#). The inner product of two vectors is
[8], [19], [24]-{27], first proposed in the context of waveletsa complex number denoted Ky|y). An outer product of two
in [28]. The canonical frame is relatively simple to constructjectors such as:)(y| is a rank-one matrix, which as an operator
can be determined directly from the given vectors, in margikes|z) € H to |z){y||z) = (y|z)|z) € H.
cases of interest inherits stability and symmetry properties ofAn operator or{ is a continuous linear transformatiot
the original vector set [24], [27], and plays an important role iif — . The adjoint of a linear operatot is the unique oper-
wavelet theory [29]-[31]. Some optimality properties of canorator A* such thatz, Ay) = (A*z, y) for all z, y € H. If the
ical frames have been discussed in [26]. elements ofH are column vectors, then a linear operatbis
In Section V, we systematically construct optimal frameepresented by a square matrix, and its adjoint is represented by
from a given set of vectors. Motivated by the least-squaréd®e conjugate transpos&®, since
measurement [32] derived for quantum detection, we seek a
tight frame consisting of frame vectors that minimize the sum (x, Ay) = x* Ay = (A*2)*y = (A% z, y).
of the squared norms of the error vectors, whereithesrror
vector is defined as the difference betweendhegiven vector ~ An operatorA is calledHermitianif it is self-adjoint; i.e., if
and theith frame vector. We consider both the case in which* = A
the scaling of the frame is specified and the case in which theAn orthogonal (Hermitian) projecta? is a Hermitian oper-
scaling is such that the error is minimized. When the scalingasor on such that”? = P; all projections used in this paper
specified, the optimizing frame is referred to as the constrained| be orthogonal projections. The eigenvalues /éfare all
least-squares frame (CLSF), and when the scaling is chosergual0 or 1, and P has an orthonormal set of eigenvectors. If
minimize the error, the optimizing frame is referred to as thg;} is a set of orthonormal eigenvectors corresponding to the
unconstrained least-squares frame (ULSF). nonzero eigenvalues d@?, then the subspadé C H spanned
In Section VII, we show that the canonical frame vectors at®y the set{«,} is the range of?, and we write the orthogonal
proportional to the ULSF vectors, and that they coincide witbrojector asF;,. A one-dimensional orthogonal projector has a
the CLSF vectors with a specific choice of scaling. single normalized eigenvectarand may be written as the outer
Before proceeding to the detailed development, in Section firoductP,, = uw* (or P, = |u){u| in bra-ket notation); then,
we first provide an overview of the notation and some mathé3, projects any: € H into the projectionP,z = (u, z)u (or
matical preliminaries. |1} (u|x)). An r-dimensional orthogonal projectdi, may be
written as the sum of one-dimensional orthogonal projectors,
Il. PRELIMINARIES Py =), P, where{;} is any orthonormal basis fér.

In this section, we brlefly.rewew elemgnts of linear algebrgn Transjectors (Partial Isometries)
that are common to both signal processing and quantum me- )
chanics. Our main goal is to characterize “transjectors” (partial L8t £" bé arank- matrix whose columns are a seto¥ectors

isometries) using the singular value decomposition (SVD). #i € 7. Itis well known in signal processing (but not as well
known in quantum mechanigsthat any such matri¥’ has an

SVD F' = UXV*, whereU is a unitary matrix whose columns
i _ _ {u; € H} are eigenvectors of the Hermitian operdfoe I"'F™*,

In both signal processing and quantum mechanics, the sgtig 5 unitary matrix whose columrs; € C"} are eigenvec-
ting we consider is a finite-dimensional subspatef a com- 4r5 of the Hermitian matrixs = F*F (the Gram matrix of
plex Hilbert spacé{. The elements d¥ are called vectors. We jnner products), antl is a real diagonal matrix whosenonzero
will assume, .for notational convenience, tiéts finite-dimen- y51yes,;, called thesingular valuef ', are the positive square
sional, withdim 7 = ; then, b}%’ appropriate choice of coordi-qots of the nonzero eigenvalues of eit§eor 7. Thus, we may
nates, we can |dent|fgz*l with C*. write F = S7_ oyuvl (or F = 37 0ilus){v;]), a sum ofr

In signal processing, the elements &f are regarded as gnk outer products. ’
column vectors and denoted, e.g.,d0¥ H. Thenz* denotes  ap outer product such as;u! (or |u;)(v;]) is called a

the row vector which is the conjugate transpose.ofhe inner one-dimensionaransjector The transjecton; v} takes a basis
product of two vectors is a complex number, denoted, €.9., P¥ctorv; € C to the corresponding basis vecter € H.
{z,y) = «"y. An outer product of two vectors such a5 By linear superposition, it therefore takes a general element
is f\ rank-one matrix, which as an operator takeg H to , _ > 5{vs, 2)u; € CU towufe = (v, «hu; € H. Similarly,
Ty E = {y, z)x € H. _ _ the adjoint transjectov; v} takesy = > (u;, y)u; € H to

The Dirac bra-ket notation of quantum mechanics expressgg«,, — (u;, yyv; € C™.
sqqh concepts very nicel_y;_hovyever, recognizing that it is unfa—-rhe subspace spanned by therthonormal eigenvectors €
miliar, we do not rely on it in this paper. Nonetheless, to assigt corresponding to the nonzero eigenvalues &= F* F will
the reader unfamiliar with this notation in reading the quantuy genoted a& C M, and the subspace spanned by ther-

literature, we will give the bra-ket equivalents for various exnonormal eigenvectors € C* corresponding to the nonzero

A. Hilbert Spaces and Operators

pressions in this section. eigenvalues of = F'F'* will be denoted a3’ CC™. The image
In the bra-ket notation, the elementsifare “ket” vectors,
denoted, e.g., bjr) € H. The corresponding “bra” vectd| 1The SVD has sometimes been presented in quantum mechanics as a corollary

is an element of the dual spag& and may be regarded as thef the polar decomposition (e.g., in [33, Appendix Al).
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of F isi, and the image of™ is V; the kernel off" is the or- IIl. QUANTUM MEASUREMENT
thogonal complement+ of V, and the kernel of ™ isi/+. I/
operates by first performing an orthonormal expansioCof
using the orthonormal basiss; }, scaling each component by
o;, and then “transjecting” tf CH by replacing each; by the
correspondinge;. F™* similarly “transjects” frontH to V C C™.

A rank+ matrix £ is called an--dimensional transjectoif
its » nonzero singular values are all equalltdn other words,
F =UZ.V*, wherelU andV are unitary and

In this section, we present some elements of the theory of
guantum measurement following [32] and unpublished work in
[34]. In the remainder of the paper, we will develop analogous
results for tight frames.

A quantum system in a pure state is characterized by a nor-
malized vectory in a Hilbert spaceH. Information about a
quantum system is extracted by subjecting the system to a mea-
surement. In quantum theory, the outcome of a measurement is
inherently probabilistic, with the probabilities of the outcomes

n of any conceivable measurement determined by the state vector
I |o P e H.
Zy = . Q) A quantum measurement is described by a collection of Her-
010 mitian operator @, } on 7, where the index corresponds to

. . - ) ) ) a possible measurement outcome. The laws of quantum me-

Equivalently, F'F™* =U(Z, Z7)U" = I, is anr-dimensional - chanics impose certain mathematical constraints on the mea-
orthogonal projector onto arrdimensional subspadé C H ¢ ,rement operators.
with an orthonormal basig; € 1, 1 <+ 5*7’} (theu-lzams) €ON" " In the simplest case, the measurement operators are rank-one
sisting of the first columns ofU, and ™ F' = V(ZZ.)V* = gperators and have the outer-product fam= ;4 for some
Py is anr-dimensional orthogonal projector onto &mimen-  \,nzerg vectorg; € . Such measurements will be called
sional subspac® < C" with an orthonormal basigv; € C",  rank-one measurements, and the vecigrsvill be called the
1<i<r} (theV-basis) consisting of the firstcolumns of V. a5surement vectors.

The SVDF = U/Z,V* thus reduces to a sum ofone-di- f the state vector ig), then the probability of observing the

mensional transjectors (outer products) ith outcome is
- p(i) = (o, Qi) = [, V). 4)
I= Z Wil - @ To ensure that the probabilitigé:) sum tol for any normalized
=t ¥ € H, we impose the constraint

An r-dimensional transjectar is also called gartial isom- Z Q=1 )
etry, because it is an isometry (distance-preserving transforma- T
tion) between the subspadésC H andV C C™. Indeed, ifv, '
v € Vandu = Fu, ' = Fv/, then wherely is the identity operator ofi{; then

<U,, u/>:u*u/ _ U*F*FUIIU*PVU/ _ U*U/:<U, U/> ©) Z p(L) = <1/)7 Z Qﬂ/)> = <1/)7 Z/)> =1 (6)

so inner products araifortiori squared norms and distances are We distinguish petween standard (von Neumann) measure-
preserved. Similarly, ifi, «' € U, then(F*u, F*u/) = (u, «/). Ments and generalized measurements, or POVMs. In a standard

However, inner products are not preserved,if’ ¢ ¢ orv, Measurement, the measurement operafayst form a com-

v ¢ V. plete set of orthogonal projectors. Thus,
This discussion is summarized in the following theorem.
g QiQi =Q; (7)
Theorem 1 (Transjectors (Partial Isometries)yhe fol- Q:Q; =0, if i £ 5 (8)
lowing statements are equivalent for a matfixvhose columns 7 9
aren vectors in a complex Hilbert spaéé: Z Qi =In ©)

1) I is a transjector (partial isometry) betweerdimen-
sional subspacd¢ C H andV C C";
2) FF* = B, for anr-dimensional subspaéé C ;
3) F*F = P, for anr-dimensional subspade C C". x=Iyxr = Z (tiy ) s, Ve eH (10)
A transjectorl” between--dimensional subspacés C ‘H and ‘
Y C C™ may be expressed & = UZ.V*, whereU is a sothe measurement vectdys; } form an orthonormal basis for
unitary matrix whose first- columns{u;, 1 < ¢ < r} are an H.
orthonormal basis fotf, V' is ann x n unitary matrix whose  Sometimes a generalized measurement is a more efficient
first » columns{v;, 1 < ¢ < r} are an orthonormal basis fot, way of obtaining information about the state of a quantum
andZ, is given by (1). Equivalentlyf’ = >~"_ u,v}. system than a standard measurement [23]. A generalized
AtransjectorF: C* — U (resp..F*: H — V) is anisometry measurement consists of a $€};} of nonnegative Hermitian
if restricted toV (resp. f). operators, not necessarily projectors, that safisfy; = 5.

If the measurement is rank-one, so thiat= u;x.f, then (7) and
(8) imply that{u,, 11;) = é;;, while (9) implies that
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Such a set of operators is termed a POVM. If the measuremen®) M is a transjector (partial isometry) betweesdimen-
is rank-one so thaf); = .}, then the measurement vectors sional subspacdg C ‘H andV C C™;

f+i must satisfy 3) MM* = Py for anr-dimensional subspaéé C H;
Z pigit = Iy (11) 4) M*M = Py, for anr-dimensional subspade C C".
i A measurement matrix/ corresponding to a rank-one POVM

A POVM is more general than a standard measurement in tﬁgpng on arr-dimensional subspacé 7 may be expressed

the measurement vectors are not required to be either nor—aSM = Uav ,‘whereU IS & unitary matrix W_hose f'r?t
. columns{u;, 1 < ¢ < r} are an orthonormal basis fof, V is
malized or orthogonal. : :

. Einn x n unitary matrix whose first columns{v;, 1 <+ < r}
It can be shown that a generalized measurement on a quantum . S .

. . . o are an orthonormal basis fot, andZ, is given by (1). Equiva-
system can be implemented by introducing an auxiliary syst (ran ty, M = 57 it
and performing standard measurements on the combinea\ ﬁeas;ren;;rgturzr?;tnriM is an isometry if restricted t&’
system. We will discuss this property in Section IlI-B in the y :

context of Neumark’s theorem; in Section IV-B we show tharte 'A‘r;nSZif:fggg;g%trrlﬁi;ﬁ:;(;ﬂtu?ﬁ daroen\lle(i:ftci)trssrlglk is
this property has an analog for tight frames. P y

ThenM =UZ,V*, whereZ, is given by (14), and{* M =1,,.

A. Measurement Matrices

A rank-one POVM acting on am-dimensional subspaceB' Neumark’s Theorem

U CH in which the system to be measured is knaypriori to Neumark’s theorem [22], [23] guarantees that any POVM
lie is defined by a set of measurement vectofg,;, 1<i<n} With measurement vectors € U can be realized by a set of or-

that satisfy thonormal vectorg; in an extended spaéé such that/ C U/,
n SO thatui = .P[,{/:LZ
Z .y (12) Using the measurement matrlx_ characterization of a POVM
— and the SVD, we now obtain a simple statement and proof of

Neumark’s theorem. Moreover, our proof is constructive; we ex-

i.e., then operators); = u;u; must be a resolution of the plicitly construct a set of orthogonal measurement vectors such
identity? oni{. that their orthogonal projections ont6 are the original mea-

The measurement matri&/ corresponding to a set of mea-surement vectors. In Section IV-B, we use this construction to

surement vectorg; € U is defined as the matrix of columps  extend a tight frame into an orthogonal basis for a larger space.

[32]. We have immediately from (12) that
Theorem 3 (Neumark’s Theoremlet M be a ranks mea-

MM* = By. (13) surement matrix of an arbitrary POVM, witlh columns in a

complex Hilbert spacé<. In other words,M is a transjector
It then follows from Theorem 1 that a measurement mafix between an-dimensional subspadé C H and anr-dimen-

with n columns in corresponds to a rank-one POVM actingional subspac& C C™. Then there exists a standard (von
on anr-dimensional subspadé C 7 if and only if A is a Neumann) measurement with measurement matfixhich
transjector (partial isometry) betweéhand anr-dimensional s a transjector between an expandedimensional subspace
subspac®’ C C". Thus,M has all the properties enumerated/ D i in a possibly expanded complex Hilbert spa¢eD H
in Theorem 1. andC™, and whose orthogonal projection odtas M = P, M.

A measurement matrix/ represents a standard measurement  Proof: Using Theorem 2, we may expresg asM =
if and only if its » columns are orthonormal; i.e., if and only if{7Z,.v*. Letw,; andv; denote the columns @ andV respec-
its Gram matrix satisfied/*M = I,,. ThenM has rankn, U tively. Assume that{ is finite-dimensional, and lét = dim .
has dimension, V = C", andM = UZ,V* forunitaryl/ and  We distinguish between the case> n (i.e., M has atleast as

V, whereZ,, is given by many rows as columns), and the cése n (i.e., M has more
I columns than rows). ) )

Z, = | — ] (14) In the caseé: > n, defineM = "7 | wvf; thenld C His

0 the n-dimensional subspace spannedily, 1 < i < n}. The

. . _ . orthogonal projection oM ontol{ is
We summarize the properties of measurement matrices in the

following theorem.

m n m
Theorem 2 (Measurement MatricesThe following state- FuM = Z U Z (S Z wiv; = M. (15)
ments are equivalent for a matd whose columns are vec- i=l1 =1 i=1

tors in a complex Hilbert spack:

. . : Moreover, the columns of/ are orthonormal, since its Gram
1) M is a measurement matrix corresponding to a rank'oﬂ?atrix is

POVM acting on an-dimensional subspaéé C H;

20ften these operators are supplemented by an orthogonal projéktien o n ~ ~
P,, . = Iy — P, onto the orthogonal subspade- C H,sothafy " Q; = M*M = Z vju; Z U] = Z viv; = I,. (16)
I+,—i.e., the augmented POVM is a resolution of the identityon j=1 i=1 i=1
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In the casé: < n, firstembed/ in ann-dimensional spadé¢  for the optimal measurement directly from these conditions is
in an expanded complex Hilbert spakeD H, and le{#,;, 1 < adifficult and unsolved problem.
¢ < n} be an orthonormal basis fof of which the firstm An alternative approach proposed in [32] is to choose a dif-
vectors are thé/-basis. Then proceed as before, usifgin  ferent optimality criterion, namely, a squared-error criterion,
place ofu;. O and to seek measurement vectors that minimize this criterion.
Specifically, the measurement vectors are chosen to minimize
the sum of the squared norms of the error vectors, where the
ith error vector is defined as the difference betweerittnstate
vector and théth measurement vector. The optimizing measure-

It is instructive to consider the matrix representatiodbin
both cases. Recall thdf = U Z,.V*, whereZ,. is given by (1).

In the casé: > n, we construct\/ simply by extending the
identity matrix along the diagonal/ = UZ,V* whereZ, .
is given by (14). Thus, wheh > 7, the left and right unitary ment is referred to as tHeast-squares measureméhs&M).

matrices in the SVD of/ andM are the same, and are equal The problem .Of. finding a set of orthon_orr_nal measurement
. vectors that minimize the squared-error criterion when the states
to U andV, respectively.

If k = n, thenZ, = I, andM = UV*. are Imearly independent was first solved in [40]. A more gen-
i . eral, independent development that covers the cases of linearly
In the case: < n, we first replace the left unitary matrix dependent states and nonorthogonal measurement vectors ap-
by U, and thus replack by &£ = n; thenU is ann x n unitary P 9 P

matrix whose first: columns are th&f-basis (where we appendpears in [32]. .
n — k zeros to each basis vectey). We then definél = 7V, It turns out that the LSM problem has a simple closed-form

. solution which has many desirable properties. Its construction
Examples of the construction of the orthogonal measuremefﬂelativel simple; it can be determined directly from the given
vectors associated with a given POVM along the lines of this Y SImp'e, y 9

. : . . . Collection of states; it minimizes the probability of detection
proof will be given in Section IV-B, in the context of frames. o . . T
error when the states exhibit certain symmetries [32]; it is

“pretty good” when the states to be distinguished are equally
likely and almost orthogonal [41]; it achieves a probability of
We now recapitulate some results on optimal quantum mesror within a factor of two of the optimal probability of error

surements according to various criteria, which will be relevaf42]; and it is asymptotically optimal [43].
to the construction of optimal tight frames. In the next section, we will develop a relationship between
Let {4;, 1 < i < n} be a collection of» < k normalized POVMs and tight frames. We then apply ideas and results de-
vectorsy; in a k-dimensional complex Hilbert spaéé, repre- rived in the context of quantum detection to the construction and
senting different states of a quantum system. In general, thesaracterization of tight frames. In particular, we will apply the
vectors are nonorthogonal and spanratimensional subspace squared-error criterion developed in [32] to the construction of
U C 'H. The vectors are linearly independent i . optimal tight frames.
To distinguish between the different states, we subject the
system to a measurement. For our measurement, we restrict our IV. TIGHT FRAMES

attention to POVMs consisting af rank-one operators of the _ o _ .
Frames, which are generalization of bases, were introduced in

form @Q; = ;1 with measurement vectors € . We do not 4 : 5 i

require the vectors; to be orthogonal or normalized. Howeverth€ context of nonharmonic Fourier series by Duffin and Scha-
to constitute a POVM off the measurement vectors must safer [1] (see also [2]). Recently, the theory of frames has been
isfy (12). expanded [4], [5], [8], [6], in part due to the utility of frames in

If the states are prepared with equal prior probabilities, th&@jalyzing wavelet decompositions. Here we will focus on tight

the probability of detection error using the measurement vectdf@mes, which have particularly nice properties.
1 is given from (4) by Let{y;, 1 < ¢ < n} denote a set of vectors in an-dimen-

sional subspack of a Hilbert spacé{. The vectorsy; form a

C. Optimal Quantum Measurements

18 , tight framefor U/ if there exists a constayt > 0 such that
P€ =1-- 1y Wi . 17
- 2:3 [(pi, 9)] (17) i
> I p) P = B2lel? (18)
If the vectors.; are orthonormal, then choosipg = ; results i=1

in P. = 0. However, if the given vectors are not orthonormal I LISLIF 3 = 1. the tight f . id to b |
then no measurement can distinguish perfectly between thefm.a fhe _[ 1 it _/ _'d’t eb '9 Iradrr;e IS Said to aeormal-
Therefore, a fundamental problem in quantum mechanics is'%gd otherwise, it is said to bg-scale
construct measurements optimized to distinguish between a set , _
More generally, the vectorg; form aframefor I/ if there exist constants
of nonorthogonal pure quantum states. 0 < a <3< oosuch that
This problem may be formulated as a quantum detection
problem, so that the measurement vectors are chosen to
minimize the probability of detection error, or more generally,
minimize the Bayes cost. Necessary and sufficient conditions
for an optimum measurement minimizing the Bayes cost halgéall = € i/ [8]. The lower bound ensures that the vectorsspart(; thus, we
. . . must haven > r. If n < oo, then the right-hand inequality is always satisfied
been derived [35]-[37]. However, except in some particulgiy, 5> — S5 (. ). Thus, any finite set of vectors that spaiss a

cases [37]-[39], obtaining a closed-form analytical expressi@ame fori{. A tight frame is a special case of a frame for which= 3.

o?llall* < 3 e @a)l® < 82|
i=1
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Of course, any orthonormal basis fdris a normalized tight is a unitary matrix whose first columns{«;, 1 < ¢ < r} are
frame for{. However, there also exist tight frames férwith  an orthonormal basis fé¥, V' is ann x n unitary matrix whose
n > r, which are necessarily linearly dependent. Tééun- first » columns{v;, 1 < ¢ < r} are an orthonormal basis b,

dancyof the tight frame is defined gs= n/r. andZ, is given by (1). EquivalentlyF’ = 8>"_; uv}.
Since A frame matrixZ" of a 8-scaled tight frame is an isometry if
n n restricted toV’ and scaled by3—!.
Z ez, o) |* = Z ool A frame matrix[" of a 3-scaled tight frame whose columns
i=1 i=1 aren vectors inH represents an orthogonal basis&bfi.e., is
an orthogonal frame matrixif and only if its rank isn. Then
= <$7 <Z %‘%k) $> (19) F =pUZ,V*, whereZ, is given by (14), and™ F = 32I,;
i i.e., all frame vectors have squared ngsih
the fact that (18) holds for alt € ¢/ implies that If the vectors{y;, 1 < i < n} form a tight frame fo/,
n then anyxz € U may be expressed as a linear combination
Z it = 2 Py. (20) of these vectorsz = Y. | a;,;. Whenn > r, the coeffi-
i=1 cients in this expansion are not unique. A possible choice is

_ 13—2 .
Conversely, if the vectors; € U satisfy (20), then (19) implies % = 7 (i, x), because

that (18) is satisfied for alt € ¢/. We conclude that a set of "
n vectorsy; € U forms a tight frame fotf if and only if the B2 Z (@s, xVp; = B2FF*x = Pyx = . (22)
vectors satisfy (20) for somg > 0. Py

Comparing (20) with (12), we conclude the following.

The vectors3—2¢ are defined as thdual frame vectorsThis
choice of coefficients has the property that among all possible
coefficients it has the minimal norm [8], [44].

Theorem 4 (Tight Frames)A set of vectorsp; € U forms
a f3-scaled tight frame fot/ if and only if the scaled vectors

-1, . _
A~"; are the measurement vectors of a rank-one POVE] on The expansion of (22) is reminiscent of an expansion: of

In 'particular, .the vectorg; form a normalized tight frame for in terms of an orthonormal basis fof. However, whereas the
Z;(')f\md or;/lly if they are the measurement vectors of a r"’mk'o(}gctors in an orthonormal expansion are linearly independent,
onét. the vectorsp; in (22) are linearly dependent when> r.
This fundamental relationship between rank-one quantum
measurements and tight frames will be the basis for tle Neumark’s Theorem and Construction of Tight Frames

developments in subsequent sections. In the next section, W& eumark’'s theorem (Theorem 3) was derived based on
define frame matrices in analogy to the measurement matri¢hg properties of measurement matrices. Since, by Theorem
of quantum mechanics. We then use Neumark’s theorem f0trame matrices of tight frames have essentially the same
extend tight frames t_o or_thogon_al bases. Motivated by the LSMoperties as measurement matrices of rank-one POVMSs,
of quantum mechanics, in Section V we address the problemgf -an now obtain an equivalent of Neumark’s theorem for

constructing optimal tight frames. tight frames. The proof is essentially the same as the proof of

A Frame Matrices Theorem 3, so we omit it.

Theorem 6 (Neumark’s Theorem for Tight Framekgt F

In analogy to the measurement matrix, we definefthene ' ) ) !
be a rank- frame matrix, withn. columns in a complex Hilbert

matrix /' as the matrix of columng;, where the vectorg; form

a tight frame foi4. From (20) it then follows that spacef{ that span an-dimensional subspadé C . Then
there exists an orthogonal frame matfixwith equal-norm or-
FF* = 32Py. (21) thogonal columns that span an expandedimensional sub-

spaceld/ D U in a possibly expanded complex Hilbert space

The properties of a frame matrix follow immediately from 5, D 7 such that the orthogonal projectidiy F of F ontoif
Theorems 4 and 2. is F.

Theorem 5 (Frame Matrices)For a matrix £ whose  \we remark that given a set of equal-norm orthogonal vectors
columns are: vectors in a complex Hilbert spa¢é and for a 77 D U, their orthogonal projections ongowill always form

constant’ > 0, the following statements are equivalent: a tight frame for/ [6]. Combining this result with Theorem 6,
1) F is the frame matrix of a3-scaled tight frame for an we can conclude that a set of vectors forms a tight frame for
r-dimensional subspacéé C H; U if and only if the vectors can be expressed as an orthogonal
2) B~lFisatransjector (partial isometry) betweedimen- Projection onta/ of a set of orthogonal vectors with equal norm
sional subspacdg C H andV C C"; in a larger spac#f containingls.

3) FF* = 2P, for anr-dimensional subspace C 7 Starting with a given frame matril? in ¢, the proof of The-
orem 3 gives a concrete construction of an orthogonal frame
4) F*F = 3*Py for anr-dimensional subspade € €. matrix F'in ¢/ 2 U such thatP,F' = F. We now give two
A frame matrixt’ of a-scaled tight frame for arrdimensional examples of this construction. We consider first an example in
subspacé/ C H may be expressed @& = U Z,.V*, wherell' whichdimH < n, and then one in whichim H > n.
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Example 1:Consider the four frame vectors;
[0.35 —0.61]%, 92 = [0.61 0.35]*, ¢3 = [0.5 —0.5]*, and

605

In order to verify thatf" is indeed the frame matrix of a tight
frame, we again determine the SMD= UXV*, which yields

;24 = [0.5 0.5]*. The frame matrix associated with this frame 058 0.82 0
U=1038 -04 0.7
0.35 0.61 0.5 0.5 058 —-04 -0.7
F=1_061 035 —05 05)° (23) 1 0 0
we may check that’ is indeed the frame matrix of a tight frame =10 10
since FF* = I. . 000
We wish to construct an orthogonal frame matfixsuch that 0.87 0 0.5
F = Py F. Inthe proof of Theorem 3 for the cadan ™ < n, V=1029 -082 -05 (29)
we constructed an x n unitary matrixf’ using the SVDF" = | 04 038 0.7

U73V*. Using this construction here, we obtain

0.5 —0.87
U= [—0.87 —0.5}
100 0
>= {0 10 0}
070 0 070 0
0 —070 0 —0.70
V=1 oes —018 —o6s 0.8 (24)
~0.18 —0.68 018 0.68

We now define the extended frame matfiiin aqcordance with
the proof of Theorem 3. The first two columnsiéfare uniquely

From Theorem 5 we conclude thitis indeed the frame matrix

of a tight frame since its nonzero singular values are all equal to
1;i.e., F'is a transjector. A basis for the subspatspanned by
the columns of” is the two vectors

u =[0.58 0.58 0.58]"

uy =[0.82 —0.4 —04]* (30)
Thus, F; is given by
2 1 0 0
Py=)Y wu=|0 05 05 (31)
i=1 0 05 0.5

defined as the first two columns 6f with zeros appended. Theand, indeed"F* = F. R
remaining two columns are arbitrary, as long as the resulting We now define an extended frame matfixsuch thatt’" =

is unitary. A possible choice is

0.5 —0.87 0 0 7
~ —-0.87 0.5 0 0

U= 0 0 0.5 —-0.87 (25)

0 0 —-0.87 —-0.5

Then

0.35 0.61 0.5 0.57

e | —0.61 035 —0.5 0.5
F=UV" = 0.3b 061 -0.5 -0.5 (26)

—-0.61 0.35 0.5 —-0.5]

We may immediately verify that™ F' = I; i.e., F' represents
an orthonormal set of vectors.

Since the columns oF span a two-dimensional Hilbert space®t Of vectorg i,

U = H, the orthogonal projection onto this space is given by
0 0
(27)

oo o o

1 0
0 0
0 0

and, indeedf’ = P, F.

Example 2: We now consider an example in whidhn 7 >

n. The construction of is simpler than in the previous case be-
cause we do not have to exteld Consider the three frame vec-

torse; = $[1 1 1], p2 = 1[—1 1 1]*, andys = 1[v2 0 0]*.
The frame matrix associated with this frame is

1 -1 V2
F=111 1 0 (28)
1 1 0

Py F andEF* F = I5. From the proof of Theorem 3, we have

F=UZV* =UV" = F + ugv}

0.5 -0.5 0.7
= 1085 0.15 —-0.5 (32)
0.15 0.85 0.5
where
ug=[0 0.7 —-0.7]*, w3=[0.5 —0.5 0.7]". (33)

SincePyusvi = 0, we have immediately thdf = P, F.

V. OPTIMAL TIGHT FRAMES

It is often of interest to construct a tight frame from a given
1 <4 < n}.Using the LSM developed in the
context of quantum detection [32], we now propose a systematic
method of constructing optimal tight frames from a given set of
vectors.

Thus, we wish to construct a tight frame of vectfes, 1 <
¢ < n} from a given set of vectorg);, 1 < i < n} thatspanan
r-dimensional spad¢ C H. A reasonable approach is to find a
set of vectorsy; € U that are “closest” to the vectots in the
least-squares sense. Thus, we seek vegtottsat minimize the
squared erro¥’, defined by

F= Z <Gi, CZ‘> (34)
=1
wheree; denotes théth error vector
e = — @i (35)

subject to the constraint (20).
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We may wish to constrain the scaliggn (20), e.g., we may  Our problem, therefore, reduces to finding a set ofthog-
seek a normalized tight frame with = 1. The optimal frame onal vectors:; with norm 3 that minimize
in this case is referred to as the CLSF. Alternatively, we may r
choose the vector§p; } andg to satisfy (20) and to minimize E= Z (d;, d;)
the squared erraf of (34). The optimal frame is then referred ;
to as the ULSF. T

= Z (o3vi — ag, o3v; — a;)

A. Constrained and Unconstrained Least-Squares Frame i=1

With F and\I{ denoting thek x n matrices of columns; —r3? 27: o2 — 2 21: R {ai, vi (46)
andz);, respectively, the squared ertbrof (34) and (35) may
be expressed as

E = Te((¥ — F)* (U — F)) = Te((¥ — F)(¥ — F)*) (36)

where the vectors; are orthonormal. For any choice 8f

R{(ai, vi)} < ai, vi)] < {aiy ai)(vi, ) = 8 (47)

and the constraint (20) may be restated as ) L . .
(20) may with equality if and only ifa; = Bv;. Thus, the vectors; min-

FF* = 3%Py. (37) imizing E area; = fv;, 1 < i < 7. )
Employing the SVDV = UXV*, we rewrite the squared Sagsﬁé‘zﬁxed’ then the optimal frame matri, denoted by,
error £ of (36) as
A Bu;, 1<i<r
B =¥ )(\P B Fcui:{o r+1<i<k. (48)
TI(U*( F)(V — F)*U) ’ -
& Consequently the CLSF vectors are the columns of
=) (d;, dy) (38) . -
pa Fo=8Y wvf =pUZV" (49)
where =1
. whereZ, is defined by (1). We may express directly in terms
d; = (¥ — F)*u,. (39) of U as
The vectors{u;, 1 < i < r} form an orthonormal basis féf. ~ wqni/z)’ ai/2)f
L : F.=pV (V"W = A W
Therefore, the orthogonal projection operator dnits given by e =/ (( ) ) A (( ) ) (50)
r where(-)' denotes the Moore—Penrose pseudo-inverse [45]. The
Py=> unj. (40) residual squared error is then

r r

Essentially, we want to construct a map such that the images B = Z (B — o) (v, v;) = Z (B — o). (51)

min

of the maps defined by* and F* are as close as possible in the i=1 i=1
squared norm sense, subject to the constraint _ We note that the CLSF vectogss which are the columns of
, 21: I, satisfy
PF*=p u (41) .

= (5. i) = [F10];; = pLo L/ (52)
The SVD of ¥~ is given by¥™ = VE*U*. Consequently  where[-];; denotes théith element of the matrix. This relation

o5v;, 1<i<r may be used to derive bounds on the inner prod{igis ;) in

Wy = {0 1 <i<k (42) terms of the inner products);, v;); see [43].

To derive the ULSF, we further minimizg of (46) with re-
where0 denotes the zero vector. Denoting the image;afnder  spect tg3. Substituting the optimal vectors = Bv;, 1 < i < r
F* by a; = F"u;, for any choice off” satisfying the constraint pack into (46), we choosé to minimize

(41), we have

r

2, 1<i<r Enim =) (B -0
<ai’ ai> _ U,Z(FF*UW _ {/ 3 STST (43) ;([ a )
0, r+1<i<k = )
and The optimal value of}, denoted by3, is given by
(@i, a5) =u;FFu; =0,  i#]j. (44) = Z o=~ Tr ( \If*\p)l/Q) (53)

Thus, the vectors;, 1 < ¢ < r are mutually orthogonal with .
{a;, a;) = 8% anda; = 0,  + 1 < ¢ < k. Combining (42) and and the ULSF vectorg}* are the columns of

43), P = 3 G
(43), we may express; as P=3 Z wivl = B ((\p*q/)l/2> =7 ((\IJ\I/*)I/Q)T 0.

J {ffﬂii — ai, 1<:i<r (45) —~
o, r+1<i<k. (54)
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The residual squared error is optimal frame vectors through an orthogonal projection onto the
r subspacé/, spanned by the vectots.
Eln=>_(B—0:) (55)  Tosee this, suppose we seek a set of orthogonal vegfas
i=1 H with (p;, ¢;) = 8% that are as close as possible to the vectors

The CLSF and the ULSF vectors can be expressed in a unifiéd From Theorem 5, we have that
manner as the columns of the least-squares frame (LSF) matrix " )
> gt =P (60)
=1

- r T i

F=aY uwvf=av ((\I/*\I/)I/Q) =a ((\I/\I/*)I/Q) v |
i=1 (56) wherelf O U is the space spanned by the vectpys
. _ . . Since there are at mosbrthogonal vectors it¥, imposing an

where in the CLSFe = £, and in the ULSFa = § given orthogonality constraint forces the optimal orthogonal vectors

by (53). In the sequel, when the value @fis immaterial, we to lie partly in the orthogonal complemett-. Each vector

will refer to the LSF which encompasses both the CLSF and tﬁ}éen has a componentdf, ¢, and a component -+, G

ULSF. . L

Note that if the singular values; of F" are distinct, then the Using (60), the component i satisfies
vectorsy;, 1 < 4 < r are unique (up to a phase factgf:). . () b oo a2
Given the vectors;, the vectorsy; are uniquely determined, Z Z Fupipi bu = B~ Fulylu = 5Ly
so the optimal frame vectors correspondingHtaare unique. =t (61)

If, on the other hand, there are repeated singular values, th@ffere the last equality follows from the fact tHatC /. Now
the corresponding eigenvectors are not unique. Nonetheless,{lgerewrite the erro# of (34) as

choice of singular vectors does not afféétindeed, if the vec-
tors corresponding to a repeated singular valaee{, }, then E— Z <¢i . ¢W7 i — G ¢?L>
Zj u;ju} is an orthogonal projection onto the corresponding

eigenspace, and therefore is the same regardless of the choice n N N
of the vectors{u;}. Thus, =y ((1/% - - )+ <<ﬁ? , & >) (62)
* 1 * =t
Z v = Z uju; ¥ (57) since(v; — ¢4, G4) = 0. From (61)
J J

H H . H H n L YRR n
md_ependent of the choice dfs,}, and the optimal frame is Z <4p3t M > Z Bi $i) Z <% M
unique. =1 i=1
B. Optimal Orthogonal Basis, the CLSF, and the ULSF —nB? —Tr <Z M (G )

In the previous section, we sought thescaled tight frame i=1
that minimizes the least-squares error. We may similarly seek =nf? - Te(F*Py) = (n — )%  (63)

the optimal orthogonal vectors with norghof the same form.
We now explore the connection between the resulting optlmg,
vectors both in the case of linearly independent vectorg =

n), and in the case of linearly dependent vecters: n).

Flependent of the choice of vectabs Thus, minimization of
is equivalent to minimization of

N~ o g g2
Linearly Independent Vectorsif the vectorsy; are linearly B = Z (Wi =& i = g) +(n—m)B°. (64)
independent and, consequently,has full column rank (i.e., =t
r = n), then the LSF (56) reduces to Furthermore, from (61), the vectog' form a 3-scaled tight
frame foriA.

ro_ * —1/2
= a¥(UTV) 2. If g is fixed, then choosing the orthogonal vectors with equal

The optimal frame vectors; that are the columns of are norm g that minimizeZ is equivalent to choosing an optimal

mutually orthogonal with equal norm, since their Gram matrix -scaled tight frame fo#/. The optimal orthogonal vectors are
is not unique; however, their orthogonal projections ohtare

L 2 e 1/ 2 =1/ ) unique and are just the-scaled CLSF vectors. We may choose
F'F = o7 (070) Urw(UTw) =a’l. (59 the projections of the optimal orthogonal vectors ot ar-
Thus, the optimal LSF is, in fact, an optimal orthogonal bastrarily, as long as the resulting vectors are orthogonal with

for . norm 3. A convenient choice is
Linearly Dependent Vectorstf the vectorsy; are linearly N n
dependent, so that the mattixdoes not have full column rank F.=p Z Uj Vi« (65)

(i.e.,7 < m), then then frame vectorsp; cannot be mutually

orthogonal since they span asdimensional subspace. We now Indeed, Theorem 6 shows that the optimal orthogonal vectors
try to gain some insight into the optimal frame vectors in thigre just a realization of the CLSF vectors. This theorem guaran-
case. Our problem is to find a set of vectors that are as cldees that any-scaled tight frame may be realized by a set of
as possible to the vectorsy;, which lie in anr-dimensional orthogonal vectors with norrfi in an extended space such that
subspacé{. We now show that these vectors are related to tlieeir orthogonal projections onto the smaller space are the given
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frame vectors. Denoting by{ and fﬁf the optimal 3-scaled 2) if g is chosen to minimize the least-squares error then

frame vectors and the optimal orthogonal vectors with ngrm o = fwherej = (1/r) Tr((¥*¥)/2), and the resulting

respectively, (64) asserts that frame vectors are defined as the unconstrained LSF vec-
o _ p e 66 tors.
Fi = Hub (66) The residual squared error is given by

If 3 is chosen to minimize the least-squares error, then we T

need to further minimizeE’ with respect tos. Substituting O Z (a —0;)?

¢4 = $¢ backinto (64), and using the fact thgt!, ;) = Bo;, i=1

the optimal value of is chosen to minimize where{o;, 1 < i < r} are the nonzero singular valuesibf

r r In addition,
B =3 (@, d) =2 3 UG v+ (-0 1y =g
=t =t a) F' = aW (U 0) /2

=nB3*-23 Z 0;. (67) b) F*F = o?I,, and the corresponding frame vectors
Py are orthogonal with norm;
Minimizing E” with respect tg3, the optimal value of3, de- 2) ifr <mn
noted by, is a) if 3 is fixed then
i, R i) the constrained LSF vectors may be realized
/ _ 1 Z o — 1[ _ ﬁ (68) by the g-scaled optimal orthogonal frame
ni " matrix
whereg is defined by (53) and is the redundancy of the frame. F=p Z wv = pUZ,V*;
Thus, the optimal projections are the columns (o p) £, i=1
WhereFu is the frame matrix of the ULSF vectors. ||) the action of the two 0pt|ma| vector sets in
We conclude that choosing a set of orthogonal vectors with the subspac# is the same;

uncongtrained norm t_hat mi_nimizlé is equivalent to _choosing b) if 3 is chosen to minimize the least-squares error
an _optlmal unconstrained tight frame_ fr and scallng these then the unconstrained LSF vectors may be realized
optimal frame vectors b)t/p_. The optimal unc_onstramed or- by the optimal orthogonal frame matrix
thogonal vectors are not unique; however, their orthogonal pro- N
jections ontd/{ are unique and are proportional to the optimal F=(3/p) Z“”’: — (B UZ.V*

unconstrained tight frame vectors. We may choose the projec-
tions of the optimal orthogonal vectors ot arbitrarily, as
long as the resulting vectors are orthogonal with norﬁ]/p.

A convenient choice is

=1

wherep = n/r.

VI. CONNECTIONWITH THE POLAR DECOMPOSITION

= P,
Fu= P ; Uit - (69) We now show that LSF is related to the polar decomposition

(PD) of the matrix¥.
We summarize our results regarding the CLSF and the ULSF_et & denote a x n matrix, wherek > n. Then¥ has a

in the following theorem. polar decomposition (PD46], [47]

Theorem 7 (Least Squares Frame (LSF)et {;} be a set U= HY (70)
of n vectors in ak-dimensional complex Hilbert spad¢ that
span arv-dimensional subspadé C . Let {¢;} denote the whereH is ak x n partial isometry that satisfied*H = I,,,
optimal n frame vectors that minimize the least-squares err8dY = (¥*¥)/2. The Hermitian factol” is always unique;
defined by (34) and (35), subject to the constraint (20) & et the partial isometry is unique if and only ifl' has full column
USV* be the ranke k x n matrix whose columns are the vectorgank.
4, and let” be thek x n frame matrix whose columns are the If ¥ = UXV" is the SVD of, then a natural choice faif
vectorsp;. Then the unique optimdl is given by 1S
r H=UZV* 71
F=aY uvf=aUZ,V* =a¥ ((\If*\p)l/“’)T D
i=1 where Z,, is given by (14). Ifr = n, then this choice off
_ T2 T\If is unique. OtherwiseH is not unique; however, its orthogonal
-« (( ) ) ’ projection onto the column spa&€of W is unique and is given
wherew; andv; denote the columns @f andV, respectively, by [48]
Z, is defined by (1), and

1) if gin (20)is specified then = 3 and the resulting frame
vectors are defined as the constrained LSF vectors; whereZ, is given by (1).

i
Hy=PH=UZV" =0 ((\p*\p)l/Q) (72)
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Comparing (72) with (56), we conclude that the LSF is prof ¥, and letZ,. be defined as in (1). Ldtp; } be then canonical
portional to the (unique) orthogonal projection odtoof the frame vectors associated with the vectgrsand let/” denote
partial isometry in a PD o/, and can, therefore, be computedhe matrix of columnsy;. Then
very efficiently by use of the many known efficient algorithms 12 §
for computing the PD (see, e.g., [45], [49], [46], [50)). F=Uz,v* = (e = ((ee)2) v

Recently, the truncated PD (TPD), a variation on the PD, has = .
been introduced [51] and has proved to be useful for various ér%_addmon, we have the following.
timation and detection problems. As we now show, the columns HDifr=n

of the TPD of a matrixl are just the closest normalized frame a) the canonical frame vectors form an orthonormal
vectors to the columng; of V. basis forl{;
Let ¥ = [JXV* denote an arbitrarg x » matrix with rank b) the canonical frame vectors are the closest or-
r. Then the ordep TPD of ¥ is the factorization thonormal vectors to the vector§y;}, in a
. least-squares sense;
by, U =[UZV'][VE 2,V = HY (73) c) if 327_, 0; = r, then the canonical frame vectors

are the closest orthogonal vectors with equal norm
to the vectorq; }, in a least-squares sense;
d) define the scaled canonical frame vectgfs =

whereF,, is the orthogonal projection onto the space spanned
by the firstp singular vectors:; of ¥. From (73), it follows that
the left-hand matrix in the order-TPD of W is just the optimal

normalized frame matri¥’. corresponding t@ = 1. Similarly, /3%' Then .

the left-hand matrix in the orderTPD of U, with p < r, is the i) the scaled canonical frame vectors are the
optimal normalized frame matrix corresponding to the vectors closest orthogonal vectors with nog#o the
Py, 1. ) _vectors{z/;i}, ina Igast-squares sense;

Since the LSF is related to the PD ®f properties of the i) if 8 = (1/r)3 ;0 then the scaled
optimal frame vectors can be deduced from properties of the canonical frame vectors are the closest or-
PD (see, e.g., [46], [47], [49], [52]). For example, the CLSF thogonal vectors with equal norm to the
corresponding to two vector se{g;} and{u;} are the same vectors{¢; }, in a least-squares sense.
if and only if the corresponding frame matrices satiB¥/* = 2) Ifr < n,

(FF*Y2(MM*)'/? [52]. a) the canonical frame vectors form a tight frame for
U,
VIl. CANONICAL FRAMES b) the canonical frame vectors are the closest normal-

ized tight frame vectors to the vectofg;}, in a
least-squares sense;

c) if _i_, o, = r, then the canonical frame vectors
are the closest tight frame vectors to the vectors
{1}, in a least-squares sense;

d) define the scaled canonical frame vectgis =

A popular frame construction from a given set of vectors is
the canonical frame. Given a set of vectdts, 1 < i < n},
the canonical frameassociated with these vectors is the frame
corresponding to the frame matrix [8], [19], [24], [25]

i

* 1/2
F=u () (74) Bpi; then

Comparing (74) with (56), we see immediately that the i) the scaled canonical frame vectors are the
canonical frame vectors are just the normalized tight-frame closest/3-scaled tight frame vectors to the
vectors that are closest in a least-squares sense to the vectors vectors{t; }, in a Igast-squares sense;
{4;}. Furthermore, the3-scaled tight frame vectors for fixed iy it B = (1/r)>._; 04, then the scaled
£ that are closest to the vectofg;} are the canonical frame canonical frame vectors are the closest tight
vectors scaled by. frame vectors to the vector§y,;}, in a

From Theorem 7, it follows that the canonical frame vec- least-squares sense.
tors are the tight-frame vectors that minimize the least-squares
error only if 3 = 1, i.e., only if 2/, o; = r. Otherwise, ACKNOWLEDGMENT
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mizes the least-squares error among all possible tight frames.
We summarize our results regarding canonical frames in the
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