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Optimal Tight Frames and Quantum Measurement
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Abstract—Tight frames and rank-one quantum measurements
are shown to be intimately related. In fact, the family of normal-
ized tight frames for the space in which a quantum-mechanical
system lies is precisely the family of rank-one generalized quantum
measurements on that space. Using this relationship, frame-theo-
retical analogs of various quantum-mechanical concepts and re-
sults are developed. The analog of a least-squares quantum mea-
surement is a tight frame that is closest in a least-squares sense
to a given set of vectors. The least-squares tight frame is found
for both the case in which the scaling of the frame is specified
(constrained least-squares frame (CLSF)) and the case in which
the scaling is chosen to minimize the least-squares error (uncon-
strained least-squares frame (ULSF)). The well-known canonical
frame is shown to be proportional to the ULSF and to coincide with
the CLSF with a certain scaling.

Index Terms—Canonical frames, least-squares frame, least-
squares quantum measurement, Neumark’s theorem, tight
frames.

I. INTRODUCTION

FRAMES are generalizations of bases which lead to redun-
dant signal expansions [1], [2]. A frame for a Hilbert space

is a set of not necessarily linearly independent vectors that
spans and has some additional properties. Frames were first
introduced by Duffin and Schaeffer [1] in the context of nonhar-
monic Fourier series, and play an important role in the theory
of nonuniform sampling [1]–[3]. Recent interest in frames has
been motivated in part by their utility in analyzing wavelet ex-
pansions [4], [5].

Many efforts have been made to construct bases with speci-
fied properties. Since the conditions on bases are quite stringent,
in many applications it is hard to find “good” bases. The con-
ditions on frame vectors are usually not as stringent, allowing
for increased flexibility in their design [4], [6]. For example,
frame expansions admit signal representations that are localized
in both time and frequency [5], as well as sparse representations
[7].

Frame expansions have many other desirable properties. The
coefficients may be computed with less precision than the coef-
ficients in a basis expansion for a given desired reconstruction
precision [5]; the effect of additive noise on the coefficients on
the reconstructed signal is reduced in comparison with a basis
expansion [5], [8]–[10]; and the coefficients are more robust
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to quantization degradations [11], [12]. Recently, frames have
been applied to the development of modern uniform and nonuni-
form sampling techniques [13], to various detection problems
[14], [15], and to the analysis and design of packet-based com-
munication systems [16].

A tight frameis a special case of a frame for which the re-
construction formula is particularly simple. As we show in Sec-
tion IV, a tight frame expansion of a signal is reminiscent of an
orthogonal basis expansion, even though the frame vectors in
the expansion are linearly dependent. Tight frames are particu-
larly popular, and will be the focus of this paper.

Frame-like expansions have been developed and used in a
wide range of disciplines. Many connections between frame
theory and various signal processing techniques have been re-
cently discovered and developed. For example, the theory of
frames has been used to analyze and design oversampled filter
banks [17]–[20] and error-correction codes [21]. Wavelet fami-
lies have been used in quantum mechanics and many other areas
of theoretical physics, particularly in the study of semiclassical
approximations to quantum mechanics [5].

In this paper, we explore yet another connection between
quantum mechanics and tight frames. Specifically, we show that
the family of (normalized) tight frames for a subspacein
which a quantum-mechanical system is known to lie is pre-
cisely the family of possible positive operator-valued measures
(POVMs) on . Exploiting this equivalence, we can apply ideas
and results derived in the context of quantum measurement to
the theory of frames andvice versa.

We begin in Section III by characterizing quantum mea-
surements. With each rank-one quantum measurement we
associate a measurement matrix. Using the measurement
matrix representation, we give a simple and constructive
proof of Neumark’s theorem [22], [23], which relates general
quantum measurements to orthogonal measurements. We then
discuss the problem of constructing measurements optimized
to distinguish between a set of nonorthogonal pure quantum
states.

We then follow a similar path in Section IV for tight frames.
We associate a frame matrix with every tight frame, which as we
show has essentially the same properties as a quantum measure-
ment matrix. Next, we derive an analog of Neumark’s theorem
for tight frames, which expresses tight frame vectors as orthog-
onal projections of a set of orthogonal vectors in a larger space.
Finally, motivated by the construction of optimal quantum mea-
surements, we consider the problem of constructing optimal
tight frames for a subspace from a given set of vectors that
span .

The problem of frame design has received relatively little at-
tention in the frame literature. Typically, in applications, the
frame vectors are chosen rather than optimized. A popular frame
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construction from a given set of vectors is the canonical frame
[8], [19], [24]–[27], first proposed in the context of wavelets
in [28]. The canonical frame is relatively simple to construct,
can be determined directly from the given vectors, in many
cases of interest inherits stability and symmetry properties of
the original vector set [24], [27], and plays an important role in
wavelet theory [29]–[31]. Some optimality properties of canon-
ical frames have been discussed in [26].

In Section V, we systematically construct optimal frames
from a given set of vectors. Motivated by the least-squares
measurement [32] derived for quantum detection, we seek a
tight frame consisting of frame vectors that minimize the sum
of the squared norms of the error vectors, where theth error
vector is defined as the difference between theth given vector
and the th frame vector. We consider both the case in which
the scaling of the frame is specified and the case in which the
scaling is such that the error is minimized. When the scaling is
specified, the optimizing frame is referred to as the constrained
least-squares frame (CLSF), and when the scaling is chosen to
minimize the error, the optimizing frame is referred to as the
unconstrained least-squares frame (ULSF).

In Section VII, we show that the canonical frame vectors are
proportional to the ULSF vectors, and that they coincide with
the CLSF vectors with a specific choice of scaling.

Before proceeding to the detailed development, in Section II,
we first provide an overview of the notation and some mathe-
matical preliminaries.

II. PRELIMINARIES

In this section, we briefly review elements of linear algebra
that are common to both signal processing and quantum me-
chanics. Our main goal is to characterize “transjectors” (partial
isometries) using the singular value decomposition (SVD).

A. Hilbert Spaces and Operators

In both signal processing and quantum mechanics, the set-
ting we consider is a finite-dimensional subspaceof a com-
plex Hilbert space . The elements of are called vectors. We
will assume, for notational convenience, thatis finite-dimen-
sional, with ; then, by appropriate choice of coordi-
nates, we can identify with .

In signal processing, the elements of are regarded as
column vectors and denoted, e.g., by . Then denotes
the row vector which is the conjugate transpose of. The inner
product of two vectors is a complex number, denoted, e.g., by

. An outer product of two vectors such as
is a rank-one matrix, which as an operator takes to

.
The Dirac bra-ket notation of quantum mechanics expresses

such concepts very nicely; however, recognizing that it is unfa-
miliar, we do not rely on it in this paper. Nonetheless, to assist
the reader unfamiliar with this notation in reading the quantum
literature, we will give the bra-ket equivalents for various ex-
pressions in this section.

In the bra-ket notation, the elements ofare “ket” vectors,
denoted, e.g., by . The corresponding “bra” vector
is an element of the dual space and may be regarded as the

conjugate transpose of . The inner product of two vectors is
a complex number denoted by . An outer product of two
vectors such as is a rank-one matrix, which as an operator
takes to .

An operator on is a continuous linear transformation:
. The adjoint of a linear operator is the unique oper-

ator such that for all , . If the
elements of are column vectors, then a linear operatoris
represented by a square matrix, and its adjoint is represented by
the conjugate transpose , since

An operator is calledHermitian if it is self-adjoint; i.e., if
.

An orthogonal (Hermitian) projector is a Hermitian oper-
ator on such that ; all projections used in this paper
will be orthogonal projections. The eigenvalues ofare all
equal or , and has an orthonormal set of eigenvectors. If

is a set of orthonormal eigenvectors corresponding to the
nonzero eigenvalues of, then the subspace spanned
by the set is the range of , and we write the orthogonal
projector as . A one-dimensional orthogonal projector has a
single normalized eigenvectorand may be written as the outer
product (or in bra-ket notation); then,

projects any into the projection (or
). An -dimensional orthogonal projector may be

written as the sum of one-dimensional orthogonal projectors,
, where is any orthonormal basis for.

B. Transjectors (Partial Isometries)

Let be a rank- matrix whose columns are a set ofvectors
. It is well known in signal processing (but not as well

known in quantum mechanics1 ) that any such matrix has an
SVD , where is a unitary matrix whose columns

are eigenvectors of the Hermitian operator ,
is a unitary matrix whose columns are eigenvec-

tors of the Hermitian matrix (the Gram matrix of
inner products), and is a real diagonal matrix whosenonzero
values , called thesingular valuesof , are the positive square
roots of the nonzero eigenvalues of eitheror . Thus, we may
write (or ), a sum of
rank- outer products.

An outer product such as (or ) is called a
one-dimensionaltransjector. The transjector takes a basis
vector to the corresponding basis vector .
By linear superposition, it therefore takes a general element

to . Similarly,
the adjoint transjector takes to

.
The subspace spanned by theorthonormal eigenvectors
corresponding to thenonzero eigenvalues of will

be denoted as , and the subspace spanned by theor-
thonormal eigenvectors corresponding to thenonzero
eigenvalues of will be denoted as . The image

1The SVD has sometimes been presented in quantum mechanics as a corollary
of the polar decomposition (e.g., in [33, Appendix A]).
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of is , and the image of is ; the kernel of is the or-
thogonal complement of , and the kernel of is .
operates by first performing an orthonormal expansion of
using the orthonormal basis , scaling each component by

, and then “transjecting” to by replacing each by the
corresponding . similarly “transjects” from to .

A rank- matrix is called an -dimensional transjectorif
its nonzero singular values are all equal to. In other words,

, where and are unitary and

(1)

Equivalently, is an -dimensional
orthogonal projector onto an-dimensional subspace
with an orthonormal basis , (the -basis) con-
sisting of the first columns of , and

is an -dimensional orthogonal projector onto an-dimen-
sional subspace with an orthonormal basis ,

(the -basis) consisting of the firstcolumns of .
The SVD thus reduces to a sum ofone-di-

mensional transjectors (outer products)

(2)

An -dimensional transjector is also called apartial isom-
etry, because it is an isometry (distance-preserving transforma-
tion) between the subspaces and . Indeed, if ,

and , , then

(3)

so inner products anda fortiori squared norms and distances are
preserved. Similarly, if , , then .
However, inner products are not preserved if, or ,

.
This discussion is summarized in the following theorem.

Theorem 1 (Transjectors (Partial Isometries)):The fol-
lowing statements are equivalent for a matrixwhose columns
are vectors in a complex Hilbert space:

1) is a transjector (partial isometry) between-dimen-
sional subspaces and ;

2) for an -dimensional subspace ;

3) for an -dimensional subspace .

A transjector between -dimensional subspaces and
may be expressed as , where is a

unitary matrix whose first columns are an
orthonormal basis for , is an unitary matrix whose
first columns are an orthonormal basis for,
and is given by (1). Equivalently, .

A transjector : (resp., : ) is an isometry
if restricted to (resp., ).

III. QUANTUM MEASUREMENT

In this section, we present some elements of the theory of
quantum measurement following [32] and unpublished work in
[34]. In the remainder of the paper, we will develop analogous
results for tight frames.

A quantum system in a pure state is characterized by a nor-
malized vector in a Hilbert space . Information about a
quantum system is extracted by subjecting the system to a mea-
surement. In quantum theory, the outcome of a measurement is
inherently probabilistic, with the probabilities of the outcomes
of any conceivable measurement determined by the state vector

.
A quantum measurement is described by a collection of Her-

mitian operators on , where the index corresponds to
a possible measurement outcome. The laws of quantum me-
chanics impose certain mathematical constraints on the mea-
surement operators.

In the simplest case, the measurement operators are rank-one
operators and have the outer-product form for some
nonzero vectors . Such measurements will be called
rank-one measurements, and the vectorswill be called the
measurement vectors.

If the state vector is , then the probability of observing the
th outcome is

(4)

To ensure that the probabilities sum to for any normalized
, we impose the constraint

(5)

where is the identity operator on ; then

(6)

We distinguish between standard (von Neumann) measure-
ments and generalized measurements, or POVMs. In a standard
measurement, the measurement operators form a com-
plete set of orthogonal projectors. Thus,

(7)

if (8)

(9)

If the measurement is rank-one, so that , then (7) and
(8) imply that , while (9) implies that

(10)

so the measurement vectors form an orthonormal basis for
.
Sometimes a generalized measurement is a more efficient

way of obtaining information about the state of a quantum
system than a standard measurement [23]. A generalized
measurement consists of a set of nonnegative Hermitian
operators, not necessarily projectors, that satisfy .
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Such a set of operators is termed a POVM. If the measurement
is rank-one so that , then the measurement vectors

must satisfy

(11)

A POVM is more general than a standard measurement in that
the measurement vectors are not required to be either nor-
malized or orthogonal.

It can be shown that a generalized measurement on a quantum
system can be implemented by introducing an auxiliary system
and performing standard measurements on the combined
system. We will discuss this property in Section III-B in the
context of Neumark’s theorem; in Section IV-B we show that
this property has an analog for tight frames.

A. Measurement Matrices

A rank-one POVM acting on an-dimensional subspace
in which the system to be measured is knowna priori to

lie is defined by a set of measurement vectors
that satisfy

(12)

i.e., the operators must be a resolution of the
identity2 on .

Themeasurement matrix corresponding to a set of mea-
surement vectors is defined as the matrix of columns
[32]. We have immediately from (12) that

(13)

It then follows from Theorem 1 that a measurement matrix
with columns in corresponds to a rank-one POVM acting
on an -dimensional subspace if and only if is a
transjector (partial isometry) betweenand an -dimensional
subspace . Thus, has all the properties enumerated
in Theorem 1.

A measurement matrix represents a standard measurement
if and only if its columns are orthonormal; i.e., if and only if
its Gram matrix satisfies . Then has rank ,
has dimension , , and for unitary and

, where is given by

(14)

We summarize the properties of measurement matrices in the
following theorem.

Theorem 2 (Measurement Matrices):The following state-
ments are equivalent for a matrix whose columns are vec-
tors in a complex Hilbert space:

1) is a measurement matrix corresponding to a rank-one
POVM acting on an -dimensional subspace ;

2Often these operators are supplemented by an orthogonal projectionQ =

P = I �P onto the orthogonal subspaceU � H, so that Q =

I —i.e., the augmented POVM is a resolution of the identity onH.

2) is a transjector (partial isometry) between-dimen-
sional subspaces and ;

3) for an -dimensional subspace ;

4) for an -dimensional subspace .

A measurement matrix corresponding to a rank-one POVM
acting on an -dimensional subspace may be expressed
as , where is a unitary matrix whose first
columns are an orthonormal basis for, is
an unitary matrix whose first columns
are an orthonormal basis for, and is given by (1). Equiva-
lently, .

A measurement matrix is an isometry if restricted to .
A measurement matrix whose columns are vectors in

represents a standard measurement if and only if its rank is.
Then , where is given by (14), and .

B. Neumark’s Theorem

Neumark’s theorem [22], [23] guarantees that any POVM
with measurement vectors can be realized by a set of or-
thonormal vectors in an extended spacesuch that ,
so that .

Using the measurement matrix characterization of a POVM
and the SVD, we now obtain a simple statement and proof of
Neumark’s theorem. Moreover, our proof is constructive; we ex-
plicitly construct a set of orthogonal measurement vectors such
that their orthogonal projections onto are the original mea-
surement vectors. In Section IV-B, we use this construction to
extend a tight frame into an orthogonal basis for a larger space.

Theorem 3 (Neumark’s Theorem):Let be a rank- mea-
surement matrix of an arbitrary POVM, with columns in a
complex Hilbert space . In other words, is a transjector
between an -dimensional subspace and an -dimen-
sional subspace . Then there exists a standard (von
Neumann) measurement with measurement matrixwhich
is a transjector between an expanded-dimensional subspace

in a possibly expanded complex Hilbert space
and , and whose orthogonal projection ontois .

Proof: Using Theorem 2, we may express as
. Let and denote the columns of and respec-

tively. Assume that is finite-dimensional, and let .
We distinguish between the case (i.e., has at least as

many rows as columns), and the case (i.e., has more
columns than rows).

In the case , define ; then is
the -dimensional subspace spanned by . The
orthogonal projection of onto is

(15)

Moreover, the columns of are orthonormal, since its Gram
matrix is

(16)



ELDAR AND FORNEY: OPTIMAL TIGHT FRAMES AND QUANTUM MEASUREMENT 603

In the case , first embed in an -dimensional space
in an expanded complex Hilbert space , and let

be an orthonormal basis for of which the first
vectors are the -basis. Then proceed as before, usingin
place of .

It is instructive to consider the matrix representation ofin
both cases. Recall that , where is given by (1).

In the case , we construct simply by extending the
identity matrix along the diagonal; where
is given by (14). Thus, when , the left and right unitary
matrices in the SVD of and are the same, and are equal
to and , respectively.

If , then and .
In the case , we first replace the left unitary matrix

by , and thus replace by ; then is an unitary
matrix whose first columns are the -basis (where we append

zeros to each basis vector). We then define .
Examples of the construction of the orthogonal measurement

vectors associated with a given POVM along the lines of this
proof will be given in Section IV-B, in the context of frames.

C. Optimal Quantum Measurements

We now recapitulate some results on optimal quantum mea-
surements according to various criteria, which will be relevant
to the construction of optimal tight frames.

Let be a collection of normalized
vectors in a -dimensional complex Hilbert space, repre-
senting different states of a quantum system. In general, these
vectors are nonorthogonal and span an-dimensional subspace

. The vectors are linearly independent if .
To distinguish between the different states, we subject the

system to a measurement. For our measurement, we restrict our
attention to POVMs consisting of rank-one operators of the
form with measurement vectors . We do not
require the vectors to be orthogonal or normalized. However,
to constitute a POVM on the measurement vectors must sat-
isfy (12).

If the states are prepared with equal prior probabilities, then
the probability of detection error using the measurement vectors

is given from (4) by

(17)

If the vectors are orthonormal, then choosing results
in . However, if the given vectors are not orthonormal,
then no measurement can distinguish perfectly between them.
Therefore, a fundamental problem in quantum mechanics is to
construct measurements optimized to distinguish between a set
of nonorthogonal pure quantum states.

This problem may be formulated as a quantum detection
problem, so that the measurement vectors are chosen to
minimize the probability of detection error, or more generally,
minimize the Bayes cost. Necessary and sufficient conditions
for an optimum measurement minimizing the Bayes cost have
been derived [35]–[37]. However, except in some particular
cases [37]–[39], obtaining a closed-form analytical expression

for the optimal measurement directly from these conditions is
a difficult and unsolved problem.

An alternative approach proposed in [32] is to choose a dif-
ferent optimality criterion, namely, a squared-error criterion,
and to seek measurement vectors that minimize this criterion.
Specifically, the measurement vectors are chosen to minimize
the sum of the squared norms of the error vectors, where the
th error vector is defined as the difference between theth state

vector and theth measurement vector. The optimizing measure-
ment is referred to as theleast-squares measurement(LSM).

The problem of finding a set of orthonormal measurement
vectors that minimize the squared-error criterion when the states
are linearly independent was first solved in [40]. A more gen-
eral, independent development that covers the cases of linearly
dependent states and nonorthogonal measurement vectors ap-
pears in [32].

It turns out that the LSM problem has a simple closed-form
solution which has many desirable properties. Its construction
is relatively simple; it can be determined directly from the given
collection of states; it minimizes the probability of detection
error when the states exhibit certain symmetries [32]; it is
“pretty good” when the states to be distinguished are equally
likely and almost orthogonal [41]; it achieves a probability of
error within a factor of two of the optimal probability of error
[42]; and it is asymptotically optimal [43].

In the next section, we will develop a relationship between
POVMs and tight frames. We then apply ideas and results de-
rived in the context of quantum detection to the construction and
characterization of tight frames. In particular, we will apply the
squared-error criterion developed in [32] to the construction of
optimal tight frames.

IV. TIGHT FRAMES

Frames, which are generalization of bases, were introduced in
the context of nonharmonic Fourier series by Duffin and Scha-
effer [1] (see also [2]). Recently, the theory of frames has been
expanded [4], [5], [8], [6], in part due to the utility of frames in
analyzing wavelet decompositions. Here we will focus on tight
frames, which have particularly nice properties.

Let denote a set of vectors in an -dimen-
sional subspace of a Hilbert space . The vectors form a
tight framefor if there exists a constant such that

(18)

for all [8]. If , the tight frame is said to benormal-
ized; otherwise, it is said to be-scaled.3

3More generally, the vectors' form a frame for U if there exist constants
0 < � � � < 1 such that

� kxk � jhx; ' ij � � kxk

for all x 2 U [8]. The lower bound ensures that the vectors' spanU ; thus, we
must haven � r. If n <1, then the right-hand inequality is always satisfied
with � = h' ; ' i. Thus, any finite set of vectors that spansU is a
frame forU . A tight frame is a special case of a frame for which� = �.
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Of course, any orthonormal basis foris a normalized tight
frame for . However, there also exist tight frames forwith

, which are necessarily linearly dependent. Theredun-
dancyof the tight frame is defined as .

Since

(19)

the fact that (18) holds for all implies that

(20)

Conversely, if the vectors satisfy (20), then (19) implies
that (18) is satisfied for all . We conclude that a set of

vectors forms a tight frame for if and only if the
vectors satisfy (20) for some .

Comparing (20) with (12), we conclude the following.

Theorem 4 (Tight Frames):A set of vectors forms
a -scaled tight frame for if and only if the scaled vectors

are the measurement vectors of a rank-one POVM on.
In particular, the vectors form a normalized tight frame for

if and only if they are the measurement vectors of a rank-one
POVM on .

This fundamental relationship between rank-one quantum
measurements and tight frames will be the basis for the
developments in subsequent sections. In the next section, we
define frame matrices in analogy to the measurement matrices
of quantum mechanics. We then use Neumark’s theorem to
extend tight frames to orthogonal bases. Motivated by the LSM
of quantum mechanics, in Section V we address the problem of
constructing optimal tight frames.

A. Frame Matrices

In analogy to the measurement matrix, we define theframe
matrix as the matrix of columns , where the vectors form
a tight frame for . From (20) it then follows that

(21)

The properties of a frame matrix follow immediately from
Theorems 4 and 2.

Theorem 5 (Frame Matrices):For a matrix whose
columns are vectors in a complex Hilbert space and for a
constant , the following statements are equivalent:

1) is the frame matrix of a -scaled tight frame for an
-dimensional subspace ;

2) is a transjector (partial isometry) between-dimen-
sional subspaces and ;

3) for an -dimensional subspace ;

4) for an -dimensional subspace .

A frame matrix of a -scaled tight frame for an-dimensional
subspace may be expressed as , where

is a unitary matrix whose first columns are
an orthonormal basis for, is an unitary matrix whose
first columns are an orthonormal basis for,
and is given by (1). Equivalently, .

A frame matrix of a -scaled tight frame is an isometry if
restricted to and scaled by .

A frame matrix of a -scaled tight frame whose columns
are vectors in represents an orthogonal basis for(i.e., is
an orthogonal frame matrix) if and only if its rank is . Then

, where is given by (14), and ;
i.e., all frame vectors have squared norm.

If the vectors form a tight frame for ,
then any may be expressed as a linear combination
of these vectors: . When , the coeffi-
cients in this expansion are not unique. A possible choice is

, because

(22)

The vectors are defined as thedual frame vectors. This
choice of coefficients has the property that among all possible
coefficients it has the minimal norm [8], [44].

The expansion of (22) is reminiscent of an expansion of
in terms of an orthonormal basis for. However, whereas the
vectors in an orthonormal expansion are linearly independent,
the vectors in (22) are linearly dependent when .

B. Neumark’s Theorem and Construction of Tight Frames

Neumark’s theorem (Theorem 3) was derived based on
the properties of measurement matrices. Since, by Theorem
4, frame matrices of tight frames have essentially the same
properties as measurement matrices of rank-one POVMs,
we can now obtain an equivalent of Neumark’s theorem for
tight frames. The proof is essentially the same as the proof of
Theorem 3, so we omit it.

Theorem 6 (Neumark’s Theorem for Tight Frames):Let
be a rank- frame matrix, with columns in a complex Hilbert
space that span an -dimensional subspace . Then
there exists an orthogonal frame matrixwith equal-norm or-
thogonal columns that span an expanded-dimensional sub-
space in a possibly expanded complex Hilbert space

such that the orthogonal projection of onto
is .

We remark that given a set of equal-norm orthogonal vectors
in , their orthogonal projections ontowill always form
a tight frame for [6]. Combining this result with Theorem 6,
we can conclude that a set of vectors forms a tight frame for

if and only if the vectors can be expressed as an orthogonal
projection onto of a set of orthogonal vectors with equal norm
in a larger space containing .

Starting with a given frame matrix in , the proof of The-
orem 3 gives a concrete construction of an orthogonal frame
matrix in such that . We now give two
examples of this construction. We consider first an example in
which , and then one in which .
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Example 1: Consider the four frame vectors
, , , and

. The frame matrix associated with this frame
is

(23)

we may check that is indeed the frame matrix of a tight frame
since .

We wish to construct an orthogonal frame matrixsuch that
. In the proof of Theorem 3 for the case ,

we constructed an unitary matrix using the SVD
. Using this construction here, we obtain

(24)

We now define the extended frame matrixin accordance with
the proof of Theorem 3. The first two columns ofare uniquely
defined as the first two columns of with zeros appended. The
remaining two columns are arbitrary, as long as the resulting
is unitary. A possible choice is

(25)

Then

(26)

We may immediately verify that ; i.e., represents
an orthonormal set of vectors.

Since the columns of span a two-dimensional Hilbert space
, the orthogonal projection onto this space is given by

(27)

and, indeed, .

Example 2: We now consider an example in which
. The construction of is simpler than in the previous case be-

cause we do not have to extend. Consider the three frame vec-
tors , , and .
The frame matrix associated with this frame is

(28)

In order to verify that is indeed the frame matrix of a tight
frame, we again determine the SVD , which yields

(29)

From Theorem 5 we conclude thatis indeed the frame matrix
of a tight frame since its nonzero singular values are all equal to
; i.e., is a transjector. A basis for the subspacespanned by

the columns of is the two vectors

(30)

Thus, is given by

(31)

and, indeed, .
We now define an extended frame matrixsuch that

and . From the proof of Theorem 3, we have

(32)

where

(33)

Since , we have immediately that .

V. OPTIMAL TIGHT FRAMES

It is often of interest to construct a tight frame from a given
set of vectors . Using the LSM developed in the
context of quantum detection [32], we now propose a systematic
method of constructing optimal tight frames from a given set of
vectors.

Thus, we wish to construct a tight frame of vectors
from a given set of vectors that span an

-dimensional space . A reasonable approach is to find a
set of vectors that are “closest” to the vectors in the
least-squares sense. Thus, we seek vectorsthat minimize the
squared error , defined by

(34)

where denotes theth error vector

(35)

subject to the constraint (20).
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We may wish to constrain the scalingin (20), e.g., we may
seek a normalized tight frame with . The optimal frame
in this case is referred to as the CLSF. Alternatively, we may
choose the vectors and to satisfy (20) and to minimize
the squared error of (34). The optimal frame is then referred
to as the ULSF.

A. Constrained and Unconstrained Least-Squares Frame

With and denoting the matrices of columns
and , respectively, the squared errorof (34) and (35) may
be expressed as

(36)

and the constraint (20) may be restated as

(37)

Employing the SVD , we rewrite the squared
error of (36) as

(38)

where

(39)

The vectors form an orthonormal basis for.
Therefore, the orthogonal projection operator ontois given by

(40)

Essentially, we want to construct a map such that the images
of the maps defined by and are as close as possible in the
squared norm sense, subject to the constraint

(41)

The SVD of is given by . Consequently

(42)

where denotes the zero vector. Denoting the image ofunder
by , for any choice of satisfying the constraint

(41), we have

(43)

and

(44)

Thus, the vectors are mutually orthogonal with
and . Combining (42) and

(43), we may express as

(45)

Our problem, therefore, reduces to finding a set oforthog-
onal vectors with norm that minimize

(46)

where the vectors are orthonormal. For any choice of

(47)

with equality if and only if . Thus, the vectors min-
imizing are , .

If is fixed, then the optimal frame matrix, denoted by ,
satisfies

(48)

Consequently the CLSF vectors are the columns of

(49)

where is defined by (1). We may express directly in terms
of as

(50)

where denotes the Moore–Penrose pseudo-inverse [45]. The
residual squared error is then

(51)

We note that the CLSF vectors which are the columns of
satisfy

(52)

where denotes the th element of the matrix. This relation
may be used to derive bounds on the inner products in
terms of the inner products ; see [43].

To derive the ULSF, we further minimize of (46) with re-
spect to . Substituting the optimal vectors ,
back into (46), we choose to minimize

The optimal value of , denoted by , is given by

(53)

and the ULSF vectors are the columns of

(54)
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The residual squared error is

(55)

The CLSF and the ULSF vectors can be expressed in a unified
manner as the columns of the least-squares frame (LSF) matrix

(56)
where in the CLSF , and in the ULSF given
by (53). In the sequel, when the value ofis immaterial, we
will refer to the LSF which encompasses both the CLSF and the
ULSF.

Note that if the singular values of are distinct, then the
vectors are unique (up to a phase factor ).
Given the vectors , the vectors are uniquely determined,
so the optimal frame vectors corresponding toare unique.
If, on the other hand, there are repeated singular values, then
the corresponding eigenvectors are not unique. Nonetheless, the
choice of singular vectors does not affect. Indeed, if the vec-
tors corresponding to a repeated singular valueare , then

is an orthogonal projection onto the corresponding
eigenspace, and therefore is the same regardless of the choice
of the vectors . Thus,

(57)

independent of the choice of , and the optimal frame is
unique.

B. Optimal Orthogonal Basis, the CLSF, and the ULSF

In the previous section, we sought the-scaled tight frame
that minimizes the least-squares error. We may similarly seek
the optimal orthogonal vectors with normof the same form.
We now explore the connection between the resulting optimal
vectors both in the case of linearly independent vectors

, and in the case of linearly dependent vectors .
Linearly Independent Vectors:If the vectors are linearly

independent and, consequently,has full column rank (i.e.,
), then the LSF (56) reduces to

(58)

The optimal frame vectors that are the columns of are
mutually orthogonal with equal norm, since their Gram matrix
is

(59)

Thus, the optimal LSF is, in fact, an optimal orthogonal basis
for .

Linearly Dependent Vectors:If the vectors are linearly
dependent, so that the matrixdoes not have full column rank
(i.e., ), then the frame vectors cannot be mutually
orthogonal since they span an-dimensional subspace. We now
try to gain some insight into the optimal frame vectors in this
case. Our problem is to find a set of vectors that are as close
as possible to the vectors , which lie in an -dimensional
subspace . We now show that these vectors are related to the

optimal frame vectors through an orthogonal projection onto the
subspace , spanned by the vectors .

To see this, suppose we seek a set of orthogonal vectors
with that are as close as possible to the vectors
. From Theorem 5, we have that

(60)

where is the space spanned by the vectors.
Since there are at mostorthogonal vectors in , imposing an

orthogonality constraint forces the optimal orthogonal vectors
to lie partly in the orthogonal complement . Each vector

then has a component in, , and a component in , .
Using (60), the component in satisfies

(61)
where the last equality follows from the fact that . Now
we rewrite the error of (34) as

(62)

since . From (61)

(63)

independent of the choice of vectors. Thus, minimization of
is equivalent to minimization of

(64)

Furthermore, from (61), the vectors form a -scaled tight
frame for .

If is fixed, then choosing the orthogonal vectors with equal
norm that minimize is equivalent to choosing an optimal

-scaled tight frame for . The optimal orthogonal vectors are
not unique; however, their orthogonal projections ontoare
unique and are just the-scaled CLSF vectors. We may choose
the projections of the optimal orthogonal vectors onto ar-
bitrarily, as long as the resultingvectors are orthogonal with
norm . A convenient choice is

(65)

Indeed, Theorem 6 shows that the optimal orthogonal vectors
are just a realization of the CLSF vectors. This theorem guaran-
tees that any -scaled tight frame may be realized by a set of
orthogonal vectors with norm in an extended space such that
their orthogonal projections onto the smaller space are the given
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frame vectors. Denoting by and the optimal -scaled
frame vectors and the optimal orthogonal vectors with norm,
respectively, (64) asserts that

(66)

If is chosen to minimize the least-squares error, then we
need to further minimize with respect to . Substituting

back into (64), and using the fact that ,
the optimal value of is chosen to minimize

(67)

Minimizing with respect to , the optimal value of , de-

noted by , is

(68)

where is defined by (53) and is the redundancy of the frame.
Thus, the optimal projections are the columns of ,
where is the frame matrix of the ULSF vectors.

We conclude that choosing a set of orthogonal vectors with
unconstrained norm that minimize is equivalent to choosing
an optimal unconstrained tight frame for and scaling these
optimal frame vectors by . The optimal unconstrained or-
thogonal vectors are not unique; however, their orthogonal pro-
jections onto are unique and are proportional to the optimal
unconstrained tight frame vectors. We may choose the projec-
tions of the optimal orthogonal vectors onto arbitrarily, as
long as the resulting vectors are orthogonal with norm .
A convenient choice is

(69)

We summarize our results regarding the CLSF and the ULSF
in the following theorem.

Theorem 7 (Least Squares Frame (LSF)):Let be a set
of vectors in a -dimensional complex Hilbert space that
span an -dimensional subspace . Let denote the
optimal frame vectors that minimize the least-squares error
defined by (34) and (35), subject to the constraint (20). Let

be the rank- matrix whose columns are the vectors
, and let be the frame matrix whose columns are the

vectors . Then the unique optimal is given by

where and denote the columns of and , respectively,
is defined by (1), and

1) if in (20) is specified then and the resulting frame
vectors are defined as the constrained LSF vectors;

2) if is chosen to minimize the least-squares error then
where , and the resulting

frame vectors are defined as the unconstrained LSF vec-
tors.

The residual squared error is given by

where are the nonzero singular values of.
In addition,

1) if

a) ;
b) , and the corresponding frame vectors

are orthogonal with norm ;

2) if

a) if is fixed then

i) the constrained LSF vectors may be realized
by the -scaled optimal orthogonal frame
matrix

ii) the action of the two optimal vector sets in
the subspace is the same;

b) if is chosen to minimize the least-squares error
then the unconstrained LSF vectors may be realized
by the optimal orthogonal frame matrix

where .

VI. CONNECTIONWITH THE POLAR DECOMPOSITION

We now show that LSF is related to the polar decomposition
(PD) of the matrix .

Let denote a matrix, where . Then has a
polar decomposition (PD)[46], [47]

(70)

where is a partial isometry that satisfies ,
and . The Hermitian factor is always unique;
the partial isometry is unique if and only if has full column
rank.

If is the SVD of , then a natural choice for
is

(71)

where is given by (14). If , then this choice of
is unique. Otherwise, is not unique; however, its orthogonal
projection onto the column spaceof is unique and is given
by [48]

(72)

where is given by (1).
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Comparing (72) with (56), we conclude that the LSF is pro-
portional to the (unique) orthogonal projection ontoof the
partial isometry in a PD of , and can, therefore, be computed
very efficiently by use of the many known efficient algorithms
for computing the PD (see, e.g., [45], [49], [46], [50]).

Recently, the truncated PD (TPD), a variation on the PD, has
been introduced [51] and has proved to be useful for various es-
timation and detection problems. As we now show, the columns
of the TPD of a matrix are just the closest normalized frame
vectors to the columns of .

Let denote an arbitrary matrix with rank
. Then the order-TPD of is the factorization

(73)

where is the orthogonal projection onto the space spanned
by the first singular vectors of . From (73), it follows that
the left-hand matrix in the order-TPD of is just the optimal
normalized frame matrix corresponding to . Similarly,
the left-hand matrix in the order-TPD of , with , is the
optimal normalized frame matrix corresponding to the vectors

.
Since the LSF is related to the PD of, properties of the

optimal frame vectors can be deduced from properties of the
PD (see, e.g., [46], [47], [49], [52]). For example, the CLSF
corresponding to two vector sets and are the same
if and only if the corresponding frame matrices satisfy

[52].

VII. CANONICAL FRAMES

A popular frame construction from a given set of vectors is
the canonical frame. Given a set of vectors ,
thecanonical frameassociated with these vectors is the frame
corresponding to the frame matrix [8], [19], [24], [25]

(74)

Comparing (74) with (56), we see immediately that the
canonical frame vectors are just the normalized tight-frame
vectors that are closest in a least-squares sense to the vectors

. Furthermore, the -scaled tight frame vectors for fixed
that are closest to the vectors are the canonical frame

vectors scaled by .
From Theorem 7, it follows that the canonical frame vec-

tors are the tight-frame vectors that minimize the least-squares
error only if , i.e., only if . Otherwise,
the canonical frame is no longer the optimal tight frame in a
least-squares sense. However, if we simply scale each of the
canonical frame vectors by, then the resulting frame mini-
mizes the least-squares error among all possible tight frames.

We summarize our results regarding canonical frames in the
following theorem.

Theorem 8 (Canonical Frames):Let be a set of vec-
tors in a -dimensional complex Hilbert space that span an
-dimensional subspace . Let be the rank-

matrix whose columns are the vectors. Let and
denote the columns of the unitary matricesand , respec-
tively, let denote the nonzero singular values

of , and let be defined as in (1). Let be the canonical
frame vectors associated with the vectors, and let denote
the matrix of columns . Then

In addition, we have the following.

1) If

a) the canonical frame vectors form an orthonormal
basis for ;

b) the canonical frame vectors are the closest or-
thonormal vectors to the vectors , in a
least-squares sense;

c) if , then the canonical frame vectors
are the closest orthogonal vectors with equal norm
to the vectors , in a least-squares sense;

d) define the scaled canonical frame vectors
. Then

i) the scaled canonical frame vectors are the
closest orthogonal vectors with normto the
vectors , in a least-squares sense;

ii) if , then the scaled
canonical frame vectors are the closest or-
thogonal vectors with equal norm to the
vectors , in a least-squares sense.

2) If ,

a) the canonical frame vectors form a tight frame for
;

b) the canonical frame vectors are the closest normal-
ized tight frame vectors to the vectors , in a
least-squares sense;

c) if , then the canonical frame vectors
are the closest tight frame vectors to the vectors

, in a least-squares sense;
d) define the scaled canonical frame vectors

; then

i) the scaled canonical frame vectors are the
closest -scaled tight frame vectors to the
vectors , in a least-squares sense;

ii) if , then the scaled
canonical frame vectors are the closest tight
frame vectors to the vectors , in a
least-squares sense.
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