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ABSTRACT

It is often desired to create an optimal estimator of some
parameter 8 given the observation z. However, the relation-
ship between 6 and z may depend on another parameter ¢
which is unknown to the processor and not of direct inter-
est. In this case, an estimator which performs well for one
value of ¢ may perform poorly for another value of ¢. One
approach to dealing with this problem is to develop an es-
timator whose worst case performance evaluated over some
range of ¢ is as good as possible. Such an optimal minmax
estimator is derived. The derivation of this estimator also
motivates an approach to developing lower bounds on the
minmax estimation error achievable by any estimator.

1. INTRODUCTION

In many random parameter estimation problems, it is de-
sired to develop an estimator to minimize

e(9) = E[l6 - g(=) "),

where 8 € R is the parameter to be estimated (for sim-
plicity, only the real parameter case is considered), z € X
is the observation, and g: X — IR is the estimator. The
well-known solution to this problem is the conditional ex-
pectation
gmmac(x) = E[0 | 1']~

However, in many scenarios, the relationship between the
observation and the signal or parameter to be estimated de-
pends on other parameters which are unknown to the pro-
cessor and are not of direct interest. These are often referred
to as nuisance parameters or environmental parameters and
will be denoted by ¢. For example, in the acoustic array
processing problem in the ocean, 8 may be the signal emit-
ted by a source at the array focal point as received at a
particular array sensor (i.e., the desired signal) and z may
be the noisy vector time series received at the entire array.
In this case, the relationship between the desired signal and
the received signal depends on the propagation character-
istics of the ocean environment between the source and the
array. Thus, an estimator which may yield good results
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for one value of the environmental parameters may yield
poor performance for another value of the environmental
parameters.

One approach to dealing with the problem of unknown
environmental parameters is to develop an estimator which
minimizes the worst case conditional estimation error,
where the estimation error is conditioned on the environ-
mental parameter ¢ and the worst case is evaluated over
the range of environmental conditions in which the proces-
sor is designed to operate. This range is denoted by the
set @ (again for simplicity, ® is assumed to be a finite set

® = {$1,¢2,...,6K}). This estimator, referred to as the
optimal minmax estimator, is defined as
opt = arg min_maxe(g, @), 1
gort g min, mas (9,9) 1)

where
e(9,4) = Ell6—g(z) [’] ¢].

Poor and others [1, 2, 3, 4] have developed approaches
to solving this minmax estimation problem for the class of
problems for which the solution is a saddlepoint of the er-
ror function in the (g, ¢) space. The work present here is
applicable to a much broader class of problems and has two
purposes. The first is to develop a general expression for
the optimal minmax estimator, (i.e. the solution to (1)).
The second purpose is to present an approach to develop-
ing lower bounds on the extremal (maximum) estimation
error achievable by any processor. That is, an approach to
developing lower bounds over g on

Ag) = max (g, ¢)

is sought, where g is any function mapping the observation
space into the real numbers.

A(g) is referred to as the extremal value given the pro-
cessor g, the values of the environmental parameter ¢ for
which e(g, ¢) = A(g) are referred to as extremal points, and
the set of extremal points for a given processor is denoted

by M(g) ={¢ €2 | e(g,¢) = L(9)}-
2. THE OPTIMAL MINMAX ESTIMATOR

The optimal minmax estimator is developed by artifically
assigning a probability mass function, p, to the environ-
mental parameter set @ (i.e., p; = Prob[@ = @;]). Tt is then
shown that, for a particular pmf referred to the least favor-
able pmf (]_J”), the minimum mean-squared error estimator
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equals the optimal minmax estimator. The application of
this approach to the development of optimal minmax esti-
mators is discussed more fully in [5).

For any pmf, p, and estimator, g, the mean squared esti-
mation error is given by

el9,p) = E[l8-g(z) [}

D pEl8-g(z) | 6 = 4]

i=1

K
D piela, 4i). )

i=1

&(g,p) is the average of (g, $) taken over all @. Therefore,
for any pmf, P,

e(g,p) < max &(g,¢) = A(g). (3)

Taking the minimum of both sides of (3) over all possible
estimators yields

min_e(g,p) < min maxe(g,4) = min A(g). (4
 min <(,9) S | min maxe(s,¢)  Hin 89)- (4)

Let gmmse(z, p) be the minimum mean-squared error esti-
mator of 4 given the pmf p on 4. That is,

gmmse(zyz) = arg g:;ni’:lme(glz)

il

K
D pEBlzé=¢] (5

i=1

Then (4) implies that
5(9""'"3(1"12))1_’) < min A(g) (6)
g:X—’IR.

Suppose that a pmf, P, could be found such that

E(gmmae(z,g),:) = A(gmmse(zﬁé))' (7)

Then, evaluating (6) at P = p and noting that
min_ A(g) < A(gmmse(z, p)),
aXx-R -

yields

E(gmmu(z,?_)y}'_’) < min A(g) < A(ymmu(xlé))' (8)
g:X—»]R.

Combining (7) and (8) yields

€(gmms¢(z)’l)’2) = min A(g)'
g:X—]K

Therefore, if such a distribution could be found, the solution
to (1) would be

Jopt(z) = .‘Immu(zré)- )]

For some insight into how such a distribution can be
found, consider the following example:

Figure 1: e(ymmu(l,go), ¢) vs ¢

Assume that ¢ is a real, scalar variable and for some pmf
P, s(gmmu(z,go), ¢) is as shown in Figure 1. In this case,

A(gmmu(z, Bo)) = E(Qmmn(zvgo)y ¢M)

Then, if an extremal point ¢, GM(ymm,e(z,go)) and
any non-extremal point ¢n € M(gmmse(z, p,)) for which
Po, > 0 are selected, an incremental increase in Po,, and
an incremental decrease in Po, can be made. The new pmf,
p(8), is given by

Pm(é) = Pom + ‘s)
p'l(s) Pon — 6)
pi(s) = Po; & {m,n},

Il

for an arbitrarily small, positive § € IR.

The effects of this incremental change which are of princi-
pal interest are the differences between e(gmm,e(z,go), ém)
and e(gmm,e(z,£(5)),¢m), between e(gmm,e(z,go),qbn)
and e(gmmse(2,p(6)), #n), between A(gmmu(z,go)) and
A(gmmse(, p(6))), and finally between e(gmmsc(z,go),z_)o)
and c(gmm.,(z,g(é?)),g(&)).

From (5), gmmse(z,p) is the weighted sum of conditional
expectations and the weighting is determined by the value
of p for each value of ¢. Therefore, Immase(z,p(6)) has a
larger weight on E[f | 2,4 = ¢m] than does Immae(Z,p)
and has a smaller weight on E[f | z,¢ = én] than does
gmm,,(z,go). Since E[6 | 2,4 = ¢,] is the estimator which
minimizes (g, ¢;), it is therefore reasonable to expect that

E(gmmu(z,g(&)), ¢m) < 5(gmmae(2,l_’a), ¢m)
and
5(gmmae(xyg(6))’¢n) > e(gmmee(zrl’_a)’¢n)-

Therefore, since the error at the extremal point is reduced,
the extremal value will be reduced. That is,

A(gmmae(zyz(é))) < A(gmmae(zyzo))-
Finally, from (2) (g, p) is the weighted sum of the condi-
tional mean-squared estimation errors €(g,4i) and, as be-

fore, the weighting is determined by the value of p for each
value of ¢. Therefore, since

5(gmmoe(z;l’_c)y¢m) > 5(gmmae(z,£°), ¢n)

V-286




and the weighting on ¢,, is increased and the weighting on
¢n is decreased, it is reasonable to expect that

e(gmmse(z, p(6)), p(8)) > e(gmmse(z,p, ). P, )-

—o

If fact, it can be shown [5] that

36(9mm==(22£(5)),2(5)) li=o = e(gmmee(z,), 6m)

- E(gmmae(zxgo)l ¢n)

Since ¢, is an extremal point and ¢, is not,

35(9mmu(2;§£(5))’g(6)) [s=0 > 0.

Therefore, for each incremental change the mean-squared
estimation error averaged over the all ¢ will increase.

This process of increasing pm for extremal points ¢ and
decreasing p. for non-extremal points ¢» can continue until
pn equals zero for all non-extremal points. At each step,
the extremal value A(gmmse(z,p)) will decrease and the
minimum mean-squared estimation error e(gmmse(z,p), p)
will increase.

When the probabilities assigned to the non-extremal
points all equal zero, any further incremental changes in
the assigned probabilities require that the probability as-
signed to an extremal point be decreases while that as-
signed to some other point (extremal or non-extremal) be
increased. This will result in no change or a reduction in
€(gmmse(z,p),p). Therefore, the pmf for which the prob-
ability assigned to each non-extremal points equals zero
) is that which maximizes the minimum mean-squared

(p,
estimation error. Thus, Py is referred to as the least-
favorable pmf. Furthermore, since pis, equals zero for all
non-extremal points, the mean-squared estimation error av-
eraged over the environmental parameters will equal the
extremal value of the conditional mean-squared estimation
errors. That is,

E(gmm.se(l,gu),gu) = A(gmmu(z:ﬂu))- (10)

Therefore, p

Py satisfies (7). Then, by (9),

gopt (2) = gmmse(z,p,,)- (11)

The insight brought out by this example is formalized in
the following theorem, a proof of which is contained in [5]
where it is referred to as Theorem 6.

Theorem 1 Let ® = {¢1,...,6x} and
P={2€]RK|1_)ZOandg'g=1)

where e is the column vector of all ones. Let
e(g,¢) = E[(8 — 9(z))* | ¢] and let gmmse : X x P — R be
given by

K
g z,p arg min pi (g, ¢
mmae(Z,P) g:xqmg i e(g, 64)

K pipae(z | $)E | =, 6]
Yy pipis(z | 64)

)

where pz1p(z | @i) is the conditional pdf or pmf of the ob-
servation T given that the environmental parameter ¢ = ¢,.
Let the least favorable pmf&f € P be defined as

K
Ezf = arg I;lea.;( Z pi €(gmmse(T, I_’): ¢i)'
- =1

Then

gmmse(l,&f) = gopt(z) = argg:‘l’:lifl Igea;cs(g,gé).

It is interesting to note that the pmf which yields the
optimal minmax estimator (i.e., the least favorable pmf)
is non-zero for only those environmental parameter values
¢ which are extremal points. This contrasts sharply with
the commonly used method of dealing with environmental
(nuisance) parameters by assigning a uniform pmf to the
parameter values and then using an optimal estimator for
that pmf.

3. MINMAX ESTIMATION ERROR BOUNDS

While the implementation of the optimal minmax estima-
tor (i.e., the minimum mean-squared error estimator for the
least favorable pmf) is often impractical for computational
reasons, the form of this estimator does motivate an ap-
proach to developing lower bounds on

Alg) = max e(g, ).

From (6), it is clear that for any pmf assigned to the
environmental parameter ¢, any lower bound on the mean-
squared estimation error for the parameter 4 is also a lower
bound on A(g). However, this fact is not very useful unless
for some pmf, the mean-squared estimation error bound is
a reasonably tight lower bound on A(g). The pmf which
should yield a reasonably tight bound is the least favorable
pmf Py

From (10) and (11),

e(gmmee(z,p,,)s2,;) = ?in A(g).
g:

—

Therefore, the minimum mean-squared estimator error for
6 given the pmf Py is an achievable lower bound on

A(g). However, this lower bound may be difficult to
evaluate. Therefore, it may be preferable to use another
mean-squared estimation error bound (e.g., the Cramer-
Rao bound, the Weiss-Weinstein bound, etc.) to bound
A(g).

Assume that the Cramer-Rao bound is used and denote
the bound for any pmf p by CR(p). Then, CR(PU) will be

as tight a bound of A(g) as it is for the mean-squared esti-
mation error e(g,&f). 2, is the pmf which maximizes the
minimum achievable mean-squared estimation error. How-
ever, it may not maximize the Cramer-Rao bound. There-
fore, if the least favorable bounding pmf is defined by

Py, = 218 rEnea;c CR(p),
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CR(&“) will be at least as tight a bound on A(g) as the
Cramer-Rao bound is on the mean-squared estimation er-
ror. In fact, CR(&fb) may be a tighter bound on A(g) than
the Cramer-Rao bound is on the mean-squared estimation
error.

This procedure can be applied using any mean-squared
estimation error bound. Choose the bound and maximize
the bound by adjusting the pmf assigned to ¢. This will
yield a minmax estimation error bound which is at least as
tight as the mean-squared estimation error bound.

4. CONCLUSIONS

The optimal minmax estimator has been derived using the
framework of the least favorable pmf. While this estima-
tor is often impractical to implement, it does motivate the
development of an approach to computing reasonable lower
bounds on the achievable minmax estimation error. This
framework can also be used to develop optimal minmax
estimators of restricted form (e.g., linear estimators) for
certain classes of problems [5].
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