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ABSTRACT

Chaotic signals are increasingly of interest for use in a
range of engineering applications. This paper describes op-
timal estimation and detection algorithms for use with a
potentially important class of discrete-time chaotic signals
generated via tent maps. We develop and evaluate, in par-
ticular, Maximum Likelihood (ML) estimation algorithms
for filtering, predicting, and smoothing these signals from
noise-corrupted measurements, and present highly efficient,
recursive implementations for these nonlinear algorithms.
We also develop ML detection algorithms for discriminat-
ing among classes of chaotic signals generated from tent
maps, and use the results to explore the viability of a simple
paradigm for secure communication based on these chaotic
signals.

1. INTRODUCTION

Chaotic signals, i.e., signals which can be described as out-
puts of nonlinear dynamical systems exhibiting chaotic be-
havior are appealing candidates for use in a variety of engi-
neering contexts. In terms of signal analysis, these signals
constitute potentially useful models for a range of natural
phenomena. In terms of signal synthesis, the special char-
acteristics of chaotic signals are attractive in a number of
broadband communication and radar applications. In or-
der to exploit chaotic signals in both types of applications,
there is a need for robust and efficient algorithms for the
detection and estimation of these signals in the presence of
various forms and amounts of distortion.

A variety of heuristically reasonable algorithms have
been proposed for estimating a chaotic signal in backgrounds
of additive, stationary white Gaussian noise given varying
degrees of a priori information; see e.g., [1] - [4]. However,
the development of optimal estimators for these scenarios
has generally proved to be rather difficult.

In this paper, we focus our attention on the particular
class of first-order, discrete-time chaotic signals whose dy-
namics are governed by the so-called tent map. For these
chaotic signals, we are able to develop estimators that are
optimal in a Maximum Likelihood (ML) sense, and possess
highly convenient recursive implementations. While this
class of signals may be overly restrictive for many signal
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modeling applications, the results suggest a general estima-
tor structure that may prove useful for a much larger class
of chaotic signals.

In the second half of the paper, using a generalized like-
lihood ratio test formulation we develop optimal detection
strategies for discriminating between two classes of chaotic
signals derived from tent maps. We then consider a sim-
plified secure communications paradigm based on chaotic
signals, and use the detection algorithms and their perfor-
mance characteristics to assess the viability of such appli-
cations. In addition, our results suggest more general algo-
rithmic structures for discriminating among different classes
of chaotic signals. In turn, these algorithms are of potential
interest in a range of signal classification problems.

2. CHAOTIC SEQUENCES FROM TENT MAPS

The chaotic sequences z{n] of interest in this work are gen-
erated according to the following one-dimensional dynamics

z[n] = F(z[n-1]), (1)
where F(-) is a symmetric tent map, i.e.,
F(z)=8—-1-plz| )

for some parameter 1 < § < 2.

These mappings typically produce sequences which are
ergodic [5] and whose values lie in the range [—1,5-—1].
However, their full first-order densities (i.e., invariant dis-
tributions) cannot, in general, be readily described in closed
form. Likewise, the time-averaged spectra of these processes
are generally broadband, although their detailed character-
istics are not easily described.

The Lypunov exponent A of the map is a measure of the
numerical sensitivity of the map, describing, in particular,
the average rate at which successive iterates generated from
nearby initial conditions z[0] diverge. For the tent maps
defined in (2},

A =logg. 3)

For the map corresponding to 8 = 2, one can derive
more detailed results. In particular, the invariant density
is uniform [5], i.e.,

1/2 jz| <1
plz) = { 0/ Ltlherwise

(4)
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Furthermore, since both F(-) and the invariant density (4)
are even functions, it follows that

RIk] = E [z[n + k] z[n]] = E [z[n] F*)(2[n])] = (1/3)6[k],

where F(¥)() denotes the k-fold composition of F(-} with
itself, and where 6[k] is the unit-sample. Hence z[n] has a
time-averaged spectrum that is white, i.e.,

S(w) =1/3, all w. (5)

A particularly useful representation for chaotic sequences
generated from one-dimensional maps is obtained from de-
scriptions of the maps in terms of symbolic dynamics [6].
We now summarize the results for the case of tent maps
defined in (2).

We begin by noting that F(-) is not invertible. How-
ever, because F(-) is unimodal and even, it has two inverse
branches, i.e., given v = F(z), z can be determined from v
to within a + sign. We denote the two inverses of F(-) by

~1—-v

Fw) =" 3

where s = +1. Thus, we have the relation

8 (6)

v=F(z) = == Fg.(v).

From this perspective, an alternative representation is
obtained for a sequence

z[0}, [1), ..., a[N] (M

generated according to (1) using (2). In particular, for each
n we have

z[n] = F 0 Fln©---0 F:[}M](z[N]) (8)
with F;!() as given by (6) and where

s[r] = sgn z{n].

Hence,

s[0], s{1), ..., s[N — 1], z[N] (9)

is an equivalent representation for (7), and (8) defines the
coordinate transformation.

3. ESTIMATION OF TENT MAP SEQUENCES

In this section, we consider the following scenario involving
noisy observations

y{0], 91, ..., y[N] (10)
of chaotic tent map sequence. Specifically, suppose
y[n] = z[n] + wln], (11)

where w[n] is a stationary, zero-mean white Gaussian noise
sequence with variance o2, and where z[n] is a tent map se-
quence generated by iterating some unknown z[0} € (—1, 8-
1) according to (1) using the tent map (2) for some param-
eter 3. The objective is to obtain ML estimates of

z[0], (1], ..., =[N]

Figure 1: Bias in the ML estimate (§ = 2).

from the noisy data.

Because ML estimates commute with invertible coordi-
nate transformations we may equivalently recast the prob-
lem as one of finding ML estimates for either z[0] or, in
accordance with the results of Section 2, the coordinates
(9). However, although estimating z([0] directly is appeal-
ing, this leads to a difficult optimization problem. Indeed,
as reported in [7], for chaotic maps of this type the likeli-
hood function is typically a highly irregular function with
fractal characteristics. Consequently, gradient descent al-
gorithms cannot practically be applied.

However, the representation (9) turns out to be highly
useful in deriving the ML estimates. The algorithm that re-
sults from this approach can be partitioned into two stages:
filtering and smoothing.

3.1. FILTERING

The filtering stage provides, for n = 0,1,...,N, ML esti-
mates #[n|n] of z[n] given y[k] for k < n. These estimates
are be obtained in a computationally efficient forward pass
through the data using a recursive algorithm. In particular,
we have

(8% — 1)3*" yln] + (8" = D &[n|n—1]
ﬂ2(n+l) -1 ’

E[n|n] =

(12)
where Z[n|n—1] is a one-step prediction, i.e.,
#[rln—1) = F(é[n—1|n-1]),

and where the recursion is initialized with £[0}0] = y[0].

In general, these ML estimates are biased. In Fig. 1,
the dashed curve indicates the bias in the filtered signal
estimates as a function of signal-to-noise ratio (SNR), i.e.,
—10log, 02, for the case § = 2. As this plot suggests,
however, the ML estimates are asymptotically unbiased at
high SNR.

The Cramér-Rao bound on #[n|n] in this case turns out
to be

var &[n|n] > (3/4)0%, - [1 - /a1 (13)
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Figure 2: SNR gain in the ML estimate (8 = 2).

which decays to (3/4)0% as n — oo. Hence, the filtering
gain is at most

10log,4(4/3) = 1.25 dB (14)

which is notably small. In Fig. 2, the dashed curve depicts
the SNR gain (over simply hard-limiting y[n]) in the filtered
signal estimates as a function of SNR for the case # = 2, and
a dotted line indicates the bound (14). Note that at high
SNR the Cramér-Rao bound is attained asymptotically, i.e.,
the estimates are asymptotically efficient.

3.2. SMOOTHING

The smoothed ML estimates, which we denote by [r|N],
correspond to estimates of each z[n] using the entire data
set (10). These estimates are obtained by a backward prop-
agation of the filtered estimates. In particular,

£[n|N] = Fyry(2[n+1|N]) (15)

where

3[n] = [n|N] = §[n|n] = sgn &[n|n]. (16)
In this case, the recursion is initialized with £[N|N], the last
estimate obtained from the filtering stage. Note, however,
that this backward pass doesn’t require any further access
to the data but only to the filtered estimates. Consequently,
the estimation can be implemented so as to be efficient not
only in terms of computation but also in terms of storage.
In particular, each y[n] may be replaced in storage with
i[n|n] immediately after it is computed.

The smoothed estimates are also asymptotically unbi-
ased at high SNR, as the solid curve in Fig. 1 indicates for
the case § = 2. Furthermore, at high SNR and large N, we
have the geometric error variance progression

var#[n|N] = (1/8%) ¥ ™ (3/4)02,

since with high probability

in this regime. In this case, the average estimation error is

N
1 N a2
Vil E var E[n|N] = N4l 17

n=0

The solid curve in Fig. 2 indicates the SNR gain in the
smoothed estimates over a range of SNR when N = 50 for
the case # = 2, and the upper dotted line indicates the
asymptotic smoothing gain

10log,o(N +1) = 17 dB

obtained via (17). Note that the smoothing yields dramat-
ically better signal estimates than filtering alone, particu-
larly in the high SNR regime. Clearly, the backward filter-
ing stage in the smoothing algorithm is critical to achieving
good signal estimation performance.

3.3. PREDICTION

One-step ML predictors arose rather naturally in the solu-
tion to the filtering problem. More generally, K-step pre-
dictors can also be derived. In particular, using Z[N+K|N]
to denote the ML estimate of [N+ K] for K > 1 given the
data set (10), it can be shown that

E[N+K|N]= FEO([N|N])

where [ N|N]is obtained via the filtering algorithm of Sec-
tion 3.1. It is relatively straightforward to show that the
error in these estimates satisfies, for large N, small K, and
high SNR

var i[N + K|N] = p*¥(3/4)02,.

Note that the error variance grows exponentially with K at
a rate given by the Lyapunov exponent (3), consistent with
the “sensitivity to initial conditions” characteristic of these
chaotic maps.

4. DETECTION OF TENT MAP SEQUENCES

One potential application area for chaotic signals is in se-
cure communications. To explore the basic viability of the
concept, in this section we optimize and evaluate a sim-
plified spread spectrum scheme that employs chaotic wave-
forms.

In the signaling scheme of interest, each successive bit
in the data stream is represented by a chaotic sequence
generated from one of two “antipodal” tent maps. More
specifically, in the k-th signaling interval the transmitter
codes the binary symbol b[k] with an (N+1)-point sequence

VEoz[(N+1)E], VEoz[(N+1)k+1], ..., VEoz[(N+1)k+N)

generated according to

F(z[n -1 if b[k] =0
z[n] = { iFEzIIEn - 13 if b%k% =1 (18)

where F(-) is as defined in (2) with 3 = 2, where the z[(N+
1)k] € (—1,1) are randomly generated, and where Ep is the
peak transmitter power. Using (4), it is straightforward
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to determine that the resulting transmission has a peak-to-
average power ratio given by

10logy, (1/E [zz[n]]) = 10log,, 3 ~ 4.8 dB.

and some attractive pseudorandom properties. In partic-
ular, owing to the properties of the tent map (cf., (5)),
the time-averaged spectrum of the transmitted sequence is
white.

Consider an optimal incoherent receiver structure for
a chaotic signaling scheme of this type. We assume that
the received data is of the form (11) where, again, w[n} is
real-valued, zero-mean, stationary, additive white Gaussian
noise of variance ¢2,. We further assume that b[k] is a ran-
dom bit stream, and that the z{(N +1)k] are not known or
available to the receiver. Without loss of generality, it suf-
fices to consider the case of the particular signaling interval
corresponding to k = 0.

Detection of b[0] may be phrased in terms of a composite
hypothesis test [8]. In this case, the corresponding gener-
alized likelihood ratio test with a minimum probability of
error criterion reduces to the following detection rule:

b[0] = arg max p(y[£[0]. x), (19)
where
x = (0], =[1), ..., z[N])
Yy = (y[O]v y[1]7 ey y[N])

We note that detection of b[0] requires that ML estimates
of x be computed in the process using the algorithms of
Section 3. Specifically, the optimal receiver computes ML
estimates of x both for b[0] = 0 and for b[0] = 1, and chooses
for b[0] the value of b[0] which yields the larger likelihood
value, t.e.,

N

bl0] = arg min 3 (v(n] - &{nlN, 801",

n=0

where &[n|N,b[0]] denotes the ML estimate of z[r] given y
and b{0].

It is convenient to interpret the resulting coding scheme
as one in which, during each signaling interval, 1’s and 0’s
are represented by randomly chosen elements from one of
two ensembles of codewords. In general, the properties of
these ensembles strongly affect the performance of the re-
sulting signaling scheme. Let dn(u,v) be the distance be-
tween a codeword in one ensemble generated from the initial
condition v and a codeword in the other ensemble generated
from initial condition v, t.e.,

N
B(w,) = 3 [FPw) - (-F) )]

n=0

Then, in particular, the RMS and minimum values of dn
are important quantities in characterizing the performance
of the coding. It is relatively straightforward to show that

dmin(N) = min dn(u, v)

Figure 3: Probability of error performance of chaotic sig-
naling.

satisfies dmin(N) > 0 for N > 2, and dmin(N) — 00 as N —
00. The last of these two results implies, in particular, that
the bit error rate can be made arbitrarily small provided N
is chosen sufficiently large.

Monte-Carlo simulations provide more detailed results
concerning the performance of the incoherent receiver de-
rived in this section. In Fig. 3, we plot (uncoded) bit-error
probability as a function of SNR for several values of N.
Obviously, other aspects of the scheme that warrant in-
vestigation in future work include immunity to jamming,
other forms of interference, and detection by unintended
receivers.
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