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On Quantum Detection and the Square-Root
Measurement

Yonina C. Elday Student Member, IEEEBnd G. David Forney, Jrellow, IEEE

Abstract—in this paper, we consider the problem of con- measurement minimizing the Bayes cost have been derived
structing measurements optimized to distinguish between a [2]-[4]. However, except in some particular cases [4]-[7],
collection of possibly nonorthogonal quantum states. We consider obtaining a closed-form analytical expression for the optimal

a collection of pure states and seek a positive operator-valued t directly f th diti . difficult and
measure (POVM) consisting of rank-one operators with mea- measurement directly from these conaitions 1s a difcult an

surement vectors closest in squared norm to the given states. WeUnsolved problem. Thus, in practice, iterative procedures mini-
compare our results to previous measurements suggested by Peresmizing the Bayes cost [8] axd hocsuboptimal measurements
and Wootters [11] and Hausladenet al. [10], where we refer to  gre used.

the latter as the square-root measurement (SRM). We obtain a |, this paper, we take an alternative approach of choosing
new characterization of the SRM, and prove that it is optimal in a . . . o .
least-squares sense. In addition, we show that for a geometricallya_ different 0pt|_mal|ty criterion, namely, a_ s_qu_ared-(-:‘_rror_crlt_e-
uniform state set the SRM minimizes the probability of a detection  ion, and seeking a measurement that minimizes this criterion.

error. This generalizes a similar result of Banet al.[7]. It turns out that the optimal measurement for this criterion is the

Index Terms—Geometrically uniform quantum states, least- Sduare-root measurement” (SRM), which has previously been

squares measurement, quantum detection, singular value decom- Proposed as a “pretty goodt hocmeasurement [9], [10].
position, square-root measurement (SRM). This work was originally motivated by the problems studied

by Peres and Wootters in [11] and by Hausladéal. in [10].
Peres and Wootters [11] consider a source that emits three two-
qubit states with equal probability. In order to distinguish be-
UPPOSE that a transmitter, Alice, wants to convey clagween these states, they propose an orthogonal measurement
ical information to a receiver, Bob, using a quantum-meonsisting of projections onto measurement vectors “close” to
chanical channel. Alice represents messages by preparing tiiegiven states. Their choice of measurement results in a high
quantum channel in a pure quantum state drawn from a collggebability of correctly determining the state emitted by the
tion of known states. Bob detects the information by subjectirgurce, and a large mutual information between the state and the
the channel to a measurement in order to determine the staasurement outcome. However, they do not explain how they
prepared. If the quantum states are mutually orthogonal, theshstruct their measurement, and do not prove that it is optimal
Bob can perform an optimal orthogonal (von Neumann) meg@r any sense. Moreover, the measurement they propose is spe-
surement that will determine the state correctly with probabilitfic for the problem that they pose; they do not describe a gen-
one [1]. The optimal measurement consists of projections orggal procedure for constructing an orthogonal measurement with
the given states. However, if the given states are not orthogormakasurement vectors close to given states. They also remark that
then no measurement will allow Bob to distinguish perfectlynproved probabilities might be obtained by considering a gen-
between them. Bob’s problem is therefore to construct a mestal positive operator-valued measure (POVM) [12] consisting
surement optimized to distinguish between nonorthogonal pw#positive Hermitian operatois; satisfyingd ", II; = I, where
guantum states. the operator$l; are not required to be orthogonal projection op-
We may formulate this problem as a quantum detectigtators as in an orthogonal measurement.
problem, and seek a measurement that minimizes the probaHausladenet al. [10] consider the general problem of
bility of a detection error, or more generally, minimizes theéistinguishing between an arbitrary set of pure states, where the
Bayes cost. Necessary and sufficient conditions for an optimutomber of states is no larger than the dimension of the dgace
they span. They describe a procedure for constructing a general
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bility of a detection error when the states exhibit certain symmeenstruct a measurement that will correctly determine the state
tries [7]; it is “pretty good” when the states to be distinguishedf the channel with high probability.

are equally likely and almost orthogonal [9]; and it is asymptot- Therefore, let{|¢;)} be a collection ofn < n normalized
ically optimal [10]. Because of these properties, the SRM hasctorg¢;) in ann-dimensional complex Hilbert spagé Con-
been employed as a detection measurement in many applimately, we may always identifif with C* by choosisng appro-
tions (see, e.g., [13]-[15]). However, apart from some particulpriate coordinates. In general, these vectors are nonorthogonal
cases mentioned above [7], no assertion of (honasymptotic) apd span am-dimensional subspaéé C H. The vectors are
timality is known for the SRM. linearly independent if = m.

In this paper, we systematically construct detection measurefor our measurement, we restrict our attention to POVMs
ments optimized to distinguish between a collection of quantueonsisting ofm rank-one operators of the forfh; = |;) {4
states. Motivated by the example studied by Peres and Wootteith measurement vectofs;) € I{. We do not require the vec-
[11], we consider pure-state ensembles and seek a POVM ctars |1.;) to be orthogonal or normalized. However, to constitute
sisting of rank-one positive operators with measurement vectar®OVM the measurement vectors must satisfy
that minimize the sum of the squared norms of the error vectors, m m
whe‘re theith error vector i; defined as the difference between Zni — Z i | = Py (1)
the ith state vector and th&h measurement vector. We refer =

to the optimizing measurement as the least-squares measurﬁ— P is th ecti ¢ i e th ¢
ment (LSM). We then generalize this approach to allow for un- ereély 1S the projection operator onta, 1.€., th€ operators
; must be a resolution of the identity éh!

equal weighting of the squared norms of the error vectors. Thi
weighted criterion may be of interest when the given states h VﬁWe.seek the.mea.sur?”.‘er.“ vectprs such that one of the
unequal prior probabilities. We refer to the resulting measure- owing quantities is minimized.
ment as the weighted LSM (WLSM). We show that the SRM 1) Squared error
coincides with the LSM when the prior probabilities are equal, m
and with the WLSM otherwise (if the weights are proportional o= Z<6i|ci>
to the square roots of the prior probabilities). =

We then consider the case in which the collection of states has
a strong symmetry property called geometric uniformity [16]. Wh?re|ei> = |¢i) — |pi)-
We show that for such a state set the SRM minimizes the prob-2) Weighted squared error
ability of a detection error. This generalizes a similar result of m
Banet al. [7]. Ey =Y wileile:)

The organization of this paper is as follows. In Section Il, i=1
we formulate our problem and present our main results. In Sec- ¢4, 5 given set of positive weights;.
tion 111, we construct a measurement consisting of rank-one op-
erators with measurement vectors closest to a given collectign pain Results
of states in the least-squares sense. In Section IV, we construct _ i o
the optimal orthogonal LSM. Section V generalizes these re- the statesg¢;) are linearly independent (i.e.sif= m), then
sults to allow for weighting of the squared norms of the err %e optimal solutions to problems (1) and (2) are of the same
vectors. In Section VII, we discuss the relationships betwegf'?ner"’_1I form. We EXPress this optlmal solut_lon_lndlfferentways.
our results and the previous results of Peres and Wootters [ﬂjarncular, we find that the optimal solution is an orthogonal
and Hausladeet al. [10]. We obtain a new characterization ofi€asurement and not a general POVM. _
the SRM, and summarize the properties of the SRM that follow ' 7 < /. then the solution to problem (1) still has the same
from this characterization. In Section VIII, we discuss conne@€neral form. We show how it can be realized as an orthogonal
tions between the SRM and the measurement minimizing tﬂteasurenjer)t n am-dmen;mnal space.'Thls orthogpnal mea-
probability of a detection error (minimum probability-of-errorSUr€MeNt is just a realization of the optimal POVM in a larger
measurement (MPEM)). We show that for a geometrically urjPace that, along the lines suggested by Neumark’s theorem

form state set, the SRM is equivalent to the MPEM. We wihlz]' and it furnishes a physical interpretation of the optimal

consistently use [10] as our principal reference on the SRM. OVM. i i )
We define a geometrically uniform (GU) state set as a collec-

tion of vectorsS = {|¢;) = U|¢), U; € G}, whereg is a finite

=1

Il. PROBLEM STATEMENT AND MAIN RESULTS abelian (commutative) group et unitary matriced/;, and|¢)
. . _ N -
In this section, we formulate our problem and describe our ©ften these operators are supplemented by a projection
main results. My =Py =Iy— Py

onto the orthogonal subspake- C H, so that
A. Problem Formulation S I = I
i=0

Assume that Alice conveys classical information to Bob b
Y iye. the augmented POVM is a resolution of the identityxorHowever, if the

preparing a q!"antum.Channel in a pure quantum Staf{e dra@dfle vectors are confined®b, then the probability of this additional outcome
from a collection of given state§|¢;)}. Bob’s problem is to iso, so we omit it.
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is an arbitrary state. We show that for such a state set, the SRMhe SVD is known in quantum mechanics, but possibly not

minimizes the probability of a detection error. very well known. It has sometimes been presented as a corol-
Using these results, we can make the following remarks abdaity of the polar decomposition (e.g., in [18, Appendix A]). We
[11] and the SRM [10]. present here a brief derivation based on the properties of eigen-

1) The Peres—Wootters measurement is optimal in the |ea%?90mpos'“°”5’ since the SVD can be interpreted as a sort of

squares sense and is equal to the SRM (strangely, this W%%uare root” of an eigendecomposition. .
not noticed in [10]); it also minimizes the probability of et be an arbitrary, x m complex matrix of rank. The-
2 detection error. ’ orem 1 b_elow asserts tr_]gx has an SVD of the formp =
UXV*, with U and V' unitary matrices and diagonal. The
2) The SRM proposed by Hausladehal. [10] minimizes elements of the SVD may be found from the eigenvalues and
the squared error. It may always be chosen as an ortheigenvectors of the: x m nonnegative definite Hermitian ma-
onal measurement equivalent to the optimal measureménmt S = ®*® and then x n nonnegative definite Hermitian
in the linearly independent case. Further properties of theatrix I” = ®®*. Notice thatS is the Gram matrix of inner
SRM are summarized in Theorem 3 (Section VII). products(¢;|¢,}, which completely determines the relative ge-
ometry of the vector§|¢;)}. It is elementary that both andT
have the same rankas®, and that their nonzero eigenvalues
are the same set ofpositive numbergs?, 1 < < 7}
Our objective is to construct a POVM with measurement vec Theorem 1 (SVD)-Let {|¢;}} be a set ofn vectors in an

tors |1;), optimized to distinguish between a collectionof ) : .
pure stategs; ) that span a spa¢eé C H. Areasonable approach”'%'mens'onal co;ngle;;] Hilbert tspade, (Ijedtez[ QLI?_IK_ kifbtge
is to find a set of vectorf;) € U/ that are “closest” to the states>UPSPACE Spanned by these veclors, an . Le €

|$;) in the least-squares sense. Thus, our measurement con%gank” n % m matrix whose columns are the vectdi;) }.
of m rank-one positive operators of the fodhy = |p;) (], en
1 € ¢ € m. The measurement vectdys;) are chosen to mini-

I1l. L EAST-SQUARES MEASUREMENT

mize the squared errdr, defined by b= UNV* = i:ai|ui><vi|
m Z:l
E=> (cilei) )
i=1 where
where|e;) denotes théth error vector 1) ®*® = V(I*X)V* = 3I_ oF|ui) (v is an eigende-
D= b)) — | 3 composition of the rank-m x m matrix § = ®*®, in
ei) = 1¢3) = ) ®  om

subject to the constraint (1); i.e., the operatbissmust be a
resolution of the identity opx.

If the vectorg¢;) are mutually orthonormal, then the solution
to (2) satisfying the constraint (1) is simply;) = [p:), 1 <4
< m, which yieldsE = 0.

To derive the solution in the general case where the vectors
|¢;) are not orthonormal, denote By and® thern x m matrices
whose columns are the vectdys) and|¢;), respectively. The
squared errof of (2), (3) may then be expressed in terms of
these matrices as

a) ther positive real numbergs?, 1 < i < r} are
the nonzero eigenvalues 8f andg; is the positive
square root ob?;

b) ther vectors{|v;) € C™, 1 < i < r} are the
corresponding eigenvectors in the-dimensional
complex Hilbert space”™, normalized so that
(vilvi) =1,

¢) X isadiagonah x m matrix whose first diagonal
elements are;, and whose remaining. — » diag-
onal elements are, soX*3 is a diagonain x m

E=T((¢ - M) (- M) =Te((®—-M)(P - M)") (4 matrix with diagonal elements? for 1 < i <

whereTr(-) and( - )* denote the trace and the Hermitian con- d 3qd0 otherW|se;_t trix whose first col
jugate, respectively, and the second equality follows from the ) Vis ?k?m > uni atlry ma ”th hose Irst co lémns
identity Tr(AB) = Tr(BA) for all matricesA, B. The con- are the eigenvectory;), which span a subspace

: VY C C™, and whose remainingh — r columns
straint (1) may then be restated as = '
(1) may |v;) span the orthogonal complemant C C™;

MM* = By. (5) and

2) @O* = UEEH)U* = >.i_, o2|u;){u,] is an eigende-

A. The Singular Value Decomposition (SVD) composition of the rank-n x n matrix T" = ®&*, in
The least-squares problem of (4) seeks a measurement matrix Which

M thatis “close” to the matrixb. If the two matrices are close, a) ther positive real numbergs?, 1 < i < r} are
then we expect that the underlying linear transformations they as before, but are now identified as the nonzero
represent will share similar properties. We therefore begin by eigenvalues of’;
decomposing the matri® into elementary matrices that reveal b) the » vectors{|u;) € H,1 < i < r} are the
these properties via thaeingular value decompositio(EVD) corresponding eigenvectors, normalized so that

[17]. (uilug) =1,
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c) X is as before, s&X* is a diagonah x n matrix The vectord |;), 1 <4 < r} form an orthonormal basis for
with diagonal elements? for 1 < ¢ < r and0 . Therefore, the projection operator odfds given by
otherwise; r
d) U is ann x n unitary matrix whose first columns Py = Z [ ) (s . (8)
are the eigenvectots;), which span the subspace i=1
U C 'H, and whose remaining — r columnsj;) Essentially, we want to construct a maf such that the im-
span the orthogonal complemént C H. ages of the maps defined By andM* are as close as possible
Sincel is unitary, we have not onl/*U = I,,, which implies in the squared norm sense, subject to the constraint
that the vectorsuy) € H are orthonormal{ug|u,) = 6, but r
also that/U* = I, which implies that the rank-one projection MM =" |ui)(uil. 9)
operatorguy ) (us| are a resolution of the identity, =1
The SVD of®* is given by®* = VX*U/*. Consequently,

> ) (ur| = I oilv),  1<i<r
k #'fu) = { | (10
o |0}, r+1<i<n
Similarly, the vectorgv,) € C™ are orthonormal and . .
where|0) denotes the zero vector. Denoting the imagé¢ugf
Z | vk = L. underM™* by |a;) = M*|u;), for any choice ofM satisfying
& the constraint (9) we have
m i 17 1 S ¢ S U
These_ orthonormal t_Jases fot _and C W|_II be called the (ailai) = (us| MM |ug) = (11)
U-basis and thé -basis, respectively. The firstvectors of the 0, r+1<i<n

U-basis and thé -basis span the subspadésandV’, respec- and
tively. Thgs we refer to the set of vectofBix), 1 < &k < 7’.} as (aila;) = (ui MM* ;) = 0, i . (12)
thel{-basis, and to the sétuvi.), 1 < k < r} as theV-basis.

The matrix ® may be viewed as defining a linear transThus, the vectorga;), 1 < ¢ < r, are mutually orthonormal
formation ®: C™ — H according to|v) — ®[v). The @andla;} =1[0), 7 +1 < ¢ < n. Combining (10) and (11), we
SVD allows us to interpret this map as follows. A vectoMay expressd;) as
|vy € C™ is first decomposed into it§ -basis components via oilvi) — |ag), 1<i<r
lv) = 32, [vil{wilv). Since® maps|v;) to o;|u;), & maps |di) = { 0) i l<i<
the ith component|v;){v;|v) to o;|u;){(v;|v). Therefore, by ’ T - L ="
superposition® maps|v) to 3. o;|u; ) (v;|v). The kernel of Our problem therefore r_e(_jupes to finding a setrobr-
the map® is thusV+ C C™, and its image i&/ C . thonormal vector$ai>.that minimizeE = "\ _, (d;|d;), where

Similarly, the conjugate Hermitian matrik* defines the ad- |di) = oilvi) —|a;). Since the vectorl;) are orthonormal, the
joint linear transformatiom*:  — C™ as follows:®* maps Minimizing vectors must b;) = |vi), 1 < ¢ < 7. .
W) € H10 Y, olvi)(uilu) € C™. The kernel of the adjoint Thus, the optimal measurement matrix, denoted by,

(13)

map®* is thusl/* C H, and its image i3’ C C™. satisfies
The key element in these maps is the “transjector” (partial . vi), 1<i<r
isometry) |u;){v;|, which maps the rank-one eigenspaceSof M ) = | ; (14)
i/\Yils 0}, r+1<i<n
generated byw;) into the corresponding eigenspacelofien- Consequentl
erated by|u;), and the adjoint transjectdr; ) {w;|, which per- q y
forms the inverse map. X r
M =" |ui){wi]. (15)
i=1

B. The Least-Squares POVM

The SVD of® specifies orthonormal bases fBrandif such  |n other words, the optimal/ is just the sum of the transjec-
that the linear transformatiors and ®* map one basis to the tors of the mapb.
other with appropriate scale factors. Thus, to findldnclose  we may expres87 in matrix form as
to ® we need to find a linear transformatidd that performs a

map similar tod. M=UZV* (16)
Employing the SVD® = UXV*, we rewrite the squared
error E of (4) as whereZ,, 1 < r < mis ann x m matrix defined by
E=Tr((® — M)(® — M)*) ) 7 - I 0] . )
= Te(U(@ — M)(® — M)'U) = Sdild)  (6) 010
=1 The residual squared error is then

where

r r

Epin=Y_(1—0)*(vilv;) =Y (1-0;)?.  (18)

i=1 =1

|di) = (@ = M)" |ui). ()
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Recall thats = ®*® = VEI*EXV*; thusTr(S) = >._, 0?. The optimal measurement vectot§;) are mutually or-
Also, if the vectorg¢;) are normalized, then the diagonal elethonormal, since their Gram matrix is
ments ofS are all equal td, soTr(S) = m. Therefore, WA = ((D*@),l/Q(P*@(@*@),l/Q — 1. (23)
Epin = Z(l —0) =r4+m-2 Z 0;. (19) Thus, the optimal POVM is in fact an orthogonal measurement
im1 i1 corresponding to projections onto a set of mutually orthonormal

Note that if the singular values are distinct, then the vectorsmeasurement vectors, which must of course be the optimal or-

lu;), 1 < ¢ < r are unique (up to a phase factgf). Given thogonall measurement as We]ll-h il
the vectorgu;), the vectorgy;) are uniquely determined, so the Linearly Dependent Statesf the vectors|¢;) are linearly

optimal measurement vectors correspondingftare unique. 9ePendent, so that the matixdoes not have full column rank
If, on the other hand, there are repeated singular valuése-” < m). then them measurement vectof#;) cannot be

then the corresponding vectors are not unique. Nonethelé?é',tua"y orthonormal since they span aslimensional sub-

the choice of singular vectors does not affédt Indeed, if SPace: We therefore seek the orthogonal measurefetftat

the vectors corresponding to a repeated singular valage Minimizes the squared errdf given by (4), subject to the or-

{lu;)}, theny" u;)(u;| is a projection onto the correspondinghonormality constraind/*M = ..

eigenspace, and therefore is the same regardless of the choidB the Previous section the constraint wasdd/*. Here the
of the vectors{|«;)}. Thus constraint is om/* M, so we now write the squared errbras
L2370

E=Te((® - M*(®—-M
S el = 37 )| (@-My@-my

j j =Te(V*(® - M)"(®— M)V) => (di|d;) (24)
independent of the choice ¢fu;}}, and the optimal measure- =1
ment is unique. where
We may expresd/ directly in terms ofd as ~
. |di) = (@ — M)|vy) (25)
M = (2" )V/?)! (20)

: _ and where the columns;} of V form theV -basis in the SVD of
where( - )" denotes théloore—Penrose pseudo-invef3€]; the  ¢_Essentially, we now want the images of the maps defined by
inverse is taken on the subspace spanned by the columns ofghgng 17 to be as close as possible in the squared norm sense.

matrix. Thus The SVD of® is given by® = UXV*. Thus
P* P2 = v ()Y iy ilui),  1<di<r
(@ @) /2) = V(B 5)H?) q>|vi>:{"'“> <isy )
where ((2*2)/2)T is a diagonal matrix with diagonal ele- 10}, r+l<ism.

ments1/o; for 1 < ¢ < r and0 otherwise; consequently, Denoting the images d#;) underM by |b;) = M|v;), it fol-

(@ @)/ = UZ,V*. lows from the constraind/*M = I that the vectorgh,), 1 <
Alternatively, M may be expressed as i < m, are orthonormal.
~ #\1/24% Our problem therefore reduces to finding a setrobr-
M =((27)7)'® (21) thonormal vectors|b;) that minimize 3°7_, (d|d;), where
where |d7> = O7|U,7> — |b7> (Since
(@) = U((zu) VAU, S (ddd) = 3 (ilb) =m—r
In Section VII, we will show that (21) is equivalent to the SRM t=r+l =+l
proposed by Hausladest al.[10]. independent of the choice ¢f;), » + 1 < ¢ < m). Since the
In Appendix A we discuss some of the properties of theectors|u;) are orthonormal, the minimizing vectors must be
residual squared errdt, ,;,. ;) = |u), 1 <@ < 7.
We may choose the remaining vect{lig, » + 1 < i < m,
IV. ORTHOGONAL LEAST-SQUARES MEASUREMENT arbitrarily, as long as the resulting vectors|b;} are mutually

. : ... orthonormal. This choice will not affect the residual squared
In the previous section we sought the POVM consisting 01‘r or. A convenient choice i) — |u), 7 +1 < i < m.

rank-one operators that minimizes the least-squares error. Wie . : . -

. . is results in an optimal measurement matrix denotedty
may similarly seek the optimal orthogonal measurement of the

. . namely

same form. We will explore the connection between the re-
sulting optimal measurements both in the case of linearly in- . m
dependent statds;) (- = m), and in the case of linearly de- M =" Jui)(vil. (27)
pendent states (< m). i=1
_ Linearly Independent Statedf the states|¢;) are I_mearly We may expresa7 in matrix form as
independent and consequentijhas full column rank (i.es; = ~
m), then (20) reduces to M=UZ,V" (28)

M = (0" ®) /2, (22) whereZ,, is given by (17) withr = m.
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The residual squared error is then optimal rank-one operatottg; ) {z;| and|;){f;|, respectively,
r m (31) asserts that
Ein = Y (1= 0y)%(uglw;) + (g ug) . -
; i;l II; = FyIL; Py. (33)
= Z(l — ai)2 +m—r=FEym+m—7r (29) Thus the optimal orthogonal measurement is a set @fo-
i=1 jection operators iri{ that realizes the optimal POVM in the
where E,,, is given by (18). r-dimensional spadéd C H. This furnishes a physical interpre-

Evidently, the optimal orthogonal measurement is not strictftion of the optimal POVM. The two measurements are equiv-

unique. However, its action in the subspa¢spanned by the alént on the subspace. _ _ _
vectors|¢;) and the resulting,.,i, are unique. We summarize our results regarding the LSM in the following

theorem.

A. The Optimal Orthogonal Measurement and Neumark'’s Theorem 2 (LSM):Let {|¢;)} be a set ofn vectors in an

Theorem n-dimensional complex Hilbert spaéé that span am-dimen-

We now try to gain some insight into the orthogonal measursional subspack C H. Let {|/;)} denote the optimah mea-
ment. Our problem is to find a set of measurement vectors ttsairement vectors that minimize the least-squares error defined
are as close as possible to the stdtes where the states lie in by (2), (3), subject to the constraint (1). L&t= UXV* be the
anr-dimensional subspa¢é Whenr = m we showed that the rank+ n x m matrix whose columns are the vectd¢s), and
optimal measurement vectofs;) are mutually orthonormal. let M be then x m measurement matrix whose columns are the
However, whenr < m, there are at mostorthonormal vectors vectors|ji;). Then the unique optimal? is given by
inl{. Therefore, imposing an orthogonality constraint forces the

optimal orthonormal measurement vectfis) to lie partly in M= Z lui)vi| = UZV* = &(3*B)H2)T
the orthogonal complemeit. The corresponding measure- =1
ment consists of projections onte orthonormal measurement _ (((I)(I)*)I/Q)T(I)

vectors, where each vector has a componedt,ifji¥’), and a
component iri/+, |[LZZ‘L> We may expresM in terms of these whereju; ) and|v;) denote the columns éf andV/, respectively,
components as and Z,. is defined in (17).
The residual squared error is given by
M= MY + MY (30) . .
2 .
where|4) and|i%") are the columns o/ and M¥ ™, re- Einin = ;(1 —o)=rhme 2;%
spectively. From (27) it then follows that = =
where{s;, 1 < i < r} are the nonzero singular values®fIn

MY = Z |u7><v7| (31) addition
i=1 1) if r = m,
and a) M = &(2*0) /%
- zm: ;) (] 32) b) M*M = I,, and the corresponding measurement
- Sl AN is an orthogonal measurement;
_ _ - - R 2) if r < m,
Comparing (31) with (15), we conclude thaf™ = M and a) M may be realized by the optimal orthogonal mea-
therefore| ') = |ju;). Thus, althoughji;) # |i:), their com- surement

ponents irl{ are equal, i.e.Fy|f:) = |fi)- .

Essentially, the optimal orthogonal measurement sees M= Z i) (vi| = UZn Vs
thonormal measurement vectdfs) whose projections onit R e
are as close as possible to thestates|¢;). We now see that
these projections are the measurement vedfaisof the op-
timal POVM. If we consider only the components of the mea-
surement vectors that lie i, then

=1
b) the action of the two optimal measurements in the
subspacé/ is the same.
. V. WEIGHTED LSM
Eumin »_ = (1= 03)%(uilu;) = Enin. In the previous section we sought a set of vectprsto min-
i=1 imize the sum of the squared errds= "', {¢;|e;), where
Indeed, Neumark's theorem [12] shows that our optimdt;) = |¢;) — |u:) is theith error vector. Essentially, we are as-
orthogonal measurement is just a realization of the optinsibning equal weights to the different errors. However, in many
POVM. This theorem guarantees that any POVM with meaases we might choose to weight these errors according to some
surement operators of the fory = |u;)(p;| may be realized prior knowledge regarding the statgls). For example, if the
by a set of orthogonal projection operatdfs in an extended state|¢;) is prepared with high probability, then we might wish
space such thal; = PII; P, whereP is the projection operator to assign a large weight te;|e;). It may therefore be of interest
onto the original smaller space. Denoting Hy andII; the to seek the vectorg:;) that minimize a weighted squared error.
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Thus, we consider the more general problem of minimizing We now follow the derivation of the previous section, where
the weighted squared errét,, given by we substitutep,, for ¢ andU,, V,, ando}” for U, V, ando;,

m respectively. The m|n|m|zm@/[w follows from Theorem 2
Ey =Y wileiles) = sz @il = () (63) — ) (34)
i=1

Ny = 3 [u )0l | = U Zin Vs = @@, 0) 7/
subject to the constraint i—
m =W (W*oroWw)~Y/2 (40)
> lpi) (il = Pu (35)
=1

where thgv*) are the columns of,,. The resulting errof”
wherew; > 0 is the weight given to théth squared norm error. iS given by

min

Throughout this section we will assume that the veciigysare m
linearly independent and normalized. E . = 2(1 — o), (41)
The derivation of the solution to this minimization problem is =1

analogous to the derivation of the LSM with a slight modifica-

tion. In addition to the matrice&/ and®, we define anm x m Defining 5., = &7, & = VX, B Vi, we have
diagonal matrixit with diagonal elements);. We further de- m
fine ®,, = ®W. We then express,, in terms ofM, ®,,, and Tr(S,) = Z(af")2.
W as i=1
E, =Tr((® - M)*(® — MOW) In addition,S,, = W®*®W = WSW. Assuming the vectors
— Te((o — M)( Do — M) + Te((W — I,,)M* M) |p;) are normahzeg the diagonal elementsSadre all equal to
1, s0Tr(S,) = > it w? and
+ Te(W(L,, — W)P*®). (36)
From (8) and (9)M must satisfy E . =m+ Z(wg —20). (42)
=1
= | = 1 .
Z: i) o] “ From (37), the residual squared eridf; . is therefore given by
where|w;) are the columns o/, the U-basis in the SVD of " i "
®. ConsequentlyM must be of the form = S |u; ) (), Bl =2 (wi—of). (43)
where the|g;) are orthonormal vectors iE™, from which it =1
follows thatM*M = I,,,. Thus Note that ifW = al,, wherea > 0 is an arbitrary constant,
Te(W (L, — WYM*M) = Te(W (L, — W)). thenl,, = U andV,, = V, whereU andV" are the unitary

matrices inthe SVD ob. Thus in this case, as we expekf,, =
Moreover, sincéV (1,,, — W) is diagonal and the vectofg;) A7, whereM is the LSM given by (22).

are normalized, we have Itis interesting to compare the minimal residual squared error
Te(W (L — W) ®) = Te(W (I, — W)). Ew.  of (43) with t.heEmH1 of (19) Qerived in the previous sec-
tion for the nonweighted case, which for the case m reduces
Thus, we may express the squared effpras t0 Ewin = 23+ (1 — o). In the nonweighted case; = 1
By =Te((®4 — M)(®y — M)*) — Te((In — W) (I — W) for all ¢, resulting inW = I andTe(W) = m. Therefore, in
m order to compare the two cases, the weights should be chosen
=E - Z(l —w;)? (37) such thatlr(W) = >~ w; = m. (Note that only the ratios
i=1 of the w;’s affect the WLSM. The normalizatiotir(W) = m
whereE’ is defined as is chosen for comparison only.) In this case
; ) i i %« m
Thus minimization ofE,, is equivalent to minimization of i=1

L/ . Furthermore, this minimization problem is equivalent to
the least-squares minimization given by (4), if we substifite
for ©.

Therefore, we now employ the SVD df,,, namely,®,,
Uy,X,V,). Since W is assumed to be invertible, the space
spanned by the columns df, = ®W is equivalent to the 2{1— maxwz) Zaz Ein — Emin
space spanned by the columnsdgfnamelyl{. Thus, the first
m columns oft,,, denoted by}, constitute an orthonormal . "
basis for/, andM M* = P, ,ywh?are <2 (1 - mmw”) Zai (45)

Recall tha{s}*)? ands? are the eigenvalues 6f, = WSW
ands, respectively. We may therefore use Ostrowski’'s theorem
(see Appendix A) to obtain the following bounds:

., can be greater or

Py = Z [u) (. (39 Sincemax; w; > 1 andmin; w; < 1, EY.
e smaller thenE,, ., depending on the weights;.



ELDAR AND FORNEY: ON QUANTUM DETECTION AND THE SQUARE-ROOT MEASUREMENT 865

VI. EXAMPLE OF THE LSM AND THE WLSM

We now give an example illustrating the LSM and the WLSM. |p2) |f32)
Consider the two states ’lez)
[p0) =[1 0] |g2)=35[-1 V3]".  (46)
We wish to construct the optimal LSM for distinguishing be- A
tween these two states. We begin by forming the marix |fi1)
112 -1 M\
@ =7 [0 \/3} (47) S 1)
The vectorg¢;) and|¢;) are linearly independent, sbis a
full-rank matrix (» = 2). Using Theorem 1 we may determine
the SVD® = UXV*, which yields
poi[vs L]
T2[-1 —V3)
1 [vV3 0 Fig.1. Two-dimensional example of the LSM. The state vedtors and|¢z )
Y= [ } are given by (46), the optimal measurement vecp$ and|/i») are given by
V2,10 1 (50) and are orthonormal, afeh } and|e.) denote the error vectors defined in
1 [ 1 —1] 3).
V_E{_l 1) (48)
From (16) and (17), we now have 0:.
o * 097 —026 0.08}
M=UV" = [0.26 0.97} (49) ook
and 0.06}
|f1) =[0.97 0.26]" lfe) = [—0.26 0.97]° (50) 3.§ oos

. 0.041
where|i;) and|fi2) are the optimal measurement vectors that

minimize the least-squares error defined by (2), (3). Using (22)
we may express the optimal measurement vectors directly in
terms of the vectorgp, ) and|¢o)

0.02
0.01

(" 02 0.4 08 08 1
e 12 o [1120.30 P
M= (I)((I) (I)) = {0.30 1.12 (51)
th Fig. 2. Residual squared errdf, (43) as a function ofp, the prior
us probability of|¢1 ), when using a WLSM. The weights are chosemwas= ,/p
|ll > -1 12|¢ > +0 30|¢ > andw; = /1 — p. Forp = 1/2, the WLSM and the LSM coincide.
1 =1L 1 . 2
|fiz) = 0.30]1) + 1.12]2). (52)

WLSM does indeed yield a smaller residual squared error than
As expected from Theorem 2ji,|fi2) = 0; the vectors the LSM (for which the residual squared error is approximately

|¢1) and |¢2) are linearly independent, so the optimal med-095).

surement vectors must be orthonormal. The LSM then consists

of the orthogonal projection operatofy; = |ji;i){i1| and  VII. COMPARISON WITH OTHER PROPOSEDMEASUREMENTS

Iy = |fiz){fi2]- We now compare our results with the SRM proposed by

Fig. 1 depicts the vectot:) and|¢) together with the op- 5 qjaderet al. in [10], and with the measurement proposed
timal measurement vectofg;) and|s). As is evident from by Peres and Wootters in [11].

(52) and from Fig. 1, the optimal measurement vectors are a3, gjaderet al. construct a POVM consisting of rank-one

close as possible to the corresponding states, given that tlaf)\ératorsm — |;u:){su| to distinguish between an arbitrary set

must be orthogonal. of vectors|¢;). We refer to this POVM as the SRM. They give

Suppose now we are given the additional informafior=p ajternative definitions of their measurement: Explicitly,
andp, = 1—p, wherep; andp- denote the prior probabilities of

|#1) and|¢»), respectively, ang € (0, 1). We may still employ M = (0" o (53)
the LSM to distinguish between the two states. However, we
expect that a smaller residual squared error may be achieve
employing a WLSM. In Fig. 2, we plot the residual squared err&P
£, given by (43) as a function gf, when using a WLSM with gl/2 — (5140} (54)
weightsw, = ,/p andw, = /1 — p (we will justify this choice R

of weights in Section VII). Whep = 1/2, w; = w», and the i.e., (7z;|¢x) is equal to thejkth element ofs1/2, whereS =
resulting WLSM is equivalent to the LSM. Fer # 1/2, the &*d.

reM denotes the matrix of columng,). Implicitly, the
imal measurement vectdys;) are those that satisfy
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Comparing (53) with (21), it is evident that the SRM coin- i) M is a SRM matrix; the corresponding
cides with the optimal LSM. Furthermore, following the dis- SRM is equal to the optimal LSM,;
cussion in Section 1V, if the states are linearly independent then iy M, may be realized by the optimal orthog-
this measurement is a simple orthogonal measurement and not onal LSM
a more general POVM. (This observation was made in [13] as . s _
well.) M =" ju)vi| = UZ,V* =M.

The implicit definition of (54) does not have a unique solution i=1

when the vectorg);) are linearly dependent. The columnsidf  The SRM defined in [10] does not take the prior probabili-
are one solution of this equation. Since the definition depenglss of the statesp;) into account. In [9], a more general def-
only on the producth/*®, any measurement vectors that arfjtion of the SRM that accounts for the prior probabilities is
columns ofM such thatM*® = M ® constitutes a solution given by defining new vector’) = ,/B;|¢;). The weighted
as well. In particular, the optimal orthogonal LSM for the  srRm (WSRM) is then defined as the SRM corresponding to the
linearly dependent case, given by (27), satisf€s® = M @,  yectors|4¥). Similarly, the WLSM is equal to the LSM corre-
rendering the optimal orthogonal LSM a solution to (54). Co%ponding to the vectors;|¢;). Thus, if we choose the weights
sequently, even in the case of linearly dependent states, the SEMproportional to,/p;, then the WLSM coincides with the
proposed by Hausladest al. and used to achieve the classicajysrM. A theorem similar to Theorem 3 may then be formu-
capacity of a quantum channel may always be chosen as an|gfad where the WSRM and the WLSM are substituted for the
thogonal measurement. In addition, this measurement is optira@\j and the LSM.
in the Ieast-sq_uares sense. _ _ ~ We next apply our results to a problem considered by Peres
We summarize our results regarding the SRM in the followingng wWootters in [11]. The problem is to distinguish between

theorem. three two-qubit states

Theorem 3 (SRM)Let {|¢;)} be a set ofn vectors in an |p1) = |aa) |pa) = |bb) |p3) = |cc) (55)
n-dimensional complex Hilbert spaéé that span am-dimen-
sional subspackl C H. Let® = UXV* be the rank: n x m
matrix whose columns are the vectps). Let|u;) and|v;) de-

where|a), |b}, and|c) correspond to polarizations of a photon
at @, 600, and 120, and the states have equal prior probabili-

. . : ties. Since the vectol®,) are linearly independent, the optimal
note the columns of the unitary matridésandV’, respectively, : ! v 1) ! yndep Pl

and letZ,. be defined as in (17). Lgtz;) } be m vectors satis- measurement vector? are the colurlnr;M)glven by (20)
fying M = o(d*0)~/2, (56)
SU2 _ g Substituting (55) in (56) results in the same measurement vec-
= {m;lon} tors|fz;) as those proposed by Peres and Wootters. Thus, their
whereS = &*®; a POVM consisting of thE_operatoE = n;easurement 'S opEmaLmthe Ieast-sqgar_eds sen_sre{ Ir:]urtshsanfore,
I7,)(7,], 1 < i < m, is referred to as SRM. L@ be then x m the measurement that they propose coincides with the or
this case. In the next section, we will show that this measure-

measurement matrix whose columns are the vedmbs M is e - ;
ment also minimizes the probability of a detection error.

referred to as SRM matrix. Then

1) if ;):ﬁ’: Z lwiWvs| = UZ,V* VIII. T HE SRM FOR GEOMETRICALLY UNIFORM STATE SETS
i=1 In this section, we will consider the case in which the collec-
= 3("9)"V2 = ((#0*)/2)o tion of states has a strong symmetry property, called geometric
is unique; uniformity [16]. Under these conditions, we show that the SRM

b) WM = L. and the corresponding SRM is anis equivalent to the measurement minimizing the probability of
orthogonal%easurement' a detection error, which we refer to as the MPEM. This result

. . generalizes a similar result of Ba al. [7].
c) the SRM is equal to the optimal LSM;

2) if r < m, A. Geometrically Uniform State Sets

a) the SRM i not unique; Let G be a finite abelian (commutative) group @f unitary

b) M= |ju)vi| =UZ,V" matricesl’;. That is,G contains the identity matrix; if G con-
i=1 tainsl;, then it also contains its inverég_1 = U}, the product
§iU; of any two elements of is in G; andU;U; = U;U; for
any two elements i [19].
A state set generated Igyis a set

is SRM matrix; the corresponding SRM is equal t
the optimal orthogonal LSM,;

c) defineM,, = B, M, whereP, is a projection onto

U andM is any SRM matrix; then S={l¢:) =Uil$), U; € G}
i) My, is unique, and is given by where|¢) is an arbitrary state. The grodpwill be called the
o r generating groupf S. Such a state set has strong symmetry
My = |u)(v]| =UZ,V* properties, and will be callegeometrically uniforn{(GU). For
i=1 consistency with the symmetry &f, we will assume equiprob-

= o((0* )/ = ((90*)1/?) 10, able prior probabilities oxs.
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If the groupG contains a rotatiorR such thatkR* = I for Here,h;, andg, are thekth components of andg, respectively,
some integefk > 1, then the GU state sét is linearly depen- and the produdt, g;. is taken as an ordinary integer modulq .
dent, becausgjle RY|¢) is afixed point undefz, and the only The Fourier kernel evidently satisfies
fixed pomF ofa rg{atlonlls the zero vectfty). N (h, g) ={g, ) (63)

Sincel’; = U; *, the inner product of two vectors ifi is

_ - (h, ¢)" =(=h, g) = (h, —g) (64)
(ilds) = GIUE Usl6) =o(UT0) (6T (h+H. g) = (h. a) (. g) (©5)
wheres is the function org defined by o ’ Y
_ (h. g+4') =(h, g){h, ¢). (66)
s(Ui) = (¢|Ui|¢)- (58) . . .
L We define the FT matrix ovef as them x m matrix
For fixed, the set 1
UG ={U7 U, U € GY F= {\/—EW g), g€ G}-

is just a permutation of since({{lUj € gforalls, j [19].  The FT of a column vectoly) = {¢(g), ¢ € G} is then the
Therefore, then numbers{s(U;"U;), 1 < j < m} are @ column vectol@) = {H(h), h € G} given by|@) = Fe). It

permutation of the numberss(U;), 1 < ¢ < m}. The same s easy to show that the rows and columngadre orthonormal,
is true for fixedj. Consequently, every row and column of thg e | 7 is unitary

m x m Gram matrixS = {{¢:|¢;)} is a permutation of the FF—FF =1 (67)
numbers{s(U;), 1 < ¢ < m}. . _

It will be convenient to replace the multiplicative grogpy ~ Consequently, we obtain the inverse FT formula
an additive groupd to which G is isomorphic Every finite . 1 .
abelian groug® is isomorphic to a direct produc¥ of a finite o) = F7l9) = {ﬁ ZW 9" @(h), g € G} - (68)
number of cyclic groupsy = G = 7,,,, X -+ X Z,,,, Where he@ ,
Z,,, is the cyclic additive group of integers modulay,, and We now show that the eigenvectors of the Gram mairif
m = [],,mx [19]. Thus, every elemerit; € G can be associ- (°9) are the column vectors
ated with an element € G of the formg = (g1, g2, - - -, gp)s |F(R)) = {LW 9), g€ G}
whereg;, € Z,,,, . We denote this one-to-one correspondence by Vm
U; « g. Because the correspondence is an isomorphism, it fok 7. Let (S(¢')| = {s(g — ¢'), g € G’} be theg’th row of 5.
lows that ifU; « ¢, U « ¢, U; < ¢, andU; = U,U;, then Then .
g = ¢ + ¢”, where the addition of’ = (¢/, ¢, -.., g,) and / _ o
g =(d{, 93, ---, gy) is performed by componentw?se addi-<S(g I (R)) vm ZW 913l9=9)

-G
tion modulo the correspondingy. 1 o
Each state vectd;) = U;|¢) will henceforth be denoted =T > (g +g")s(d") = (h, g)3(h) (69)
as|¢p(g)), whereg € G is the group element corresponding to e

U; € G. The zero elemerit = (0, 0, ..., 0) € G corresponds Wwhere the last equality follows from (66), agé(h), h € G} is
to the identity matrixI € G, and an additive inverseg € G the FT of{s(g), ¢ € G}. Thus,S has the eigendecomposition
corresponds to a multiplicative inverﬁg_1 = U} € G. The S = FY2F* (70)
Gram matrix is then the: x m matrix

whereX is anm x m diagonal matrix with diagonal elements
S={o(g)d(9), ¢', 9 € Gy ={s(¢g—d'), d, g€ G}

(59) {a(h) = m**\/5(h), h € G}
with row and column indiceg’, ¢ € G, wheres is now the (the eigenvalues?(h) are real and nonnegative becausés
function onG defined by Hermitian). Consequently, tHé-basis of the SVD o isV =
(o) = ((0)19(g))- (60) Flvsgig\]/\?vilr?tgutfer \é?%ezg ir{:I rticé(f}:))liowing form:
B. The SRM O =TYTF =Y o(h)|u(h))(F*(h)| (71)
We now obtain the SRM for a GU state set. We begin by hea

determining the SVD ofb. To this end we introduce the fol- Where Y is then x m matrix whose columnsu(h)) are the
lowing definition. The Fourier transform (FT) of a complex.columns of thel/-basis of the SVD ofb for values ofi € G

valued functionp: G — C defined onG = Z,,,, x --- x Z such that(h) # 0 and are zero columns otherwise, and
. my my

is the complex-valued functiop: G — C defined by ) 1 bV R Q
) 1 F W( ,9)* hoge€
B(h) = 7= D _{h: g)(9) 6D | as rows
9c€qG 1
where the Fourier kernéh, g) is (F*(h)| = {—(h, 9", g€ G} .
v vm
(h, g) = H o 2milugn/mi. (62) Itthen follows that
k=1 ~
| F(h h) = |p(h h), if o(h 0
2Two groupsg and G’ areisomorphic denoted byG = ¢, if there is a |U(h)> = { | ( )}/a( ) |¢( )}/a( ) a( )7&
bijection (one-to-one and onto map) G — G’ which satisfiesp(vy) = |0>, otherwise

e(x)p(y) forallz, y € G [19], (72)
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where C. The SRM and the MPEM

", 3 We now show that for GU state sets, the SRM is equivalent
|#(h) \/— Z 9)l9(9) (73) to the MPEM. In the process, we derive a sufficient condition
9e¢ for the SRM to minimize the probability of a detection error for

is the hith element of the FT of regarded as a row vector of@ general state set (not necessarily GU) comprised of linearly

column vectorsb = {|¢(g)), g € G}. independent states.
Finally, the SRM is given by the measurement matrix Holevo [2], [4] and Yuenet al. [3] showed that a set of
measurement operatots, comprises the MPEM for a set of
M=TF = Z lu(h)WF*(R)]. (74) Weighted density operatol¥; = p;p; if they satisfy
heG IL(W, - W)Il; =0 Vg, ¢ (78)
The measurement vectojg(g)) (the columns ofd{) are thus r-w,>o Vg (79)
the inverse FT of the columns df
where
l1(9)) g, h)*|u(h)). (75) "
V_%: L= ILW, (80)
i=1
i = ; ; e g
thelz\InOte that if|¢(g)) = Uil¢) wherel; — g, andU; < g, and is required to be Hermitian. Note that if (78) is satisfied,
thenI' is Hermitian.
U, = U.U;|¢) = + ). In our case, the measurement operatbysre the operators
iléto) iUilér = 1élg 90 le(9)){p(g)], and the weighted density operators may be taken
Therefore, left multiplication of the state vectors simply as the projector(g)){¢(g)|, since their prior proba-

bilities are equal. The conditions (78), (79) then become

2 =Helo), g€ G} 1)) () (0 b)) ()]

by U; permutes the state vectors to = @) DA DNH DM lg) Vg, 9" (81)
U@ = (6o + o). g € G). Zlu Mlg)lp(a'))(b(g))
— ¢ @)l z0 Vg (82)

We now show that under this transformation the measurement
vectors are similarly permuted, i.e., We first verify that the conditions (78) (or equivalently (81))
are satisfied. Since the matrid *® = FXF* is symmetric

(gl p(g)) = (WU Uil ¢) = wig — g')

wherew(g) = {(u|¢(g)) is a complex-valued function that sat-
isfiesw(—g) = w*(g). Therefore

UM ={|i(g+9)), g€ G}.

The FT of the permuted vectof$s(g + ¢')), g € G} is

| (h) \/—Zh9|¢g+g)>

9€G (le(g)) =wlg — 9) = w™(g— ') = (d(9)ln(g"))
" (83)
P(g
\/_ ;G 9t (¢(g)ulg")) =w*(0) = w(0) = {(u(g)l¢(9)). (84)
= (h, g)*|p(h)). (76)  substituting these relations back into (81), we obtain
Normalization byo(h)~! whena(h) # 0 yields [u/(h)) = w(0)w(g" — g)|u(g)){1(y")|
(h, ¢"Y*|u(h)). Finally, the inverse FT yields the measurement = w(0)w(g — )| (d)| Vg,q (85)
vectors
which verifies that the conditions (78) are satisfied.
1 (9)) Z g, h (R)) Next, we show that conditions (79) are satisfied. Our proof is
\/_ A similar to that given in [7]. Sinc@{*® = FX.F*
\/— IE:G g+4d, B luh) =ulg+4)) (77) w(0) = (u(9)|d(9)) = (F(9)|Z|F(9)) (86)
1S

where(F(g)| denotes the row af corresponding tg. Then
where we have used (63) and (65).

This shows that the measurement vectgr§;)) have the I'="1u(g)lg)lp(a"))(b()]
same symmetries as the state vectors, i.e., they also form a !
GU set with generating grou@. Explicitly, if U; < g, then :w(o)z | )M (g")- (87)

1(9)) = Uil wherelu) denotes(0)).
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From (71) and (74) we have We summarize our results regarding GU state sets in the fol-
Z )b = TET" (9) lowing theorem.
g )=
7 Theorem 4 (SRM for GU State Setd)et
and _ - § = {l¢n) = Uilé), Ui € G)
[P(D)P(9)] = TE[F () {F ()XY (89)

be a geometrically uniform state set generated by a finite abelian
Substituting (87)—(89) back into (82), the conditions of (829roupg of unitary matrices, whergp) is an arbitrary state. Let
reduce to G = @G, and letd be the matrix of columngs; ). Then the SRM
( o _) is given by the measurement matrix
T (w(0)X — X|F(g))(F(g)|X) T* =0 (90) =
M=2FE 7 = 3 [u(h))(F*(h)]
wherew(0) is given by (86). It is therefore sufficient to show hea
that _
where F is the FT matrix overd, 5" is the diagonal matrix
T = w(0)X — Z|F (@)W F (9| >0 (91) whose diagonal elements asé¢2)~* wheno(h) # 0 and0
otherwise, wherdo(h), h € G} are the singular values df
or equivalently, thatu|T|u) > 0 for any |u) € C™. Using the .
Cauchy—-Schwartz inequality, we have [u(h)) = |¢(h)) /o (h)

() = §f<g>|i|f<g>><u|i|u> —EIFONFOITI e oo s o ande o) e abtr row of 2o

> (F(g)|[Z|F (@) (ulZ|w) — (F(9)|Z|F(9))(ulZ|u) The SRM has the following properties:
=0 (92) 1) the measurement matrix/ has the same symmetries
as®;

which verifies that the conditions (79) are satisfied.

We conclude that when the state §66 GU, the SRM is also
the MPEM.

An alternative way of deriving this result for the case of linp Example of a GU State Set
early independent statés; ) is by use of the following criterion
of Sasakiet al. [13]. Denote by®,, the matrix whose columns
are the vector$p;”) = /pi|¢:) wherep; is the prior proba-
bility of statei. If the states are linearly independent &id? =

2) the SRM is the LSM;
3) the SRM is the MPEM.

We now consider an example demonstrating the ideas of the
previous section. Consider the grodpf m = 4 unitary ma-
tricesl;, where

(®* @,,)1/? has constant diagonal elements, then the SRM cor- -10 0 0
responding to the vectotgy) (i.e., a WSRM), is equivalent to U =1, Uy= 01 0 0
the MPEM. 00 -1 0
This condition is hard to verify directly from the vectdeg’). 00 0 -1
The difficulty arises from the fact that generalg/ there is no -1 00 O
simple relation between the diagonal elementstf and the _ 0 -1 0 0 _
elements of5. Thus, given an ensemble of pure stdtg$ with Vs = 60 01 0 Us =0l (94)
prior probabilitieg;, we typically need to calculatg!/2 (which 0 0 0 -1

in itself is not simple to do analytically) in order to verify the gt the state set be

condition above. However, as we now show, in some cases this .
condition may be verified directly from the elementsSiising S =A{l¢:;) =Uil$), 1 <i <4}
the SVD.

_ where|¢) = $[1 11 1]*. Then® is
Employing the SVD®,, = USV* we may express§'/? as
1 -1 -1 1
SY? = (27,2,)Y? = V(Z'E)V/2VT = VEV*  (93) 11 1 -1 -1
=311 -1 1 -1 (95)
whereX is a diagonal matrix with the first diagonal elements 1 -1 —1 1

equal tos;, and the remaining elements all equal to zero, where o
the ; are the singular values @f,,. Thus, the WSRM is equal @nd the Gram matri¥'is given by

to the MPEM if (7;|X|7;) = ¢, 1 < i < m, where the vectors 2 -1 -1 0

[7;) denote the columns &f*, ande is a constant. In particular, 1]1-1 2 o0 -1

if the elements o¥ all have equal magnitude, thém; ||, ) is §= 21-1 0 2 —1|° (96)
constant, and the SRM minimizes the probability of a detection 0 -1 -1 2

error.

: o . Note that the sum of the statés;) is |0), so the state set is
If the state sefS is GU, then the matri¥” is the FT matrix I{'nearly dependent.

F,whose elements all have equal magnitude. Thus, if the state : - . . .
are linearly independent and GU, then the SRM is equivalent to?n this caseg is isomorphic o7 = 7 x 75, i.e.,
the MPEM. G =4(0, 0), (0, 1), (1, 0), (1, 1)}.



870

The multiplication table of the groug is

U, U, Us Uy
Ul U1 U2 U3 U4
U2 U2 U1 U4 U3 (97)
U3 U3 U4 Ul U2
U, U, Us U, U
If we define the correspondence
U1<—>(0, 0) U2<—>(0, 1) U3<—>(1, 0) U4<—>(1, 1)
(98)
then this table becomes the addition tabl&oE 7, x Z,:
| 0,00 (0,1) (1,0) (1,1
(0,0 0) (0,1) (1,0) (1,1)
(0, 1) ) (0,00 (1,1) (1,00 (9
(1, 0) 0 (1.1) (0,0) (0,1)
(1, 1) 1) (1,0) (0,1) (0,0).

Only the way in which the elements are labeled distinguishes
the table of (99) from the table of (97); thds= G. Comparing
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and therefore correspond to the same physical state. We may
therefore replace our state set= {|¢1), |¢2)} by the equiv-
alent state se6 = {|¢1), |¢,)}. Now the generating group
is G = {I, R}, whereR is defined by (102), withw) =
[#4) — |é1).

The generating groug = {1, R} is isomorphic toG = Z,.
The Fourier matrixF therefore reduces to tfiex 2 discrete FT
(DFT) matrix

F= (103)

1711
V2|1 -1]°
The squares of the singular valuesiofre therefore

{o*(h) = V25(h), h € G}

where{s(h), h € G} are the DFT values ofs(g), g € G},
with s(0) = 1 ands(1) = a. Thus

(97) and (99) with (96), we see that the tables and the m4trix '0M Theorem 4 we then have

have the same symmetries.
OverG = 75 x Z-, the Fourier matrixF is the Hadamard

1
1

-1
-1

1

-1

1

(100)

o2(0)=1+4+a
o?(1)=1—-a. (104)
M =Fs Fr
1 1 11
1 a(0)  o(l) o(0) o(1)
2?0 1 1 L1 (105)
o(0) o(1) o(0)  o(1)

We may now apply (105) to the example of Section VI. In
that example: = (¢ |¢2) = —1/2. From (104) it then follows

Using (72) and (74), we may find the measurement matrix tfato(0) = 1/v/2 ando(1) = /3/2. Substituting these values

matrix
1 1
1 -1
F=311 1
1 -1
the SRM
-1
M——1 V2
T o/2 | V2 V2
-1

-1 1

V2 V2
V2 V2
-1 1

(101)

in (105) yields

M—a { (106)

1.12 0.30
0.30 1.12

which is equivalent to the optimal measurement matrix obtained
in Section VI.

We verify that the columngy.;) of M may be expressed as e could have obtained the measurement vectors directly

i) = Uslpa), 1 < i < 4, where|)

1 «
m[l V2 V2 1] from the symmetry property of Theorem 4.1. The state set

Thus, the measurement vectdys) also form a GU set gener- s — {|¢,), |¢2)} is invariant under a reflection about the line

ated byg.

E. Applications of GU State Sets
We now discuss some applications of Theorem 4.

1) Binary State Set/Any binary state sef = {|¢1), |p2)}
is GU, because it can be generated by the binary gup
{I, R}, wherel is the identity and? is the reflection about the physically equivalent.)
hyperplane halfway between the two states. Specifically, if the2) Cyclic State SetA cyclic generating grouy has ele-

two stateq¢; ) and|¢,) are real, then

R=1-2

[w) {w]

{w]w)

(102)

halfway between the two states, as illustrated in Fig. 3. The
measurement vectors must also be invariant under the same
reflection. In addition, since the states are linearly independent,
the measurement vectors must be orthonormal. This completely
determines the measurement vectors shown in Fig. 3. (The only
other possibility, namely, the negatives of these two vectors, is

mentsl/; = @Q~1, 1 <4 <m, whereQ is a unitary matrix with
Q™ =1. A cyclic group generates a cyclic state set

S={lg;) =Q" ), 1 <i<m}

where |w) = |¢2) — |¢1). We may immediately verify that where|¢) is arbitrary. Baret al. [7] refer to such a cyclic state

R? =1, sothatR~! = R, and that¢z) = R|¢1).

set as a symmetrical state set, and show that in that case the

the states are complex withp|ps) = ae’?, then define is equivalent to the . This result is a special case o
If th pl i @ 3¢ then def SRMis eq I he MPEM. Th I p I f
|#h) =e 9% ¢o). The statep. ) and|¢) differ by a phase factor Theorem 4.
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quantum states. We considered POVMs consisting of rank-one
|i22) operators, where the vectors were chosen to minimize a possibly
|2) weighted sum of squared errors. We saw that for linearly inde-
‘ pendent states, the optimal LSM is an orthogonal measurement,
‘ which coincides with the SRM proposed by Hauslaé¢ral.
’ [10]. Ifthe states are linearly dependent, then the optimal POVM
’ . still has the same general form. We showed that it may be real-
’ lfn) ized by an orthogonal measurement of the same form as in the
¢ linearly independent case. We also noted that the SRM, which
|#1) was constructed by Hausladetal.[10] and used to achieve the
’ classical channel capacity of a quantum channel, may always be
’ chosen as an orthogonal measurement.
; We showed that for a GU state set the SRM minimizes the
p probability of a detection error. We also derived a sufficient con-
dition for the SRM to minimize the probability of a detection

Fig. 3. Symmetry property of the state s&t = {|¢1), [¢2)} and the errorinthe case of linearly independent states based on the prop-
optimum measurement vectofRi1), |f2)}. |#1) and|¢:) are given by (46), ties of the SVD

and|f1) and|fi2) are given by (50). Because the state vectors are invariafit :
under a reflection about the dashed line, the optimum measurement vectors

must also have this property. In addition, the measurement vectors must

be orthonormal. The symmetry and orthonormality properties completely

determine the optimum measurement vectdif), |iz)} (up to sign

reversal).

APPENDIX A
PROPERTIES OF THERESIDUAL SQUARED ERROR

Using Theorem 4 we may obtain the measurement madrix
as follows. IfG is cyclic, thenS is a circulant matri®, andG' is
the cyclic groufZ,,,. The FT kernel is thefh, g) = ¢~ 279/m
for h, g € Z,,, and the Fourier matris reduces to then x m
DFT matrix. The singular values @f arem!/4 times the square
roots of the DFT values of the inner products

We noted at the beginning of Section Il that if the vectors
|;) are mutually orthonormal, then the optimal measurement is
a set of projections onto the stafés), and the resulting squared
error is zero. In this casé, = ®*® =1, ando; = 1,1 < ¢ <
m.

If the vectorg¢; ) are normalized but not orthogonal, then we
may decomposé asS = I,, + D, whereD is the matrix of

{{¢ulgs), 1 <5 = mj}. inner productg¢;|¢,) for ¢ # j and has diagonal elements all
i equal to0. We expect that if the inner products are relatively
We then calculatd/ = &3 F~. small, i.e., if the statelg;) are nearly orthonormal, then we will

3) Peres-Wootters Measurementfe may apply these re- pe aple to distinguish between them pretty well; equivalently,
sults to the Peres—Wootters problem considered at the endx@f would expect the singular values to be closéd tindeed,
Section VII. In this problem, the states to be distinguished afiggm [20] we have the following bound on the singular values
given by|¢1) = |aa), [#2) = |bb), and|ps) = [cc), where of 5 = T 4 D:
|}, |}, and|c) correspond to polarizations of a photon &t 0
60°, and 120, and the states have equal prior probabilities. The
state setS = {|¢1), |¢2), |#3)} is thus a cyclic state set with

— 77 , = i—1 i
lﬁ;gtior?;:)'flgé.l S @< 3 wherell; = (Q® Q)" andQisa We now point out. some properties of_the minimal achievable

In Section VII, we concluded that the Peres—Wootters mesduared errok,, i, given by (19). For a givem, E,;, depends
surement is equivalent to the SRM and consequently minimiZ&ly on the singular values of the matix Consequently, any
the squared error. From Theorem 4 we now conclude that #Hiar operation on the vectors;) that does not affect the sin-

Peres—Wootters measurement minimizes the probability of a @&lar values oft will not affect £y _
tection error as well. For example, if we obtain a new set of stalg¢s by unitary

mixing of the state&p;), i.e., & = ®Q* where@ is anm x m
unitary matrix, then the new optimal measurement vedjgrs
will typically differ from the measurement vecto}g;); how-

In this paper, we constructed optimal measurements in tbger, the minimal achievable squared error is the same. Indeed,
least-squares sense for distinguishing between a collectiondefining 5’ = ®*®’ = QSQ*, whereS = ®*®, we see that
the matricesS’ and.S are related through a similarity transfor-

3A circulant matrix is a matrix where every row (or column) is obtained b . .
a right circular shift (by one position) of the previous row (or column). An ex)fnatlon and ConSEquently have equal e'genvalues [20]-

|o? — 1|2 < Te(D*D), 1<i<m. (107)

IX. CONCLUSION

ample is Next, suppose we obtain a new set of sté¢és by a general
nonsingular linear mixing of the statgs;), i.e., &’ = ¢A*,
Ao a2 whereA is an arbitraryn x m nonsingular matrix. In this case,
ar (o dg the eigenvalues of’ = ASA* will in general differ from the
Az a1 do eigenvalues of. Nevertheless, we have the following theorem:
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Theorem 5: Let £,,,;, andE/ , denote the minimal achiev-
able squared error when distinguishing between the pure statg)

ensembleg|¢;) } and{|¢:)} respectively, where
[0 =D alils)-
j=1

Let A denote the matrix whosgth elementis;;. Let A; (AA*)

and A,,,(AA*) denote the largest and smallest eigenvalues ofl4!
AA*, respectively, and lefo;, 1 < ¢ < r} denote the singular 5]
values of the matrixp of columns|¢;). Then

2 (1 - \/m) 27: Ti S Ellnin - Emin
i=1
<2 (1= VAn(A)) Yo
i=1

(2]
(3]

(6]
(71

Thus (8]

/
< Emin7

min —

if A(AA™) > 1
and (]

1/11in 2 Emim if Al(AA*) <1.

In particular, if A is unitary thenF;;, = £’

min*

Proof: We rely on the following theorem due to Ostrowski
(see, e.qg., [20, p. 224)).

(10]

Ostrowski Theorem:Let A and .S denotem x m matrices [12]

with S Hermitian andA nonsingular, and let’ = ASA*.
Let Ax( -) denote the:th eigenvalue of the corresponding ma-
trix, where the eigenvalues are arranged in decreasing order. Fﬁﬁ]
everyl < i < m, there exists a positive real numbgrsuch
that)\m(AA*) <a; < Al(AA*) and)\i(S’) = CLZ)\Z(S) [15]

Combining this theorem with the expression (19) for the
residual squared error results in

(13]

\ [16]
1/11in - Emin = 22(1 - @)07 [17]

=1
Substituting\,,, (AA*) < a; < A1 (AA*) results in Theorem 5. [18]
If Ais unitary, thenAA* = I, and;(AA*) = 1 for all 4. [19]
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