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On Geometric Properties of the Decorrelator
Yonina C. Eldar

Abstract—In this letter we discuss geometric properties of
the multiuser decorrelator receiver. In particular we show that
the prevalent geometric interpretation of the correlating vectors
comprising the decorrelator receiver in terms of orthogonal
projections of the signature vectors is incorrect. The correct
interpretation established in this letter is that the correlating
vectors are oblique projections of the signature vectors onto
appropriate spaces. Furthermore, we show that each branch of
the decorrelator consists of an oblique projection onto the space
spanned by the corresponding user’s signature vector along the
space spanned by the interferers, followed by a correlator with
correlating vector equal to the corresponding user’s signature
vector.

Index Terms—Decorrelator, oblique projection, least-squares
approximation, multiuser detection.

I. INTRODUCTION

I N A CDMA system each user transmits information by mod-
ulating its own signature vector. The received signal is mod-

eled as the sum of the modulated signature vectors of the dif-
ferent users embedded in white additive Gaussian noise. Mul-
tiuser detectors for detection of CDMA signals try to mitigate
the effect of the multiple-access interference (MAI) and the
background noise. A simple linear receiver that only requires
knowledge of the signature vectors is the decorrelator, intro-
duced by Lupas and Verdu [1]. The aim of this letter is to provide
some insight into the geometric properties of the decorrelator.

An important property of the decorrelator is that for linearly
independent signature vectors, it totally eliminates the MAI.
This is achieved (mathematically) by multiplying the received
signal by the pseudo inverse of the signature matrix. We ex-
pect this important property to have a geometric interpretation
as well. Attempts to describe the geometric properties of the
decorrelator have been made by several authors (see, e.g., [2],
[3]). The prevalent geometric interpretation is that each branch
of the decorrelator consists of anorthogonalprojection onto ,
which is the orthogonal complement of the space spanned by the
interferers in the space spanned by the signatures, followed by
a correlator with correlating vector equal to the desired user’s
signature vector.

It is obvious that by (orthogonally) projecting the received
signal onto the MAI is eliminated. However, if the desired
user’s signature vector does not lie in, then this orthogonal
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projection will modify the component of the received signal due
to the desired user. This is in contradiction to the well known fact
that in the absence of noise and assuming unit power control the
output of each branch of the decorrelator is equal to the symbol
transmitted by the corresponding user.

In this letter we show that this widespread interpretation is
incorrect. The correct interpretation is that each branch of the
decorrelator consists of anoblique projection onto the space
spanned by the desired user’s signature vector along the space

spanned by the interferes, so that any component inis
nulled out while components in the former space are not mod-
ified, followed by a correlator with correlating vector equal to
the desired user’s signature vector. Since the oblique projection
eliminates the interferers without modifying the component due
to the desired user, in the absence of noise and assuming unit
power control the output of each branch will indeed be equal to
the symbol transmitted by the corresponding user.

II. THE DECORRELATOR

Consider an -user white Gaussian synchronous CDMA
system. The discrete-time model for the received signalis
given by

(1)

where is the matrix of columns and is
the signature vector of the th user,
where is the received amplitude of the th user’s
signal, is a vector of elements where is the symbol
transmitted by the th user, and is a white Gaussian zero
mean noise vector with covariance . We assume that
all information sequences are equally likely, and that
for all . For concreteness, we assume that .

Based on the observed signala receiver is designed to de-
modulate the information transmitted by each user. The decor-
relator receiver [1] is a linear multiuser receiver that exploits
the structure of the MAI without knowledge of the channel pa-
rameters. It consists of multiplying the received signal by,
where denotes theMoore–Penrose pseudo inverse[4]. If
the signature vectors are linearly independent, then

. The decorrelator receiver can be equivalently im-
plemented using a correlation demodulator with correlating vec-
tors that are the columns of , as depicted in Fig. 1.
The th output of the decorrelator demodulator is then given by

, and the th user’s bit is detected as .
In this letter we present some geometric interpretations of the

decorrelator. In particular, we show that the prevalent geometric
interpretation of the vectors in terms of orthogonal projec-
tions (see, e.g., [2]) is incorrect.
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III. M INIMUM -NORM LEAST-SQUARESAPPROXIMATION

One way to derive the decorrelator is to seek an estimateof
[3], and then detect the th user’s symbol based on

. Thus if e.g., , then where
is the th component of . In the absence of noise it follows
from (1) that

(2)

If the signatures are linearly independent, then the unique
solution to (2) is . If, on the other hand,
the vectors are linearly dependent, then there are infinitely
many solutions to (2).

When there is noise present, (2) becomes the approximate
relation . A reasonable approach then is to seek a vector

that renders as close as possible to. Thus, we choose
to minimize the least-squares error

(3)

In [3, p. 241] it is claimed that the minimizing is

(4)

It is important to note that when the vectors are linearly
dependent, given by (4) is not the only vector that minimizes
(3). Indeed, let

(5)

where is any vector in the null space of . Then since
, and , so that also

minimizes (3). However, given by (4) has the property that it
has the minimal possible norm from all vectorsthat minimize
the least-squares error. This result follows from the fact that any

that minimizes (3) has the form given by (5). Furthermore,
from (4) it follows that is in the range space of which
is equal to . Thus, for any and

, with equality if and only if
so that .

We therefore conclude that the output of the decorrelator de-
modulator is theminimum normleast-squares approxima-
tion to .

IV. CORRELATION DEMODULATOR REPRESENTATION

We now provide a geometric interpretation of the correlating
vectors of Fig. 1. For simplicity of exposition we assume
throughout this section that the signature vectorsare linearly
independent.

In [2] it is claimed that is the orthogonal projection of
onto the orthogonal complement of the space spanned by

the vectors in the space spanned by the
signature vectors, denoted. In [3] it is claimed that is the
projection of onto , however the type of projection is not
specified. In this section we show that the correct result is that

is theobliqueprojection of onto along , where is
the orthogonal complement of the space spanned by the vector

.
We now demonstrate that cannot be equal to , where

is the orthogonal projection onto, using two different

Fig. 1. Decorrelator receiver for the caseb 2 f1; �1g.

methods. First we note that if , then we must have
that . But

(6)

where and denote the th element and the th
column of a matrix, respectively. From (6) it follows that
is not necessarily smaller than . For example, consider a
two user system with

(7)

where . Then
, so that cannot be equal to .

Next, recall that in the absence of noise and
so that . If , then

(8)

Now

(9)

since , . Substituting (8) into (9) we
conclude that

(10)

which is equal to only in the case that is orthog-
onal to all the other signature vectors. Thus, in general

.
To derive the correct geometric interpretation we first show

that . Indeed

(11)

so that is orthogonal to , , and consequently
. Since is a one-dimensional space it is spanned by

any nonzero vector in . In particular, let . Since the
vectors are linearly independent, and spans . Now,
since we have that for some . To
determine we note that (11) implies that
, so that . Thus,

(12)
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Fig. 2. Decomposition ofs into its components inV and inW given by
E s andE s , respectively.

which in general is not equal to , except in the special case
that is orthogonal to , , in which case

.
We now show that (12) implies that is theobliqueprojec-

tion of onto along , denoted by1 [5]. To this end
we first show that

(13)

From the definition of an oblique projection, is the unique
operator satisfying

for any

for any (14)

We now show that (13) satisfies these conditions. Letbe an
arbitrary vector in . Then for some constant
, and

(15)

Now, let be an arbitrary vector in . Then

(16)

since is orthogonal to . Combining (15) and (16) we con-
clude that is given by (13). We then have

(17)

Thus, is the oblique projection of onto along . Fig. 2
depicts the decomposition of into its component in ,

, and its component in , .

1An oblique projection is a projection operatorE satisfyingE = E that
is not necessarily Hermitian. The notationE denotes an oblique projection
with range spaceV and null spaceW . If V =W , thenE is an orthogonal
projection ontoV .

Fig. 3. Equivalent representation of the first branch of the decorrelator
demodulator.

Using (17) we can express the output of the first branch of
the decorrelator demodulator as . From
the properties of the oblique projection which
is the oblique projection onto along , where is the
space spanned by and is the space spanned by the vec-
tors , . Thus the output of the decorrelator
is obtained by first projecting onto along , and then
correlating the result with , as depicted in Fig. 3. This result
is intuitively pleasing. The oblique projection nulls out
any component in which is the space spanned by the inter-
ferers, while not effecting any component in which is the
space spanned by. Thus , .
Note, that while , , in gen-
eral. Now, in the absence of noise we have

(18)

as we expect.
Therefore, the correct interpretation of the decorrelator is that

it projects the received signal onto the space spanned by the de-
sired user’s signature vector along the direction spanned by the
interferers, and then correlates the projection with the desired
user’s signature vector.

V. CONCLUSION

We provided some geometrical interpretations of the decor-
relator receiver. We first showed that the vector output of the
decorrelator demodulator is the minimum norm least-squares
approximation to . We then established that each branch of
the decorrelator can be implemented by projecting the received
signal onto the space spanned by the signature vector of the cor-
responding user, along the space spanned by the interferers’ sig-
nature vectors. The projected received signal is then correlated
with the corresponding user’s signature vector.
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