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On Geometric Properties of the Decorrelator

Yonina C. Eldar

Abstract—In this letter we discuss geometric properties of projection will modify the component of the received signal due
the multiuser decorrelator receiver. In particular we show that  to the desired user. This is in contradiction to the well known fact
the prevalent geometric interpretation of the correlating vectors that in the absence of noise and assuming unit power control the

comprising the decorrelator receiver in terms of orthogonal f
projections of the signature vectors is incorrect. The correct output of each branch of the decorrelator is equal to the symbol

interpretation established in this letter is that the correlating transmitted by the corresponding user.

vectors are oblique projections of the signature vectors onto  In this letter we show that this widespread interpretation is
appropriate spaces. Furthermore, we show that each branch of incorrect. The correct interpretation is that each branch of the
the decorrelator consists of an oblique projection onto the space decorrelator consists of avblique projection onto the space

spanned by the corresponding user’s signature vector along the d by the desired s t t | th
space spanned by the interferers, followed by a correlator with SP@NNea Dy the aesired user's signature vector along the space

correlating vector equal to the corresponding user’s signature V4 spanned by the interferes, so that any componebt'iris

vector. nulled out while components in the former space are not mod-
Index Terms—Decorrelator, oblique projection, least-squares ified, fo!lowed by a _correlator with Correlatlng veF:tor equ_al t(_)
approximation, multiuser detection. the desired user’s signature vector. Since the oblique projection

eliminates the interferers without modifying the component due
to the desired user, in the absence of noise and assuming unit
power control the output of each branch will indeed be equal to
N A CDMA system each user transmits information by modhe symbol transmitted by the corresponding user.
ulating its own signature vector. The received signal is mod-
eled as the sum of the modulated signature vectors of the dif-
ferent users embedded in white additive Gaussian noise. Mul-
tiuser detectors for detection of CDMA signals try to mitigate Consider ani{-user white Gaussian synchronous CDMA
the effect of the multiple-access interference (MAI) and thgystem. The discrete-time model for the received signal
background noise. A simple linear receiver that only requirgiven by
knowledge of the signature vectors is the decorrelator, intro-
duced by Lupas and Verdu [1]. The aim of this letter is to provide r=SAb+n 1)
some insight into the geometric properties of the decorrelator.
An important property of the decorrelator is that for linearlyvhereS is the N x M matrix of columnss,,, ands,,, € C% is
independent signature vectors, it totally eliminates the MAthe signature vector of theth user,A = diag(A;, ..., Ay)
This is achieved (mathematically) by multiplying the receivedhere A,,, > 0 is the received amplitude of theth user’s
signal by the pseudo inverse of the signature matrix. We esignal,b is a vector of elements,, whereb,, is the symbol
pect this important property to have a geometric interpretatibransmitted by thenth user, anda is a white Gaussian zero
as well. Attempts to describe the geometric properties of theean noise vector with covarian€, = +2I. We assume that
decorrelator have been made by several authors (see, e.g.,dR]nformation sequences are equally likely, and #jas,,, = 1
[3])- The prevalent geometric interpretation is that each bran@dr all . For concreteness, we assume thate {1, —1}.
of the decorrelator consists of anthogonalprojection ontoV, Based on the observed signah receiver is designed to de-
which is the orthogonal complement of the space spanned by thedulate the information transmitted by each user. The decor-
interferers in the space spanned by the signatures, followedrblator receiver [1] is a linear multiuser receiver that exploits
a correlator with correlating vector equal to the desired usetlse structure of the MAI without knowledge of the channel pa-
signature vector. rameters. It consists of multiplying the received signaliy
It is obvious that by (orthogonally) projecting the receivedvhere(-)' denotes thevMloore—Penrose pseudo invergy. If
signal ontoV the MAI is eliminated. However, if the desiredthe signature vectors,, are linearly independent, thesi =
user’s signature vector does not lie i) then this orthogonal (S*S)~1S*. The decorrelator receiver can be equivalently im-
plemented using a correlation demodulator with correlating vec-
tors v,,, that are the columns fS™)*, as depicted in Fig. 1.
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. INTRODUCTION

Il. THE DECORRELATOR
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I1l. MINIMUM -NORM LEAST-SQUARES APPROXIMATION ai

. . , v J
One way to derive the decorrelator is to seek an estigatie
y = Ab [3], and then detect thevth user's symbol based on
y. Thusife.g.b,, € {—1, 1}, thenb,, = sgn(y,,) wherey,, o a2 :F y
is the mth component ofy. In the absence of noise it follows 2
from (1) that r —

r = Sy. (2

If the signatures,, are linearly independent, then the unique¢ Vi au :F

solution to (2) iy = (S*S)~*S*r = S'r. If, on the other hand, '

the vectorss,,, are linearly dependent, then there are infinitely

many solutlons_to (2) . Fig. 1. Decorrelator receiver for the cdse € {1, —1}.
When there is noise present, (2) becomes the approximate

relationr ~~ Sy. A reasonable approach then is to seek a vector . .

y that render$y as close as possible to Thus, we choosg methods.2 First WeQ note that#, = Fysy, then we must have

L that||v1]|* < ||s1]|*. But
to minimize the least-squares error

ers(y) = (r — Sy)"(x — Sy). @ P =(E9TLSSISS T = (3797 ©)
In[3, p. 241] itis claimed that the minimizing is where [-]., and [],,, denote themkth element and thenth
column of a matrix, respectively. From (6) it follows tHat; ||?

y =S'r. (4) is not necessarily smaller thdjs; ||>. For example, consider a

o . two user system with
It is important to note that when the vectars are linearly

dependenty given by (4) is not the only vector that minimizes . 1 a
(3). Indeed, let S'S=1, 4 @

y=y+y ()  whereo < a < 1. Then||vy||2 = [(S*S)~Y]11 = 1/(1—a?) >
1 = ||s1]|?, so thatv; cannot be equal t&s; .

Next, recall that in the absence of noise- SAb andSfr =
Ab so thatal = VTI‘ = Aqby. If vi = Pysq, then

wherey’ is any vector in the null spacE(S) of S. Then since
Sy’ = 0,Sy = Sy andes(y) = =1s(¥), so thaty also
minimizes (3). Howevery given by (4) has the property that it
has the minimal possible norm from all vectgrghat minimize vir = s Pr. @)
the least-squares error. This result follows from the fact that any ! !

y that minimizes (3) has the form given by (5). Furthermoreow

from (4) it follows thaty is in the range space &' which

is equal taN(S)*. Thus,¥*y’ = 0 for anyy’ € N(S) and Pyr = PySAb = A1bi Pys; 9)
o112 o112 12 12 wi ity i i
= + > , with equality if and only if
Q,?IHI 0 sc!}tfruaty iY}/“ i1 a Y y sincePys,, = 0,2 < m < M. Substituting (8) into (9) we

We therefore conclude that the output of the decorrelator denclude that
modulatorSr is theminimum normleast-squares approxima-

tiontoy = Ab. vir = Aibisi Pys; (10)

which is equal taz; = A10; only in the case that; is orthog-
V.- CORRELATION DEMODULATOR REPRESENTATION onal to all the other signature vectors. Thus, in genefak
We now provide a geometric interpretation of the correlatinfys: .
vectorsv,,, of Fig. 1. For simplicity of exposition we assume To derive the correct geometric interpretation we first show
throughout this section that the signature vectgrsire linearly thatv; € V. Indeed
independent. . . e
In [2] it is claimed thatv; is the orthogonal projection of S*vi =8"8[(8"8)™"]: = (1], (11)
s; onto the orthogonal complement of the space spanned ?&’thatvl
the vectors{s,,, 2 < m < M} in the space spanned by the
signature vectors, denotéd In [3] it is claimed thatv; is the any nonzero vector i, In particular, let = Pys,. Since the
projection ofs; ontoV, however the type of projection is nOtvectors are linearly independent 7& 0 andv spans’. Now,
specified. In this section we show that the correct result is th&hcevl "6’ V we have thav, = av : aPys, for somea. Tc;

v is theobliqueprojection ofs; ontoV alongW, wherelV is determinen we note that (11) implies thatv; — as® Pys; —
the orthogonal complement of the space spanned by the VeGIOL ) 4ot — 1/stPys;. Thus !
1] —_— 1 . 1

S1.
We now demonstrate th&t cannot be equal t#s;, where 1 P
Py, is the orthogonal projection ont®, using two different Vi= st Pys; vS1

is orthogonal tcs,,,, 2 < m < M, and consequently
1 € V. SinceV is a one-dimensional space it is spanned by

12)
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Fig. 2. Decomposition 0§, into its components i and inW given by
Eyvwsy andEyyy s, respectively.

which in general is not equal 1B,;s1, except in the special case

thats; is orthogonal t®s,,,, 2 < m < M, in which caseéPys; =
S1.

We now show that (12) implies that is theobliqueprojec-
tion of s; ontoV alongW, denoted by Fyyy [5]. To this end
we first show that

EVW = PySlsT. (13)

st Pys;
From the definition of an oblique projectioh;y is the unique
operator satisfying

Evpyv =v, foranyv e V

FEyww =0, foranyw e W. (14)
We now show that (13) satisfies these conditions. té&e an
arbitrary vector inV. Thenv = av = aPys; for some constant

a, and

EVWv = *L Pysls“nysl = CLPysl = V. (15)
st Pys;
Now, letw be an arbitrary vector iV. Then
Eypyw = Pysisiw =0 (16)

S’{Pysl

sincew is orthogonal tcs; . Combining (15) and (16) we con-
clude that¥,y, is given by (13). We then have

Eywsl = Pysls“fsl = PySl = V. (17)

st Pys; st Pys;
Thus,v, is the oblique projection of; ontoV alongW. Fig. 2
depicts the decomposition ef into its component iV, vi =
Eyyysi, and its component i, Eyyys;.

1An oblique projection is a projection operathr satisfyingE? = E that
is not necessarily Hermitian. The notatiéhk,,, denotes an oblique projection
with range spac® and null spacéV. If V = W+, thenE\,, is an orthogonal
projection ontoy'.
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Fig. 3. Equivalent representation of the first branch of the decorrelator
demodulator.

Using (17) we can express the output of the first branch of
the decorrelator demodulator as = vir = sj £}, r. From
the properties of the oblique projectid,,, = £y, 11 Which
is the oblique projection onty+ alongV+, whereW+ is the
space spanned by and V! is the space spanned by the vec-
tors{s,,, 2 < m < M}. Thus the output; of the decorrelator
is obtained by first projecting onto W+ alongV+, and then
correlating the result witls;, as depicted in Fig. 3. This result
is intuitively pleasing. The oblique projectidi,, ... nulls out
any component i+ which is the space spanned by the inter-
ferers, while not effecting any componentitit which is the
space spanned By. ThuSEyy 11 Sp = 61mSm, 1 <m < M.
Note, that WhilePysm =0,2<m< M, Pys; 7£ S1 in gen-
eral. Now, in the absence of noise we have

vir=siEyipir =si By SAb = Al (18)
as we expect.

Therefore, the correct interpretation of the decorrelator is that
it projects the received signal onto the space spanned by the de-
sired user’s signature vector along the direction spanned by the
interferers, and then correlates the projection with the desired
user’s signature vector.

V. CONCLUSION

We provided some geometrical interpretations of the decor-
relator receiver. We first showed that the vector output of the
decorrelator demodulator is the minimum norm least-squares
approximation taAb. We then established that each branch of
the decorrelator can be implemented by projecting the received
signal onto the space spanned by the signature vector of the cor-
responding user, along the space spanned by the interferers’ sig-
nature vectors. The projected received signal is then correlated

with the corresponding user’s signature vector.
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