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Abstract

A new and efficient class of nonlinear receivers is introduced for digital com-
munication systems. These “iterated-decision” receivers use optimized multipass
algorithms to successively cancel interference from a block of received data and
generate symbol decisions whose reliability increases monotonically with each it-
eration. Two variants of such receivers are discussed: the iterated-decision equal-
izer and the iterated-decision multiuser detector. Iterated-decision equalizers, de-
signed to equalize intersymbol interference (ISI) channels, asymptotically achieve
the performance of maximum-likelihood sequence detection (MLSD), but only have
a computational complexity on the order of a linear equalizer (LE). Even more im-
portantly, unlike the decision-feedback equalizer (DFE), iterated-decision equalizers
can be readily used in conjunction with error-control coding. Iterated-decision mul-
tiuser detectors, designed to cancel multiple-access interference (MAI) in CDMA
channels, asymptotically achieve the performance of the optimum multiuser detec-
tor in uncoded systems, but only have a computational complexity on the order of
a decorrelating detector or a linear minimum mean-square error (MMSE) multiuser
detector.

1 Introduction

Over the last several decades, a variety of equalization techniques have been proposed for
use on intersymbol interference (ISI) channels. Linear equalizers (LE) are attractive from
a complexity perspective, but often suffer from excessive noise enhancement. Maximum-
likelihood sequence detection (MLSD) is an asymptotically optimum receiver in terms
of bit-error rate performance, but its high complexity has invariably precluded its use in
practice. Decision-feedback equalizers (DFE) [1] are a widely used compromise, retaining
a complexity comparable to the LE, but incurring much less noise enhancement. However,
DFEs still have some serious shortcomings. First, decisions made at the slicer can only
be fed back to improve future decisions due to the sequential way in which the receiver
processes data. Thus, only postcursor ISI can be subtracted, so even if ideal postcursor
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ISI cancellation is assumed, the performance of the DFE is still limited by possible
residual precursor ISI and noise enhancement. Second, and even more importantly, the
sequential structure of the DFE makes it essentially incompatible for use in conjunction
with error-control coding (on channels not known at the transmitter, as is the case of
interest in this paper). As a result, use of the DFE has been largely restricted to uncoded
systems.

In parallel to these developments, a variety of multiuser detectors have been pro-
posed for CDMA channels over the last decade and a half as solutions to the problem
of mitigating multiple-access interference (MAI) [2]. Given the close coupling between
the problems of suppressing ISI and MAI, there are, not surprisingly, close relationships
between corresponding solutions to these problems. For example, decorrelating detectors
and linear minimum mean-square error (MMSE) multiuser detectors—the counterparts
of zero-forcing and linear MMSE equalizers are attractive from a complexity perspec-
tive, but suffer from noise enhancement. Optimum maximum likelihood (ML) multiuser
detection, while superior in performance, is not a practical option because of its high
complexity.

In this paper, we introduce a class of remarkably efficient multipass receivers that
is a particularly attractive alternative to all these conventional equalizers and detectors.
Specifically, in Section 2 we describe the iterated-decision equalizer, and in Section 3 we
describe the corresponding multiuser iterated-decision detector. In particular, we show
that these new receivers achieve asymptotically optimum performance while retaining
low complexity.

2 The Iterated-Decision Equalizer

In the discrete-time baseband model of the pulse amplitude modulation (PAM) commu-
nication system we consider, the transmitted data is a white M-ary phase-shift keying
(PSK) stream of coded or uncoded symbols z[n|, each with energy £;. The symbols z[n]
are corrupted by a convolution with the channel impulse response, a[n|, and by additive
noise, w(n], to produce the received symbols' r[n] = a[n] * x[n] + w[n]. The noise wn|
is a zero-mean, complex-valued, circularly symmetric, stationary, white Gaussian noise
sequence with variance Ny that is independent of x[n]. (To simplify the exposition, we
focus on symbol-spaced equalization. However, the fractionally spaced generalizations
required in practice follow in a straightforward manner, as developed in [4].)

Also, as increasingly aggressive data rates are pursued in wideband systems to meet
escalating traffic requirements, ISI becomes increasingly severe. Accordingly, in this
paper we pay special attention to the performance and properties of the equalizers in
this regime. For the purposes of analysis, a convenient severe-ISI channel model we will
exploit is one in which a[n] is a finite impulse response (FIR) filter of length L, where
L is large and the taps are mutually independent, zero-mean, complex-valued, circularly
symmetric Gaussian random variables with variance o2. The channel taps a[n] are also
independent of the data z[n] and the noise w[n|. Note that this is also a good channel
model for many wireless systems employing transmitter antenna diversity in the form of
linear space-time coding [5].

We begin by focussing on the case in which the receiver has exact knowledge of a[n]
in order to develop the basic theory and fundamental limits. In Section 2.1, we consider

'The symbol * denotes the convolution operation.
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Figure 1: Iterated-decision equalizer structure.

the case of practical interest in which the receiver does not have a priori knowledge of
the channel, and develop a corresponding adaptive equalizer. We emphasize that in both
cases, we restrict our attention to transmitters that have no knowledge of the channel,
which is the usual case for reasonably rapidly time-varying channels.

The iterated-decision equalizer we now develop processes the received data in a block-
iterative fashion [4, 3|. Specifically, during each iteration or “pass,” a linear filter is
applied to all the received data, and tentative decisions made in the previous iteration
are then used to construct and subtract out an estimate of the ISI. The resulting ISI-
reduced data is then passed on to a slicer, which makes a new set of tentative decisions.
With each successive iteration, increasingly refined hard decisions are generated using
this strategy.

The detailed structure of the iterated-decision equalizer is depicted in Fig. 1.2

The parameters of all systems and signals associated with the [th pass are denoted
using the superscript [. On the [th pass of the equalizer where [ = 1,2, 3, ..., the received
data r[n] is first processed by a linear filter b'[n], producing the sequence 7! [n] = b![n]*r[n].
Next, an appropriately constructed estimate 2![n] of the ISI is subtracted from #[n] to
produce 7'[n], i.e., Z[n] = #[n] — 2'[n], where 2'[n] = d'[n]*2'~![n]. Since 2![n] is intended
to be some kind of ISI estimate, we impose the constraint that the zero-delay tap of d'[n]
be zero or, equivalently, that % ffﬂ D!(w)dw = 0. The slicer then generates the hard
decisions #'[n] from #'[n] using a minimum-distance rule.

Analogous to counterparts in [5] and [6], we have that when z[n] and #'~'[n| are
sequences of zero-mean uncorrelated symbols, each with energy &, such that their nor-
malized correlation is of the form E[z*[n]-2'"1[k]]/&s ~ p'~16[n— k], then the slicer input
at each iteration can be expressed as

l—l[

#'[n] = E[AB'|z[n] + v'[n] (1)

where A(w) and B'(w) are the frequency responses of a[n] and b'[n] respectively, where
v![n] is a complex-valued, marginally Gaussian, zero-mean white noise sequence, uncor-
related with the input symbol stream z[n] and whose variance is a function of B'(w) and
D!(w), and where the accuracy of the approximation in (1) increases with the length L
of the impulse response a[n].

The second-order model (1) turns out to be a useful one for analyzing and opti-
mizing the performance of the iterated-decision equalizer. In particular, the signal-to-
interference+noise ratio (SINR) at the slicer input during each pass, defined as ! =

2 As developed in [3, 4], for coded systems, it suffices to replace the slicer in Fig. 1 with the associated
decoder, and to re-encode the previous iteration’s decisions #!~1[n] before they are input to d'[n]. Note
that for DFE’s, this kind of integration of decoding with equalization is not possible due to causality
constraints.
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While the strictly causal feedback filter of the DFE subtracts out only postcursor ISI,
the noncausal nature of the optimal D'(w) allows the iterated-decision equalizer to cancel
both precursor and postcursor ISI. Moreover, the expression for the optimal D'(w) is
intuitively satisfying. If 2/~![n] = z[n] so that p'~! = 1, then the output of D'(w) exactly
reproduces the ISI component of 7[n]. More generally though, the correlation coefficient
p'~1 describes our confidence in the quality of the estimate Z'~![n] and scales the ISI
estimate accordingly. Note that the center tap of d'[n] is indeed zero, as stipulated
earlier. Note also that during the first (I = 1) pass, the feedback branch is not used
because p = 0, so the sequence #°[n] does not need to be defined.

Next, the properties of v![n] imply that the probability of symbol error at the Ith
iteration is well-approximated by the high signal-to-noise ratio (SNR) formula for the
M-ary PSK symbol error rate of a symbol-by-symbol threshold detector for additive
white Gaussian noise (AWGN) channels, given by [7]

Pr()) = 29 (sin (%) 2fyl> : (5)

where Q(v) = = [ e P2t
By substituting (3) and (4) into (2) and exploiting the fact that arbitrarily close
samples of the random process A(w) are asymptotically independent in the limit as

L — o0, it can be shown that

b — (; — 1> . b (6)
TTEERE) ) Ty
where Ei(s) = [Fe™/t dt and & = ¢/(1 — (p'1)?), with 1/ = E;Lo2/Ny being the

expected SNR at which the transmission is received.

As the above development suggests, successful implementation of the iterated-decision
equalizer requires that the normalized correlation between the symbols x[n] and 2'~1[n] at
the [th pass be computable. The iterative algorithm for computing the set of correlation
coefficients p', and in turn predicting the sequence of symbol error probabilities is as
follows.

1. Set p° =0 and let [ = 1.

2. Compute the SINR 7/ at the slicer input on the /th decoding pass from p'~! via (6).
It is worth pointing out that for shorter ISI channels, we can alternatively (and in
some cases more accurately) compute 4! from p!~! via (2), where the expectation
is replaced by a frequency average.|

3. Compute the symbol error probability Pr(e!) at the slicer output from +! via (5).

4
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Figure 2: Theoretical QPSK bit-error rate for the iterated-decision equalizer as a function
of SNR per bit and the number of decoding iterations.

4. Compute the normalized correlation coefficient p! between the symbols z[n] and
the decisions #![n] generated at the slicer via [6]

pl=1—2sin’ <%> Pr(e"). (7)
5. Increment [ and go to step 2.

A straightforward analysis of the algorithm reveals that the sequence of error probabil-
ities Pr(e'), Pr(e?),... is monotonically decreasing, suggesting that additional iterations
always improve performance. However, the error rate performance for a given SNR of
1/¢ eventually converges to a steady-state value of Pr(e>).

In Fig. 2, bit error rate is plotted as a function of SNR for 1,2,3,5, and an infi-
nite number of iterations. We observe that steady-state performance is approximately
achieved with comparatively few iterations, after which additional iterations provide only
negligibly small gains in performance. It is significant that few passes are required to
converge to typical target bit-error rates, since the amount of computation is directly
proportional to the number of passes required. We emphasize that the complexity of the
iterated-decision equalizer is comparable to that of the DFE or the LE. It is also signif-
icant to note that as the SNR increases (¢ — 0), the slicer input SINR v — 1/¢ which,
when substituted into (5), corresponds to the matched filter bound for the channel. Thus,
perfect ISI cancellation is approached at high SNR.

We plot in Fig. 3 the theoretical performance of the iterated-decision equalizer and
the ideal minimum mean-square error decision-feedback equalizer (MMSE-DFE) as L —
oo [4], as well as the associated experimental performance when L = 256. We can readily
see that at moderate to high SNR, the iterated-decision equalizer requires significantly
less transmit power than the MMSE-DFE to achieve the same error rate. In fact, at
high SNR, the iterated-decision equalizer theoretically requires 10I'gloge ~ 2.507 dB
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Figure 3: Theoretical and experimentally observed QPSK bit-error rate for the iterated-
decision equalizer and the MMSE-DFE as a function of SNR per bit.

less transmit power [4] to achieve the same probability of error as the ideal MMSE-DFE,
where I'y = 0.57721 - - - denotes Euler’s constant.

2.1 Adaptive Implementations

We now develop an adaptive implementation of the iterated-decision equalizer, in which
optimal FIR filter coefficients are selected automatically (from the received data) without
explicit knowledge of the channel characteristics. We focus on the single channel case;
multichannel generalizations follow in a straightforward manner, as developed in [4].

The iterated-decision equalizer is designed to process received data in a block-iterative
fashion, so it is ideally suited for packet communication in which the packet size is chosen
small enough that the channel encountered by each packet appears linear time-invariant.
As is typically the case with other adaptive equalizers, the adaptive iterated-decision
equalizer makes use of training symbols sent along in the packet with the data symbols.
Suppose that a block of white M-ary PSK symbols z[n| for n = 0,1,... ,N — 1 is
transmitted; some of the symbols (not necessarily at the head of the packet) are for
training, while the rest are data symbols.

In the adaptive implementation of the iterated-decision equalizer, the filters b'[n]
and d'[n] for the [th iteration are finite-length filters. Specifically, b'[n] has J; strictly
anticausal taps and J, strictly causal taps plus a center tap, while d'[n] has K; strictly
anticausal taps and K, strictly causal taps with no center tap.

Before the first pass (I = 1), we need to initialize the hard decisions 2°[n]. Since the
locations and values of the training symbols in z[n| are known at the receiver, we set
2°%[n] = x[n] for the n corresponding to those locations. For all the other n between 0
and N — 1 inclusive, we set 2°[n] to be a “neutral” value—for white PSK symbols, this
value should be zero.



On the Ith pass of the equalizer where [ = 1,2,3, ..., the slicer input Z'[n] can be
expressed as®

#[n] = "' d'[n] (8)

where
U= [ Y=a] e VO] e V] d[-K)) - d[-1) 1] - dl[Ka) ] (9)
d'[n] = [ rineh] oo rln] e rlneds] @K - @] @] e @5neK) 17(10)

Using a minimum-distance rule, the slicer then generates the hard decisions #![n] from
7'[n] for all n between 0 and N — 1 inclusive, except for those n corresponding to the
locations of training symbols in x[n]. For those n, we set 2![n] = z[n].

In the [th iteration, there are two sets of data available to the receiver: r[n] and 2'~1[n],
n=0,1,...,N — 1. If we assume that x[n] ~ #'~![n] for the purposes of determining
the optimal filters (as is similarly done in the adaptive DFE in decision-directed mode),

then it is reasonable to choose b![n] and d![n] so as to minimize the sum of error squares:

Ec)= Y "] - "d'[n]|". (11)

n=—00
Since this is a linear least-squares estimation problem, the optimum c! is [§]

c =@, (12)

opt T

where ® = "™ q'[n]q"'[n] and u! = 3°°° __#'"[n]q'[n]. The resulting equalizer
lends itself readily to practical implementation, even for large filter lengths. In particular,
the matrix ®' can be efficiently computed using correlation functions involving r[n] and
#1[n], and [®']7! can be efficiently computed using formulas for the inversion of a
partitioned matrix [9)].

We now turn to a couple of implementation issues. First, we would ideally like our
finite-length adaptive filters to approximate (3) and (4), which are infinite length. The
optimal b'[n] in (3) includes a filter matched to a[n], and the optimal d'[n] in (4) includes
a cascade of a[n] and the corresponding matched filter, suggesting that a reasonable rule
of thumb is to select J, = J, = K1 = Ky = L. Second, the block-iterative nature of the
equalizer allows the training symbols to be located anywhere in the packet. Since—in
contrast to the DFE—the locations do not appear to affect equalizer performance, we
arbitrarily choose to uniformly space the training symbols within each packet.

In Fig. 4, we plot the bit-error rate of the adaptive iterated-decision equalizer as a
function of the number of iterations, for varying amounts of training data. The graph
strongly suggests that there is a threshold for the number of training symbols, below
which the adaptive equalizer performs poorly and above which the bit-error rate con-
sistently converges to approximately the same steady-state value regardless of the exact
number of training symbols. The excess training data is still important though, since the
bit-error rate converges quicker with more training data.

We next examine the probability of bit error as a function of SNR for varying amounts
of training data. From Fig. 5 we see that, as expected, performance improves as the
amount of training data is increased. Moreover, only a modest amount of training symbols

3The superscripts 7 and T denote the transpose and conjugate-transpose operations, respectively.
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Figure 4: Experimentally observed QPSK bit-error rate for the adaptive iterated-decision
equalizer as a function of the number of decoding iterations and the number of training
symbols transmitted with each block of 10000 data symbols at an SNR per bit of 7 dB.
The 100-tap channels were equalized using 201 feedforward taps and 200 feedback taps.
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Figure 5: Experimentally observed QPSK bit-error rate for the adaptive iterated-decision
equalizer and the RLS-based adaptive DFE (with forgetting factor A = 1) as a function of
SNR per bit. Blocks of 10000 data symbols were transmitted through 128-tap channels,
which were equalized using 257 feedforward taps and 256 noncausal feedback taps in the
case of the iterated-decision equalizer, and using 257 feedforward taps and 128 strictly
causal feedback taps in the case of the DFE.
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is required at high SNR for the adaptive equalizer to perform as if the channel were exactly
known at the receiver.

For comparison purposes, we also plot in Fig. 5 the performance of the recursive least
squares (RLS) based implementation of the adaptive DFE [8]. The DFE performs sig-
nificantly worse than the iterated-decision equalizer for comparable amounts of training
data. Indeed, the high SNR gap is even larger than the 2.507 dB determined for the non-
adaptive case. This is because, as Figs. 3 and 5 show, the performance of the adaptive
DFE is not accurately predicted by the nonadaptive MMSE-DFE, even in the long ISI
limit. It is also worth stressing that the RLS-based adaptive DFE is much more compu-
tationally expensive than the adaptive iterated-decision equalizer because the RLS-based
DFE requires the multiplication of large matrices for each transmitted symbol, whereas
the iterated-decision equalizer essentially requires the computation of one large matrix
inverse per iteration for all the symbols in the packets, with the number of required
iterations being typically small.

3 The Iterated-Decision Multiuser Detector

We now develop the counterpart of the iterated-decision equalizer for the multiuser de-
tection problem.

For the purposes of illustration, we consider a P-user discrete-time synchronous
channel model, where the ¢th user modulates an M-ary PSK symbol z; onto a ran-
domly generated signature sequence h; = [ h;[1] h;[2] -+ RhQ] |7 of length Q as-
signed to that user, where the taps of the sequence are mutually independent, zero-
mean, complex-valued, circularly symmetric Gaussian random variables with variance
1/Q. The received signal is r = HAx + w, where H = [hy|--- |hp| is the @ x P ma-
trix of signatures, A = diag{A4;,..., Ap} is the diagonal matrix of received amplitudes,
x=[zy my -+ zp]T, and w is a Q-dimensional Gaussian vector with independent
zero-mean, complex-valued, circularly symmetric components of variance N.

The structure of the multiuser iterated-decision detector is depicted in Fig. 6. The
vector of slicer inputs at each iteration is X' = Bl'r — D%, where B! = [bl|- - - |bk],
D! = [d!|---|d}], and %It = [ #7125 ... #51 ]T. Analogous to (1) in the case of
equalization, the slicer input for the ith user at the /th iteration can be approximated as

i ~ AEb hy)z; + v (13)



with v, %, ... v as mutually uncorrelated, zero-mean, complex-valued, circularly sym-

metric Gaussian random variables, and where the accuracy of the approximation in-
creases when the number of users P gets large while the ratio 3 2 P/Q is held con-
stant. If Ip and Iy are the P x P and @) x () identity matrices respectively, and if
Elzf - ié»’l]/é’s ~ p10fi — 4] with p!=t = diag{p}™', ..., pl>'}, then the SINR at the
slicer input for the ith user during the [th pass, i.e.,

T
i = BAZDD) (14

achieves its maximum value when?
B o [NOIQ + EHA(Ip — pl_lpl_lT)ATHT} “HA (15)
D' = pU[ATH'B! - diag {(ATE [H'B])11, ..., (ATE[H'B])pp}].  (16)

In the case of accurate power control, i.e., A = Alp so p'~! = p!~'Ip, it can be shown
that in the limit of large P, the SINR in (14) for each user achieved by these optimum
choices of B! and D' is given by

1 1
= -1 17
! 1 L. No a (55(1—|pl’1\2)|A\2’ﬂ> 1—(p1)2 (17)

43 " EQ-pIP)AR No

where

F) 2 (Vo4 var 1= fuli = v+ 1)2. (18)

The iterative algorithm for computing the correlation coefficients p!, and in turn
predicting the sequence of symbol error probabilities is as follows.

1. Set p° =0 and let [ = 1.

2. Compute the SINR +! from p!~! via (17).

3. Compute the symbol error probability Pr(e') from +! via (5).
4. Compute p' via (7).

5. Increment [ and go to step 2.

In Fig. 7, we compare the bit-error rate of the multiuser iterated-decision detector
with the bit-error rates of various other multiuser detectors as a function of SNR, when
decoding P = 128 simultaneous users with signatures of length () = 128 with power
control. The multiuser iterated-decision detector significantly outperforms the other
detectors at moderate to high SNR, and asymptotically approaches the matched filter

bound for the single-user channel. Thus, perfect MAI cancellation is approached at high
SNR.

4Using a matrix identity, B! can alternatively be computed as
-1
B' x HA [NOIP L E(Ip - plpHATHIHA| |

which may be easier to evaluate depending on relative sizes of P and Q.
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Figure 7: Experimentally observed QPSK bit-error rate for the multiuser iterated-
decision detector and various other multiuser detectors as a function of SNR per bit.
The number of simultaneous users is 128, and the signature length is 128.
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Fig. 8 depicts the bit-error rates of the detectors as a function of the number of users
P with signatures of length () = 128, an SNR per bit of 7 dB, and power control. The
multiuser iterated-decision detector has clearly superior performance when P < 2Q).

As a final comment, we note that an adaptive implementation of the iterated-decision
multiuser detector is straightforward to derive, and is directly analogous to the adap-
tive iterated-decision equalizer of Section 2.1. Likewise, for coded systems, an iterated-
decision multiuser decoder is readily obtained, and takes a form analogous to the iterated-
decision equalizer-decoder structure mentioned in Section 2.
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