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Abstract. A new and efficient class of nonlinear receivers is introduced for digital communication systems.
These “iterated-decision” receivers use optimized multipass algorithms to successively cancel interference from a
block of received data and generate symbol decisions whose reliability increases monotonically with each iteration.
Two variants of such receivers are discussed: the iterated-decision equalizer and the iterated-decision multiuser
detector. Iterated-decision equalizers, designed to equalize intersymbol interference (ISI) channels, asymptotically
achieve the performance of maximum-likelihood sequence detection (MLSD), but only have a computational
complexity on the order of a linear equalizer (LE). Even more importantly, unlike the decision-feedback equalizer
(DFE), iterated-decision equalizers can be readily used in conjunction with error-control coding. Similarly, iterated-
decision multiuser detectors, designed to cancel multiple-access interference (MAI) in typical wireless environments,
approach the performance of the optimum multiuser detector in uncoded systems with a computational complexity
comparable to a decorrelating detector or a linear minimum mean-square error (MMSE) multiuser detector.

Keywords: equalization, multiuser detection, decision-feedback equalizer, multipass receivers, multistage detec-
tors, iterative decoding, stripping, interference cancellation

1. Introduction have some serious shortcomings. First, decisions made

Over the last several decades, a variety of equalization
techniques have been proposed for use on intersym-
bol interference (ISI) channels. Linear equalizers (LE)
are attractive from a complexity perspective, but often
suffer from excessive noise enhancement. Maximum-
likelihood sequence detection (MLSD) [1] is an asymp-
totically optimum receiver in terms of bit-error rate
performance, but its high complexity has invariably
precluded its use in practice. Decision-feedback equa-
lizers (DFE) [2] are a widely used compromise, re-
taining a complexity comparable to the LE, but incur-
ring much less noise enhancement. However, DFEs still
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at the slicer can only be fed back to improve future
decisions due to the sequential way in which the re-
ceiver processes data. Thus, only postcursor ISI can
be subtracted, so even if ideal postcursor ISI cancel-
lation is assumed, the performance of the DFE is still
limited by possible residual precursor ISI and noise
enhancement. Second, and even more importantly, the
sequential structure of the DFE makes it essentially in-
compatible for use in conjunction with error-control
coding (on channels not known at the transmitter, as is
the case of interest in this paper). As a result, use of the
DFE has been largely restricted to uncoded systems.
In parallel to these developments, a variety of mul-
tiuser detectors have been proposed for code-division
multiple-access (CDMA) channels over the last decade
and a half as solutions to the problem of mitigating
multiple-access interference (MAI) [3]. Given the close
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coupling between the problems of suppressing ISI and
MAL, there are, not surprisingly, close relationships be-
tween corresponding solutions to these problems. For
example, decorrelating detectors and linear minimum
mean-square error (MMSE) multiuser detectors—
the counterparts of zero-forcing and MMSE linear
equalizers—are attractive from a complexity perspec-
tive, but suffer from noise enhancement. Optimum
maximum-likelihood (ML) multiuser detection, while
superior in performance, is not a practical option be-
cause of its high complexity.

In this paper, we introduce a class of promising mul-
tipass receivers that is a particularly attractive alterna-
tive to all these conventional equalizers and detectors.
Specifically, in Section 2 we describe the iterated-
decision equalizer, and in Section 3 we describe the
corresponding iterated-decision multiuser detector. In
particular, we show that these new receivers achieve
asymptotically optimum performance while requiring
surprisingly low complexity.

2. The Iterated-Decision Equalizer

In the discrete-time baseband model of the pulse am-
plitude modulation (PAM) communication system we
consider, the transmitted data is a white M-ary phase-
shift keying (PSK) stream of coded or uncoded sym-
bols x[n], each with energy &. The symbols x[n] are
corrupted by a convolution with the impulse response
of the channel, a[n], and by additive noise, w[n], to
produce the received symbols

rln] = Za[k]x[n — k] + w(n]. (1)

k

The noise w[n] is a zero-mean, complex-valued, circu-
larly symmetric, stationary, white Gaussian noise se-
quence with variance N that is independent of x[n].
The associated channel frequency response is denoted
by

Aw) =) alnle™/". )

As increasingly aggressive data rates are pursued in
wideband systems to meet escalating traffic require-
ments, ISI becomes increasingly severe. Accordingly,
in this paper we pay special attention to the perfor-
mance and properties of the equalizers in this regime.
For the purposes of analysis, a convenient severe-
ISI channel model we will exploit is one in which

a[n] is a finite impulse response (FIR) filter of length
L, where L is large and the taps are mutually inde-
pendent, zero-mean, complex-valued, circularly sym-
metric Gaussian random variables with variance o”.
The channel taps a[n] are also independent of the data
x[n] and the noise w[n]. It is also worth pointing out
that this is also a good channel model for many wireless
systems employing transmitter antenna diversity in the
form of linear space-time coding [4].

In this section and Section 2.1, we summarize the
results of [5], which focuses on the basic theory and
fundamental limits of the iterated-decision equalizer
when the receiver has accurate knowledge of a[n]. In
Section 2.2, we develop and analyze adaptive imple-
mentations in which the channel coefficients a[n] are
not known a priori. Examining the fixed and adap-
tive scenarios separately and comparing their results
allows system designers to isolate channel tracking ef-
fects from overall equalizer behavior. We emphasize
that in both cases, we restrict our attention to trans-
mitters that have no knowledge of the channel, which
is the usual case for reasonably rapidly time-varying
channels.

The iterated-decision equalizer we now develop pro-
cesses the received data in a block-iterative fashion.
Specifically, during each iteration or “pass,” a linear
filter is applied to a block of received data, and tenta-
tive decisions made in the previous iteration are then
used to construct and subtract out an estimate of the
ISI. The resulting ISI-reduced data is then passed on
to a slicer, which makes a new set of tentative deci-
sions. With each successive iteration, increasingly re-
fined hard decisions are generated using this strategy.

The detailed structure of the iterated-decision equa-
lizer is depicted in Fig. 1. The parameters of all sys-
tems and signals associated with the /th pass are de-
noted using the superscript [. On the /th pass of the
equalizer where / = 1, 2, 3, .. ., the received data r[n]
is first processed by a linear filter b’[n], producing the
sequence

#n] = Zbl[k]r[n — k. (3)
k
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Figure 1. Tterated-decision equalizer structure.
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Next, an appropriately constructed estimate 7/ [1] of the
ISI is subtracted from #[n] to produce i[n), ie.,

n] =#[n] - 2'[n] 4)
where

2l =) d'KIE" [0 — k1. )
k

(In subsequent analysis, we will show that x°[n] is
never required for the first iteration, so the sequence
may remain undefined.) Since 2![n] is intended to be

a[n]. A formal statement of this result and its associated
proof is developed in [5].

The second-order model (8) turns out to be a use-
ful one for analyzing and optimizing the performance
of the iterated-decision equalizer. In particular, it can
be used to obtain a surprisingly accurate estimate of
the symbol error rate for M-ary PSK even though we
ignore the higher-order statistical dependencies.

The first step in developing these results is to observe
that (8) implies that the signal-to-interference+noise
ratio (SINR) at the slicer input during each pass can be
written, using (9), as

E|E[AB?

y!(B!, D) =

some kind of ISI estimate, we restrict attention to the
case in which

d'[o] = % /ﬂ D' (w)dw = 0. (6)

o

Finally, the slicer then generates the hard decisions
#![n] from %'[n] using a minimum-distance rule.

The composite system consisting of the channel in
cascade with / iterations of the multipass equalizer can
be conveniently characterized. In particular, when x[n]
and £/~'[n] are sequences of zero-mean uncorrelated
symbols with energy &, such that their normalized cor-
relation is of the form

Elx*[n]- 2'7'[K]] _
g, -

the slicer input after / iterations can be expressed as'

o' =18[n — k1, )

%'[n] ~ E[AB"Ix[n] + V'[n], ®)

where A(w) and B! (w) are the frequency responses of
a[n] and b'[n] respectively, where vl[n]is a complex-
valued, marginally Gaussian, zero-mean white noise
sequence, uncorrelated with the input symbol stream
x[n], and having variance

var v'[n] = NGE[|B'|*1 + & (1 — (p'~1?)var[AB"]
+&END' — p'~'(AB' — E[AB'))|*],
9

and where the accuracy of the approximation in (8)
increases with the length L of the impulse response

NoE[IB'P] + & (1 = (p=HP)var[AB'] + & E[|D' — p'~'(AB' — E[AB'])|*]

(10)

and that the probability of symbol error at the /th itera-
tion may be approximated by the high signal-to-noise
ratio (SNR) formula for the M-ary PSK symbol error
rate of a symbol-by-symbol threshold detector for ad-
ditive white Gaussian noise (AWGN) channels, given
by [6]

Pr(el) = 2Q(sin<%>\/2y’), (11)

where

Q(v) = 12 gt (12)

1 / o
— e
A/ 2w Jv
For the special case of QPSK (M =4), the extension
of (11) to arbitrary SNRs is given by [6]

Pr(e') = Q(W/yHI2 — QWY1 (13)

Note that this equivalent channel model effectively sug-
gests that, in the absence of coding, we replace the com-
putationally expensive Viterbi-algorithm-based MLSD
with a simple symbol-by-symbol detector, as if the
channel were an AWGN channel.”

Since the probability of error given by (11) or (13)
is a monotonically decreasing function of SINR, a na-
tural equalizer design strategy involves maximizing the
SINR over all B! (w) and D! (w). Thus, the optimal fil-
ters are [5]

A*(w)
No + & (1 = (p=HH)|A(w)]?

B'(w) (14)

D'(w) = p'"'(A(w)B'(w) — E[AB']). (15)
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The result for D!(w) is intuitively satisfying. If
=Y n]=x[n] so that ,0”1 =1, then the output of
D'(w) exactly reproduces the ISI component of #[n].
More generally, p'~! describes our confidence in the
quality of the estimate x/~'[n]. If X/~'[n] is a poor
estimate of x[n], then p/~! will in turn be low, and
consequently a smaller weighting is applied to the ISI
estimate that is to be subtracted from #[n]. On the
other hand, if x/~'[n] is an excellent estimate of x[n],
then p'~' a1, and nearly all of the ISI is subtracted
from 7 [n]. Thus, while the strictly causal feedback fil-
ter of the DFE subtracts out only postcursor ISI, the
noncausal nature of the filter d'[n] allows the iterated-
decision equalizer to cancel both precursor and postcur-
sor ISI. Note also that the center tap of d'[n] is indeed
asymptotically zero, as stipulated by (6).

Some comments can also be made about the special
case when / = 1. During the first pass, the feedback
branch is not used because p° =0, so the sequence
£%[n] does not need to be defined. Moreover, the filter
B!(w) takes the form

A ()

1 -
B e AP

(16)

which is the minimum mean-square error linear
equalizer (MMSE-LE). Thus the performance of the
iterated-decision equalizer, after just one iteration, is
identical to the performance of the MMSE-LE. In
Section 2.1, we show that the equalizer, when using
multiple iterations, performs significantly better than
both the MMSE-LE and the minimum mean-square
error decision-feedback equalizer (MMSE-DFE).

We now proceed to simplify the SINR expres-
sion that characterizes the resulting performance. With
the optimum B'(w) and D'(w), the SINR from (10)
becomes [5]

] 1 1
1) —, a7
’ (E[—H‘a,] ) =

where

&1 = ("H)IAW@)
No '

o (w) = (18)

Now since our channel model implies that A(w) is a
complex-valued, circularly symmetric Gaussian ran-
dom variable with zero mean and variance Laaz, it fol-
lows that o/ (w) is exponentially distributed with mean

L=

g = f (19)
where
2

is the expected SNR at which the transmission is re-
ceived. Evaluating the expectation in (17), our simpli-
fied SINR expression is [5]

1 _ 1 _ . 1 _
V‘(slef’El@f) 1) —p @

where
o0 e—l
Ei(s) :/ Tdt (22)

is the exponential integral.

Equation (21) can, in turn, be used in the following
convenient iterative algorithm for determining the set
of correlation coefficients p' to be used at each iteration,
and simultaneously predicting the associated sequence
of symbol error probabilities:

1. Set p®=0andlet! =1.

2. Compute the SINR y/ at the slicer input on the /th
decoding pass from p'~!via (21), (19), and (20). [It
is worth pointing out that for shorter ISI channels,
we can alternatively (and in some cases more ac-
curately) compute y! from p/~! via (17) and (18),
where the expectation is replaced by a frequency
average. ]

3. Compute the symbol error probability Pr(e') at the
slicer output from y! via (11).

4. Compute the normalized correlation coefficient p’
between the symbols x[n] and the decisions £/[#]
generated at the slicer via the approximation [8]

! N !
~ 1 —2sin" | — ) Pr(e’). 23
P < M) () (23)
5. Increment / and go to step 2.
In the special case of QPSK, it can be shown that the
algorithm can be streamlined by eliminating Step 3

and replacing the approximation (23) with the exact
formula

pl=1-20(/y). (24)
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Figure 2. Theoretical iterated-decision equalizer performance as a
function of SNR per bit. The successively lower solid curves depict
the QPSK bit-error rate as a function of SNR per bit for 1, 2, 3, 5,
and oo decoding iterations.

2.1. Performance

In Fig. 2, bit-error rate is plotted as a function of SNR
per bit for 1,2,3,5, and an infinite number of iter-
ations. We observe that steady-state performance is
approximately achieved with comparatively few iter-
ations, after which additional iterations provide only
negligibly small gains in performance. It is significant
that few passes are required to converge to typical tar-
get bit-error rates, since the amount of computation is
directly proportional to the number of passes required;
we emphasize that the complexity of a single pass of
the iterated-decision equalizer is comparable to that of
the DFE or the LE.

Figure 3 compares the theoretical performance of
the iterated-decision equalizer when the number of
channel taps L — oo with experimentally obtained re-
sults when L =256. The experimental results are in-
deed consistent with theoretical predictions, especially
at high SNR (¢ — 0) where it has been theoretically
shown [5] that the equalizer achieves the matched filter
bound, i.e., y = 1/¢.

For comparison, in Fig. 3 we also plot the theoretical
error rates of the ideal MMSE-DFE, the MMSE-LE,
and the zero-forcing linear equalizer (ZF-LE), based
on their asymptotic SINRs in the large ISI limit [5]:

ymmse-pre = exp{e E1(¢)} — 1 (25)
1

—_ 1 26
CetE(2) (26)

YMMSE—-LE =

S Simulated ZFELE

Theoretical
MMSE-LE::

Probability of Bit Error

Simulated

107 i MMSE=DFE N ::::: 4
X Theoretical
------ -MMSE—DFE NG
1075 L L L 1 i ! t
0 2 4 6 8 10 12 14 16

SNR/bit (dB)

Figure 3. Theoretical (L — oo) and experimentally observed
(L =256) performance for various equalizers. The solid curves de-
pict QPSK bit-error rates for the iterated-decision equalizer, MMSE-
DFE, MMSE-LE, and ZF-LE as a function of SNR per bit.

yze-1E = 0. 27

We can readily see that at moderate to high SNR,
the iterated-decision equalizer requires significantly
less transmit power than any of the other equa-
lizers to achieve the same probability of error. Specif-
ically, at high SNR (¢ — 0), we have from [5] that
ymmse-pre — 1/¢e™ and ymvse-—re — 1/[¢(—=To —
In¢)]—1, where I'y=0.57721--- denotes Euler’s
constant. Thus, the MMSE-DFE theoretically requires
e times or 10Iyloge~2.507 dB more transmit
power to achieve the same probability of error as
the iterated-decision equalizer. Moreover, as ¢ — 0,
the MMSE-LE requires increasingly more transmit
power than the iterated-decision equalizer to achieve
the same probability of error. The ZF-LE is even worse:
yzr—Lg = 0 for all ¢, which is expected since the zeros
of the random channel converge uniformly on the unit
circle in the long ISI limit [9]. These results emphasize
the strong suboptimality of conventional equalizers.
The performance of the iterated-decision equalizer
for channels whose taps are few in number, non-
Gaussian, and/or correlated is discussed in [5, 10].

2.2.  Adaptive Implementations

We now develop an adaptive implementation of the
iterated-decision equalizer, in which optimal FIR fil-
ter coefficients are selected automatically (from the re-
ceived data) without explicit knowledge of the channel
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characteristics. We focus on the single channel case;
multichannel generalizations follow in a straightfor-
ward manner, as developed in [10].

The iterated-decision equalizer is designed to pro-
cess received data in a block-iterative fashion, so it is
ideally suited for packet communication in which the
packet size is chosen small enough that the channel en-
countered by each packet appears linear time-invariant.
As is typically the case with other adaptive equalizers,
the adaptive iterated-decision equalizer makes use of
training symbols sent along in the packet with the data
symbols. Suppose that a block of white M-ary PSK
symbols x[n] for n=0,1,..., N —1 is transmitted;
some of the symbols (not necessarily at the head of the
packet) are for training, while the rest are data symbols.

In the adaptive implementation of the iterated-
decision equalizer, the filters b'[n] and d'[n] for the
Ith iteration are finite-length filters. Specifically, b'[n]
has J; strictly anticausal taps and J; strictly causal taps
plus a center tap, while d'[n] has K strictly anticausal
taps and K strictly causal taps with no center tap.

Before the first pass (I = 1), we need to initialize the
hard decisions £°[n]. Since the locations and values of
the training symbols in x[n] are known at the receiver,
we set £°[n] = x[n] for the n corresponding to those
locations. For all the other n between 0 and N — 1
inclusive, we set °[n] to be a “neutral” value—for
white PSK symbols, this value should be zero.

On the /th pass of the equalizer where /=

1,2,3, ..., theslicer input ¥'[n] can be expressed as®
'[n) = ¢'q[n] (28)
where
[ @'-nD" ] rln+ Ji
B LDT rln — J]
(=d'[-K1])T n+ K]
¢ = : q'[n]= :
(—d'[-1])} - n+1]
(=d'11)* -1
RS & - Kol |
(29)

Using a minimum-distance rule, the slicer then gener-
ates the hard decisions x/[n] from %![r] for all n bet-
ween 0 and N — 1 inclusive, except for those n corres-

ponding to the locations of training symbols in x[n].
For those n, we set x'[n] = x[n].

In the /th iteration, there are two sets of data available
to the receiver: [n] and £'~'[n],n=0,1,..., N — 1.
If we assume that x[n]~ x'~![n] for the purposes of
determining the optimal filters (as is similarly done in
the adaptive DFE in decision-directed mode), then it is
reasonable to choose b![n] and d'[n] so as to minimize
the sum of error squares:

E)= Y K ' -"dmP. 30)

n=—00
Since this is a linear least-squares estimation problem,
the optimum cis[11]

cd =[d'1 ', 31)

opt

where ®' =3 q'[n1q"'[n] and ' = )
#=V"[n]q'[n]. The resulting equalizer lends itself read-
ily to practical implementation, even for large fil-
ter lengths. In particular, the matrix ®' can be effi-
ciently computed using correlation functions involving
r[n] and £'~'[n], and [®']! can be efficiently com-
puted using formulas for the inversion of a partitioned
matrix [12].

We now turn to a couple of implementation issues.
First, we would ideally like our finite-length adaptive
filters to approximate (14) and (15), which are infi-
nite length. The optimal &'[n] in (14) includes a fil-
ter matched to a[n], and the optimal d'[n] in (15) in-
cludes a cascade of a[n] and the corresponding matched
filter, suggesting that a reasonable rule of thumb is
to select J; =J,=K; =K, =L. Second, the block-
iterative nature of the equalizer allows the training
symbols to be located anywhere in the packet. Since—
in contrast to the DFE—the locations do not appear
to affect equalizer performance, we arbitrarily choose
to uniformly space the training symbols within each
packet.

In Fig. 4, we plot the bit-error rate of the adaptive
iterated-decision equalizer as a function of the num-
ber of iterations, for varying amounts of training data.
The graph strongly suggests that there is a threshold
for the number of training symbols, below which the
adaptive equalizer performs poorly and above which
the bit-error rate consistently converges to approxi-
mately the same steady-state value regardless of the
exact number of training symbols. The excess training
data is still important though, since the bit-error rate
converges quicker with more training data.



Block-Iterative Interference Cancellation Techniques 203

Probability of Bit Error

-5 : , : . ;
] 5 10 15 20 25 30
lterations

Figure 4. Experimentally observed QPSK bit-error rate for the
adaptive iterated-decision equalizer as a function of the number of
decoding iterations and the number of training symbols transmitted
with each block of 10000 data symbols at an SNR per bit of 7 dB.
The 100-tap channels were equalized using 201 feedforward taps
and 200 feedback taps.

We next examine the probability of bit error as a
function of SNR for varying amounts of training data.
From Fig. 5 we see that, as expected, performance
improves as the amount of training data is increased.
Moreover, only a modest amount of training symbols
is required at high SNR for the adaptive equalizer to
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Figure 5. Experimentally observed QPSK bit-error rate for the
adaptive iterated-decision equalizer and the RLS-based adaptive DFE
(with forgetting factor A =1) as a function of SNR per bit. Blocks
of 10000 data symbols were transmitted through 128-tap channels,
which were equalized using 257 feedforward taps and 256 noncausal
feedback taps in the case of the iterated-decision equalizer, and us-
ing 257 feedforward taps and 128 strictly causal feedback taps in the
case of the DFE.

perform as if the channel were exactly known at the
receiver.

For comparison purposes, we also plot in Fig. 5 the
performance of the recursive least squares (RLS) based
implementation of the adaptive DFE [11]. The DFE
performs significantly worse than the iterated-decision
equalizer for comparable amounts of training data. In-
deed, the high SNR gap is even larger than the 2.507 dB
determined for the nonadaptive case. This is because,
as Figs. 3 and 5 show, the performance of the adap-
tive DFE is not accurately predicted by the nonadap-
tive MMSE-DFE, even in the long ISI limit. It is also
worth stressing that the RLS-based adaptive DFE is
much more computationally expensive than the adap-
tive iterated-decision equalizer because the RLS-based
DFE requires the multiplication of large matrices for
each transmitted symbol, whereas the iterated-decision
equalizer essentially requires the computation of one
large matrix inverse per iteration for all the symbols
in the packets, with the number of required iterations
being typically small.

2.3.  Coded Implementations

For ideal bandlimited AWGN channels, powerful cod-
ing schemes such as trellis-coded modulation with
maximum likelihood (ML) decoding can improve the
performance over uncoded PAM so that channel capac-
ity is approached.

On the other hand, for bandlimited channels with
strong frequency-dependent distortion, coding must
be combined with equalization techniques. While the
MMSE-DFE has certain attractive characteristics in
the context of coded systems [13, 14], in many prac-
tical settings it is difficult to use effectively. In par-
ticular, in typical implementations the MMSE-DFE
cancels postcursor ISI by using delay-free symbol de-
cisions, which in a coded system are often highly
unreliable compared to ML decisions, and performance
is often poor as a result. From this perspective, the
iterated-decision equalizer, which avoids this problem,
is a compelling alternative to the MMSE-DFE in coded
systems.

The structure of a communication system that com-
bines the iterated-decision equalizer with coding is
shown in Fig. 6. Although the sequence x[n] is first
encoded before it is transmitted, the approximation in
(8) is still valid because typical trellis codes and ran-
dom codes generally produce white symbol streams
[7]1. What makes the iterated-decision equalizer an
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Figure 6. Structure of a communication system that combines iterated-decision equalization with channel coding.

attractive choice when coding schemes are involved
is that the structure of the equalizer allows equaliza-
tion and coding to be largely separable issues. One
of the main differences now in the iterated-decision
equalizer is that the symbol-by-symbol slicer has been
replaced by a soft-decision ML decoder; the other is
that the batch of decisions must be re-encoded before
being processed by the filter @’ [1]. For shorter ISI chan-
nels, performance of the system may be improved by
inserting an interleaver after each encoder to reduce
correlation between adjacent symbols, and by insert-
ing a corresponding deinterleaver before the decoder
to reduce the correlation of the residual IST and noise.
Among a variety of interesting issues to explore is the
relationship between the structure and performance of
such coded systems and those developed in [15].

3. The Iterated-Decision Multiuser Detector

We now develop the counterpart of the iterated-decision
equalizer for the multiuser detection problem. As we
will see, the resulting detectors are structurally similar
to multistage detectors [16] in that they both generate
tentative decisions for all users at each iteration and
subsequently use these to cancel MAI at the next iter-
ation. However, unlike those original multistage de-
tectors, the new detectors developed in this section

decisions and are optimized to maximize the signal-to-
interference + noise (SINR) ratio at each iteration.
For the purposes of illustration (and to simplify
exposition), we consider a P-user discrete-time syn-
chronous channel model, where the ith user modu-
lates an M-ary PSK symbol x; onto a randomly gener-
ated signature sequence h; = [h;[1], h;[2], ...,k [Q]])7
of length Q assigned to that user, where the taps of the
sequence are mutually independent, zero-mean, com-
plex-valued, circularly symmetric Gaussian random
variables with variance 1/ Q. The received signal is

r = HAx +w, (32)

where H=T[h|---|hp] is the Q x P matrix of sig-
natures, A =diag{A,, ..., Ap} is the P x P diagonal
matrix of received amplitudes, x =[x, x, ..., xp]”
is the P x 1 vector of data symbols, and w is a
Q-dimensional Gaussian vector with independent
zero-mean, complex-valued, circularly symmetric
components of variance Nj.

The structure of the iterated-decision multiuser de-
tector is depicted in Fig. 7. The parameters of all
systems and signals associated with the /th pass are
denoted using the superscript /. On the [th pass
of the equalizer where [ =1,2,3, ..., the received
vector r is first premultiplied by a P x Q0 matrix
B = [blll e |blP]T, producing the P x 1 vector

. . . . ey . ~ T
explicitly take into account the reliability of tentative ¥ =B'r. (33)
,’71 'f[ ;
[ — 1 D I . - 2
: 7l A % g=2 K
P— BZT 2 P 2 T o Qzl
: FIA j},z . :
[/ — ! =§n> = T} -5
2l
4 le— 211
al !
5 t lee J/\;l—l

.
:-\.
.
&)

Figure 7. Iterated-decision multiuser detector structure.
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Next, an appropriately constructed estimate z' of the
MALI is subtracted from ¥ to produce % ie.,

=% -7 (34)
where

i =D’y (35)
withD! =[d/|---|d’],a P x P matrix. (In subsequent

analysis, we will show that %° is never required for the
first iteration, so the vector may remain undefined.)
Since 7! is intended to be some kind of MAI estimate,
we restrict attention to the case in which

D)y =My =---=D)Hpr =0. (36)

Finally, a bank of slicers then generates the P x 1 vec-
tor of hard decisions %/ from %X’ using a minimum-
distance rule.

Let us now characterize the composite system con-
sisting of the signatures, the channel, and the multipass
multiuser detector.

Let x and %/~! be vectors of zero-mean uncorrelated
symbols, each with energy &; and let the normalized
correlation matrix of the two vectors be expressed in
the form

Ex-X7"1 .
BT = o & gl ),
s
(37)
where ,of_l can be interpreted as a measure of the

reliability of )?f_l. Moreover, let D' satisfy the na-
tural requirement (37). Then, the slicer input )Zf de-
fined via (35) with (34), (36), and (33) satisfies, for
i=12,..., P,

A =b'mAx 40 (38)

&bl A,

+&(d} - o' (b HA — b HAE;;)")
x (d = p'~"" (b} HA — b HAE;)")  (39)

where I is the identity matrix and E;; is the P x P
matrix with a 1 in the ith row and column as its only
nonzero entry.

Equation (39) implies that the SINR at the ith slicer
input during each pass can be written as

'h; A |
(bl ) = S AL v ] (40)

var v;

and that the probability of symbol error for the ith user
at the /th iteration can be approximated by (11) for the
general M-ary PSK case or (13) for the QPSK case.
Since the probability of error given by (11) or (13)is a
monotonically decreasing function of SINR, a natural
detector design strategy involves maximizing the SINR
of the ith user over all b} and d!.

For a given filter b, it is straightforward to find the
optimal filter df. In particular, note that dﬁ appears only
in a non-negative denominator term of the SINR ex-
pression given by (41) and (40), and that term can be
made exactly zero by setting

d =p""(b'HA —b/HAE;)" fori=1,2,...,P

@1
or, equivalently,
D' = o' [B"HA
— diag{(B'HA) 1, ..., B HA)»»}]".  42)

Using (42) to eliminate dﬁ , the SINR expression in (41)
now simplifies to

vi (bi) =

where vf is complex-valued, marginally Gaussian,

zero-mean, and uncorrelated with x;, having variance
var v} = Nob! bl + & (b HA — b] HAE;;)

x (1= p'~'p"""") (b HA — b/'HAE,;)’

 Nob!'b! + & (b HA — b/ HAE;;) (1 — p/~!p/~1") (b HA — b/ HAE,;)"’

(43)

This result for d! is intuitively satisfying. If £/ ~! =
-1 _ : 1" ol—1
x; so that p;”" = 1, then the inner product d; X

exactly reproduces the MAI component of Ff. More
generally, pf_' describes our confidence in the quality
of the estimate )?f_l. If )?ll “lisa poor estimate of x;,
then p/~! willin turn be low, and consequently a smaller

i
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weighting is applied to the MAI estimate that is to be
subtracted from 7. On the other hand, if £/~' is an
excellent estimate of x;, then ,ol_l ~ 1, and nearly all of

the M Al is subtracted from fil . Note that the diagonal of
D' is indeed asymptotically zero, as stipulated by (37).
Next, we optimize the vector bf. The identity
(b/ HA — b/ HAE; )1 — p'~'p'""")
x (b!'HA — b} HAE;;)'
= (b/'HA) (@ — p'~'p'""") (b HA)"
)2 2
= (1= (o)) b} s (44)

can be used to rewrite (44) as

1
(Wl
vi(b;) = —, (45)
¢;(]bg) (=)
where
& [bi'h; A
¢I[(bi) = — | i | —— .
b} [NoI + EHAI — p'=! p!=1)ATH |b!
(46)

Using the Schwarz inequality, we have*

bl ;A |
= [b!' [T + £ HAQ - o/ o) ATHT] 2
x [Nl +EHAQ - o'~ o'~ HATHT] A,
< b] NI+ EHA®T — p'~' o) ATH b
x ATh! NI+ EHA - o'~ p! = HATH] 'y 4,
47)

with equality if and only if

bl o [AVOI + EHA - o' " HATH] 'y 4,
for i=1,2,...,P. (48)
Substituting (48) into (47), we see that (49) maximizes
(47) and, in turn, (44). When we choose the propor-

tionality constant to be the same fori =1,2,..., P,
we may write’

B' o [MoI+EHAI—p o'~ )ATH] 'HA. (49)

Some comments can be made about the special case
when / = 1. During the first pass, feedback is not used

because p® =0, so the vector X° does not need to be
defined. Moreover, the filter B! takes the form

B! o [NVoI + EHAATH|"'HA, (50)

which is an expression for the linear MMSE multiuser
detector. Thus the performance of the iterated-decision
multiuser detector, after just one iteration, is identical to
the performance of the linear MMSE multiuser detec-
tor. In Section 3.1, we show that the iterated-decision
multiuser detector, when using multiple iterations, per-
forms significantly better than the linear MMSE mul-
tiuser detector.

The iterated-decision multiuser detector also has an
interesting relationship with another multiuser detec-
tor. If ,ol‘1 is set to I, then the matrices (43) and (50)
for the iterated-decision multiuser detector become the
matrices used for the multistage detector [16]. In other
words, the iterated-decision multiuser detector expli-
citly takes into account the reliability of tentative de-
cisions, while the multistage detector assumes that
all tentative decisions are correct. As we will see in
Section 3.1, this difference is the reason that the de-
cisions of the former asymptotically converge to the
optimum ones, while the decisions of the latter often
diverge.

We now proceed to simplify the SINR expression
that characterizes the resulting performance for the ith
user. With the optimum bﬁ and dﬁ , we have, substituting
(48) into (47),

¢! = E AT [AGI + EHA
x I—p ' HAHT "4, (51)

After some algebraic manipulation, the SINR from
(46), with (52), then becomes

; 1 ) 1
LS (S — O — 2
’ (([I +a'17 1= (o1’ 2

where

;& —ppmHATHTHA
o = .
No

(33)

For the case of accurate power control, i.e., A = Al
so p'~1 = p/~'1, it is shown in Appendix A that in the
large system limit (P — oo with Zp / QO held con-
stant), the SINR in (53) for each user converges in the
mean-square sense to



Block-Iterative Interference Cancellation Techniques 207

, 1 1
y =<1—_1>‘ﬁ (54
1_5_/3;:(%,5) 1 =)

where

FO, 02 (Jy0+ VD2 +1— /30 = V22 +1)?

(55)
and
I a-=hH»
—_—= 56
& c (56)
with
1 &IAP
— = , 57
: o (57)
the received SNR.

The iterative algorithm for computing the set of cor-
relation coefficients p/, and in turn predicting the se-
quence of symbol error probabilities is as follows.

1. Set p°=0and let!=1.

2. Compute the SINR y/ from p'~! via (55), (57), and
(58). [For smaller systems, we can alternatively (and
in some cases more accurately) compute y! from
p'~1 by averaging (53) over all users.]

3. Compute the symbol error probability Pr(e’) from
y!via (11).

4. Compute p' via (23).

5. Increment / and go to step 2.

In the special case of QPSK, it can be shown that the
algorithm can be streamlined by eliminating Step 3
and replacing the approximation (23) with the exact
formula in (24).

3.1. Performance

From Steps 2 and 3 of the algorithm, we see that Pr(e’)
can be expressed as

Pr(e") = G(¢, B, '™, (58)

where G(-, -, -) is a monotonically decreasing function
in both SNR 1/¢ and correlation ,0"1, but a mono-
tonically increasing function in §. The monotonicity
of G(-, -, ) is illustrated in Fig. 8 where the succes-
sively lower solid curves plot G(¢, B, p) as a function

Probability of Symbol Error

10 10
1/1-p)

Figure 8. Iterated-decision multiuser detector performance, with
power control. The successively higher solid curves plot QPSK
symbol error rate as a function of the correlation coefficient p for
B=P/Q values0f 0.25,0.5, 1,2, and 4, with an SNR per bit of 7 dB.
Along each curve, o’s identify the theoretically predicted decreasing
error rates achieved with/ =1, 2, .. . decoding passes, and the inter-
sections with the dashed line are the steady-state values (I — o0).

of 1/(1 — p) for various values of 8, with an SNR per
bit of 7 dB and power control. Meanwhile, from Step 4
of the algorithm, we see that we can also express Pr(e))
as

Pr(e’) = H(p"), (59)

where H(-) is a monotonically decreasing function of
p'. The dashed line in Fig. 8 plots H(p) as a function
of 1/(1—p).

At a given 1/¢ and S, the sequence of error prob-
abilities Pr(e') and correlation coefficients p’ can be
obtained by starting at the left end of the solid curve
(corresponding to p° = 0) and then successively mov-
ing horizontally to the right from the solid curve to
the dashed line, and then moving downward from the
dashed line to the solid curve. Each “step” of the re-
sulting descending staircase corresponds to one pass of
the multiuser detector. In Fig. 8, the sequence of opera-
ting points is indicated on the solid curves with the o
symbols.

That the sequence of error probabilities Pr(e!),
Pr(e?), ... obtained by the recursive algorithm is
monotonically decreasing suggests that additional it-
erations always improve performance. The error rate
performance for a given SNR of 1/¢ and a given
eventually converges to a steady-state value of Pr(e®),
which is the unique solution to the equation
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Figure 9. Theoretical iterated-decision multiuser detector perfor-
mance with power control, as a function of SNR per bit. The suc-
cessively lower solid curves depict the QPSK bit-error rate with
B=P/Q=0.77 as a function of SNR per bit for 1, 2, 3, 5, and
oo decoding iterations.

Pr(e®) = G(¢, B, H™! (Pr(e™))), (60)

corresponding to the intersection of the dashed line and
the appropriate solid curve in Fig. 8.

If B is relatively small, Fig. 8 suggests that steady-
state performance is approximately achieved with
comparatively few iterations, after which additional
iterations provide only negligibly small gains in per-
formance. This observation can also be readily made
from Fig. 9, where bit-error rate is plotted as a function
of SNR per bit for 1, 2, 3, 5, and an infinite number of
iterations, with 8 = 0.77. It is significant that, for small
B, few passes are required to converge to typical tar-
get bit-error rates, since the amount of computation is
directly proportional to the number of passes required;
we emphasize that the complexity of a single pass of
the iterated-decision multiuser detector is comparable
to that of the decorrelating detector or the linear MMSE
multiuser detector.

As B increases, Fig. 8 shows that the gap between
the solid curve and the dashed curve decreases. Thus
the “steps” of the descending staircase get smaller,
and there is a significant increase in the number of
iterations required to approximately achieve steady-
state performance. Moreover, the probability of error
at steady-state becomes slightly larger.

When 8 is greater than some SNR-dependent thres-
hold, not only can (61) have multiple solutions, but
one of the solutions occurs at a high probability of
error, as illustrated by the curve in Fig. 8 corresponding
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:10 e e E
o
o
o :
2 NRpit=t0g8 | ¢ ¢ f i _____
9 .,,6
m‘]o T P P -
o
Q2
o
8 it =
10 SNRbit=124dB &, ... R e e e e o]
10 ; i ; ;

10
0.25 0.5 1 2 4 8

" Ratio of Users 1o Signature Length,

Figure 10. Theoretical iterated-decision multiuser detector perfor-
mance with power control, as a function of = P/Q. The solid
curves depict the QPSK bit-error rate as a function of 8 for various
values of SNR per bit, while the corresponding dashed curves depict
the single-user bound.

to B =4. The dependence of the threshold on SNR is
shown in Fig. 10. As the SNR increases, the 8 threshold
increases, and the bit-error rate curve becomes much
sharper at the threshold. Our experiments show that in
the high SNR regime the threshold is near g X e.

In Fig. 11, we compare the theoretical (Q — 00)
and simulated (Q = 128) bit-error rates of the iterated-
decision multiuser detector with the bit-error rates

10 T T T T
Simulated:Multistage Detector Theoretical Decarrelator
T ST EENS
Simulated Matched Filter. Detector
107 Theoretical Matched Filter Detector |
5 T Simulated & Thegretical =5
ut 10—2 | . Single—User Bound =~ Linear MMSE MFJD i
5 {Pertect MAl:Cancellation)
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2
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10 F N |
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—4
10 'k 3
1 0_5 1 ] 1
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Figure 11. Theoretical (Q — c0) and experimentally observed
(Q =128) performance for various multiuser detectors, with
power control. The solid curves depict QPSK bit-error rates with
B = P/Q =1 for the iterated-decision multiuser detector, multistage
detector, linear MMSE multiuser detector, decorrelating detector, and
matched-filter multiuser detector as a function of SNR per bit.
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Figure 12. Theoretical (Q — oo) and experimentally observed
(Q = 128) performance for various multiuser detectors, with power
control. The solid curves depict QPSK bit-error rates at an SNR per
bit of 10 dB for the iterated-decision multiuser detector, multistage
detector, linear MMSE multiuser detector, decorrelating detector,
and matched-filter multiuser detector as a function of 8 = P/ Q.

of various other multiuser detectors as a function of
SNR, with S =1 and power control. The iterated-
decision multiuser detector significantly outperforms
the other detectors at moderate to high SNR, and
asymptotically approaches the single-user bound.
Thus, perfect MAI cancellation is approached at high
SNR.

Next, in Fig. 12, we compare the effect of 8 on
the simulated bit-error rates of the various multiuser
detectors® when decoding Q = 128 simultaneous users
at an SNR per bit of 10 dB with power control. The
iterated-decision multiuser detector has clearly supe-
rior performance when 8 < 1.5. Figure 12 also shows
the corresponding theoretical curves for Q — oo.

3.2.  Adaptive Implementations

In Section 3, we derived the optimal matrices B’ and
D! for known values of the channel and the user sig-
natures. We now develop an adaptive implementation
of the iterated-decision multiuser detector, in which
optimal matrices are selected automatically (from the
received data) without explicit knowledge of the chan-
nel or the signatures. Furthermore, we assume that the
packet size is chosen small enough such that the chan-
nel encountered by each user’s packet appears fixed.
We consider a P-user discrete-time synchronous
channel model, where the i th user modulates an M-ary

PSK symbol sequence x;[n] for n=0,1,..., N —1
onto a signature sequence h; of length Q assigned to
that user; some of these symbols (not necessarily at the
head of the packet) are for training, while the rest are
data symbols. The received vector sequence is

r[n] = HAx[n] + w[n], 61)

where H=T[h|---|hp] is the Q x P matrix of sig-
natures, A =diag{A;,...,Ap} is the P x P dia-
gonal matrix of received amplitudes, x[n]=[x;[n],
x2[nl, ..., xp[n]]7 isthe P x 1 vector sequence of data
symbols, and w[n] is a noise vector sequence.

Before the first pass (I = 1) of the adaptive iterated-
decision multiuser detector, we need to initialize the
hard decisions f?[n] for each user’s packet. Since the
locations and values of the training symbols in each
packet are known at the receiver, we set )EIQ[n] =x;[n]
for the i and n corresponding to those locations. For
all other locations in the packets, we set )E[O[n] to be
a “neutral” value—for white PSK symbols, this value
should be zero.

On the /th pass of the detector where/ =1, 2,3, .. .,
eachreceived vectorr[n]forn =0,1, ..., N — Lisfirst
premultiplied by a P x Q matrix B! = bl bL1T,
producing the P x 1 vector

#[n] = B" r[n]. (62)
Next, an appropriately constructed estimate 2'[n] of the

MAI in that symbol period is subtracted from ¥'[n] to
produce %[n], ie.,

X[n] ='[n] - 2'n] (63)

where
#[n] =D"'% ' [n] (64)
with D! = [dlll e |dlp], a P x P matrix. Since Z'[n] is

intended to be some kind of MAI estimate, we restrict
attention to the case in which

DY =MDYyn=---=D)p =0. (65)

Thus, the ith component of the slicer input X'[n] can
be expressed as

Fl[n) = ' q[n] (66)
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where
[ b ] ri[n]
by.; roln]
—d! 7]
g=| qnl=| (67)

_dll—l i A,l:% [}’l]
—dl,, xi1ln]

L —d}; L 25"

with blj,  and dj" . being the jkth elements of B! and D/
respectively. The slicer then generates the hard deci-
sions )?f [n] from )?l[ [n] for all i and n, except for those
values corresponding to the locations of training sym-
bols in x;[n]. For those n, we set )2 [n] = x;[n].

If we assume that x;[n] ~ x [n] forall i and all n for
the purposes of determining the optimal matrices, then
it is reasonable to choose b; and d; so as to minimize
the sum of error squares:

gy =Y i1 - qm’. (68)

n=—oo
Since this is a linear least-squares estimation problem,
the optimum cf is [11]

= [®] ! (69)

i,0pt i’

where <I>l

> 4l ¢'[n] and ul= Y
Al 1*

[n]ql [n]. The matrices <I’ﬁ can be efficiently ob-
tamed by eliminating the (Q +i)th row and col-
umn of &' = Y% _ ¢'[n]lq' [n] where (¢'[n])T =
[(e[n])T & ~'[n])"],and [®!]~! can be efficiently com-
puted using formulas for the inversion of a partitioned
matrix [12].

The block-iterative nature of the multiuser detector
allows the training symbols to be located anywhere in
the users’ packets. Since the locations do not appear to
affect performance, we arbitrarily choose to uniformly
space the training symbols within each user’s packet.

In Fig. 13, we plot the probability of bit error as a
function of SNR for varying amounts of training data.
We see that, as expected, performance improves as the
amount of training data is increased. Moreover, only a
modest amount of training symbols is required at high
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Figure 13. Experimentally observed (Q =128) QPSK bit-error
rates for the adaptive iterated-decision multiuser detector and the
RLS-based adaptive linear multiuser detector (forgetting factor
A=1), with = P/Q =1 and power control. Each user transmit-
ted packets consisting of 10000 data symbols and either 500, 1000,
or 5000 training symbols.

SNR for the adaptive multiuser detector to perform as
if the channel and the signatures were exactly known
at the receiver.

For comparison purposes, we also plot in Fig. 13
the performance of the RLS-based implementation of
the adaptive linear multiuser detector [19]. The linear
multiuser detector performs significantly worse than
the iterated-decision multiuser detector for comparable
amounts of training data.

3.3.  Coded Implementations

For coded systems, an iterated-decision multiuser de-
coder is readily obtained, and takes a form analogous
to the iterated-decision equalizer-decoder structure de-
scribed in Section 2.3.

A communication system that combines iterated-
decision multiuser detection with coding is depicted in
Fig. 14. The data streams x;[n],i=1,2,..., P of the
P users are encoded using separate encoders, and the
corresponding streams of coded symbols are x;[n] for

i=1,2,...,Pandn=0,1,..., N—1. The received
vector sequence is thus
r[n] = HA[n]X[n] + w(n], (70)

where X[n]=[x[n], X2[n], ..., xp[n]]7. As in Sec-
tion 3.2, on the I/th pass of the multiuser detector,
each received vector r[n] for n=0,1,...,N—1 is
processed independently to produce a corresponding
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Figure 14. Structure of a communication system that combines iterated-decision multiuser detection with channel coding.

vector X'[n]. The sequences )Zf[n] fori=1,2,..., P
are then input to a bank of soft-decision ML de-
coders, thereby producing )?ll [n]fori=1,2,..., P,the
tentative decisions for x;[n]. These tentative decisions
must be re-encoded before being processed by the ma-
trix D' [n]. Performance may be improved by using
an interleaver after each encoder and a deinterleaver
before each decoder.

This multiuser decoder structure for coded systems
can be compared to those developed in [20, 21], which
have a significantly different but similarly intriguing
receiver structure.

Appendix A: Derivation of SINR Expression (55)

The derivation of (55) requires the following two
lemmas.

Lemma 1. [n the limit as P — oo with 2 P/0O
held constant, the expected value of xi’ is

n_ =14 _5_1. l
E[xi]=% = 48 ]:<§1,/3> (74)

where

Froo) 2 Gy 4+ v2r +1— 31— V2 + 12

With accurate power control, (52) becomes (75)
! 241 1-12 2 111
¢ = &|Alhy; [N()I + &0 = ()T IAI'HH ] h; Proof: From (75), the expected value of X,-l is
(71)
Substituting (73) into (46), we get
I 1
" ! — (=2
&IA\zhf[J\/oH-&(l—(p”‘)z)\AIZHH*]"h,' P
&0 - (p”l)z)lAlzhf[NoI + &0 — (P171)2)|A|2HH+]71hi 1
1= &1 — (oD APH NI + &(1 — (p'=)?)|APHH!] 'h; 1= (0712
(', 1 72)
X = (o1

where

! [T I G b
A =1-ghi|I+ZHE'| b (73)

with &/ defined by (57).

E[x/]

E|l(1 1H“‘I IHH"' _IH
B )
. [N
E I—EHHH—gHH )
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where we have used the identity’
YI+XY) '=a+YX)lY (77)

and the fact that the trace of a square matrix is equal to
the sum of its eigenvalues (denoted by 2 ;).

If the ratio of the number of users to the signature
length is, or converges to a constant:

Jim g _ B (0, +00), (78)

then the percentage of the P eigenvalues of H'H that
lie below x converges to the cumulative distribution
function of the probability density function [22]

1 a1t [x —s]*[r — x]*
Jp) =[1=p7178(x)+ 2px (79)

where

= (1- VY

(80)
2
= (1+B)
and the operator [-]* is defined according to
[u]™ £ max{0, u). (81)

Thus, we can compute the limit as P — oo of (78) as [3]
. 1
lim E[X,] = lim Ef —F————
P—oo P—o0 1+ ?)‘(HIH)
| =
o 1+ éx
&-[

1
:1_@ ]-'(gl,ﬂ) 0 (82)

fe(x)dx

We can use Lemma 1 to prove an even stronger result.

Lemma 2. [n the limit as P — oo with B held
constant,
!
| ms. & 1
— - F 83
Xi 15 ( & ﬂ) (83)

Proof: Consider the normalized variance of x/:

var(xi) _ E[(xi’)2 +(E[x])’ - 2x,»’E[X!]}

(E[x1)° X (E[x]])°

i i
—E| = |- — 84
[x!} E[x/] &

where the upper bound comes from the fact that
0< Xil < 1. Thus, to show the mean-square conver-
gence result in (85), we need to show that

1 . 1
J%E[Xi]ﬂ:f%om- (85)
To this end, we develop a useful expression for X;I . Let
=1+ Zh hi. (86)
JF#i
Then
1 1 -
xl=1—=h I+—HH*] h;
i El i El i
[ PR T
=1 ghi| S+ ghbl| b
[ () (2
R T e Y
& £ +h(Z)
_ h () 'k
=1—llhj(2§) 'h; 1—’(;—)171
§ g +h/(Z) h
L hE)
& +1/(3) ',
1
= , (87)
1+ &b (2 ',

where the third equality results from the matrix inver-
sion lemma:

(W+XZY)' =W —-wIX
x (Z7'+ YW 'X)Tlyw! (88)

where W and Z are invertible square matrices.
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Thus
3]
| -1+ éE[hf(Eﬁ)_lhl]
S S0,
—14 iE[trace([zl] )]

|
_l’_
v
S|
Ry
—
™
1
L

1
:1+—1E[ T}, (89)
§ 1+ gl}‘(é Zj;éi hjhj)

where the third equality comes from the fact that the
components of h; are independent of Eﬁ and have zero
mean and variance equal to 1/Q. If the ratio of the
number of users to the signature length is, or converges
to a constant:

Jim g _ 8 (0, +00), (90)

then we can use (81) to compute the limit of (91) as
P — o0 [3]:

1 1 1
lim E =1+ — lim
P—>00 |:X,-l:| ElP*)OO |:1+§;1)L(% Z#i h‘,-hj.):|

1 [o°
=1+ El_/ fl/,g(x)dx

1 B 1
=ity [1 f(?’ 3)}

1 1
~teg[1-F #(g))

=1 ! 1}" ! 91
LR T )

To show (87), Lemma 1 tells us we need to check that

! 1 S 1
i )] =rrea ()

92)

_B
4 B
é—l
4

But this is equivalent to checking that the equation

168
- <1+§(1+ﬂ)> tEp =0 Y

x = <€1 ,3) (94)

which can be verified by substituting (96) into (95), so
we have proved (85). O

has a solution at

We now proceed to show (55). With )Zil as defined
in (76), and with yil in (74) bounded according to
yl.’ <1/¢,wehave thatas P — oo with 8 held constant,

E Loy
X_,-Z - ’ 1 — (pi=1)2
L, 1 ?
7Y ey
1\’ 1 ?
—I\2
7) (x!(l—(pl—lm) (X"I_X"l)}
2 1 2
—\2
(E+1—(p"1)2) (X’!_Xil)}

0, 95)

where the final limit follows from Lemma 2. So the
SINR for each user (74) converges in the mean-square
sense to (55).

Notes

1. Throughout the paper, our expectations involving functions of
frequency w do not depend on w, so we omit this dependence in
our notation to emphasize this.

2. When x[n] is a sequence coded for the Gaussian channel, the
approximation in (8) is still valid—typical trellis codes used with
random bit streams generally produce white symbol streams [7],
as dorandom codes. More will be said about coding in Section 2.3.

3. The superscripts 7' and { denote the transpose and conjugate-
transpose operations, respectively.

4. F'72, a square root matrix of the positive semidefinite matrix F,
sansﬁesF FI2'F12,

5. Using the matrix identity (79), we may alternatively write

B' o HAINGL + &1 — o'~ o'~ )ATHTHA] !,
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which may be easier to evaluate depending on the relative sizes
of P and Q.

6. The theoretical large system performance of the decorrelator
for the case B> 1 is derived in [17], where the decorrela-
tor is defined as the Moore—Penrose generalized inverse [18]
of H.

7. The identity is a special case of the matrix inversion lemma (90).
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