
Appeared in Proceedings of IS&T/SPIE Electronic Imaging 2002: Document Recognition and Retrieval IX,
Volume 4670-20, January 2002.

N-Gram Language Models for Document Image Decoding

Gary E. Kopeca, Maya R. Saidb, Kris Popata

aXerox Palo Alto Research Center, Palo Alto, CA 94304.
bMassachusetts Institute of Technology, Cambridge, MA 02139.

ABSTRACT

This paper explores the problem of incorporating linguistic constraints into document image decoding, a com-
munication theory approach to document recognition. Probabilistic character n-grams (n=2–5) are used in a
two-pass strategy where the decoder first uses a very weak language model to generate a lattice of candidate
output strings. These are then re-scored in the second pass using the full language model. Experimental results
based on both synthesized and scanned data show that this approach is capable of improving the error rate by
a factor of two to ten depending on the quality of the data and the details of the language model used.

Keywords: document image decoding, Markov models, document recognition, character recognition.

1. INTRODUCTION

Document image decoding (DID) is an approach to document image recognition in which the processes of
document image creation, transmission and interpretation are modeled as a formal communications system
consisting of an image source, a channel and a receiver. Applying the DID paradigm to a specific recognition
problem involves developing probabilistic models for the source and channel. One of the components of a
text source model is a description of the allowed character sequences and their probabilities. The text models
originally used in DID placed no constraints on the allowed character sequences and took all characters to be
equally probable. This places the entire burden of recognition on the character shape models. If the images are
relatively clean and the character models are accurate the unconstrained text model can support very accurate
recognition. For reliable performance under less ideal conditions, however, a more sophisticated language model
is advantageous.

This paper describes our earliest attempts to use probabilistic character n-gram (n = 2–5) models in text
image decoding. In principle, an n-gram language model can be incorporated within a Markov image source
and used directly in a maximum a posteriori (MAP) decoder. However, the number of model states can be very
large (e.g. over 1,000,000 for n=5) which makes such a direct approach computationally challenging. Here, we
follow a two-pass strategy, similar to the two-pass n-best methods common in speech recognition,1, 2 in which
the first-pass decoder uses a very weak language model (e.g. n=1) to generate a lattice of candidate output
strings. These are then re-scored in the second pass using the full language model.

This paper is organized as follows: Section 2 presents a review of document image decoding. Language
models are described in Section 3 including the character n-gram model used in this paper. The problem of
incorporating n-gram language models into DID is taken up in Section 4 where different strategies are reviewed
and the two-pass strategy is described. Finally, experimental results are presented in Section 5.

Gary Kopec initiated and supervised this work in 1997; he passed away in December 1998. Any errors or deficiencies
in this work are solely the responsibility of the other authors.
This work was performed while Maya Said was at the Xerox Palo Alto Research Center.
Author email addresses: mayasaid@mit.edu, popat@parc.xerox.com

1

image source

message
source

M � imager
Q
�
channel

Z �
decoder

M̂ �

Figure 1: Communication Theory View of Document Recognition3

nI
� �������

Lt

t

∆t displacement

mt message

Qt template

[at] transition probability

�

Rt

� ������� nF

Figure 2: Markov Source Model for Image Generation3

2. REVIEW OF THE DOCUMENT IMAGE DECODING FRAMEWORK

Document Image Decoding (DID) was first introduced and formulated by Kopec and Chou in 1994.3 It defines a
methodology based on a communication theory view of document recognition. In this section, we briefly review
the DID formulation and algorithm implementation, and in so doing, motivate the introduction of language
models. The reader is referred to Kopec and Chou3 for a more detailed treatment.

Figure 1 illustrates the communication theory view of document recognition. Document creation, transmis-
sion, and interpretation are modeled as the transmitter (image source), channel, and receiver (decoder) in a
communication system. Specifically, the image is modeled as being first generated using a probabilistic image
source which selects a finite string from a set of candidate strings according to a prior probability distribution
P (M). The string is then mapped to an ideal image Q by the imager, which “prints” ideal templates corre-
sponding to the selected string onto the image plane at appropriate locations. We assume that the templates
are bilevel and therefore Q is a binary image, i.e. Q = {qi|i ∈ Ω} where qi = {0, 1} are the pixel values with 1
denoting the foreground color and 0 the background color, and Ω is the image plane which can represent a single
document page or multiple pages arranged in a scroll. More specifically, the image source can be modeled as a
Markov source as shown in Figure 2 with a starting state, nI , and a final trapping state, nF . Each transition t
connects a pair of states Lt and Rt and is associated with four attributes (Qt,mt, at,∆t) where Qt is the tem-
plate, mt is the message string (typically a single character), at is the transition probability and ∆t is the vector
displacement of t. A complete path through the source starts at nI and ends at nF and defines a composite
message, an image, and a probability associated with this path. The composite message is the concatenation
of the individual message strings associated with each transition. The image is composed of the union of the
templates properly positioned according to their displacement vectors. The probability of a path, P (π), is the
product of the transition probabilities. Note that in order to get the probability of the composite message or
image, one needs to sum the probabilities of all complete paths that lead the same composite message and
image. The ideal image Q is then converted into an observed image Z = {zi|i ∈ Ω} by the channel which
models distortions introduced due to scanning, printing, or photocopying. A simple, yet powerful, model for
the channel is the asymmetric bit-flip noise model shown in Figure 3 where pixels of values 0 and 1 have respec-
tively probability α0 and α1 of being transmitted correctly. The noise parameters are assumed to be constant

2

0

1

qi

�

�

�
�

�
�

�
�

�
�

�
�

� ����
�

�
�

�
�

�
�

�
�

� ��� 0

1

zi

1− α0

α0

α1

1− α1

Figure 3: Asymmetric bit-flip Noise Model.

over the image. An important generalization of this idea involves multilevel templates, wherein the transition
probabilities are allowed to depend not only on the value of each pixel but also on its “class” or “level” within
the ideal template.4 The purposes of the present study in language model integration are sufficiently served
by assuming the simple case of bilevel templates, which corresponds directly to Figure 3.

Finally, the decoder produces an estimate, M̂ , of the original messageM based on the received image Z. The
minimum probability of error decoder is the one that chooses M̂ according to the maximum a posteriori (MAP)
criterion: P (M̂) = maxM P (M |Z). A direct implementation of the MAP rule would involve a summation over
all complete paths that generate the same composite message. However, one can simplify this implementation
by using the Viterbi approximation, which chooses the path with the greatest probability for a given composite
message, i.e. the Viterbi decoder chooses the complete path that maximizes:

L(π, Z) = log(P (π)) + L(Z|Qπ) (1)

where L(Z|Qπ) is the log normalized probability that the entire observed image Z results from transmitting the
shifted templates Qt through the channel. Based on experience in speech recognition, the Viterbi approximation
is a good approximation to the MAP decoder and can be implemented efficiently using dynamic programming.

In the original DID formulation, no constraints were placed on the allowed character sequences and all
characters were considered equally likely. In the context of Figure 2, this corresponds to having all transition
probabilities associated with message strings equal or equivalently P (π) is constant. As a result, the most likely
path through the network given an observed image is determined by the template match scores rather than
by the path prior probabilities, i.e. the entire burden of recognition is placed on the character shape models.
This can lead to accurate recognition if the images are relatively clean and the character models are accurate;
however under less ideal conditions, a more accurate language model becomes essential. While it would be
straightforward to assign unequal probabilities to the transitions in the network, experience has shown that
doing so is insufficient to significantly impact recognition accuracy. A more powerful language model structure
is required, one that moves beyond the marginal, unconditional statistics of individual characters and takes into
account inter-character dependence. The specifics of a suitable language model are taken up in the following
section.

3. LANGUAGE MODEL PROPERTIES

A language model is a mathematical formulation of linguistic constraints. It assigns a probability value to every
string over some specified set of language building blocks, such as words, phonemes, characters, or possibly
combinations of these. Language models based on words and phonemes have been extensively used in speech
recognition to guide the search among various text hypotheses, and have proved to greatly improve recognition
accuracy.5 However, such models are not directly applicable to character recognition since they do not support
punctuation, upper and lower-case letters, acronyms, numbers, etc. We therefore explore purely character-based
language models, where the meaning of character is expanded to include punctuation and white spaces.

3

The character-based language model probability Pl for a string [γ1, ..., γm] can be generally factored using
the chain rule for probabilities:

Pl =

m∏

i=1

P (γi|γ1, ..., γi−1) (2)

where P (γi|γ1, ..., γi−1) is the probability of obtaining a character γi immediately following the string [γ1...γi−1].
A convenient way to rewrite Equation (2) is in terms of the log probabilities:

log (Pl) =

m∑

i=1

log [P (γi|γ1, ..., γi−1)] (3)

As the length of the string being conditioned on within each conditional probability in Equation (2) increases,
obtaining a good estimate for that probability becomes increasingly hard. It is reasonable to assume, however,
that statistical dependence between characters weakens with distance within the string, so that the probability
of observing a character γi given that n− 1 preceding characters were observed can be a good approximation
to the probability of observing γi given the entire past history of characters observed. That is, we may assume
that

P (γi|γi−n, ..., γi−1) = P (γi|γ1, ..., γi−1) (4)

for some suitable value n. We therefore chose to restrict the language models to fixed length sequences of
characters called character n-grams where n is the length of the sequence. For every n-gram in the vocabulary,
the language model therefore assigns a probability value. We next discuss how to estimate these probabilities.

3.1. N-Gram Probabilities

A simple approach to estimating n-gram probabilities is to use the method of maximum likelihood within each
context, which amounts to strict relative frequency. Specifically, given a training corpus such as an encyclopedia,
we can estimate the n-gram probabilities as follows:

P (γi|γi−n, ..., γi−1) =
C(γi−n, ..., γi−1, γi)

C(γi−n, ..., γi−1)
(5)

where the output of the function C(x, y, .., z) is the number of character strings ‘xy...z’ contained in the training
corpus. A problem however arises if the value of the probabilities in Equation (5) is zero, i.e. if the n-gram
appears in the text on which the recognizer is run but is not contained in the training corpus. We will refer
to such n-grams as missing or non-occurring n-grams. Assigning the maximum-likelihood probability of zero
to such n-grams would lead to an error when computing the log probability, and more importantly would not
allow for new words to be incorporated into the model. If one has good confidence in the training corpus,
one could still chose to reject missing n-grams by assigning them an infinitesimal probability, for instance
logP (γi|γi−n, ..., γi−1) = −10, 000. This method will be referred to as rescore-1 or R1 throughout this paper.
A more flexible yet simple language model, on the other hand, updates the n-gram probability by, for example,
assuming the missing n-grams occurred exactly once in the training corpus, i.e. by assigning it the probability:

P (γi|γi−n, ..., γi−1) =
1

C(γi−n, ..., γi−1)
(6)

Strictly speaking, the probabilities of all other n-grams with the same n − 1 preceding characters should be
updated due to the addition of the new n-grams (i.e. C(γi−n, ..., γi−1) should be incremented by one). However,
in practice this change is very small and the updated probabilities are very close to the original one. Note
that strict normalization is not required for the role played by P (π) in Equation (1). Moreover, since the role
of the language model here is only in re-scoring hypotheses that have already been identified as good on the
basis of image match, P (π) need not be a valid probability distribution at all, as long as it provides reasonable
differentiation among competing hypotheses. Therefore, we chose not to increment those counts that were
nonzero to begin with. This method will be referred to as rescore-2 or R2 .

4

A remaining issue is that the conditioning string itself might be absent from the training corpus, i.e.,
the denominator in Equation (5) might be zero. In such cases we simply assign the infinitesimal value
P (γi|γi−n, ..., γi−1) = 10

−6, or equivalently log (P (γi|γi−n, ..., γi−1)) = −6. Again, we note that the fact that
the resulting quantity is not normalized to yield a strictly valid probability distribution is not a concern here;
it is only important that the language model score provide a reasonable relative ranking among hypotheses
identified in the first pass.

More sophisticated methods of handling both of the above types of data sparsity — the training-set absence
of observed characters within a context, and the absence of the context itself — have been reported in the
literature.1 The methods described here were deemed adequate for the purposes of exploring the potential
value of language model integration, especially given the modest values of n considered, the availability of large
training corpora, and the “post-processing” role played by the language model.

4. INCORPORATING N-GRAM LANGUAGE MODELS INTO DID

While the language model probabilities are simple to evaluate along a particular path (i.e., for a particular
string), searching for a best path is not as straightforward as in the case of traditional DID because of the
introduction of statistical interdependencies among characters. This section discusses how the search can be
practically undertaken, that is, how the language model can be incorporated into DID.

4.1. Infeasibility of Direct Incorporation

In terms of the network shown in Figure 2, the effect of the language model is to make the transition probabilities
assigned to each edge depend on the recent path history leading to that edge, violating the Markov assumption.
To restore it, we can in principal expand the state space to include not only position within the image, but
also linguistic context. A moment’s reflection reveals that this will not be practical even for modest n, since
the state would have to expand by a factor that is exponential in n. For example, for a 2-gram model with 100
different characters in the font, the number of states would increase by a factor of 10,000. As a result, direct
incorporation of the language model into the Viterbi algorithm is computationally prohibitive. In Section 4.3,
we present an efficient algorithm for incorporating the language model into DID based on a two-pass strategy.
While the approach described there represents our earliest attempt at language modeling and is the main subject
of this paper, it should be noted that two other strategies have been explored during the three-year interim
between the completion and publication of the present work. We therefore review these other approaches briefly
in the following section.

4.2. Stack and Iterated Complete Path Algorithms

In the absence of a language model, the search for the most probable path can be represented as a search for a
highest-weight path in a trellis graph that represents the template match scores at every position in the image;
the search can be accomplished effectively in this case using the Viterbi algorithm. At the other extreme, with
an unconstrained language model of the sort given in Equation (2), the graph to be searched over would be a
tree rather than a trellis. In the case of an n-gram language model with a restricted conditioning history, the
tree merges back onto itself into a complex trellis structure, the exhaustive search of which is impractical in
general.

One approximate search technique that is popular in speech recognition and which was recently explored
in the DID context6 involves partially exploring this tree-like graph using a best-first search strategy. This
technique, known as the Stack algorithm, involves growing a subtree until a transition into nF is encountered.
Leaves of the subtree are maintained in a priority queue according to an estimate of how “promising” each one
is, given its fully evaluated partial path score, together with a prediction of the score of the path remaining to
nF . When a node is popped off the queue, its children are immediately scored and placed on the queue. The
accuracy and computational complexity of this approach depend critically on how well the relative “promise”
of nodes at different depths are estimated.

Another approach, dubbed the iterative complete path algorithm, also explores only a small fraction of the
immense tree-like graph, but differs from the Stack algorithm in that it returns a provably best path.7 It works

5

by growing the original trellis on an as-needed basis, expanding linguistic state iteratively only along paths that
could not be ruled out on an earlier iteration on the basis of insufficient template match score under a best-case
language-model score scenario. Here, the language model components of the edge scores are optimistic upper
bounds that depend, as the graph is grown, on fewer characters than the full language model. A path that
survives is re-scored by incrementing the order of the upper-bound language model used to score its edges and
correspondingly growing the graph to accommodate the increased linguistic context. When a path is found
whose edges have been re-scored to the point where all of them have full language model scores, it can be
concluded that it is a true best path, since it has beaten all of the optimistically scored paths either present or
implicit in the expanded trellis.

Both of these techniques for language model integration are relatively complex; the first has been found thus
far to be somewhat fragile in the DID context; and the second is not guaranteed always to be computationally
tractable (though in practice it has often been found to be). It is therefore desirable to explore a simpler,
computationally strictly bounded alternative technique, to serve as a baseline and to further build understanding
of the problem of language model integration. The two-pass approach described in the following section meets
this need.

4.3. Two-Pass Strategy

The two-pass strategy is based on a separation of the recognition process based on character shape (the Viterbi
algorithm) from the one based on language constraints. The decoder is first run with a weak language model to
get the k-best sentences with their corresponding scores Sd = L(π, Z). A more sophisticated language model is
then applied to the k-best sentences and a language score Sl = log(Pl) is computed. Finally, the sentences are
re-sorted according to their total score ST where ST is defined as a weighted sum of the decoder score and the
language score:

ST = Sd + λSl (7)

where λ is a scaling factor needed to adjust the weighting attributed to the language model. The best sentence
is the one with the best total score.

Clearly this strategy relies on the existence of a good linguistic solution in the k-best sentences generated by
the original decoder, i.e. the language model is only used to fine-tune the estimate out of the Viterbi decoder.
Theoretically, for a large enough k, the correct solution will always be present among the k-best sentences.
However, obtaining the k-best sentences out of the Viterbi algorithm is only computationally feasible for low
enough k. It turns out as we shall see in the next section that even for low k values, incorporating a language
model leads to an amelioration of the error by more than 50%

5. EXPERIMENTAL RESULTS

The effect of incorporating n-gram language models into DID using the two-pass strategy was investigated using
two sets of experiments. In a first set, we used synthesized data where an electronic collection of Shakespeare
sonnets was artificially distorted using the bit-flip model illustrated in Figure 3 . The second set was performed
using the English journal subset of the University of Washington UW-II database8 which contains scanned
images from technical journal articles.

5.1. Synthesized Data

An electronic collection of Shakespeare sonnets with a total of 59,761 characters was first distorted using
the bit-flip channel model with parameters ranging from [α0 = 0.9, α1 = 0.9] to [α0 = 0.7, α1 = 0.5]. The
20 best sentences with their associated scores were then generated using the original Viterbi algorithm with
both matched channel parameters and unmatched parameters modeling perfect and imperfect knowledge of
the channel at the decoder. A language score was then computed for each sentence using an n-gram (n=2–5)
language model. Two sets of language models were used: in the first set, the n-gram probabilities were computed
using the entire Shakespeare sonnets collection as a training set (a total of 4,822,274 characters) while the Grolier
encyclopedia was used for the second set (53,034,883 characters). The Shakespeare collection included 2,134
distinct 2-grams, 17,716 3-grams, 81,289 4-grams, and 246,454 5-grams while the Grolier collection included

6

A B C D
0.001

0.1

1

10

100

Channel degradation

E
rr

or
 r

at
e

in
 p

er
ce

nt

Original (no language model)
2−gram
3−gram
4−gram
5−gram

Figure 4. Character Recognition Error Rate as a Function of Channel Degradation for the Shakespeare Data. A, B,
C, and D correspond to channel parameters: [α0 = 0.9, α1 = 0.9], [α0 = 0.9, α1 = 0.8], [α0 = 0.8, α1 = 0.6], and
[α0 = 0.7, α1 = 0.5] respectively. The same channel parameters were used for the decoding. The Shakespeare database
was used as a training set for the language model. The missing n-grams were rejected (rescore-1).

4,582 2-grams, 55,286 3-grams, 351,650 4-grams, and 1,260,849 5-grams. In the process of computing the
language model score, missing n-grams were either rejected (rescore-1 or R1) or incorporated (rescore-2 or R2)
as described in Section 3.1. Finally, a total score was computed for each sentence according to Equation (7)
where the scaling factor λ was varied until the best recognition was achieved. The 20 sentences were resorted
according to the new score and the best one was identified.

Figure 4 shows the recognition error rate as a function of the noise in the image for different n-gram orders.
The language model fails to improve the recognition performance at very low (A and B in the figure) and
very high (D) noise levels. This behavior can be explained by looking at the output of the Viterbi algorithm
under various noise regimes. At low noise levels, the 20 best sentences obtained from the Viterbi algorithm
correspond to the same message string, therefore resorting them cannot lead to better performance. At very
high noise levels, on the other hand, the 20 best sentences correspond to different message strings that do not
include a good solution, therefore the language model is not able to improve recognition drastically. The error
rate however is still improved by a factor of two. The major contribution of the language model is observed at
intermediate noise levels (C in the figure) where recognition is improved by more than an order of magnitude.
An example of a degraded verse and its decoded versions using the original Viterbi algorithm as well as the
language model is shown in Figure 5

The effect of n-gram order on error rate is shown in Figure 6 where the character recognition error rates
for intermediate noise levels (channel parameters [α0 = 0.8, α1 = 0.6]) are plotted as a function of n-gram
order for the two re-scoring methods (rescore-1 and rescore-2) for the Shakespeare-trained language model,
and for rescore-2 for the Grolier-trained model. (Data for the remaining combination, Grolier/rescore-1, is no
longer available.) Clearly, using a 2-gram language model greatly improves recognition over the original Viterbi
algorithm with no language model. The two rescore-2 curves track each other closely, with the better-matched
model performing slightly better throughout. For n larger than 2, the Shakespeare-trained language model
using rescore-1 results in significantly better error rates than the rescore-2 curves. Overfitting may be part of
the explanation here; the missing curve might have helped assess the extent to which it is. However, overfitting
cannot be the whole explanation, since a similar effect appears in Figure 7, as will be discussed in greater detail
shortly.

Table 1 summarizes the character recognition results for the Viterbi algorithm with no language model, the

7

(A)
But thou contracted to thine own bright eyes,
Feed’st thy light’s flame with self-substantial

(B)

(C)
But thou contracted to thine own’bright eyes,
Feed’st thy light’s’flame with self-substantial

(D)
But thou contracted to thine own bright eyes,
Feed’st thy light’s flame with self-substantial

Figure 5. Illustration of the Decoding Results for the Shakespeare Sonnets. (A) corresponds to the original uncorrupted
image, (B) is the corrupted image using channel parameters [α0 = 0.8, α1 = 0.6]. The decoding result using the Viterbi
algorithm with no language model is shown in (C). Finally, (D) corresponds to the re-scored result using a 2-gram
language model trained on the Grolier dataset and designed to incorporate missing n-grams (rescore-2). The full text
corresponding to this example included a recognition error rate of 1.026% with the original Viterbi algorithm which was
reduced to 0.161% using language model rescoring.

original 2−gram 3−gram 4−gram 5−gram

0.1

1

Language model

E
rr

or
 r

at
e

in
 p

er
ce

nt

Shak. n−grams, rescore−1
Shak. n−grams, rescore−2
Grolier n−grams, rescore−2

Figure 6. Character Recognition Error Rate as a Function of n-gram Order for Channel Parameters [α0 = 0.8, α1 = 0.6]
with Matched Decoding. original refers to the original Viterbi algorithm with no language model. Shak and Grolier
refer to, respectively, the Shakespeare and Grolier datasets used to obtain the n-gram probabilities. In rescore-1 missing
n-grams were rejected while rescore-2 incorporated missing n-grams.

2-gram and 3-gram language models trained on Shakespeare data using the rescore-1 and rescore-2 algorithms.
The results in Table 1 suggest that the language model leads to a ten-fold decrease in error rate primarily due to
a decrease in substitution and insertion errors. Interestingly, the language model leads to almost a doubling of
deletion errors. This is due to the fact that a white space is treated as a character when computing the n-gram
probabilities. The probabilities of n-grams containing spaces is therefore much higher than other n-grams since

8

Method Subs. Dels. Ins. Total Distinct % Error

Viterbi algorithm without a language model 563 29 21 613 33 1.026
Shak n-grams with rescore-1
2-gram 39 54 0 93 19 0.156
3-gram 18 54 0 72 17 0.120
Shak n-grams with rescore-2
2-gram 41 55 0 96 21 0.161
3-gram 63 56 0 119 24 0.199

Table 1. Character Recognition Results for the Shakespeare Data with Channel Parameters [α0 = 0.8, α1 = 0.6]. Subs
= substitutions, Dels = deletions, Ins = insertions, Total = total number of errors, Distinct = total number of distinct
errors, % Error = percent error rate.

n-grams with white spaces occur very frequently in any training set (at the end and beginning of every word.)

5.2. Scanned Data

In a second set of experiments, the UW-II English journal database was used as a testing set. The database
contains 622 bilevel scanned images of 311 pages from 30 technical journal articles. For each page, two images
are provided which correspond to images scanned from first and second generation photocopies. Article “A” (i.e.
W0A and W1A) in the database was used to run the experiments because it uses a sans-serif font which makes
‘l’ and ‘I’ essentially indistinguishable. As a result, a decoder that exclusively relies on character shape models
is expected to generate a large number of substitution errors. The article included 43,696 characters and the
original Viterbi algorithm was first used to obtain the 10, 100, and 500 best sentences with their corresponding
scores. The rescore-1 (R1) and rescore-2 (R2) algorithms were then used to re-score these sentences using two
language models trained on the ground-truth provided in the UW-II collection and the Grolier encyclopedia,
respectively. The sentences were then sorted according to their new score and the best one was selected.

Figure 7 summarizes the performance of the different order n-gram models using the 10, 100, and 500 best
sentences (panels (a), (b), and (c)). The results suggest that incorporating a language model always leads to an
improvement of the recognition error ranging from 56% to 85% . As in the synthesized data case, the error rate
is sensitive to the re-scoring method for high order n-grams where the rescore-2 (R2) method (incorporating
missing n-grams) performs worse than the rescore-1 (or R1) method. Since the R1 curves in Figure 7 reflect
training and testing on completely different datasets, it is clear in this case that the good performance of R1 is
not due to overfitting.

One can gain additional insight as to why R1 outperforms R2 for large n in correctly rejecting strings
with missing n-grams by noting that while the individual probabilities of missing n-grams in the R2 method is
still low (of the order of the probability of the least occurring n-gram), the total language score of a sentence
containing a missing n-gram can potentially be much higher than one not containing a missing n-gram but is
otherwise identical to the first one. This is due to the fact that the number of n-grams that a given character
influences increases with the n-gram order. For example, in a 4-gram model, the character ‘d’ in the text string
‘abcdefg’ appears in four 4-grams, namely ‘abcd’, ‘bcde’, ‘cdef ’, and ‘defg’. While ‘abcd’ may be a missing
n-gram, the probability of ‘bcde’, ‘cdef ’, and ‘defg’ may be much higher than their corresponding n-grams in
the text string ‘abchefg’ where now ‘abch’ is an occurring n-gram. In this scenario, the text string ‘abcdefg’
will have a much higher probability than the text string ‘abchefg’ if scored with the rescore-2 method while
the rescore-1 method will favor the string ‘abchefg’. As the n-gram order increases, the performance of the
rescore-2 method will therefore degrade as shown in Figure 7. Of course the same argument works against R1
if the n-grams were missing in the training data but present in the correct decoding. In such cases, R2 would be
expected to assign a higher score to the correct decoding, since R1 would essentially rule it out. Evidently from

9

ori. 2 3 4 5

1

(a) 10−best

Language model

E
rr

or
 r

at
e

in
 p

er
ce

nt

R2, uw2
R2
R1

ori. 2 3 4 5

1

(b) 100−best

Language model

E
rr

or
 r

at
e

in
 p

er
ce

nt

R2
R1

ori 2 3 4 5

1

(c) 500−best

Language model

E
rr

or
 r

at
e

in
 p

er
ce

nt

R2
R1

ori 2 3 4 5

1

(d) 100−best, Language model only

Language model

E
rr

or
 r

at
e

in
 p

er
ce

nt

R2
 R1

Figure 7. Character Recognition Error Rate as a Function of n-gram Order for the UW-II data. In panel (a), the 10-best
sentences were used for rescoring. The 100-best and 500-best sentences were used in panels (b) and (c) respectively.
Panel (d) shows the result of rescoring the 100-best sentences using the language model only (i.e. setting Sd to zero
in Equation (7)).The probabilities for the language model were computed using the Grolier encyclopedia dataset for all
curves except the one labeled uw2 where the UW-II dataset was used to infer the probabilities. The x-axis labels are
as follows: ori : Original Viterbi algorithm with no language model, 2, 3, 4, 5 = 2-gram, 3-gram, 4-gram, and 5-gram
language models respectively. Finally, R1 and R2 correspond to the rescore-1 and rescore-2 algorithms respectively.

Figure 7, n-grams in the Grolier encyclopedia are effectively a superset of the n-grams present in the correct
decoding of the UW-II article, so that R1 dominates for all n.

The contribution of the language model to the error rate was also investigated by rescoring the 100-best
sentences according to the language model score exclusively, i.e. Sd in Equation (7) was set to zero and ST = Sl
was used to re-sort the sentences, the result is shown in panel (d) of Figure 7. While the error rate slightly
improves for the rescore-1 method, it deteriorates for the 5-gram model using the rescore-2 method. These
results strongly suggest that a combination of both character shape model and language model recognition is
needed to get the best performance. An example of the scanned data and the recognition results is shown in
Figure 8. As expected, the Viterbi decoder includes many (l→ I) substitutions which are corrected by applying
the language model. Finally, Table 2 summarizes the recognition error details for the scanned data. Again
as is the case for the synthesized data, the language model improvement is essentially through a reduction of
substitution and insertion errors while deletions are greatly increased.

6. SUMMARY

A two-pass strategy for incorporating language models into document image decoding has been described.
The Viterbi decoder using a very weak language model (n=1) is first used to generate a lattice of candidate

10

(A)

(B)
Road tracking in remoteIy sensed irnagery has often been

equated with IInear feature extraction. The rationaI was that finding

(C)
Road tracking in remotely sensed imagery has often been

equated with linear feature extraction. The rational was that finding

Figure 8. Illustration of the Decoding Results for the UW-II Data. (A) corresponds to the scanned image, the decoding
result using the Viterbi algorithm with no language model is shown in (B). Finally, (C) corresponds to the rescored result
using a 5-gram language model applied to the 500-best sentences. The language model used was trained on the Grolier
dataset and designed to reject non-occurring n-grams. The full text corresponding to this example generated an error
rate of 2.499% with the original Viterbi algorithm and 0.378% with the language model.

Method Subs. Dels. Ins. Total Distinct % Error

Viterbi algorithm without a language model 911 1 180 1092 53 2.499
100-best, Grolier n-grams with R1
2-gram 205 23 83 311 48 0.712
3-gram 162 57 62 281 49 0.643
4-gram 158 32 52 242 48 0.554
5-gram 151 24 49 224 46 0.513
100-best, using language model only, Grolier n-grams with R1
2-gram 222 570 62 854 59 1.954
3-gram 207 400 61 668 56 1.529
4-gram 215 190 57 462 58 1.057
5-gram 193 120 46 359 57 0.822
100-best, using language model only, Grolier n-grams with R2
2-gram 214 576 62 852 61 1.950
3-gram 220 421 40 681 53 1.558
4-gram 458 328 49 835 68 1.911
5-gram 887 472 107 1466 70 3.355

Table 2. Character Recognition Results for the UW-II Data. R1 and R2 correspond to rejecting and incorporating
missing n-grams, respectively. Subs = substitutions, Dels = deletions, Ins = insertions, Total = total number of errors,
Distinct = total number of distinct errors, % Error = percent error rate.

output strings. These strings are then re-scored using probabilistic character n-gram (n=2–5) language models.
Preliminary results using both synthesized and scanned data suggest a factor of two to ten reduction in character
error rate depending on the noise level in the data, the number of candidate strings, the n-gram order, the
training corpus, and the way missing n-grams are treated. In general, the choice of training corpus did not
greatly affect recognition rate while rejecting, as opposed to incorporating, missing n-grams proved to be a
better strategy for high order n-gram language models. When the rejecting missing n-grams strategy was used,
the choice of n-gram order did not significantly affect the error reduction rate.

Relative to other approaches to language model integration, k-best rescoring offers several advantages. The
first is robustness against producing poor decodings: only hypotheses that are deemed sufficiently good in

11

the first pass are candidates for output in the second pass. A related benefit is that the language model
requirements are relaxed; in particular, it is not necessary to maintain a strictly valid probability distribution.
Another advantage is conceptual simplicity. A potential disadvantage is the possibility of missing the best
hypothesis if it happens not to be among those selected in the first pass. This is particularly a danger when
the degradation level is fairly high. More work needs to be done to understand the computational and accuracy
tradeoffs for the various approaches to language model integration under various noise regimes. This work
has made it clear, however, that the potential improvement in decoding accuracy by incorporating a language
modeling into DID is significant. The recent explorations into the use of the Stack and ICP algorithms were
motivated largely by the (then unpublished) findings of improved accuracy presented here.

7. ACKNOWLEDGMENTS

The authors wish to thank Dan Bloomberg and Les Niles for many stimulating discussions throughout the
course of this work.

REFERENCES

1. F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, Cambridge, Massachusetts, 1997.

2. R. Schwartz and Y.-L. Chow, “The n-best algorithm: An efficient and exact procedure for finding the n
most likely sentence hypotheses,” in Proceedings of the 1990 IEEE International Conference on Acoustics,
Speech and Signal Processing, 1, pp. 81–84, (Albuquerque, NM, USA), 1990.

3. G. E. Kopec and P. A. Chou, “Document image decoding using Markov source models,” IEEE Transactions
on Pattern Analysis and Machine Intelligence 16, pp. 602–617, 1994.

4. G. E. Kopec, “Multilevel character templates for document image decoding,” in Proceedings of the
IS&T/SPIE 1997 Intl. Symposium on Electronic Imaging: Science & Technology, (San Jose), February
1997.

5. F. Jelinek, R. L. Mercer, and S. Roukos, “Principles of lexical language modeling for speech recognition,” in
Advances in Speech Signal Processing, S. Furui and M. M. Sondhi, eds., ch. 21, pp. 651–699, Marcel Dekker,
New York, 1992.

6. K. Popat, D. Greene, J. Romberg, and D. S. Bloomberg, “Adding linguistic constraints to document image
decoding: Comparing the iterated complete path and stack algorithms,” in Proceedings of IS&T/SPIE
Electronic Imaging 2001: Document Recognition and Retrieval VIII, January 2001. To appear.

7. K. Popat, D. Bloomberg, and D. Greene, “Adding linguistic constraints to document image decoding,” in
Proceedings of the 4th international workshop on document analysis systems, International Association of
Pattern Recognition, December 2000.

8. I. T. Phillips and R. M. Haralick, “UW English/Japanese document image database II: A database of
document images for OCR research.” CD-ROM, available from the Intelligent Systems Laboratory, Dept. of
Electrical Engineering, University of Washington, Seattle, WA 98195, att.: Dr. Robert M. Haralick, March
1995.

12

