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ABSTRACT

Using a powerful, recently-developed multiscale representa-
tion for fractal point processes, we characterize these pro-
cesses under fundamental transformations which arise in a
variety of important applications such as data network traf-
fic modeling. Insightful distributional results are obtained,
including the interarrival density for a fractal point process
subject to random erasure, the counting process distribu-
tion for the superposition of fractal point processes, and
the steady-state customer distribution in queues with self-
similar customer arrivals. Interpretations and implications
of these results for applications are also discussed.

1. INTRODUCTION

Fractal point processes—self-similar distributions of events
in time or space—are important models in a wide range
of signal processing applications. They are well-matched
to, for example, stellar and planetary distributions, audi-
tory neuron firing patterns in mammals, distributions of hu-
man and biological populations, and vehicular traffic within
cities [1][2][3]. They also conmstitute particularly promising
models for data traffic on a wide range of packet-switched
networks, from local ethernet links to the internet as a
whole [4][5]. Of particular interest is the family of fractal
renewal processes formally defined in [6], which are general-
ized renewal processes in the following sense: when viewed
over a finite window with finite resolution, the observations
constitute a renewal process, with interarrivals X governed
by the power-law (Pareto) density

2
Ix@) =28, 0<z<r<F<oo (1)
In (1), v is called the shape parameter and is directly related
to the fractal dimension of the point process, z and T are
determined by the resolution and size of the observation
window respectively, and o2 is a normalization factor.
While traditional signal processing methods have yielded
limited results for fractal point processes, multiscale para-
digms have proven to be natural for these signal models. In
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Figure 1: A multiscale pure-birth process; dashed boxes
denote conceptual partitioning into superstates.

particular, based on a finite-scale framework, we have re-
cently developed a number of practical estimation and clas-
sification algorithms for fractal renewal processes [6]. In the
present paper, we extend our multiscale techniques to char-
acterize fractal renewal processes under important classes
of transformations such as random erasure, superposition,
and queueing. Moreover, we demonstrate that key issues
such as random incidence can be readily incorporated in
these studies. Among their many applications, our results
have potentially important implications in the design and
management of networks.

2. MULTISCALE PURE-BIRTH PROCESS

The multiscale pure-birth process (see Fig. 1) provides. a
novel perspective for our multiscale framework of [6], and
furnishes the foundation for our present exposition. Gen-
eralizing the well-known pure-birth process (see, e.g., [7]),
the state space of this Markov process consists of a set of
“superstates,” each of which corresponds to a certain num-
ber of births. Included in a superstate is a set of states
corresponding to the scales in our finite-scale framework.
Hence, each state is naturally indexed with an ordered pair
of integers (¢, ), where i > 0 is the superstate index, and j
is the scale index within each superstate, which ranges from
1 to the number of scales L. The state distribution at any
time ¢ is denoted by P; ;(t).

In accordance with our multiscale framework, the mean
departure rate from every state (i, 7) is determined by its
scale and is of the form A/n’~!, where X is the rate of the
finest-scale constituent and n > 1 is called the scale in-

1806



10
[ =4
i
5
P
!
B
=)
w0
171
g
a
D07
= :
5 !
8 1./

;
’
| me()
10 ; . . .
107 10° 10’ 10°
t
Figure 2:  Arrival-observed counting process distribution

for a fractal renewal process.

crement. Upon departure, every state j' of the succeeding
superstate i+ 1 can be directly reached, and is chosen with
probability p;; = aij’_l, where g = n'~7, and o2 is a
normalization term. From the state-space description, it is
straightforward to set up the system of forward Kolmogorov
equations [7], which governs the dynamics of the multiscale
pure-birth process. Specifically, we have

d
ﬁp"(t) = —APo(t) (2a)
%P;(t) = —AP:(t)+QBTPii(t), i>0 (2b)

where P;(t) = (Pii(t), ..., P;,.(t))T is the probability dis-

tribution in superstate i, Q 2 (0%,0%q,..., o2qt )T is a

vector of the choice probabilities, B £ (MM, M hT

is a vector of the constituent rates, and A = diag(B) is a
diagonal matrix with the constituent rates along its main
diagonal. Using standard linear systems techniques, we can
readily solve (2) in the transform domain to obtain

P(z;t) = exp ([—A + zQBT] t) P(z;0), 3)

where P(z;t) is the z-transform of P;(t), defined as

P(zt) = EziPi(t).

=0

As an immediate application, (3) yields important statis-
tics of the fractal counting process, which are of fundamen-
tal interest in a broad range of scenarios such as optimal
buffer allocation for queueing systems, queueing delay es-
timation, and shot-noise analysis. In particular, through
transform inversion, we can obtain the counting process dis-
tribution, m;(t), which gives the probability of i arrivals in
the time interval (0,t]. With the time of reference t = 0
chosen at a renewal time, we can analyze this distribution
as perceived by an arrival of the process. In the context
of queueing, for example, this could represent the customer
arrival process seen by a customer, and is thus essential in

waiting time calculation. For this case, the scale of the first
interarrival is chosen according to the probabilities in Q,
and the initial conditions in (3) are thus P{z;0) = Q. This
leads to the closed-form result

mo(t) = 1TP(0;t)

= A
202(1"'1 exp (_T-Tt> ,
i=1 n

where 1 is a vector of all 1’s. More generally, other terms of
the counting process distribution can be obtained numeri-
cally. Fig. 2 shows the first four terms of the counting pro-
cess distribution of a fractal renewal process with v = 1.8,
computed with a dyadic (i.e., n = 2) multiscale representa-
tion. Many key properties of fractal point processes can be
inferred from these plots. For example, the first few terms
of the distribution peak near the origin, agreeing with the
strong tendency of clustering in a fractal point process. At
the other extreme, the decay in the distribution approaches
7~ ! for large values of ¢, which reflects the relation between
the counting process distribution and the running integral
of the interarrival density. Moreover, this heavy-tail poly-
nomial decay is in close agreement with the long quiescent
gaps typically found between clusters.

In many applications, the counting process distribu-
tion as viewed upon random incidence is equally impor-
tant. In queueing theory, for example, random incidence
is extremely useful for portraying customer arrivals as seen
by a queueing system, and is thus important in optimal
server and buffer allocation. Under this mode of observa-
tion, the time of reference is independent of the counting
process, and the scale of the first interarrival is chosen ac-
cording to the probabilities in lim¢—eo P(1;t), the steady-
state scale distribution. It can be shown [8] that this limit
exists in general, and that it is (8%, 6°2q, ..., &2 (29) 1T,
where &% is a normalization factor. Using this set of the
initial conditions and taking the same approach as before,
we can compute from (3) the counting process distribution
viewed upon random incidence. We remark that one of the
most notable features of the resulting distribution is the
dominance by the probability of zero arrivals, which again
reflects the tremendous spacing between clusters.

3. RANDOM ERASURE OF FRACTAL
RENEWAL PROCESSES

A point process transformation of general importance ‘is
random erasure, or random removal of events. In network-
ing, for example, random erasure provides a natural model
for the branching of packet streams, as well as packet loss
due to corruption. As a preliminary study, we consider
the effects of Bernoulli erasure on fractal renewal processes,
whereby deletion of each point occurs independently with
the same probability p. This mode of erasure is a realistic
model for many scenarios, and is also highly tractable.
Under Bernoulli erasure, an arrival of the original pro-
cess in general contributes a count of unity to the erased
process with probability 1 — p, and zero with probability p.
This leads to the convenient transform-domain relation

fe(z;t) = 7 (p+ (1 — p)z; t), (4)
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Figure 3: Interarrival density for a fractal renewal process
under Bernoulli erasure.

where #.(z;t) and #(z;t) are the z-transforms of the erased
and original counting processes, respectively. Setting z = 0,
we immediately obtain from (4) the probability of 0 arrivals
of the erased process in the interval (0, z], conditioned on
an arrival at ¢t = 0. In turn, this event is equivalent to the
interarrival X being greater than or equal to . Thus, using
(3) in (4), and setting z = 0, we obtain for an erased fractal
renewal process

Pr{X >z} =1"exp ([-A+pQ"B] z) Q
which, upon differentiation, leads to the interarrival density
fx() =17(A - pQ"B)exp ([-A +pQ"B] 2) Q. (5)

Using (5), we have plotted in Fig. 3 the interarrival density
of a fractal renewal process with shape parameter v = 1.8,
subject to various erasure probabilities. In general, while
Bernoulli erasure reduces the number of short interarrivals,
these plots suggest that on coarse scales, the self-similar
structure is largely preserved.

4. SUPERPOSITION OF FRACTAL
RENEWAL PROCESSES

In many situations, overall effects of coexisting point pro-
cesses take precedence over the individual constituents. As
a prime example, networking design is typically concerned
with the aggregate usage of multiple users, rather than
any individual. More generally, point process superposi-
tion also arises naturally in many other contexts, including
overall distribution of coexisting man-made and natural ter-
rain features, and population distribution of a collection of
species. While it is well known that the Poisson family
constitutes a domain of attraction for superposition, self-
similarity in network traffic data suggests similar qualities
of the class of fractal point processes. As a preliminary
study of this attraction behavior, we explore a somewhat
simplified but illuminating problem, the closure of fractal
renewal processes under superposition.

v of constituents = 1.8

)

o,

Counting Process Distribution

Figure 4: Counting process distribution of the superposi-
tion of two independent fractal renewal processes.

While analysis of fractal point process superposition is
traditionally cumbersome, insightful results can be obtained
via our multiscale framework. In general, for independent
constituents with counting process distributions rrzm (t) and

nf” (t), the counting process distribution of their superposi-
tion, denoted as #;(t), is obtained via a discrete convolution:

#i(t) =D = (O, (0). (6)

7=0

Thus, exploiting our results of Section 2, we can obtain
a counting process characterization of the superposition of
independent fractal renewal processes, as observed by an ar-
rival of one of the constituents or upon random incidence [8].
Fig. 4 shows an arrival-observed counting process distribu-
tion corresponding to the superposition of two independent
fractal renewal processes with shape parameter v = 1.8,
computed with via (6). Comparing this set of plots with
those for a single process (Fig. 2), we see that key features
such as the asymptotic power-law decay, are preserved un-
der superposition, suggesting invariance of fractal renewal
processes under this transformation.

5. QUEUEING PROBLEMS INVOLVING
FRACTAL RENEWAL PROCESSES

Studies in queueing theory are aimed primarily at the as-
sessment and design of scheduling and allocation schemes
for shared resources, ranging from various computing and
manufacturing facilities to human resources in a variety of
service industries. In telephony applications, the subject
has also generated particularly useful models for network-
ing delay. In fact, together with random erasure and super-
position, queueing adequately captures the activities in a
broad class of networks. While various queueing problems
involving Poisson arrivals have been adequately solved (see,
e.g., [7]), discrepancy between real traffic data and the Pois-
son model raises questions regarding the appropriateness of
these results in practice. As a result, design of network-
ing protocols such as flow control and routing has remained
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largely ad hoc. Using our multiscale framework, we consider
in this section queueing problems involving fractal point
processes, which better match traffic data in a broad class
of communication networks (see, e.g., [4],{5]).

The basis of our development is the multiscale birth-
and-death model, which is a powerful generalization of the
well-known birth-and-death model [7]. For simplicity, we
focus this preliminary analysis on queueing systems with
single memoryless servers driven by fractal renewal pro-
cess input; the idea for more general situations is similar.
The state space of the multiscale birth-and-death process
is identical to the multiscale pure-birth process, with the
superstates now representing the number of customers in
the system. To model service completion and customer de-
parture, downward transitions, or deaths, are added. Since
bulk service is not considered, each death decreases the cus-
tomer count by 1. Moreover, since service is assumed in-
dependent of the arrival process, a death does not result in
a scale change. Thus, we add to the multiscale pure-birth
process transitions of the form (1, 7) = (i — 1, 7) for every
i > 0, with rates all equal to the service rate u. As an in-
teresting observation, we remark that reversing the roles of
birth and death transitions results in a dual process which is
particularly important for modeling other telecommunica-
tion queueing systems, such as those involving heavy-tailed
holding time.

In our analysis, the service rate is assumed sufficiently
high to allow for a steady-state solution. Also, the probabil-
ity of an arbitrarily long waiting line is assumed negligible,
so that truncation of the state space at some superstate N
is justified. Under these assumptions, we have a system of
steady-state equations

P1 = FPO (7&,)
P; = (P+0)Pi-y ~CPio, 2<i<N (7b)
0 = Py-CPn-y, (7c)

where P; are the steady-state probabilities lim¢_ o P:(t),

rs u~ A, and C 2 4~ 'QBT. It can be shown [8] that to
solve (7), it suffices to find P; such that

Py € Null(My)
P, = AP,

where the matrices A; and M; are governed by the recur-
rence relation

A | _ T | A .
[ )= [ele T80 ] reven

with the initial conditions Ap = I and Mo = 0.

Using the above, we have obtained and plotted in Fig. 5
the steady-state customer distribution for a queueing sys-
tem driven by a fractal renewal process input with v = 1.8.
The arrival and service rates are related via p = .8A. ,
and the state space (i.e., queue length) was truncated at
N = 20. As a consequence of input clustering, the distribu-
tion exhibits a dichotomy: on one hand, the idle probability
is exceptionally high, owing to the long quiescent periods
between customer clusters, while on the other, the system
behaves like an M/M/1 queue when servicing clusters, as
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Figure 5: Steady-state customer distribution in a queue-

ing system with a memoryless server and fractal renewal
process input.

manifested by the geometric progression in distribution (see
e.g., [7], Ch. 3).

In conclusion, the results of this paper suggest that our
multiscale framework leads to tractable analysis of fractal
point processes under important transformations for en-
gineering applications. A more extensive development of
these results, along with the corresponding network design
issues, is contained in [8].
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