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ABSTRACT

The problem of modeling chaotic nonlinear dynamical systems
using hidden Markov models is considered. A hidden Markov
model for a class of chaotic systems is developed from noise-free
observations of the output of that system. A combination of vec-
tor quantization and the Baum-Welch algorithm is used for train-
ing. The importance of this combined iterative approach is
demonstrated. The model is then used for signal separation and
signal detection problems. The difference between maximum
likelihood signal estimation and maximum aposteriori signal esti-
mation using a hidden Markov model is illustrated for a nonlinear
dynamical system.

1. INTRODUCTION

Recent work in the areas of nonlinear dynamics and chaos has
demonstrated that “noise-like” signals can be produced by non-
linear dynamical systems [1]. These signals appear to be broad-
band and random, yet their behavior is deterministic. Not only
have chaotic signals been observed to be produced by real sys-
tems, but nonlinear dynamical models have also shown promise
in many signal processing problems [2, 3].

As a result of research aimed at explaining and exploiting the
behavior of chaotic systems, a number of new signal processing
problems have emerged. While initial attention had focused on
the study of the richness of the behavior and properties of chaotic
systems, there is now considerable interest in the problem of
modeling data based on chaotic systems and in addressing prob-
lems of signal processing for such systems.

1.1. Chaotic Dynamical Systems

‘We assume that a chaotic dynamical system is modeled by a non-
linear state equation

Spe1 =F(sp) (¢Y)

where 5, € R™ is the state of the system at time index n and fis a

nonlinear function. A nonlinear dynamical system operating in a
chaotic regime is characterized by the presence of an attractor.
Qualitatively, an attractor is the portion of state space such that,
after an initial transient, the nonlinear dynamical system settles
down to. The presence of an attractor implies that the system, in a
sense, repeatedly visits some portion of state space, without nec-
essarily being periodic. A more complete description of the prop-
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erties of chaotic systems and their physical importance can be
found in [4].

1.2. The System Modeling Problem

We assume that we observe the state of a chaotic system through
an observation function, h: y, = h(s,), where y, € R* is the
output from the chaotic system. We have used one-dimensional

observations in all of our work to date. The system modeling
problem is, given a sequence of observations y,. y = {Y1s Y2 o0

¥y}, to develop a model for the system that can be used for anal-

ysis of the system, prediction of future behavior of the system,
signal separation, system identification, or signal detection.
Depending on the modeling problem, it may not be necessary to
generate an explicit modet for the state update function f

Past work in the area of system modeling for chaotic systems
has considered explicit model development, prediction, and noise
removal. Modeling chaotic systems from observations has
focused on developing global nonlinear maps or locally linear or
nonlinear maps that describe the evolution of the system [5]. Pre-
diction is performed by extrapolating from the current state
according to the map. Noise removal methods have been devel-
oped based on iterative techniques and on optimization
criteria [5, 6].

2. MODELING DYNAMICAL SYSTEMS WITH
HIDDEN MARKOV MODELS

By their very nature, dynamical systems are Markov processes
and the presence of an attractor in a chaotic system imposes a nat-
ural probabilistic measure on the state space - the invariant den-
sity. Marteau and Abarbanel have developed an iterative noise
removal procedure in which training data is used to estimate the
invariant density [7].

We propose to model a nonlinear dynamical system using a
discrete state space model with continuous observations in which
we do not assume that our states necessarily have any relation-
ship to the true states of the system. We choose our representation
such that the observations are well-modeled. Thus, our model is
a hidden Markov model (HMM) because the states are not
observed directly. This approach is based on ideas from Fraser,
who demonstrated that a HMM can capture some of the aspects
of a chaotic system [8].

Our model for a nonlinear dynamical system consists of the
following parts:

o Asetof LstatesS={S;, S,, ..., S} We denote the state
at time index n as g, where g, € S.
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e An L by L state transition matrix A that defines the probabil-
ity of the next state given the current state. We assume that
the states are fully interconnected and allow the training
procedure to determine the proper connectivity.

o AnL element vector 1t that defines the initial state probabil-
ities. For a chaotic system operating on an attractor the ini-
tial state probabilities are the state probabilities regardless
of time index, i.e., the invariant density. Equivalently, we do
not assume that the initial condition for the training data is
the initial condition for all outputs of the chaotic system.

® A set of L observation probability densities, one for each
state, that determine the likelihood of the observations
given the model. In our modeling work we have assumed
that the observation density is Gaussian with a state-depen-
dent mean m(g) and variance o? (q) . This observation
density is particularly useful because it can be easily modi-
fied to include Gaussian observation noise. We denote the
2L element vector of mean and variance parameters as b.

Training of our model begins with a sequence of clean obser-
vations ¥,. y = {y;, ¥, ..., Yy} and attempts to determine A, &,

and b to maximize the likelihood of the observations given the
model parameters, i.e.,

{Ab &} = argmax Pr(yy. y| 4, b, 1),

o% (2)
where we use the Markov property:
Pr(yy.y| A, b 1)
= Z Pr(yl;N1 ql;NsA’ br E)Pr(qI:N! A! b9 E)
9.8 (3)
N
= Y 5a)Pr0y| 4, ) [] Pr(ay| ue 1 APTO,f 5 D)
qi:N nw2

in the optimization. The sums in Eq. (3) are over all possible state
sequences.

We use the segmental K-means and the Baum-Welch algo-
rithms to estimate our model parameters, as follows:

1. Create vectors from the observations using delays, i.e., form
the vectors [y, ¥,_1 --- Yp_p41])- See 4] fora discus-
sion of the selection of an embedding dimension D.

2. Develop a vector quantizer with L codewords for the vec-
tors. Quantize the observations using this quantizer.

3. Estimate the transition probabilities using the observed tran-
sitions in the quantized observations. Estimate the observa-
tion means as the codewords and the observation variances
according to the quantization error.

4. Tteratively perform Viterbi decoding to estimate the best
quantized sequence and re-estimate the model parameters
using the quantized sequence.

5.Use the Baum-Welch algorithm to finalize the model
parameters [9].

While we do not require that the states in our hidden Markov
model have any relationship with the state of the nonlinear
dynamical system, we do initialize our search for a good model
by effectively quantizing state space. Figure 1 shows the two-
dimensional embedding of the Henon map:

051
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x[n]
FIGURE 1. Time-delay embedding and state locations for the

Henon map after vector quantization. 10,000 samples of data
were used to train a 100 state model.

' Training l Non-zero | Average

Model | SetSize | States | Transitions LL

1 7500 75 222 1.88
o 10000 100 298 2.06
I 25000 250 707 271

TABLE 1. Parameters of different models of the Henon map.

_ 2
Slne1= 1+s2‘n—1.4s1‘n

G}
$2,ne1 =035 4
when h(s) = sy, along with the locations of the vector quan-

tizer codewords. The state locations after vector quantization
appear to be a reasonable representation of the embedded vectors.
However, the likelihood function is increased by 13% by use of
the Baum-Welch algorithm.

Table 1 shows the results of different modeling trials for the
Henon map. The number of non-zero transitions shows the num-
ber of transitions that are present after Step 4 of the training. The
results show that, on average, there are three transitions from
each state. The average log likelihood is

N'llog ( Pr(yl:N\ A, b, 1)) and shows that, as expected, increas-
ing the number of states increases the likelihood.

3. SIGNAL SEPARATION

A common signal processing problem is to separate a received
signal into two components. We have examined this problem for
chaotic systems using hidden Markov models. We assume that
we are given a sequence of observations, 0.y = {01, 0y, -,

Oy}, where each observation is the sum of the output of the cha-
otic system and another signal, i.e., 0, = y,+w,, and we wish
to generate the best estimates for y, and w, given the observa-
tions.

For our initial work, we assume that the other signal, w, can

be modeled as white Gaussian noise with variance ci,. We define
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two signal estimation algorithms — one based on a maximum like-
lihood state sequence estimation approach and one based on a
maximum aposteriori approach.

3.1. Maximum Likelihood Approach
The maximum likelihood signal estimation approach first esti-
mates the most likely state sequence given the observations, ie.,
41,y = argmex Pr(gy. 5| 0. n)
q:n )
This is computed using the Viterbi algorithm. The signal y, is
then estimated as the expected value of y, given the observations
and the most likely state sequence. i.e.,

90 =E [, 0p 2l

2,4
c” (qn) ©
=m(Q) + ——— (0, = m(2p)
oGy +o,,

where m(g,) and 0'2(?1,,) are the mean and variance of the most
likely state at time index 7.
3.2, Maximum Aposteriori Approach

In the maximum aposteriori approach we attempt to estimate
the signal y, as the expected value of y, given the observations,
ie.,

$n=E [7, 0y 0]

= E E [ynl On’ qn] Pr(ql:N. OI:N)
9N
where the summation is performed over all possible state
sequences, q,. y, and where E [ynl 0,,9,] is computed accord-
ing to Eq. (6). Note that Eq. (7) can be computed efficiently using
the forward-backward algorithm to compute Pr(g,| 0,.n )

g

We note that in the case of a linear dynamical system, driven
by white Gaussian noise, both the maximum likelihood and the
maximum aposteriori approaches converge to Kalman smoothing
as the number of states goes to infinity.

3.3. Processing Results

Figure 2 shows an example of noise removal using hidden
Markov models for a chaotic system. In this example 25,000
samples from the Henon map were used to train a 250 state
model. An additional 2000 data points from the Henon map were
generated using different initial conditions. This is the signal y,.

White Gaussian noise was added to y,, for a signal to noise ratio

of 10 dB. This signal was then processed by the maximum apos-
teriori processing method. The time-delay embedding of the
original signal is shown in Figure 1. Figure 2a shows the time-
delay embedding for the noisy signal. Figure 2b shows the time-
delay embedding for the output of maximum aposteriori cleaning.
The signal to noise ratio in the output is 21 dB, a processing gain
of 11 dB. Table 2 compares the processing gain of the maximum
likelihood and the maximum aposteriori methods for different
size models (see Table 1), both with and without the Baum-
Welch iteration. The results show improving performance with
increasing model size at the higher signal to noise ratios. Also
shown is the improvement gained by using a model built with the
Baum-Welch iteration and in using the maximum aposteriori
method. Table 3 compares the maximum aposteriori method with
the scaled probabilistic method of Marteau and Abarbanel and

xfn-1]

xinl

x{n-1)
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x[n]
FIGURE 2. Noise removal example. Time-delay embedding
of noisy signal. b. Time-delay embedding of recovered signal.

ML or | Baum- Input SNR
Model | MAP | Welch | 0dB | 10dB | 20dB
I MAP yes 69 19.9 26.8
I MAP yes 6.5 194 283
114 MAP yes 6.9 215 32.8
m MAP no 6.4 20.2 27.5
I ML yes 42 20.0 314

TABLE 2. Noise removal on the Henon map - output SNR (dB)
for various input SNRs and test conditions.

with Wiener filtering. These results show that the maximum apos-
teriori processor is 4 to 8 dB better than the scaled probabilistic
method and 4 to 12 dB better than Weiner filtering for the Henon
data.

Figure 3 shows an example of recovery of a signal buried in
chaotic noise via a hidden Markov model. A recording of a heli-
copter signal was added to the output of the Henon map. The ratio
of the helicopter signal to the chaotic signal was -20 dB.
Figure 3a shows the original helicopter signal. Figure 3b shows
the sum of the helicopter signal and the chaotic noise. Figure 3¢
shows the result of maximum aposteriori processing. The result-
ing signal to noise ratio is 7 dB.
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Input SNR
Method 0dB | 10dB | 20dB
MAP using HMM 6.9 215 328
Scaled Probabilistic 23 136 244
Weiner Filtering 3.0 10.4 20.0
TABLE 3. Comparison of noise removal based on HMM, scaled
probabilistic method, and Weiner filtering.

4. SIGNAL DETECTION

A model for the generation of signals is not only useful for signal
separation, but it is also useful for signal detection. We have
experimented with using a hidden Markov model for the detec-
tion of chaotic signals. Specifically, we train a model using a
clean version of the chaotic signal and then attempt to detect the
chaotic signal in background noise.

We use the log likelihood ratio as our detection statistic, z:
z = log (Pr(0y. 5| A, b, m) —log (Pr(0}. 5| Hy)), ®)

where the first term is the probability that the observations are the
sum of a chaotic signal plus Gaussian noise and the second term
is the probability that the observations are Gaussian noise. The
first term is calculated using the forward-backward algorithm.

Table 4 shows the results of signal detection for the Henon
map using a hidden Markov model containing 250 states. In each
case the detector is presented 100 samples of a signal containing
the output of the Henon map in noise. The performance is evalu-
ated in two ways: first a “pseudo SNR” is calculated as

(E [z| signal present] —E [z| noise only] )2

“SNR” =
Var [z| noise only ]

»

secondly, we compute, via Monte Carlo simulation, the probabil-
ity of detection at various false alarms rates. As a comparison, we
show in Table 5 the expected performance of a noncoherent inte-
grator at the same signal to noise ratios assuming 100 data points.
The results show that a detector based on a hidden Markov model
performs significantly better than a noncoherent detector. How-
ever, the performance does not approach that of a coherent detec-
tor. For example, at a —10 dB input SNR with 100 samples, a
coherent detector will achieve a Py, of 0.94 ata P, of 0.05.

5. SUMMARY AND FUTURE WORK

We have presented initial results on modeling chaotic dynamical
system using hidden Markov models. We have shown that a hid-
den Markov model is useful for signal cleaning and for signal
detection of chaotic systems. Currently we are working to com-
bine such modeling techniques with other methods for modeling
chaotic dynamical systems, to develop processing techniques for
multi-dimensional data, and to apply our work to training from
noisy observations.
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FIGURE 3. Signal recovery example. a. Original helicopter
signal. b. Noisy signal. c. Recovered signal.
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