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ABSTRACT

Signal processing is an integral part of cell biology. The associ-
ated algorithms are implemented by signaling pathways that cell
biologists are just beginning to understand and characterize. Our
objective in the context of signal processing is to understand these
algorithms and perhaps emulate them in other contexts such as
communication and speech processing. Towards this end, this pa-
per proposes a new framework for modeling cellular signal pro-
cessing using interacting Markov chains. The model is presented
and preliminary results that validate it are given. Specifically, the
example of the mitogen activated protein kinase cascade is exam-
ined and model predictions are compared to experimental findings.
The model is consistent with the key properties of the cascade, i.e.
ultrasensitivity, adaptation, and bistability.

1. INTRODUCTION

Biology presents a potentially very fruitful metaphor for signal
processing. In fact, there is very strong evidence of interesting so-
phisticated signal processing operations performed by living sys-
tems including ones reminiscent of frequency modulation coding
[1] and multi-resolution filterbanks. Biological signaling, in par-
ticular, takes on different forms ranging from electrical signals
through nerve synapses, physical signals such as mechanical stress
or pressure at the surface of cells, to chemical signals such as hor-
mone concentrations in the bloodstream. While some of these
signals, notably electrical and physical signals, have been histor-
ically easier to study and control than others, the emergence of
high throughput technologies for molecular biology is making the
study of biochemical signaling networks a possibility. In addition,
as more signaling networks and elements are identified, their com-
plexities and the intricate interactions among signaling molecules,
or cross-talk, are quickly becoming intractable. Understanding
how cells do signal processing therefore eventually requires mod-
els that define layers of abstractions in order to view signaling al-
gorithms at different resolutions.

Most current models for signaling pathways can be classified
in one of two categories: biochemical models which define the sys-
tem in terms of kinetic differential equations governed by the laws
of mass action or Michaelis Menten kinetics and biophysical mod-
els which are concerned with the mechanical forces and spatial
distributions necessary to generate a response. While these mod-
els usually have a direct physical basis, even the simplest of these
includes hundreds of equations and many parameters that usually
need to be estimated since they are not directly measurable. As a
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result, one can rarely gain intuition from such models. Also, the
under-constrained parameter space makes such models somewhat
arbitrary.

In this paper, we propose a fundamentally different approach
to modeling based on statistical control and signal processing the-
ory. Our goal is to develop an intuition as well as some understand-
ing of how cells perform signal processing based on approximate
models inspired from our engineered signal processing networks.
We limit our approach to signaling networks within cells. The in-
tracellular signaling networks we are interested in are composed
of proteins and enzymes as well as other molecules such as DNA,
phosphates, and ATP. Signaling usually occurs through a series
of protein modifications such as phosphorylation (the addition of
phosphate groups) and cleavage, translocation from the cytoplasm
to the nucleus, as well as control of gene expression. Usually,
signals propagate through cascades where one protein affects the
activity of another downstream protein. However, cross-talk also
plays an important role in the signaling mechanism where several
proteins coming from different upstream signals affect the same
downstream signal or a set of different downstream signals.

In the following sections, we first present a model of interact-
ing Markov chains in Section 2, we then give, in Section 3, an ex-
ample of an evolutionary conserved biological signaling network
and discuss its properties. Finally, in Section 4, we apply our mod-
eling approach to this network and present model predictions and
results.

2. INTERACTING MARKOV CHAINS

2.1. Model Formulation

Our model is composed of a network of v interacting nodes. Each
node is composed of a k-state non-homogeneous Markov chain,
i.e. the state Xp[n] of node Xp at time n is given by:
P (Xp[n]=j|Xp[n−1]=i,··· ,Xp[0]=m)=P (Xp[n]=j|Xp[n−1]=i)=p

Xp
ij
[n]

In the absence of any interactions, the transition probabilities of
chain Xp are simply pXp

ij
[n]=q

Xp
ij
[n] where qXp

ij
[n] is independent

of all states in the network. More generally, interactions between
different nodes are defined by influences of states in one node onto
transition probabilities in another node. This influence may be
either positive (activating) or negative (inhibiting). Specifically, if
a given state l in node Xr influences the transition probability from
state i to state j in node Xp then the transition probability from
state i to state j in node Xp at time n due to the influence of state l
in Xr , {pXp

ij
[n]}[l,Xr] is given by:
{p
Xp
ij
[n]}[l,Xr]=αr,lf{P (Xr[n−1]=l)}

βr,l (1)
where P (Xr[n−1]=l) is the a-priori probability of node Xr being in
state l at time n−1, 0≤αr,l≤1 and 0<βr,l are constants, and f{x}=x
if the influence is positive, otherwise f{x}=1−x if the influence
is negative. Furthermore, in addition to qXp

ij
[n], a given transition

probability may be subject to influences from several states in dif-
ferent nodes, each one of which will have a form similar to equa-
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tion (1). There are clearly many different ways in which the indi-
vidual transition probabilities, or equivalently the influences, may
be combined with qXp

ij
[n] into one composite transition probability.

Here we consider two models for combining the state influences:
a weighted average model and a fading model.

2.1.1. Weighted average model

As the name suggests, in the weighted average model, the influ-
ence of states from different nodes are added together to form
p
Xp
ij
[n], the total transition probability from state i to state j in node

Xp at time n as follows:

p
Xp
ij
[n]=

∑

r

∑

l

{p
Xp
ij

[n]}[l,Xr]
+αq,p(q

Xp
ij

[n])
βq,p

∑

r
∑

l αr,l+αq,p
(2)

where 0≤αq,p≤1 and 0≤βq,p are constants.

2.1.2. Fading model

In the fading model, the individual influences are combined through
multiplication, i.e. the composite probability is given by:

p
Xp
ij
[n]=

∏

r,l{p
Xp
ij
[n]}[l,Xr]αq,p(q

Xp
ij
[n])βq,p (3)

where again 0≤αq,p≤1, and 0≤βq,p.

2.1.3. Notation

A graphic representation of the model is given in Figure 1 where
directed arrows between nodes define influences of specific states
in the originating node onto specific transition probabilities in the
receiving node. The influence is labeled I[Xr,Xp] where Xr is the
originating node and Xp is the receiving node. Each I[Xr,Xp] car-
ries with it a set of relations of the form [l,Xr]

γ
−→[pij ,Xp]where l is

the state in node Xr influencing transition probability pij in node
Xp and γ=+ if the influence is positive, otherwise γ=− if the influ-
ence is negative. Examples of such influences are given in Figure
1.
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I[X1,X2] = [2,X1]
+
−→[p12,X2]

I[X2,X3] = [1,X2]
+
−→[p21,X3]

I[X1,X5] = [2,X1]
−
−→[p23,X5]

I[X2,X4] = [1,X2]
−
−→[p11,X4]

[3,X2]
+
−→[p21,X4]

Fig. 1. Graphical representation of the interacting Markov chain
model. Two representative Markov chains are illustrated for nodes
4 and 5: a two-state and a three-state chain respectively.

2.1.4. Evolution of the state probabilities

Recursive formulas for the state occupancy probabilities of the in-
dividual Markov chains are similar to those of traditional Markov
chains [2]. Specifically, let pXr [n] be a row vector of length k

where k is the order of the Markov chain at node Xr and whose
entries correspond to the state probabilities at time n, i.e. the l-th
entry corresponds to the a priori probability of chain Xr being in
state l at time n, P (Xr[n]=l), and the initial state probability distri-
bution is given by pXr [0]. Furthermore, let AXrXr [n] be the transi-
tion matrix of the Markov chain at node Xr at time n, i.e. AXrXr [n]
is written as follows:

AXrXr [n]=













p
Xr
11 [n] ··· p

Xr
1k
[n]

...
. . .

...
p
Xr
k1
[n] ··· p

Xr
kk
[n]













(4)

Then, it follows from the Markovian property that:
pXr [n+1]=pXr [n]AXrXr [n] (5)

and therefore:
pXr [n+1]=pXr [0]

∏i=n
i=0 AXrXr [i] (6)

It is straightforward to show that if the individual Markov
chains consist of a single recurrent class and if the graph repre-
senting the network is acyclic, then the state probabilities will al-
ways reach a steady-state which can be solved for by propagating
the steady-state probabilities of the originating node (the node that
is not subject to any influence) into the other nodes. If the graph
contains cycles however, a steady-state may not exist. In order to
have a full characterization of the network behavior such as the
pattern of states that the network can be in at a given point in time,
the joint probabilities of state occupancies in different chains is
needed. This higher-order analysis is not considered in this paper.

2.2. Related Models

A variety of interacting Markov chains or more generally stochas-
tic cellular automata models have previously been formulated and
described, most in the context of studying parallel systems, i.e.
systems composed of interacting modules. The most recent of
these models and probably the closest to our model are the in-
fluence model described in [3] and the stochastic automata net-
work (SAN) in [4]. In a manner similar to ours, both the influence
model and the SAN define a network of interacting Markov chains.
However both of these models diverge from ours in very important
ways. In the influence model [3], the influence from neighboring
nodes is constrained to take a multilinear form, while the inter-
action between Markov chains in our model is clearly non-linear.
The difference between our model and the SAN is more subtle. At
first glance, it may appear that both models are identical. How-
ever, while in our model, the influence is expressed through the a
priori probability of being in a certain state, in the SAN, the in-
fluence is expressed through the a posteriori probability of being
in a given state. As a result, while it can be shown that the SAN
can always be expanded to a higher order Markov chain with much
larger state-space, the interacting Markov chain model we present
here is not always expandable to a higher order Markov chain. For
a more detailed literature review of related models, the reader is
referred to [3].

2.3. Cellular signaling

In applying our model to cellular signaling, each protein or en-
zyme corresponds to a node. The order of the associated Markov
chain is given by the number of states the protein can have. For
example, a protein can be in one of two states: active or inac-
tive, alternatively it can have three possible states: unphosphory-
lated, singly phosphorylated, or dually phosphorylated. Non-zero
transitions between states are given by our knowledge of the pro-
tein state transitions. For example if the protein cannot be dually
phosphorylated without first being singly phosphorylated, the cor-
responding Markov chain will only allow for transitions between
the unphosphorylated state and the singly phosphorylated state and
between the singly phosphorylated state and the dually phosphory-
lated state, i.e. no direct transitions between the unphosphorylated
state and the dually phosphorylated state are allowed.

Furthermore, when more than one state influences a transition
probability in a given node, whether the weighted average model
or the fading model is used depends on the actual nature of the pro-
tein interaction. Specifically, if the protein interactions are known
to be cooperative, i.e. the proteins either bind to the same site or
all the proteins in question need to be present to get an activation
or an inhibition effect, then the fading model is used. On the other
hand, if the proteins bind at different sites or their actions are inde-
pendent of each other, then the correct model to use is the weighted
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average model. Finally, activating interactions are modeled by the
positive influence version of f{x} and inhibiting interactions are
modeled by the negative influence version of f{x}.

3. A SIGNALING MODULE: THE MAPK CASCADE

3.1. Background

The mitogen-activated protein kinase (MAPK) cascade is an es-
sential component of a wide variety of cell signaling pathways. It
is a series of three conserved kinases (i.e. enzymes that add phos-
phate groups to other enzymes) organized in a hierarchy and found
only in eukaryotes. This set of enzymes plays a role in relaying
signals from receptors at the cell surface to regulatory elements in-
side the cell nucleus. They are involved in a variety of pathways
ranging from growth, differentiation, and development to inflam-
mation and programmed cell death. At the top of the hierarchy,
activated MAPK kinase kinase (or MAP3K*) activates MAPK ki-
nase (MEK) by serially phosphorylating it at two serine residues.
Activated MEK then activates MAPK by serially phosphorylating
it at a threonine and a tyrosine residue which in turn proceeds to
activate downstream signals. The cell also contains phosphatases
that dephosphorylate (deactivate) activated kinases. The cascade
can thus be perceived as a stand-alone module with the MAP3K
activating enzyme as the input signal and the activated MAPK as
the output signal.

3.2. Properties of the MAP Kinase Cascade

Many MAP kinase cascade proteins have been studied and quan-
titative data can be found in the literature for both steady-state be-
havior [5] [7] and time behavior [6]. Three important properties
implemented by this module have been suggested, namely ultra-
sensitivity, adaptation, and bistability. Probably the most impor-

Fig. 2. Experimental stimulus/response data for MEK and MAPK
activation in Xenopus oocytes1 . malE-Mos is the relevant MAP3K
in this system.

tant property is ultrasensitivity, i.e. the ability of the cascade to
generate a highly switch-like response to a continuously variable
stimulus. Specifically, Huang and Ferrell [5] studied the steady-
state response of the cascade in Xenopus oocytes and were able
to show that in response to a continuous stimulus, the response
at the output of the cascade, i.e. the concentration of activated
MAP kinase, was more switch-like than at intermediate stages of
the cascade such as the concentration of activated MEK. The data
is shown in Figure 2. In a parallel and complementary manner,
Asthagiri and Lauffenburger studied the MAPK cascade in Chi-
nese Hamster ovary cells [6]. They were able to show that there
exists a negative feedback mechanism which leads to adaptation
of the response, i.e. the time response to a step stimulus generates
an output with a peak response followed by an adaptation of the

1Figures 2 and 3 are reproduced with permission of the authors. See
[5], [6], [7] for experimental details.

(a) (b)

Fig. 3. Time evolution data1. (a) ERK2 (the relevant MAPK)
adaptation in Chinese hamster ovaries. (b) Time course of JNK
(MAPK) activation and inactivation in sorbitol-treated Xenopus
oocytes. Both insulin and sorbitol are activating factors operating
upstream of the cascade.

output back to its original value, or close to that value, as if the
stimulus was turned back off. The corresponding data is given in
Figure 3-(a). Finally, Bagowski and Ferrell [7] suggested that a
positive feedback mechanism may occur within the cascade lead-
ing to bistability: they were able to measure a different steady-state
response if the stimulus was stepped up from a low level than if the
stimulus was stepped down from a high level as shown in Figure
3-(b). In addition to the experimental findings, a kinetic model
based on reaction-rate differential equations was first formulated
by Huang and Ferrell in [5]. The simplest model they propose
which does not include feedback has at steady-state a total of 25
equations and 17 parameters which need to be estimated. Astha-
giri and Lauffenburger in [6] used a similar model with negative
feedback. These models were consistent with the data. However,
the large number of estimated parameters is problematic.

4. RESULTS

4.1. The Model

Figure 4 shows the interacting Markov chain model of the MAP
Kinase cascade. We use the fading version of the model and con-
sider three configurations for the network graph: the open loop
case, where all feedback is absent, the negative feedback case
where the feedback from state 2 in node X3 to the transition prob-
ability p12 in node X1 is inhibitory, and finally, positive feedback
where this same feedback is activating. We also use two different
sets of Markov chains at the nodes. In the first set, all Markov
chains are two-state chains where one state is the inactive form of
the protein and the other state is the active form. A representative
chain is given in Figure 4. In the second set, we consider the case
of serial phosphorylation where now nodes X2 and X3 are repre-
sented by three-state Markov chains corresponding to unphospho-
rylated, singly-phosphorylated, and dually phosphorylated forms
of the proteins while node X1 is still represented by a two-state
(inactive and active) Markov chain. Furthermore, the deactivat-
ing probabilities are constrained to be equal, i.e. p21=p32=pd in all
chains where pd is the common value constant probability. αr,l in
equation (1) and αq,p are all set to one for all interactions. βr,l are
all equal to a constant β, while βq,p=0. Finally, the input signal
is qX112 [n]. In the presence of feedback, the feedback interactions
are combined with the input (using a value of βq,p=1 and αq,p=1)
using the fading model. Given all these constraints, the model has
only two free parameters, namely pd and β.
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2−state I[X1,X2] = [2,X1]
+
−→[p12,X2]

I[X2,X3] = [2,X2]
+
−→[p12,X3]

3−state I[X1,X2] = [2,X1]
+
−→[p12,X2]

[2,X1]
+
−→[p23,X2]

I[X2,X3] = [3,X2]
+
−→[p12,X3]

[3,X2]
+
−→[p23,X3]

0fdback I[X3,X1] = 0

+fdback I[X3,X1] = [2,X3]
+
−→[p12,X1]

−fdback I[X3,X1] = [2,X3]
−
−→[p12,X1]

Fig. 4. Interacting Markov chain model of the MAPK cascade.
The general network configuration is given as well as the two-state
and three-state Markov chains. The influences definitions are also
given for all configurations.

4.2. Simulations

The model was implemented in MATLAB and simulations were
performed to determine the time behavior as well as the steady-
state response using a variety of pd and β values. For values of
pd in the range [0.05 0.3] and values of β in the range [0.8 3],
the shape of the response did not vary much. However, for high
values of pd, the deactivating probabilities dominated the chains
and as a result, the probability of being in an active state was very
low irrespective of the value of β . The rest of the simulations
were therefore performed using the representative values pd=0.1
and β=3.

4.2.1. Steady-State

Figure 5 shows the steady-state results. For each input value, the
corresponding step response was simulated and the steady-state
probabilities were recorded. The initial condition for the state
probabilities was the value of the steady-state probabilities ob-
tained from the previous run. The experiment was run using in-
creasing input values (from 0 to 1) as well as decreasing input
values (from 1 to 0). State zero was initialized at zero.
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(b) Positive Feedback

Fig. 5. Steady-state state probabilities as a function of the input
probability for the activated states of the proteins. States A∗, B∗,
and C∗ correspond to activated MAP3K, activated MEK, and ac-
tivated MAPK respectively.

Figure 5-(a) shows the simulation when no feedback is present
and each Markov chain has two states only, inactive and active. It
is clear from the figure that as one progresses down the cascade,
the response becomes more switch-like. This behavior is much
more marked if the serial phosphorylation model with the three-
state Markov chains is used (data not shown) which is consistent
with Huang and Ferrell’s observations [5]. Figure 5-(b) shows the
simulations with two-state Markov chains and positive feedback.
Clearly, positive feedback makes the response much more switch

like. The response also becomes bistable: the curves which sharply
change at 0.5 are obtained when the stimulus gradually increases
in strength whereas the curves which sharply change at 0.12 are
obtained when the stimulus is gradually decreased.

4.2.2. Time Evolution

Temporal dynamics were also examined and the results are shown
in Figure 6 for the open-loop and negative feedback cases. The
time response was computed following a step input of magnitude
0.6 at time zero. The results show that adaptation is observed only
when negative feedback is present as measured by Asthagiri and
Lauffenburger [6].
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Fig. 6. State occupancy probabilities as a function of n. A∗, B∗,
and C∗ are defined as in Figure 5

5. SUMMARY

In this paper, we presented an approach to modeling signal pro-
cessing in cells based on interacting Markov chains. The exam-
ple of an evolutionary conserved signaling module, the mitogen-
activated protein kinase pathway, was given and it was shown that
the model correlates with experimental findings. Specifically, ul-
trasensitivity, adaptation, and bistability were observed. Com-
pared to other modeling approaches such as biochemical reaction-
rate models, the model presented here has very few parameters
and its dynamic properties are a consequence of the topology of
the network as opposed to some particular set of parameter values.
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