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Abstract

This thesis studies the problems associated with adaptive signal processing in the
sample deficient regime using random matrix theory. The scenarios in which the
sample deficient regime arises include, among others, the cases where the number of
observations available in a period over which the channel can be approximated as time-
invariant is limited (wireless communications), the number of available observations is
limited by the measurement process (medical applications), or the number of unknown
coefficients is large compared to the number of observations (modern sonar and radar
systems). Randommatrix theory, which studies how different encodings of eigenvalues
and eigenvectors of a random matrix behave, provides suitable tools for analyzing how
the statistics estimated from a limited data set behave with respect to their ensemble
counterparts.

The applications of adaptive signal processing considered in the thesis are (1)
adaptive beamforming for spatial spectrum estimation, (2) tracking of time-varying
channels and (3) equalization of time-varying communication channels. The thesis
analyzes the performance of the considered adaptive processors when operating in
the deficient sample support regime. In addition, it gains insights into behavior
of different estimators based on the estimated second order statistics of the data
originating from time-varying environment. Finally, it studies how to optimize the
adaptive processors and algorithms so as to account for deficient sample support and
improve the performance.

In particular, random matrix quantities needed for the analysis are characterized
in the first part. In the second part, the thesis studies the problem of regularization
in the form of diagonal loading for two conventionally used spatial power spectrum
estimators based on adaptive beamforming, and shows the asymptotic properties of
the estimators, studies how the optimal diagonal loading behaves and compares the
estimators on the grounds of performance and sensitivity to optimal diagonal load-
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ing. In the third part, the performance of the least squares based channel tracking
algorithm is analyzed, and several practical insights are obtained. Finally, the per-
formance of multi-channel decision feedback equalizers in time-varying channels is
characterized, and insights concerning the optimal selection of the number of sensors,
their separation and constituent filter lengths are presented.

Thesis Supervisor: Dr. James C. Preisig
Title: Associate Scientist with Tenure, WHOI
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Chapter 1

Introduction

This thesis analyzes the performance of some types of adaptive signal processing

algorithms when the number of observations available to adapt the characteristics of

the algorithms is small. Adaptive processing algorithms, as considered in this thesis,

are those whose goal is to track unknown parameters in real-time but which do not

know a priori the statistics of those parameters or the observations. A general block

diagram of an adaptive processor is shown in Fig. 1-1. The input data are processed

such that the output is in some predefined way close to the reference (desired) signal.

The coefficients, also called weights in a linear processor, are evaluated and updated

based on the input signal, difference between the obtained and desired outputs and

optimization criterion (i.e., objective or cost function) [27]. The format of the input,

structure of the processor, objective function and unknown parameters depend on

a specific application. Three applications of adaptive processing are considered in

this thesis. These are the estimation of the spatial spectrum from observations at

an array of sensors, the tracking of time-varying channels, and the equalization of

communications channels.
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Figure 1-1: Block diagram of adaptive processor.

1.1 Adaptation with Second Order Statistics

1.1.1 Objective Function based on Second Order Statistics

The objective functions corresponding to the applications of adaptive processing con-

sidered in this thesis are such that the processor coefficients obtained as the solutions

to the corresponding optimization problems depend on second order statistics of the

input data. In other words, the unifying feature of the problems studied here is that

the adaptive processing relies on the second order statistics of the data.

Although processing which utilizes higher order statistics is an option that has

been extensively studied [34], this thesis focuses on processing with second order

statistics for at least three reasons.

First, the second order statistics arise naturally in problems associated with Gaus-

sian processes (completely characterized by their first and second order statistics) as

well as problems utilizing Minimum Mean Square Error (MMSE) and Least Square

(LS) error criteria with linear signal and processing models.

Second, the ensemble statistics of the data are unknown in practice and are esti-

mated from the observed data. As will be argued shortly and studied more extensively

in the thesis, the number of stationary observations is usually not sufficient to accu-

rately estimate even the second order statistics. Estimating higher order statistics in

14



this case becomes even more prohibitive.

Third, adaptive processing with higher order statistics requires more computa-

tions, which is a limiting factor in many practical applications. Greater computa-

tional capability requires, in general, a corresponding increase in power consumption

which is often constrained in processors in underwater acoustic applications [10].

1.1.2 Ensemble Correlation and Sample Correlation Matrix

We emphasize that the objective functions corresponding to different adaptive pro-

cessing applications relying on second order statistics are in general different. How-

ever, the solution for the processor weights in all applications depends on the second

order statistics of the input data.

The input (also called received or observed) data at a particular time is a collection

of measurements (i.e., samples) of the received signal. These measurements can be

taken in spatial, delay, or both spatial and delay domains, and are arranged into an

input (also called observation) vector u. In general, u ∈ Cm×1, where C is the set of

complex numbers and m is the dimension of the observation space.1

The second order statistics of the input data are captured via correlations be-

tween measurements that constitute the observation vector u. These correlations are

formatted into an input correlation matrix, defined as2

R = E
[
uuH

]
. (1.1)

The expectation in the above definition is taken over the ensemble of observation

vectors. Note that R ∈ Cm×m.

The ensemble statistics of the input signal, and consequently the input correlation

matrix R, is usually unknown and has to be estimated from the observed data.

Assuming the input process is ergodic, the ensemble statistics are estimated via time

1Note that the number of degrees of freedom is often smaller than the dimension of the obser-
vation space m. The focus of this thesis is not on developing and addressing the problems of lower
dimensional representations.

2This is also the covariance matrix if the input process has zero mean. Without loss of generality,
we assume throughout the thesis that all the input processes have zero mean.
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averaging. A widely used estimator for the input ensemble correlation matrix is the

sample correlation matrix (SCM). The SCM is defined as

R̂ =
1

n

n∑

k=1

u(k)uH(k), (1.2)

where u(k) is the observation vector received at discrete time k, while n is the length

of the observation window.

It can be observed that the SCM is an unbiased estimator of the input correlation

matrix. Also, the SCM is the maximum likelihood (ML) estimator of the ensemble

correlation matrix when the snapshots are Gaussian distributed [52]. More impor-

tantly, for a fixed and finite number of coefficients m, as the number of observations

n → ∞, [13]

‖R− R̂‖ → 0, a.s. (1.3)

where ‖‖ is a spectral norm of a matrix.

A practical interpretation of the above result is that the SCM is an accurate

estimate of the input correlation matrix when the available number of observations

n used to compute the SCM is sufficiently large. The literature usually cites the

empirical result that n should be 3 times larger than m when the input process has

few dominant eigenvalues [43]. Some remarks on this result are made towards the

end of the following section.

1.2 Deficient Sample Support

As pointed out in the previous section, if the number of observations n is sufficiently

many times larger than the number of coefficients m, the SCM is an accurate estimate

of the input correlation matrix. However, this is rarely the case in the applications

considered in this thesis and especially when operating in the underwater acoustic

environment.

The problem of insufficient number of observations might arise as a result of one

or more of the following reasons. First, the statistics of the input signal might be
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non-stationary because the signal has propagated through a time-varying environ-

ment. A typical example is the wireless communication channel. Effectively, this

means that the time interval over which the input signal can be assumed stationary

is finite and possibly short [49]. Since the adaptation is performed using the statistics

estimated from stationary observations, the number of observation vectors might not

be sufficient to accurately estimate the correlation matrix.

Second, the length of the observation interval that can be used to estimate the

time-varying statistics might not be sufficient. This typically arises in medical ap-

plications where only a limited number of measurements are taken in a diagnostic

test.

Finally, the number of dimensions might be very large such that the number of

observation vectors is small compared to the number of dimensions. The examples

include a sonar system which nowadays might have hundreds to thousands of sensors

or a sensor array in a modern seismic imaging system which might contain several

thousands of sensors [46]. The number of observation vectors in such a scenario is

often smaller than the number of sensors.

An important parameter we often refer to in the thesis is the ratio between the

number of dimensions m and observation vectors n,

c =
m

n
(1.4)

Note that 1/c is the average number of observations per matrix dimension.

We say that an adaptive processor operates in a deficient sample support (also

called observation deficient) regime when the number of observations n is smaller or

not many times larger than the number of dimensions m. In terms of parameter c,

the observation deficient regime arises when c > 1 or c is not much smaller than 1.

Although not formal, the notion of deficient sample support is important and helps

in gauging the discussion in this thesis.

So far, we have pointed out that deficient sample support arises quite often in

practice, especially in the applications studied in this thesis. Here, we qualitatively
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study how deficient sample support impacts the estimation accuracy of the SCM.

In doing so, the eigenvalues of a matrix are chosen to conveniently visualize and

intuitively infer if and how much the SCM departs from the corresponding ensemble

correlation matrix. Two examples are considered as an illustration.

In the first example, we assume that n observation vectors of a zero mean, unit

power white noise process are received on m sensors. The ensemble correlation matrix

R is the identity matrix of order m and therefore it has m eigenvalues equal to one.

To simulate how the eigenvalues of the SCM corresponding to white noise process

behave, we perform the following numerical experiment [15]. A number of realizations

of SCM’s corresponding to white noise process are generated. Each SCM has order m

and is evaluated from n different observation vectors of white noise process using (1.2).

The eigenvalues of each SCM are computed, all obtained eigenvalues are collected and

the normalized histogram, of area 1, is evaluated.

The plots of normalized histograms for m = 10 sensors and n = 20 and n = 60

observation vectors are respectively shown in the top and bottom part of Fig. 1-2.

As can be observed, the eigenvalues of the SCM are spread around the ensemble

(i.e, true) eigenvalue 1 (whose multiplicity is 10). This indicates that the SCM and

ensemble correlation matrix differ. The amount of spread gives an intuitive indication

of how much the SCM departs from the ensemble correlation matrix.

Finally, note that as the number of observations per dimension 1/c increases from

2 (top figure) to 6 (bottom figure), the eigenvalues of the SCM concentrate around

the ensemble eigenvalue.

In the second example, the input process is of zero mean and its correlation

matrix is such that it has three distinct eigenvalues: 2, 5 and 7. The process is

measured on m = 3 sensors and n = 15 stationary observation vectors are available

for computing the SCM. We perform the same numerical experiment as in previous

example. Namely, a number of SCM’s, each of orderm = 3 and computed from n = 15

different observation vectors, are generated. The eigenvalues of each realization are

computed and the normalized histogram of all eigenvalues is evaluated. The histogram

is shown in Fig. 1-3.
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Figure 1-2: Normalized histograms of the eigenvalues of sample correlation matrices
corresponding to zero mean, unit power, white noise process measured on m = 10
sensors. The number of observations n is 20 in the top plot and 60 in the bottom
plot. The ensemble eigenvalue is 1.
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Figure 1-3: Normalized histogram of the eigenvalues of sample correlation matrices
corresponding to zero mean, colored process whose ensemble eigenvalues are: 2, 5
and 7. The process is measured on m = 3 sensors and n = 15 observation vectors are
received.

The histogram plot in 1-3 shows that the eigenvalues of the SCM are spread

around the ensemble (i.e., true) eigenvalues of the input process. More specifically,

inferring the ensemble eigenvalues from the normalized histogram itself would be a

daunting task. This indicates that the SCM and ensemble correlation matrix differ.

More importantly, this happens even though the number of observation vectors is 5

times larger than the number of sensors (i.e., the number of dimensions) !

As a final remark, we point out that in addition to an empirical result from [43]

stating that 3 observations per dimension are sufficient to accurately estimate the

SCM, the separation between distinct ensemble eigenvalues also plays its role. Namely,

as shown in the considered example, 3 observations per dimension are not sufficient in

order to have the sample eigenvalues start falling in non-overlapping segments around

their ensemble counterparts. However, this number might be sufficient if the ensemble

eigenvalues were well separated.
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1.3 Applications of Adaptive Processing

This section briefly overviews the three applications of adaptive processing that are

studied in the thesis. Their unifying feature is that a problem of deficient sample

support often arises when those applications operate in practical settings. This is in

particular the case in underwater acoustic environment, which is our primary interest.

The notion of deficient sample support is highlighted in the overview of each

application. The illustration is provided in the last part with results obtained from

processing the underwater acoustic data collected in a field experiment.

1.3.1 Adaptive Spatial Spectrum Estimation

Spatial power spectrum estimation consists of estimating the power received at an

array of sensors as a function of direction of arrival.3 This is usually used in the

context of estimating the number of point source signals embedded in the signal that

is received at an array and then estimating their direction of arrival and power. Due

to time-varying nature of the environment, these quantities are changing in time and

an adaptive beamformer tracks the spatial spectrum in real time.

A block diagram of an adaptive beamformer is shown in Fig. 1-4. An array

of sensors is spatially sampling the received signal. The Fourier transform of the

signal received on each sensor is computed. The Fourier coefficients across the array

corresponding to a particular frequency bin of interest is the observation vector for

an adaptive processor. These observation vectors are often called snapshots.

The snapshots are processed through an adaptive processor and its output is an

estimate of the spatial spectrum in a particular direction and frequency bin of interest.

The adaptive processor is a linear, time-varying spatial filter which contains a single

tap per each sensor. The coefficients of the processor are computed and adapted based

on the estimated statistics of the received signal [52]. The number of coefficients being

adapted is equal to the number of sensors and is denoted by m.

The number of stationary snapshots n, used to compute the SCM and in turn

3Note that the spatial spectrum can be mapped into the wavenumber spectrum.
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Figure 1-4: Adaptive spatial spectrum estimation.

the processor coefficients, is finite and often limited due to time-varying nature of the

environment. Therefore, the adaptive processor often operates in the sample deficient

regime.

1.3.2 Time-Varying Channel Tracking

A block diagram of a channel tracking problem framed as an adaptive processing

problem is shown in Fig. 1-5. The unknown channel is modeled as a linear, time-

varying finite impulse response (FIR) filter. Observations of the signal that has

passed through the channel are contaminated with observation noise. The adaptive

processor has access to channel inputs and noisy channel outputs. The estimated

channel impulse response (also called channel vector) is updated at discrete time t

based on the estimated channel impulse response at time t−1 and channel input and

observed noisy output at time t [27] [41].

Following the terminology introduced in Section 1.1, the observation vector at

discrete time t is formed from the input data samples which impact the channel

output at time t. The number of these samples is equal to the number of unknown

channel coefficients and is denoted with m. Note that this is the dimensionality of

the observation space.
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Figure 1-5: Channel tracking.

The number of observation vectors n, viewed in the context of previous section, is

tied with how rapidly the channel varies in time. More specifically, even though the

channel input might originate from a stationary process, the adaptive processor might

still operate in the sample deficient regime. Namely, the channel impulse response

at a particular time instant is estimated from the inputs and noisy outputs observed

during the time interval over which the channel is approximately time-invariant such

that the output data is approximately stationary.

1.3.3 Communications Channel Equalization

The wireless communications channels through which signals are often transmitted

are often time-varying and characterized by multipath propagation, which then re-

sults in intersymbol interference and Doppler spreading of the signal. Most techniques

developed for mitigating these effects rely in part or completely on channel equaliza-

tion.

A block diagram of an equalizer is shown in Fig. 1-6. The equalizer input are

samples of the received signal. The equalizer is a processor which coherently com-

bines the received signal energy and consequently compensates for the intersymbol
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interference introduced in the channel. A decision device estimates the transmitted

symbols from the equalizer outputs [41].

The equalizer coefficients depend on channel impulse response and are therefore

adapted according to channel variations. The block diagram in Fig. 1-6 corresponds

to an equalizer with direct adaptation. Depending on the position of the switch, an

equalizer operates in either training or decision directed mode. The coefficients of

an equalizer operating in the decision directed mode are, at discrete time t, updated

based on the received signal and the difference between the detected symbol and its

soft estimate at discrete time t− 1. On the other hand, the transmitted symbols are

known a priori when an equalizer operates in a training mode such that the coefficients

are updated based on the received signal and the difference between the transmitted

symbol and its soft estimate.

The number of equalizer coefficients m is the number of dimensions. The estimate

of input correlation matrix is essential in the computation and adaptation of equalizer

coefficients when the objective function is based on second order statistics.

In the context of Section 1.1, the observation vector at discrete time t is a vec-

tor of appropriately arranged input samples of the received signal which impact the

detection of a transmitted symbol at time t. The number of stationary observation

vectors n, used in the computation of the SCM, depends on how rapidly the trans-

mission channel varies in time. The relative ratio between the number of equalizer

coefficients m and number of observation vectors n might be such that the adaptation

is performed with deficient sample support.

1.3.4 Underwater Acoustic Environment

The coefficients of adaptive processors described in the previous section are quite often

adapted with deficient sample support. The causes might be time-varying channel,

non-stationary environment, large number of sensors or their combinations. This is

especially the case in the underwater acoustic setting where the underwater acoustic

signals are adaptively processed. This in fact is our main motivation for studying

adaptive processing with deficient sample support. The particular applications are
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Figure 1-6: Channel equalizer with direct adaptation.

underwater acoustic communications and passive sonar.

The main challenges associated with adaptive processing of underwater acoustic

signals arise from the time variability of the underwater acoustic environment [2], [51].

The time variability of the environment is caused by unavoidable drifts of the receiver,

motions of the sources, surface and internal waves, and other moving objects such

as fish. These result in finite and often short coherence intervals during which the

observations are statistically stationary. The time variability of the environment is

usually quantified by the scattering function [58].

In addition to causing deficient sample support, an underwater acoustic envi-

ronment poses a number of other challenges on shallow and deep water underwater

acoustic system design [51], [2]. As such, the motions in the underwater acoustic envi-

ronment together with a relatively small speed of propagation (nominally 1500 m/s)

result in relatively large Doppler spread of the received signals. Further, the acoustic

waves exhibit multiple bounces off the surface and bottom in shallow waters, which

results in long delay spread of the received signal. The delay spread of the commu-

nications signals may extend over several tens to hundreds of transmitted symbols.

Also, the attenuation of the underwater sound is frequency dependent. Finally, the

ambient noise is non-Gaussian and correlated in space and time.

To illustrate the time-variability of underwater acoustic environment and chal-

lenges associated with processing the underwater acoustic signals, some results ob-

tained from processing the acoustic signals measured in a field experiment are pre-
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sented. The field experiment, labeled KAM11, took place in the shallow water off the

coast of Hawaii in summer 2011 with one goal being to study the underwater acoustic

communication channel [28].

The impulse response of time-varying underwater acoustic channel estimated from

the data collected in the field experiment is shown in Fig. 1-7. The horizontal and

vertical axes represent the time and delay, respectively. Therefore, a vertical slice in

Fig. 1-7 is the channel impulse response at the corresponding time instant. As can be

observed, the channel impulse response exhibits time-variations even on short time

scales.

The acoustic signals recorded in the field experiment are received on a linear,

vertical, uniformly spaced 24-sensor array. The distributions of the received acoustic

energy over the space of elevation angles and delays at two different time instants are

shown in Fig. 1-8. The elevation angle is defined with respect to the array such that

90o corresponds to the broadside of the array and 0o corresponds to signals traveling

up from below. The time difference between the plots in the top and bottom part is 45

seconds. The arrival structure of the received signal fluctuates in time and while the

number of arrivals and their directions do not vary significantly in the time interval

of 45 seconds, the amount of energy associated with different arrivals changes in this

time period.

1.4 Thesis Objectives

This thesis studies the problem of adaptive processing in the deficient sample support

regime. The applications of adaptive processing considered are adaptive beamforming

for spatial spectrum estimation, tracking of time-varying channels and equalization

of communication channels. The computation and adaptation of coefficients in the

considered adaptive processors are based on the estimates of second order statistics

of the data. The unifying feature of the considered applications is that the number

of observations is quite often insufficient to accurately estimate the second order

statistics. This is especially the case in the underwater acoustic environment, which is
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Figure 1-7: Impulse response of an underwater acoustic communication channel esti-
mated from the KAM11 field data. The color scale is in dB.
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Figure 1-8: Distribution of received acoustic energy versus elevation angle and delay
at the initial time instant (top plot) and after 45 seconds (bottom plot). The data
used to generate these plots was collected in KAM11 field experiment. The color
scale is in dB.
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our main motivation. However, the issues associated with adaptation in the deficient

sample support regime often arise in many other practical applications and settings.

The main tool used for studying the adaptation with deficient sample support is

random matrix theory. The random matrix theory characterizes the eigenvalues and

eigenvectors of different classes of random matrices. A sample correlation matrix,

which estimates the correlation structure of the input process, is a random matrix

of our interest. Consequently, the thesis can be viewed as an application of random

matrix theory methods for addressing the problems of adaptive processing.

In short, the thesis analyzes the performance of the considered adaptive processors

when operating in the deficient sample support regime. In addition, it gains insights

into behavior of different estimators based on the estimated second order statistics

of the data originating from time-varying environment. Finally, it studies how to

optimize the adaptive processors and algorithms so as to account for deficient sample

support and consequently improve the performance.

1.5 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 presents background on random matrix theory methods and eval-

uates important quantities needed for the performance analysis in later chapters.

More specifically, the eigenvalue density functions, eigenvalue and eigenvector Stieltjes

transforms and moments of a random matrix are defined. The random matrix models

which describe sample correlation matrices used in the thesis are presented and impor-

tant theorems which characterize Stieltjes transforms corresponding to these models

are stated. Using these characterizations, the moments of the considered sample cor-

relation matrices are evaluated. In addition, two important results which characterize

the expectation and variance of functionals of Gaussian matrices are stated. Finally,

the chapter is concluded with the discussion on how the asymptotic random matrix

theory results are used in practical, non-asymptotic, scenarios.
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Chapter 3 considers a problem of spatial power spectrum estimation with an ar-

ray of sensors in the deficient sample support regime. More specifically, the problem

of regularization 4 in the form of diagonal loading of a sample correlation matrix, used

in two spatial power spectrum estimators, is studied. In particular, the asymptotic

behavior of two spatial power estimators, their expectations, variances and MSE’s

are analyzed in the limit when the number of snapshots and number of sensors grow

large at the same rate. Due to rapid convergence, the limiting values accurately ap-

proximate the corresponding quantities for finite number of sensors and snapshots.

Further, the study of dependence of the bias and variance corresponding to power

estimators on diagonal loading leads to a conjecture that the variance has negligible

impact on the value of optimal diagonal loading which minimizes the MSE. The be-

havior of optimal diagonal loading when the arrival process is composed of plane waves

embedded into uncorrelated noise is investigated. Finally, the MSE and sensitivity

performances of the optimized power estimators are compared.

Chapter 4 presents a performance study of the RLS algorithm when it is used

to track a channel which varies according to a first order Markov process. The ex-

pressions for signal prediction and channel estimation mean square errors (MSE) are

derived and validated via simulations. The general results are applied for specific

scenarios and as special cases the behavior in the steady-state, performance of LS-

based identification of linear time-invariant channel and performance of the sliding

window RLS algorithm are considered. Finally, several practical results such as those

characterizing the optimal exponential forgetting factor in the exponentially weighted

RLS or optimal averaging window length in the sliding window RLS algorithm, are

obtained.

Chapter 5 presents a performance study of the least squares based multi-channel

Decision Feedback Equalizer when the transmission channel is non-stationary and

modeled as a frequency selective filter which is time-invariant over only short time in-

tervals. The expression for signal prediction MSE is derived and validated via Monte-

Carlo simulations. Further, it is elaborated that the optimal number of equalizer coef-

4Also called, Tikhonov regularization and relaxation.
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ficients is a trade off between two competing requirements such that an equalizer with

relatively short constituent filters can outperform one using longer filters. Finally, the

impact of the number of sensors and separation between them on the equalization

performance of a time-varying underwater acoustic communication channel is stud-

ied. The insights concerning the optimal selection of the number of and separation

between sensors as well as the lengths of the constituent filter are validated using the

data collected in a field experiment.

Chapter 6 summaries the context and adaptive processing problems addressed

in this thesis, highlights the contributions and suggests possible future work.
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Chapter 2

Random Matrix Theory Methods

2.1 Introduction

Random matrix theory is a mathematical area concerned with the characterization of

random matrices. It is usually classified into small and large dimensional (asymptotic)

random matrix theory.

The small dimensional theory studies random matrices of finite dimension. The

small dimensional theory includes the very first random matrix theory result leading

to the joint probability density function of the entries of the Wishart matrix, which is

effectively the SCM of the Gaussian observation process [61]. A brief overview of the

relevant results in small dimensional theory is given in [13]. A compact survey of the

relevant results from the numerical analysis perspective, along with a broader per-

spective of the subject and its intimate connections with the orthogonal polynomials

is given in [16].

The large dimensional theory studies how different transforms of eigenvalues and

eigenvectors behave asymptotically when the order of an underlying random matrix

grows. The birth of large dimensional theory is usually attributed to the Wigner

semi-circle law [59], [60] and Marcenko-Pastur law [33]. Since then, the asymptotic

behavior of random matrices has been extensively studied. Nice overviews of the

results relevant for the applications is engineering areas are given in [54] and Part I

of [13]. The large dimensional random matrix theory is of interest in this thesis and
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we simply refer to it as random matrix theory.

The random matrix theory has been successfully applied in information theory and

wireless communications since the first result reported in [53]. An overview of random

matrix theory applications for studying a variety of communication techniques from

the information theory perspective is given in Part II of [13]. The random matrix

theory has also been applied in detection and estimation such as for developing new

algorithms for detecting and estimating the number of sources [42], [30].

This thesis exploits the random matrix theory insights and results in the study

of adaptive processing problems associated with adaptation in the deficient sample

support regime. More specifically, we study the problems of time-varying channel

estimation, diagonal loading for spatial spectrum estimation with small number of

snapshots and equalization of time-varying wideband communications channels. The

random matrix theory is a convenient tool used in the analysis of these problems.

Different performance metrics are asymptotically characterized and the obtained ex-

pressions are used to approximate the cases of practical interest.

This chapter introduces the fundamental concepts in randommatrix theory, presents

the results relevant for our analysis and evaluates important quantities whose char-

acterization is necessary for the study of adaptive processing problems in the rest of

the thesis.

The rest of the chapter is organized as follows. Section 2.2 defines fundamental

quantities in random matrix theory. Section 2.3 defines eigenvalue and eigenvec-

tor Stieltjes transforms and presents two important theorems which characterize the

asymptotic behavior of these transforms for the random matrix models of our interest.

Section 2.4 defines limiting moments of a random matrix and elaborates how they

can be computed from the Stieltjes transform. The applications of these concepts

and results to sample correlation matrix (SCM) models are presented in Section 2.5.

In particular, the moments of an exponentially weighted and rectangulary windowed

SCM are evaluated and the inverse of the SCM is characterized. Also, important

results corresponding to the SCM of a white noise process are separately presented.

Section 2.6 presents two important results that constitute the Gaussian method. This
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chapter is concluded with Section 2.7 which details how the asymptotic results are

used and interpreted in practical applications.

2.2 Limiting Eigenvalue Density Function

The eigenvalues λ1,λ2, . . . ,λm of anm-by-m random and Hermitian matrixAm can be

encoded with a so-called empirical Eigenvalue Distribution Function GAm(x). This

function is defined as the cumulative distribution function of the discrete uniform

random variable which can take values equal to the eigenvalues of Am. That is,

GAm(x) =
1

m

m∑

k=1

I(−∞,x](λk), (2.1)

where I[a,b](x) = 1 for a ≤ x ≤ b and is zero otherwise.

The derivative of GAm(x) is the empirical Eigenvalue Density Function µAm(x),

given by

µAm(x) =
1

m

m∑

k=1

δD(x− λk), (2.2)

where δD(x) is a Dirac delta function.

For some random matrix ensembles, when m → ∞, the empirical Eigenvalue

Density Function µAm(x) converges to a non-random limiting Eigenvalue Density

Function µA(x). The convergence is almost sure and the support of the limiting

function is compact.

An example of a random matrix model whose empirical eigenvalue density function

converges under some relatively mild conditions, often satisfied in practice, is a sample

correlation matrix (SCM) corresponding to white noise process. Such a limiting

eigenvalue density function is given in a closed form and is widely known as Marcenko-

Pastur law [33]. This result is presented in Section 2.5.3.

The SCM corresponding to white noise process is one of the few random matrix

ensembles whose limiting Eigenvalue Density Function can be expressed in closed

form. This is the motivation for introducing other ways of encoding the eigenvalues

35



of random matrices.

2.3 The Stieltjes Transform

A possible way to encode the eigenvalues of a random matrix is via the Stieltjes

transform. The Stieltjes transform is particularly useful in the theoretical analysis

of adaptive processing with deficient sample support. This section defines the Stielt-

jes transform and presents important asymptotic characterizations used later in the

analysis.

2.3.1 The Eigenvalue and Eigenvector Stieltjes Transform

In general, the Stieltjes transform S(z) encodes a real-valued density function µ(x)

such that

S(z) =

∫
1

x− z
µ(x)dx, (2.3)

where the integration is implied over the support of µ(x). The Stieltjes transform is

formally defined for '{z} > 0 ('{} denotes the imaginary part of a complex number),

so that the above integral does not have singularities.

The Stieltjes transform is intimately related to the Hilbert and Cauchy transform.

Namely, the principal value of the scaled Stieltjes transform is the Hilbert transform.

Also, the negative value of the Sieltjes transform is the Cauchy transform.

Given the Stieltjes transform S(z), a density function µ(x) is easily recovered

using the Stieltjes-Perron inversion formula [13]

µ(x) =
1

π
lim
ε→0

'{S(x+ iε)}. (2.4)

The Stieltjes Transform for Eigenvalues

In the context of random matrix theory, the Stieltjes transform corresponding to the

empirical Eigenvalue Density Function µAm(x) is, after substituting (2.2) into (2.3),
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given by

SAm(z) =
1

m

m∑

k=1

1

λk − z
, (2.5)

where z is a complex number with positive imaginary part. We refer to SAm(z) as

the empirical Stieltjes transform. Recalling that the trace of a matrix is equal to the

sum of its eigenvalues, SAm(z) is expressed as

SAm(z) =
1

m
tr{(Am − zI)−1}. (2.6)

For some random matrix ensembles, when m → ∞, the empirical Stieltjes trans-

form SAm(z) almost surely converges to a non-random limiting Stieltjes transform

S̄A(z). A sample correlation matrix is a random matrix ensemble whose limiting

Stieltjes transform exists under some relatively mild conditions, often satisfied in

practice.

The limiting Stieltjes transform S̄A(z) is the Stieltjes transform (2.3) correspond-

ing to the limiting Eigenvalue Density Function µA(x). Therefore, µA(x) can be

obtained from S̄A(z) using the Stieltjes-Perron inversion formula (2.4). This is in fact

the essence of the Stieltjes transform method [13].

The later developments exploit a simple relation between the Stieltjes transforms

of two matrices related via linear transformation. Assuming a matrix Bm is obtained

from Am as

Bm = aAm + bI, (2.7)

where a (= 0, the Stieltjes transforms SBm(z) and SAm(z) are related as

SBm(z) =
1

a
SAm

(
z − b

a

)
. (2.8)

This result straightforwardly follows from (2.6). In addition, if SAm(z) converges as

m → ∞, the relation between the limiting Stieltjes transforms remains the same.

The empirical and limiting Stieltjes transforms encode the corresponding densities

of the eigenvalues. Therefore, we refer to these transforms as eigenvalue Stieltjes
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transforms. The Eigenvector Stieltjes Transform is introduced in the following section.

The Stieltjes Transform for Eigenvectors

Traditionally, the behavior of the eigenvectors of a random matrix is studied by

analyzing the orthogonal projections. As such, it is known that the eigenvectors

of the finite dimensional SCM corresponding to a Gaussian distributed, zero mean,

unit power, white noise process are uniformly distributed on the unit sphere. In

the effort to generalize this result without constraining the process be Gaussian, the

projection of a random vector onto the subspace spanned by the eigenvectors of the

SCM of white noise process is studied [13]. More recently, the angle between the

eigenvector a random matrix and the ensemble eigenvector of the underlying process

is asymptotically characterized in [6].

The eigenvectors of a random matrix are also studied implicitly via quadratic

forms. This approach is more suitable for the applications considered in this thesis

and is introduced here.

Given deterministic vectors s1 and s2, the eigenvalues and eigenvectors of a random

matrix Am are encoded via [21]

FAm(z) = sH1 (Am − zI)−1 s2, (2.9)

where '{z} (= 0 so that FAm(z) has no singularities. We refer to function FAm(z) as

the empirical Eigenvector Stieltjes Transform, although it depends on eigenvalues as

well. Note that FAm(z) depends on the vectors s1 and s2. However, we omit showing

this dependence explicitly in order to keep the notation uncluttered.

For some random matrix ensembles, when m → ∞, the empirical Eigenvector

Stieltjes Transform FAm(z) almost surely converges to a non-random limiting eigen-

vector Stieltjes transform F̄A(z). A sample correlation matrix is a random matrix

ensemble whose limiting Stieltjes transform exists under some relatively mild condi-

tions, often satisfied in practice.

The empirical eigenvector Stieltjes transforms corresponding to matrices Bm and
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Am related via linear transformation

Bm = aAm + bI, (2.10)

where a (= 0, are related as

FBm(z) =
1

a
FAm

(
z − b

a

)
. (2.11)

This result straightforwardly follows from (2.9). In addition, if FAm(z) converges as

m → ∞, the limiting eigenvector Stieltjes transforms are related in the same way.

2.3.2 The Eigenvalue Stieltjes Transform for an important

model

The limiting Eigenvalue Stieltjes Transform of an important class of random matrices

is characterized with the following theorem [14]. The randommatrix model considered

in this theorem is essential for our study because it has a similar form to the SCM

model used in the analysis.

Theorem 2.1. Let m and n be positive integers and let

Am =
1

n
R

1
2XTXHR

1
2 (2.12)

be an m-by-m matrix with the following hypothesis

1. X is an m-by-n matrix with i.i.d. complex entries of zero mean and unit vari-

ance.

2. R
1
2 is an m-by-m Hermitian positive semi-definite square root of the positive

semi-definite Hermitian matrix R,

3. T = diag(τ1, . . . , τn) with τi ≥ 0 for all positive integer-values i,

4. the sequences {GTn(x)}∞n=1 and {GRm(x)}∞m=1 are tight, i.e., for all ε > 0, there

exists M > 0 such that GT(M) > 1− ε and GR(M) > 1− ε for all n, m.
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5. there exist b > a > 0 for which a < lim infm→∞ c ≤ lim supm→∞ c < b with

c = m/n.

Then, as m and n grow large with ratio c, the empirical Eigenvalue Stieltjes Transform

of Am, SAm(z), almost surely converges to the limiting Eigenvalue Stieltjes Transform,

S̄A(z), where

S̄A(z) =
1

m
tr

(∫
τµT(τ)dτ

1 + cτe(z)
R− zIm

)−1

(2.13)

and the function e(z) is the unique solution of the equation

e(z) =
1

m
tr

{
R

(∫
τµT(τ)dτ

1 + cτe(z)
R− zIm

)−1
}

(2.14)

such that the sign of the imaginary part of e(z) and z coincide if '(z) (= 0 and

e(z) > 0 if z is real and negative.

Note that the limiting Stieltjes transform S̄A(z) is expressed in terms of the func-

tion e(z), which is given as the unique solution to the fixed point equation (2.14). The

fixed point equation can be solved numerically, for example, by fixing z and solving

for e(z) via classical fixed-point iterations. The accompanying theorem in [14] shows

that the iterative algorithm converges if e(z) is appropriately initialized. In particu-

lar, the theorem proves the convergence of the iterative method if e(z) is initialized

with e(0)(z) = −1/z.

A more general version of the theorem is stated and proved in [14]. The random

matrix model considered therein is given as the sum of a Hermitian positive semi-

definite matrix and sum of finite number of models of the same type as (2.12) with

different and independent constituent matrices satisfying the same conditions as given

in Theorem 2.1.

As a preview, R is the ensemble correlation matrix of the input to the adaptive

processor. Also, the diagonal elements of T constitute windowing applied to the

observation vectors. The examples of the ensemble correlation matrix corresponding

to the input process consisting of a single or multiple plane waves impinging on an
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array of sensors are (3.113) and (3.117). Note that the inverse of the square root of

the correlation matrix, R− 1
2 , is a whitening filter.

In the following, a couple of remarks are made regarding the conditions of the

Theorem 2.1. First, the same characterization of the limiting Stieltjes transform holds

if the entries in X are independent and have finite moments of order 2 + ε for some

ε > 0. Note that this alleviates the necessity for having identically distributed entries

in X. The existence of moments of order higher than 2 implies that distributions of

all entries in X have light tails1 [13].

Condition 3 requires that the matrix T be diagonal. The limiting Stieltjes trans-

form for a more general version of the model which does not impose such a restriction

on the matrix T is characterized in [65].

The sequences in condition 4 of Theorem 2.1 are the empirical eigenvalue distri-

bution functions corresponding to matrices T and R, and are by definition upper

bounded by 1. Essentially, this means that with high increasingly high probability

the eigenvalues of the matrices T and R do not blow out in the limit as m → ∞.

As a final remark, note that in addition to taking the limit m → ∞, which is

in accordance with the definition of limiting Stieltjes transform, the number n also

grows large. Condition 5 implies that the ratio between m and n is finite and non-zero

number, which further implies that m and n simultaneously grow and scale linearly.

2.3.3 The Eigenvector Stieltjes Transform for an important

model

The limiting Eigenvector Stieltjes Transform of an important class of random matrices

is characterized with the following theorem [21]. As in the previous part, the random

matrix model considered in this theorem has a similar form to the SCM model used

in the analysis.

1More specifically, it implies the Lindeberg-like condition [7]
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Theorem 2.2. Let m and n be positive integers and let

FAm(z) = sH1 (Am − zI)−1 s2 (2.15)

be the empirical Eigenvector Stieltjes Transform corresponding to the m-by-m matrix

Am

Am =
1

n
R

1
2XXHR

1
2 . (2.16)

Assume the following hypothesis hold

1. s1 and s2 are m-by-1 deterministic vectors with uniformly bounded norms for

all m,

2. X is an m-by-n matrix with i.i.d. complex entries of zero mean, unit variance

and finite eight-order moment,

3. R
1
2 is an m-by-m Hermitian positive semi-definite square root of the positive

semi-definite Hermitian matrix R,

4. R has uniformly bounded spectral norm for all m, i.e., supm ‖R‖ < ∞.

Then, as m and n grow large at the same rate such that m
n → c, where c ∈ (0,∞),

|F (z)− F̄ (z)| → 0, (2.17)

almost surely for all z with '{z} > 0. The limiting Eigenvector Stieltjes Transform

is given by

F̄ (z) =
m∑

i=1

sH1 qiqH
i s2

λi

(
1− c− czS̄A(z)

)
− z

, (2.18)

where S̄A(z) is the limiting Eigenvalue Stieltjes Transform corresponding to matrix

Am and λk and qk are the eigenvalues and eigenvectors of the matrix R.

Note from the limiting result (2.18) that in general the eigenvectors are coupled

with all eigenvalues via the Eigenvalue Stieltjes Transform S̄A(z). However, if z →

0−, each term in the sum (2.18) depends on one eigenvector and its corresponding
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eigenvalue. This decoupling effect is the implication of large m,n limit in which all

little perturbations, caused by a large number of random variables which compose

the Eigenvector Stieltjes Transform, get combined in such a way that the variance of

the quadratic form decreases.

Note that model (2.16) is a special case of (2.12) with T = I. In fact, the limiting

Eigenvalue Stieltjes Transform of (2.16), S̄A(z), can be evaluated using Theorem 2.1

with T = I.

We point out that the same remark made with regard to condition 1 of Theorem 2.1

also holds here. Finally, note the equivalence between conditions 4 of Theorems 2.1

and 2.2 corresponding to matrix R.

2.4 Moments of Random Matrices

The moments of a random matrix are quantities of our interest. This section defines

the notion of a moment and elaborates how the moments can be computed from the

Stieltjes transform.

The k-th empirical moment Mk of a non-singular and Hermitian random matrix

Am is defined as a normalized trace of the k-th power of its inverse, namely

Mk =
1

m
tr{A−k

m }. (2.19)

Note that empirical moment Mk can be expressed in terms of the empirical eigen-

value density function µAm(x) as

Mk =

∫
x−kµAk

(x)dx. (2.20)

If the limiting Eigenvalue Density Function of a random matrix ensemble of in-

terest exists, the empirical moment converges as m → ∞ to a non-random quantity

called limiting moment M̄k. The limiting moment is given as an expectation corre-
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sponding to the limiting Eigenvalue Density Function

M̄k = lim
m→∞

1

m
tr{A−k

m } =

∫
x−kµA(x)dx, (2.21)

where the integration is implied over the support of µA.

The comparison between (2.6) and (2.19) reveals a relatively simple relation be-

tween the Eigenvalue Stieltjes Transform and first moment M1. Although the em-

pirical Stieltjes transform is formally defined for non-real z (in order to avoid sin-

gularities), its support is extended to real z which do not fall inside the support of

the underlying eigenvalue density function. Assuming the sequence of matrices Am

is positive definite, SAm(z) is defined for z such that Im{z} = 0 and Re{z} → 0−,

which we compactly represent as z → 0−. Hence, using (2.6) the empirical moment

M1 is given by

M1 = lim
z→0−

SAm(z) (2.22)

Similarly, the limiting first moment M̄1 is related to the limiting eigenvalue Stielt-

jes transform S(z) (if it exists) via

M̄1 = lim
z→0−

S̄A(z) (2.23)

The higher order empirical and limiting moments can be obtained similarly from

the empirical and limiting Stieltjes transforms. The k-th derivative with respect to z

of the empirical Eigenvalue Stieltjes Transform (2.6) is given by

∂kSAm(z)

∂zk
=

k!

m
tr{(Am − zI)−(k+1)}. (2.24)

Assuming the sequence of matrices Am is positive definite and order k is finite,

the k-th derivative of SAm(z) is defined as z → 0−. Thus, the empirical k-th moment

Mk is obtained from the k-th derivative of the empirical eigenvalue Stieltjes transform

SAm(z) as

Mk =
1

k!
lim
z→0−

∂kSAm(z)

∂zk
(2.25)
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Finally, the limiting k-th moment M̄k is given from the k-th derivative of the

limiting Eigenvalue Stieltjes Transform by

M̄k =
1

k!
lim
z→0−

∂kS̄A(z)

∂zk
(2.26)

This method is used to evaluate the limiting moments needed for the performance

analysis of adaptive processors operating in the deficient sample support regime. As a

final note, in a more general framework, other important quantities in random matrix

theory are characterized using the Stieltjes transform and similar methods [22]. The

obtained characterizations are commonly known as Girko estimators.

2.5 Sample Correlation Matrix Models

The models of the sample correlation matrices used in this thesis are introduced in

this section. Also, the limiting Stieltjes transforms corresponding to these models are

characterized and the limiting moments are evaluated. The limiting eigenvalue density

functions of two SCM models corresponding to white noise process are presented in

the last part.

2.5.1 The Moments of the Exponentially Weighted SCM

The exponentially weighted SCM computed at discrete time n from observation vec-

tors u(k) of dimension m, received at discrete times k = 1, 2, . . . , n, is defined as

R̂(n) =
n∑

k=1

λn−ku(k)uH(k), (2.27)

where λ ∈ (0, 1) is an exponential forgetting factor. The exponential forgetting factor

λ attenuates past observations not relevant for the estimate of correlation matrix at

current time instant. The forgetting factor λ is usually very close to 1.

Note that the effective number of observations is controlled by the value of for-

getting factor λ. That is, if λ is small, only few most recent observations impact the
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SCM (2.27). A common rule of thumb is that the effective number of observations

neff is 1/(1− λ) [27].

The effective number of observations is a relevant quantity in the study of adaptive

processing with deficient sample support when the exponential weighting of observa-

tion vectors is employed.

Random Matrix Model for the SCM

If the ensemble correlation matrix of the arrival process is R, the observation vector

u(k) is modeled as a colored process

u(k) = R
1
2x(k), (2.28)

where R
1
2 is a positive-semi definite square root of the correlation matrix R and

x(k) ∈ Cm is a vector of i.i.d. zero mean, unit variance entries.

From (2.28) and (2.27), the exponentially weighted SCM can be compactly rep-

resented by

R̂(n) = R
1
2XΛ(n)XHR

1
2 , (2.29)

where

1. X is m-by-n matrix whose k-th column, x(k), is an observation vector of a zero

mean, unit power white noise and

2. Λ(n) = diag (λn−1,λn−2, . . . , 1) is a diagonal matrix of order n composed from

the powers of forgetting factor λ.

The Limiting First Moment of the Exponentially Weighted SCM

In the following, the limiting first moment M̄1 corresponding to the exponentially

weighted SCM is evaluated. As elaborated in Section 2.4, the first step is to charac-

terize the limiting Eigenvalue Stieltjes Transform. This is done by using the result of

Theorem 2.1. Then, the limiting first moment is obtained from the limiting Stieltjes

transform by taking the limit z → 0−.
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The exponentially weighted SCM (2.29) is equivalent to the matrix Am (2.12) up

to scaling when T = I. Namely,

Am =
1

n
R̂(n). (2.30)

Their limiting Eigenvalue Stieltjes Transforms are using (2.8) related as

S̄A(z) = nS̄R̂(nz), (2.31)

where S̄R̂(z) is the limiting eigenvalue Stieltjes transform corresponding to the expo-

nentially weighted SCM R̂(n).

The empirical Eigenvalue Density Function of Λ(n) is given by

µΛ(n)(τ) =
1

n

n∑

k=1

δD(τ − λn−k). (2.32)

The substitution of (2.30) and (2.32) into (2.13) yields the characterization of the

limiting Eigenvalue Stieltjes Transform of SCM R̂

nS̄R̂(nz) =
1

m
tr

(
1

n

n∑

k=1

λn−k

1 + cλn−ke(z)
R− zI

)−1

(2.33)

where e(z) is obtained by substituting (2.32) into (2.14) as

e(z) =
1

m
tr




R

(
1

n

n∑

k=1

λn−k

1 + cλn−ke(z)
R− zI

)−1



 (2.34)

Taking the limit z → 0− (i.e., '{z} = 0 and *{z} → 0−) in (2.34) and denoting

e(0) = limz→0− e(z) yields

1

e(0)
=

1

n

n∑

k=1

λn−k

1 + cλn−ke(0)
(2.35)
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Similarly, taking the limit z → 0− in (2.33) yields

nM̄1 =
1

m

(
1

n

n∑

k=1

λn−k

1 + cλn−ke(0)

)−1

tr{R−1}. (2.36)

We observe from (2.35) and (2.36) that nM̄1 =
1
mtr{ R−1}e(0) and solve for e(0)

in terms of M̄1. After substituting the result in (2.35) and rearranging the obtained

expression, the limiting first moment is finally given as a fixed point solution to

1

M̄1
=

n∑

k=1

λn−k

1
mtr{R−1}+mλn−kM̄1

(2.37)

Recall that the fixed-point iterative method, if appropriately initialized, converges

to the unique solution of the fixed point equation (2.14). Since the fixed point equa-

tion (2.35) is obtained from (2.14) by taking the limit z → 0−, we conclude that (2.35)

has unique solution which can be found by employing the iterative algorithm. Con-

sequently, the limiting moment M̄1 is given as the unique solution to the fixed-point

equation (2.37).

Given that the iterative algorithm initialized with e(0)(z) = −1/z converges to the

unique solution of (2.14) [14], the iterative procedures for solving (2.35) and (2.37)

should be initialized with a large negative number. However, since the solutions

to (2.35) and (2.37) are positive reals, an initialization with a small positive number

suffices. The simulations performed to validate the results in later chapters confirm

this observation.

Note that in a special case when λ = 1, the limiting moment M̄1 is, using (2.37),

given in a closed form

M̄1 =
1

m(n−m)
tr{R−1}. (2.38)
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2.5.2 The Moments and Inverse of the Rectangularly Win-

dowed SCM

The SCM evaluated from n rectangularly windowed observation vectors of dimension

m has been introduced in Section 1.1.2. For completeness we repeat the definition

here. Namely, given the stationary observation vectors u(k) at discrete times k =

1, 2, . . . , n, the rectangularly windowed SCM is given by

R̂ =
1

n

n∑

k=1

u(k)uH(k). (2.39)

As already elaborated, if the ensemble correlation matrix of the arrival pro-

cess is R, the observation vector u(k) is modeled using (2.28). Substituting (2.28)

into (2.39), the rectangularly weighted SCM is compactly represented as

R̂ =
1

n
R

1
2XXHR

1
2 , (2.40)

where X is m-by-n matrix of i.i.d. zero mean, unit variance entries. Its columns

model observations of a zero mean, unit power white noise process.

The SCM in (2.39) is usually diagonally loaded in order to improve the condition

number of the resulting matrix and for some additional reasons that will become clear

in Chapter 3. The diagonally loaded SCM is given by

R̂δ = R̂+ δI, (2.41)

where δ > 0 is a diagonal loading parameter.

The limiting eigenvalue Stieltjes transforms of R̂ and R̂δ are characterized in the

following part.
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The Limiting Eigenvalue Stieltjes Transform of the SCM

The limiting eigenvalue Stieltjes transforms corresponding to the unloaded SCM R̂

and diagonally loaded SCM R̂δ are from (2.8) related as

S̄R̂δ
(z) = S̄R̂(z − δ). (2.42)

The limiting Stieltjes transform S̄R̂(z) is found using Theorem 2.1 by setting T = I

in (2.12). Since µT(τ) = δD(τ − 1), the Stieltjes transform S̄R̂(z) is using (2.13)

expressed as

S̄R̂(z) =
1

m
tr

(∫
τδD(τ − 1)dτ

1 + cτe(z)
R− zIm

)−1

=
1

m

m∑

k=1

1

(1 + ce(z))−1λk − z
(2.43)

where e(z) is the solution to a fixed point equation (2.14) expressed as

e(z) =
1

m
tr

{

R

(∫
τδD(τ − 1)dτ

1 + cτe(z)
R− zIm

)−1
}

=
1

m

m∑

k=1

λk

(1 + ce(z))−1λk − z
(2.44)

To derive a more compact representation of S̄R̂(z), we introduce a new variable

t(z) = 1 + ce(z) which, using (2.44), is given by

t(z) = 1 +
c

m

m∑

k=1

t(z)λk

λk − zt(z)
. (2.45)

Equivalently,

t−1(z) = 1− c

m

m∑

k=1

λk

λk − zt(z)
. (2.46)

The Stieltjes transform S̄R̂(z) is, using (2.43), expressed in terms of t(z) as

S̄R̂(z) =
1

m

m∑

k=1

t(z)

λk − zt(z)
. (2.47)
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Rearranging the summand in (2.46) and using the above expression yields

t−1(z) = 1− c− czS̄R̂(z). (2.48)

Finally, the limiting Stieltjes transform corresponding to the SCM R̂ is obtained

after substituting (2.48) into (2.47) and is given by

S̄R̂(z) =
1

m

m∑

k=1

1(
1− c− czS̄R̂(z)

)
λk − z

. (2.49)

Note the similarity in the forms of (2.49) and (2.18). In addition, (2.49) could be

easily obtained from the characterization of the limiting Stieltjes transform given

in [21] and after a bit of algebraic manipulations derived from the characterization

given in [65].

The limiting Stieltjes transform corresponding to a diagonally loaded SCM R̂δ is

using (2.42) and (2.49) given as the solution to

S̄R̂δ
(z) =

1

m

m∑

k=1

1(
1− c− c(z − δ)S̄R̂δ

(z)
)
λk − z + δ

. (2.50)

Note that the existence and uniqueness of the solution to the above fixed point equa-

tion follows from the existence and uniqueness of the solution to (2.14). In addition,

the fixed-point iterative procedure converges to the solution for appropriate initial-

ization.

The Limiting Moments of the Diagonally Loaded SCM

The limiting moments M̄1 and M̄2 corresponding to a diagonally loaded SCM R̂δ

are evaluated in this part. These results are exploited in the theoretical analysis in

Section 3.5.

As elaborated in Section 2.4, the limiting moment M̄1 is obtained by taking the
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limit z → 0− in (2.50) and is given by the solution to a fixed point equation

M̄1 =
1

m

m∑

k=1

1(
1− c+ cδM̄1

)
λk + δ

. (2.51)

Note that (2.38) and (2.51) for δ = 0 are identical up to a scaling factor n because

the SCM corresponding to (2.38) for λ = 1 is not normalized with n.

The limiting moment M̄2 is evaluated, using (2.26), by taking the limit z → 0−

of the first derivative of S̄R̂δ
(z) with respect to z. After few algebraic steps omitted

here, the moment M̄2 is given as the solution to

M̄2 =
1

m

m∑

k=1

c
(
M̄1 − 2δM̄2

)
λk + 1

(
(1− c+ cδM̄1)λk + δ

)2 . (2.52)

Given that the solution to the fixed point equation (2.50) exists and is unique, the

solutions to (2.51) and (2.52) exist and are unique. These fixed point equations can be

solved via the classical iterative method which converges if appropriately initialized.

Given that the considered SCM is diagonally loaded with δ, we initialize the iterative

methods with respectively 1/δ and 1/δ2.

The Inverse of the Rectangularly Windowed SCM

This part characterizes the inverse of the SCM (2.39) evaluated from n rectangulary

windowed observation vectors of dimension m. Assuming the observation vectors

have ensemble correlation matrix R, the SCM is modeled as in (2.40). The limiting

Eigenvector Stieltjes Transform for this model is characterized in Theorem 2.2.

Since the probability of receiving two observation vectors that are identical up to

a scaling is zero, the SCM R̂ is non-singular when n > m.2 Therefore, the support of

the empirical Eigenvector Stieltjes Transform (2.9) can be extended to include z with

'{z} = 0 and *{z} ≤ 0. Taking the limit z → 0− (i.e., '{z} = 0 and *{z} → 0−)

2Note however that two observation vectors can be close to each other at very high SNR’s leading
to an ill-conditioned SCM.
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in (2.17) and (2.18) yields that as m,n → ∞ such that m/n → c ∈ (0, 1),

sH1 R̂
−1s2 →

m∑

k=1

sH1 q
H
k qks2

λk(1− c)
a.s. (2.53)

where λk and qk are the eigenvalues and eigenvectors of the ensemble correlation

matrix R and s1, and s2 are non-zero deterministic vectors with uniformly bounded

norms.

Noting that the limiting quantity in (2.53) is the quadratic form corresponding

to the inverse of the ensemble correlation matrix R scaled by 1/(1 − c), it is finally

concluded that as m,n → ∞ such that m/n → c ∈ (0, 1),

R̂−1 → 1

1− c
R−1 a.s. (2.54)

2.5.3 White Noise Process

This part summarizes results concerning the limiting eigenvalue density functions

corresponding to exponentially weighted and rectangularly windowed SCM of white

noise process.

Rectangularly Windowed SCM

The SCM of n rectangularly weighted observation vectors of zero mean, unit variance

white noise of dimension m is modeled as3

R̂ =
1

n
XXH, (2.55)

where X is m-by-n matrix with i.i.d. zero mean, unit variance entries.

The limiting Stieltjes transform corresponding to (2.55) is obtained from The-

orem 2.1 with T = I and R = I. Employing the Perron-Stieltjes inversion for-

mula (2.4), the corresponding limiting Eigenvalue Density Function µR̂(x) is, in the

3The cases of input processes of non-unit variance are easily accommodated by including proper
scaling.
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limit when m,n(m) → ∞ at the same rate such that m/n → c ∈ (0,∞), obtained in

a closed form as

µR̂(x) = max

(
1− 1

c
, 0

)
δD(x) +

√
(x− a)(b− x)

2πcx
I[a,b](x), (2.56)

where I[a,b](x) = 1 for a ≤ x ≤ b and is zero otherwise. The support of this func-

tion is compact with endpoints a = (1 −
√
c)2 and b = (1 +

√
c)2. In addition, all

the eigenvalues of (2.55) almost surely fall within the support of µR̂(x) in the limit

m,n(m) → ∞ [4]. Finally, note a non-zero mass at 0 when R̂ is not full-rank.

This result is widely known as the Marcenko-Pastur law [33]. Some other versions

of the law, which do not require identically distributed entries in X are reviewed

in [54]. Essentially, the condition that entries in X are identically distributed can be

abandoned at the expense of imposing the requirement that the entries have finite

moments of order 2 + ε for some ε > 0 [13].

The plots of Marcenko-Pastur law (2.56) for different values of parameter c are

shown in Fig. 2-1. Note that the ensemble eigenvalue of the considered process is 1

(of multiplicity m). Recall that c−1 represents the average number of observations

per dimension. Therefore, it is intuitively clear that as c decreases, i.e., as more

observations per dimension become available, the eigenvalues of the SCM concentrate

around the ensemble eigenvalue. In other words, the SCM more accurately estimates

the ensemble correlation matrix.

As a final remark, it can be noted from Fig. 2-1 that the limiting Eigenvalue

Density Function is not symmetric around the ensemble eigenvalue. More specifically,

the plots show relatively high probability of observing an eigenvalue smaller than 1.

This implies that the SCM might not be well conditioned when n is not enough times

larger than m. We will return to this observation in Section 4.5.3.

The Moments of the SCM of White Noise

The moments corresponding to the SCM of white noise process can be evaluated from

the limiting Eigenvalue Density Function (2.56) using (2.20).
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Figure 2-1: The limiting Eigenvalue Density Function corresponding to SCM of zero
mean, unit variance white noise process for different values of parameter c. The Eigen-
value Density Function corresponding to the ensemble correlation matrix is δD(x−1)
(shown in green).

For the reasons that will become clear in Chapter 4, we are interested in computing

the limiting moments M̄1 and M̄2 of a model

Φ = nR̂+ δI, (2.57)

where R̂ is defined in (2.55).

Since the eigenvalues of Φ and the rectangularly windowed SCM R̂ are related

through

λk(Φ) = nλk

(
R̂
)
+ δ, k = 1, 2, . . . , m (2.58)

the corresponding limiting eigenvalue density functions are related as

µΦ(x) =
1

n
µR̂

(
x− δ

n

)
. (2.59)

Using (2.56), (2.59), and (2.20), the limiting moments M1 and M2 are evaluated

55



in closed form and given by

M̄1 = max

(
0, 1− 1

c

)
1

δ
+

√
δ2 + (m− n)2 + 2δ(m+ n)− |n−m| − δ

2δm
(2.60)

and

M̄2 = max

(
0, 1− 1

c

)
1

δ2
− |n−m|

2δ2m
+

(m− n)2 + δ(m+ n)

2δ2m
√

δ2 + (m− n)2 + 2δ(m+ n)
. (2.61)

Exponentially Weighted SCM

Here we consider another version of a scaled SCM. It is computed from n observa-

tions of zero mean, unit variance white noise process whose observation vectors are

exponentially weighted with forgetting factor λ as

Φ = (1− λ)XΛXH , (2.62)

where X is m-by-n matrix of i.i.d. zero mean, unit variance entries and Λ =

diag(λn−1, . . . ,λ, 1). Note that Φ is a consistent estimator in the limit as n → ∞

when m and λ are finite and fixed.

The limiting Stieltjes transform corresponding to (2.62) can be characterized using

Theorem 2.1 with T = Λ and accounting for scaling factor 1 − λ. It is shown that

as n,m, 1/(1− λ) → ∞ at a non-zero, finite rate q = m(1− λ) ∈ (0,∞) the limiting

Stieltjes transform of Φ is given as the unique solution to [9]

zqS̄Φ(z) = q − log(1− qS̄Φ(z)). (2.63)

As discussed with regard to Theorem 2.1, (2.63) can be solved via fixed-point

iterations, which, if appropriately initialized, converge to the unique solution. The

limiting eigenvalue density function µΦ(x) of the scaled and exponentially weighted

SCM (2.62) is then obtained from the inversion formula (2.4). Note that the parame-

ter q represents the effective average number of observations per dimension. In that,

it is analogous to the parameter c in the Marcenko-Pastur law.
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The limiting eigenvalue density µΦ(x) (obtained from (2.63) and (2.4)) has com-

pact support whose upper and lower edges x1 and x2 are the solutions to [9]

x = log x+ q + 1. (2.64)

As a final remark, we point out that the plots of the limiting eigenvalue density

functions of the rectangularly windowed (Marcenko-Pastur law) and exponentially

weighted SCM look alike for appropriately chosen parameters c and q [9]. This ob-

servation is exploited in the analysis in Section 4.7.1.

2.6 Gaussian Method for Random Matrices

The random matrix theory concepts discussed so far focus on defining quantities

that encode the eigenvalues and eigenvectors of a random matrix and proving their

convergence to non-random limits. The stated results provide characterizations of the

limiting eigenvalue and eigenvector Stieltjes transforms for a class of models that is

particularly useful in describing an SCM of an arrival process. These characterizations

hold under relatively mild conditions on input data statistics without restricting the

input data to originate from any specific probability distribution. In addition, the

results prove the convergence to non-random limits without specifying the rates of

convergence.

As opposed to that approach, the Gaussian method requires the arrival process

be Gaussian distributed. In addition, the rates of convergence of different quantities

which encode the eigenvalues and eigenvectors naturally follow from the analysis. To

the best of our knowledge, the Gaussian method has been introduced for the first

time to study the behavior of mutual information in a Gaussian MIMO channel [25].

The Gaussian method is based on two important results which address the ex-

pectation and variance of functionals of Gaussian random variables. These results,

called Gaussian tools, are stated here and applied in Section 3.6.
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We assume that a m-by-n random matrix Y is modeled as

Y = D
1
2X, (2.65)

where

1. D
1
2 is the m-by-m positive semi-definite square root of the non-negative definite

diagonal matrix D with uniformly bounded diagonal elements.

2. X is an m-by-n matrix with i.i.d. complex Gaussian entries of zero mean and

unit variance.

Note that the columns of the matrix Y model the observation vectors of Gaussian

distributed input process whose eigenvalues are the diagonal elements of the matrix

D.

An integration by parts formula characterizes the expectation of a functional of a

Gaussian matrix Y modeled as (2.65) [25]

E [Yijf(Y)] = diE

[
∂f(Y)

∂Y ∗
ij

]
, (2.66)

where di is the i-th diagonal element of the matrix D, f(Y) is a functional of a

Gaussian matrix Y whose (i, j) entry is Yij and Y ∗
ij is a complex-conjugate of Yij.

This result is used in order to evaluate the expectations of different quadratic forms.

The Poincare-Nash inequality upper bounds the variance of a functional of a

Gaussian matrix Y modeled as (2.65) [25]

var (f(Y)) ≤
m∑

i=1

n∑

j=1

diE

[∣∣∣∣
∂f(Y)

∂Yij

∣∣∣∣
2

+

∣∣∣∣
∂f(Y)

∂Y ∗
ij

∣∣∣∣
2
]
. (2.67)

This result is used in Chapter 3 to prove that the variances of different functionals

are upper bounded by quantities which decay to zero in the limit when m and n grow

large at the same rate. Applying the Cauchy-Schwartz inequality, different functionals

are then proved to be approximately uncorrelated.
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2.7 Interpretation of Random Matrix Theory Re-

sults

The random matrix theory results and concepts presented in the previous sections

are asymptotic in nature. That is, the number of dimensions m and the number

of observations n used to compute the SCM grow large and scale linearly such that

m/n → c ∈ (0,∞). Since the numbers of dimensions and observations in all practical

scenarios are finite, a natural question of how to exploit the random matrix theory

results arises.

Before answering this question, the following numerical experiment is conducted.

Suppose m sensors receive i.i.d. observation vectors of zero mean, unit variance white

noise process. A number of realizations of SCM’s, each computed from n different

rectangularly windowed observation vectors are generated. Then, a set of eigenvalues

is formed either by collecting all the eigenvalues computed from each realization of

the SCM, or by sampling uniformly at random an eigenvalue from each realization

of an SCM. In the final step, a histogram of the obtained collection of eigenvalues is

computed and normalized such that its area is 1. The normalized histogram is shown

in Fig. 2-2 for n = 20 and m = 10. Note that these values of m and n imply that

the SCM is evaluated with 2 observations per dimension, i.e., c = 0.5. The limiting

Eigenvalue Density Function corresponding to this arrival model is characterized with

the Marcenko-Pastur law (2.56). The plot of this function parameterized with c = 0.5

is also shown in Fig. 2-2. Note that the Marcenko-Pastur law (i.e., more generally,

the limiting Eigenvalue Density Function) corresponds to a single realization of the

SCM in the large m and n limit, as opposed to a histogram which is evaluated from

a number of SCM realizations.

The agreement between the normalized histogram and Marcenko-Pastur law in

Fig. 2-2 implies that even though the limiting Eigenvalue Density Function is the

asymptotic result obtained when m,n → ∞ such that m/n → c, where c = 0.5, it

fairly accurately approximates the expectation of the distribution when m and n are

finite and relatively small.
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Figure 2-2: Comparison between Marcenko-Pastur law with c = 0.5 and experimen-
tally obtained Eigenvalue Density Function for n = 20 and m = 10.

The previous example indicates how random matrix theory results are more gen-

erally used in practice [37]. Namely, different limiting quantities (Eigenvalue Density

Function, Stieltjes transforms, moments) are evaluated in the limit when m,n → ∞.

However, they converge rapidly with increasing m and n and a good agreement be-

tween the analytical expressions and the experimentally obtained counterparts is

achieved even for relatively small m and n. Therefore the expectations of these

quantities for finite m and n are approximated with the corresponding asymptotic

characterizations parameterized with finite c = m/n.

Formally, provided that the corresponding limiting Eigenvalue Density Function

exists, the expected values of the eigenvalue and eigenvector Stieltjes transforms for

a m-by-m random and Hermitian matrix Am are approximated by

E [SAm(z;m,n)] ≈ S̄A

(
z; c =

m

n

)
(2.68)

E [FAm(z;m,n)] ≈ F̄A

(
z; c =

m

n

)
(2.69)

Similarly, the expectation of the k-th order moment for finitem and n is approximated
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with the limiting k-th order moment

E [Mk(m,n)] ≈ M̄k

(m
n

)
. (2.70)
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Chapter 3

Spatial Power Spectum Estimation

3.1 Introduction

Spatial spectrum estimation consists of estimating the power received at an array

of sensors as a function of direction of arrival. The power of the signal arriving

from a particular direction can be estimated using the Minimum Power Distortionless

Response (MPDR) beamformer [52]. The MPDR beamformer array weights depend

on the spatial correlation matrix of the received signal as received at the array of

sensors. Usually, the spatial correlation matrix is unknown and must be estimated

from the received data. Due to the time-varying nature of the environment and the

fact that an array can contain large number of sensors, the number of snapshots

that can be collected over the approximate stationarity of the environment might

be insufficient to accurately estimate the correlation matrix.1 Diagonal loading, also

known as Tikhonov regularization, is extensively used to address this problem. This

approach consists of adding a small regularization matrix, usually a scaled identity

matrix, to the estimated spatial correlation matrix, with the goal of reducing the L2

norm of the resulting array weights and thus, the sensitivity of the beamformer to

the model mismatch caused by the deficient sample support. A problem that arises is

how to choose an optimal regularization such that a certain performance metric such

1Note also that the spatial coherence of the environment might be lost if the array has long
aperture. This problem is not considered here.

63



as mean square error (MSE) is optimized. This chapter considers such a problem.

The statistical characterization of the diagonally loaded MPDR beamformer out-

put has received considerable attention in the literature. The mean value and variance

of the MPDR beamformer output is studied in [11] by assuming a complex Gaussian

received signal, zero diagonal loading in the computation of array weights and that

the number of snapshots is larger than the number of sensors. The probability density

function of the MPDR output when the received signal is complex Gaussian and at

most two signals are present in the sensed field is studied in [37]. The work in [35]

characterizes the expected value of the signal-to-interference-plus-noise ratio (SINR)

at the MPDR beamformer output. A study of the probability density function of the

SNR of the diagonally loaded MPDR beamformer output using the Gaussian method,

introduced in Section 2.6, is reported in [44] and [45].

This chapter studies a diagonal loading problem for two commonly used spatial

power spectrum estimators based on the MPDR beamformer [3]. The MSE between

the estimated and true or spatial power spectra obtained with the ensemble correlation

matrix, is adopted as a performance metric and one of the main goals is to explore how

the optimal diagonal loading changes with steering direction in a snapshot deficient

regime. In doing so, we study how the power estimators behave with respect to

diagonal loading, number of snapshots and number of sensors. This is done in several

steps.

First, we analyze behavior of the power estimators, their expectations, variances

and MSE’s in the limit when the number of snapshots and sensors grow large at

the same rate. It is shown that both power estimators for a fixed diagonal loading

and steering direction almost surely converge to non-random quantities in the limit

when the numbers of snapshots and sensors grow large at the same rate. When

the input process is Gaussian, the variances and MSE’s of the power estimators are

characterized in the limit, along with the rates of convergence.

Second, we study the interplay between the bias and variance in determining the

optimal diagonal loading which minimizes the estimation MSE. We conjecture that

the variance of the considered power estimators does not significantly impact the
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value of the optimal diagonal loading. Thus, the increase in MSE due to diagonal

loading is primarily due to an increase in the squared bias and diagonal loading that

is chosen to minimize the squared bias has an MSE that is close to that of the weights

chosen to minimize the MSE.

Third, we investigate how optimal diagonal loading behaves with respect to steer-

ing direction when the arrival process consists of one or more plane waves contami-

nated with uncorrelated noise. It is shown that the optimal diagonal loading increases

as the steering direction moves away from a point source and follows an oscillatory

behavior.

Finally, the MSE performances of the two power estimators are compared and

is shown that one of them performs better (lower MSE) at the expense of increased

sensitivity to diagonal loading.

The rest of this chapter is organized as follows. A background on MPDR based

power estimation, along with the problem formulation, is presented in Section 3.2. A

suitable representation of the power estimators, two approaches in computing the true

power, main assumptions and simulation scenarios used throughout the chapter are

introduced in Section 3.3. The preliminary insights into behavior of power estimators

when viewed as functions of diagonal loading are presented in Section 3.4. The

asymptotic behavior of power estimators is derived in Section 3.5. The derivation of

the asymptotic behavior of the variance and MSE corresponding to power estimators

is presented in Section 3.6. Section 3.7 analyses how the squared bias and variance

impact the value of optimal diagonal loading. Section 3.8 investigates the value

of the optimal diagonal loading in scenarios in which a single or multiple sources

are embedded in uncorrelated noise. The relative performances of the two power

estimators are compared in Section 3.9. Finally, Section 3.10 concludes this chapter.

Throughout this section,
(
sHA

)
i
denotes an inner product between a vector s and

the ith column of a matrix A. Similarly, (As)j is an inner product between the jth

row of A and s. Also, ‖A‖ denotes a Frobenius norm and x = O(α) means that

x ≤ Kα, for some constant scalar K.
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3.2 Background

An array of m sensors receives at discrete time k a signal whose Fourier coefficients

in a frequency bin of interest and across the array constitute an observation vector

u(k) ∈ Cm, known as a snapshot. A snapshot contains signatures of the useful signal,

interferers and noise. The ensemble correlation between snapshots received at times

i and j is

E
[
u(i)uH(j)

]
= RδD(i− j), (3.1)

where δD(x) is the Dirac delta function. The literature usually refers to the correlation

matrix R as a temporal frequency spatial correlation matrix [52].

The MPDR beamformer passes a signal arriving from a look direction character-

ized by the replica vector vs undistorted and minimizes the output power, i.e., [52]

wMPDR(vs) = argmin
w

wHRw s.t. wHvs = 1. (3.2)

In a simple model of a plane wave arriving from elevation angle θ on a linear, uniform

and vertical array with inter-element spacing d, the signal replica vector vs is given

by [52]

vs(θ) =
[
1 e−j 2π

u d cos(θ) . . . e−j 2π
u (m−1)d cos(θ)

]H
, (3.3)

where u is the signal wavelength. Here, θ = 0 indicates a signal propagating vertically

in the downward direction and θ = π/2 indicates a signal propagating horizontally

(i.e., broadside to the array). While the model in (3.3) is for a plane wave received

at a linear uniform array, the results developed here are equally applicable to a gen-

eral signal arising in the contexts of non-linear and non-uniform arrays as well as in

matched field processing problems.

The solution to (3.2) is given in a closed form by [52]

wMPDR(vs) =
R−1vs

vH
s R−1vs

. (3.4)

The number of sources and their respective received powers can be estimated by
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steering the MPDR beamformer across all possible look directions. Hence, the power

of the signal arriving from the direction corresponding to the replica vector vs is

PMPDR(vs) = wH
MPDR(vs)RwMPDR(vs) =

1

vH
s R−1vs

The correlation matrix R is usually unknown and is estimated from the observed

data. We consider in this chapter a sample correlation matrix (SCM) R̂ evaluated

from n rectangularly windowed observations defined as

R̂ =
1

n

n∑

i=1

u(i)uH(i). (3.5)

As elaborated in Section 1.2, the number of snapshots that can be collected in the

interval over which the environment can be considered stationary, n, might be insuf-

ficient to accurately estimate R, which leads to one type of model mismatch [52]. To

combat the sensitivity to mismatch and/or to improve the condition number of R̂, a

diagonally loaded SCM R̂δ is introduced

R̂δ = R̂+ δI, (3.6)

where δ is a diagonal loading parameter.

The MPDR array weight vector evaluated with a diagonally loaded SCM is the

solution to the following problem

wMPDR(vs) = argmin
w

wHR̂w + δwHw s.t. wHvs = 1. (3.7)

Thus, array weight vectors with large L2 norms are penalized and the L2 norm of

the resulting array weight vector decreases monotonically with increasing δ. Since the

effect of insufficient sample support is a type of modeling mismatch in the SCM [52]

and the sensitivity of the performance of an array weight vector on model mismatch

is proportional to its L2 norm squared, computing the array weights with a diago-

nally loaded SCM will reduce the negative impact of insufficient sample support on
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processor performance. However, reducing the L2 norm of the array weights will also

reduce its ability to resolve closely spaced sources or attenuate nearby interfering

signals while passing the signal from the steering direction undistorted. The choice

of the optimal diagonal loading balances these two factors and, as we show, depends

on both the sample support of the SCM and how far the steering direction is from

nearby interfering signals.

The power of the signal arriving from direction vs is estimated from (3.5) where

the MPDR weights are evaluated using (3.4) with a diagonally loaded SCM R̂δ and

the SCM R̂ is used instead of R in (3.5). That is [3],

P̂a(δ,vs) =
vH
s R̂

−1
δ R̂R̂−1

δ vs[
vH
s R̂

−1
δ vs

]2 . (3.8)

If diagonally loaded SCM R̂δ is substituted in (3.5) instead of R, an alternative and

more compact form is obtained [3]

P̂b(δ,vs) =
1

vH
s R̂

−1
δ vs

. (3.9)

Broadly speaking, this chapter studies how diagonal loading impacts the perfor-

mance of these two adaptive beamformers in the snapshot deficient regime.

The performance of the power estimators (3.8) and (3.9) is measured via esti-

mation mean square error (MSE). Given a steering direction vs, the MSE of the

power estimator P̂ is viewed as a function of the loading δ and represented via the

bias-variance decomposition as

MSE(δ) = E2
[
P̂ (δ)− P

]
+ var

(
P̂ (δ)

)
, (3.10)

where the first term is a squared bias, which we denote by bias2(δ), while P is the

true power of the signal arriving from the considered direction vs. In the absence of

a subscript, P̂ refers to either of the two estimators.
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The optimal diagonal loading δopt is defined as

δopt = argminδ MSE(δ). (3.11)

In addition, a diagonal loading which minimizes the squared bias is denoted by δ̃opt

and formally defined as

δ̃opt = argminδ bias2(δ). (3.12)

This chapter develops an understanding of how the MSE performance in a snap-

shot deficient regime depends on diagonal loading. In achieving this, we study how

a diagonal loading δ, number of sensors m and number of snapshots n impact the

squared bias and variance of the power estimators.

3.3 Preview and Assumptions

This section introduces an alternative expression for power estimators, presents a

particular model for the snapshots and summarizes the assumptions used in the the-

oretical analysis. Also, the true power of a signal impinging upon an array is defined

using two different approaches. Finally, two scenarios used in the simulations that

validate the insights and derived characterizations in this chapter are presented.

3.3.1 Alternative Expressions for Power Estimators

The power estimators P̂a and P̂b are represented via quadratic forms Qk, defined as

Qk(δ) = vH
s R̂

−k
δ vs, (3.13)

and viewed as functions of diagonal loading δ for a fixed steering direction vs. There-

fore, the power estimator P̂b is expressed as

P̂b(δ,vs) =
1

Q1(δ)
. (3.14)
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On the other hand, solving (3.6) for R̂ and substituting it into (3.8) yields

P̂a(δ,vs) =
vH
s R̂

−1
δ

(
R̂δ − δI

)
R̂−1

δ vs

[
vH
s R̂

−1
δ vs

]2

=
1

Q1(δ)
− δ

Q2(δ)

Q2
1(δ)

. (3.15)

The analysis throughput this chapter uses these two alternative expressions for

the power estimators.

3.3.2 Gaussian Snapshot Model

Assuming the ensemble correlation matrix of the snapshots is R, the rectangularly

windowed SCM (3.5) is modeled as described in Section 2.5.2 as

R̂ =
1

n
R

1
2XXR

1
2 , (3.16)

whereX is a complexm-by-nmatrix with i.i.d. entries of zero mean and unit variance.

R
1
2 is the Hermitian positive definite square root of the correlation matrix R.

In the asymptotic study of the variances associated with power estimators, we

assume the input snapshots are Gaussian distributed.2 This assumption allows us to

represent the SCM in a more convenient form.

The eigenvalues of the correlation matrix R are denoted by λ1,λ2, . . . ,λm, and

collected into a diagonal eigenvalue matrix D, such that the eigen-decomposition of

R is given by R = QDQH . Using (3.16), a diagonally loaded SCM (3.6) is expressed

as

R̂δ =
1

n
QD

1
2QHXXHQD

1
2QH + δI. (3.17)

Since the received snapshots are Gaussian, matrix X is unitary invariant. Then,

since Q is a unitary matrix, p(QHX) = p(Q) where p(B) denotes a joint probability

distribution of the elements of a matrix B. Therefore, statistically, a matrix QHX

2Note that the corresponding SCM R̂ has Wishart distribution.
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in (3.17) can be replaced by X. Hence, introducing

Y = D
1
2X, (3.18)

a diagonally loaded SCM R̂δ is in a statistical sense equivalently represented as

R̂δ
.
=

1

n
QD

1
2XXHD

1
2QH + δI

=
1

n
QYYHQH + δI

= Q

(
1

n
YYH + δI

)
QH . (3.19)

Note that the right hand sides of (3.17) and (3.19) are not equal, but have the same

joint probability distribution of the elements. Consequently, the moments of their

functionals are the same.

Using (3.19) and definition (3.13), a quadratic form Qk is expressed as

Qk = vH
s Q

(
1

n
YYH + δI

)−1

QHvs (3.20)

= tksHHk(t)s, (3.21)

where s = QHvs, t =
1
δ and

H(t) =

(
I+

t

n
YYH

)−1

(3.22)

is a resolvent matrix.

Note that the quadratic forms Qk are functionals of Gaussian matrix Y (3.18)

which satisfies the conditions of integration by parts formula (2.66) and Poincare-

Nash inequality (2.67). Thus, under the assumption that the received snapshots are

Gaussian distributed, we evaluate the variances of the power estimators using the

Gaussian method.
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3.3.3 Assumptions

The main assumptions used throughout this chapter are listed here. Namely,

1. The number of snapshots n and number of sensors m are of the same order. If

not specified otherwise, this means that

0 < lim inf
m

n
≤ lim sup

m

n
< ∞. (3.23)

Note that m/n does not necessarily need to converge. All what is required is

the ratio be non-zero and finite. Note that this condition also implies that m

and n scale linearly in the limit.

2. The eigenvalues of the ensemble correlation matrix R are uniformly upper

bounded for all m, i.e.,

max{λ1,λ2, . . . ,λm} ≤ Dm < ∞ (3.24)

3. The eigenvalues of the SCM R̂, denoted by λ̂1, . . . , λ̂m are uniformly upper

bounded for all m, i.e.,

max{λ̂1, . . . , λ̂m} ≤ D̂m < ∞ (3.25)

Note that these eigenvalues are lower bounded by some d̂m ≥ 0.

4. The norm of the signal replica vector, vs, is uniformly upper bounded for all m

such that

‖vs‖ = ‖s‖ ≤ Sm = O(
√
m). (3.26)

Note that for any array in a plane wave environment where the magnitude of

each element of the replica vector equals 1, ‖vs‖ =
√
m.
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3.3.4 Definitions of True Power

The estimation MSE performance of power estimators characterizes how ”close” an

estimate is to the true value of the power. While there is no ambiguity what true

power is, we introduce here an alternative definition which is in some sense better

suited for the study of estimation performance in snapshot deficient regime.

Traditional Definition of True Power

For completeness, the traditional3 way of defining the true power corresponding to a

specific arrival model is presented in this part.

Namely, if the received signal is composed of a number of signals, each having

power Pi and impinging on the array in the direction described by a replica vector

vi, the true power in the steering direction vs is defined as [26]

P (vs) =






σ2
v(vs)
m , if vs (= vi

Pi +
σ2
v(vs)
m , if vs = vi,

(3.27)

where σ2
v(vs) is the level of the noise power spectral density in the direction described

by vs. We assume the noise is uncorrelated and the inter-element spacing is half-a-

wavelength such that σ2
v(vs) = σ2

v .

Alternative Definition of True Power

Alternatively, true power can be defined as the power that would be estimated if the

ensemble correlation matrix R was known.4 Since no loading is needed in this case,

this power is given by

P =
1

vH
s R−1vs

. (3.28)

The justification for this definition is found in the fact that even when the correlation

matrix R is known, the estimators P̂a and P̂b are unable to accurately estimate the

3Traditional, in the sense that it is usually used for the power density spectrum estimation of
time series data.

4In fact, this is a more useful definition in the context of spectrum estimation using an array of
sensors.
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power when steering very close to the source direction. When the SCM R̂ is estimated

from a limited number of snapshots, the best that one can do is to approach the

performance achieved with a known correlation matrix R.

3.3.5 Simulation Scenarios

The theoretical results developed in this chapter are validated via Monte-Carlo simu-

lations. A standard, vertical, linear array with u/2 (half-a-wavelength) separation of

the elements is considered in the simulations. In addition, a spatially uncorrelated,

zero-mean noise with a variance of one corrupts the signal snapshots. The following

two different arrival structures are considered.

- In Scenario 1, 2 signals are arriving at elevation angles of 90o and 92o with

respect to the broadside of the array and each has power 10 (i.e., the SNR is

10 dB). The array contains 30 sensors and 50 snapshots are used to estimate

the SCM. Note that the ratio between the array aperture and wavelength is 15.

Also, note that c = 0.6 and the normalized trace of the ensemble correlation

matrix of the input process is 21.

- In Scenario 2, 2 signals are arriving at elevation angles of 90o and 94o with

respect to the broadside of the array. Their SNR’s are respectively 1 dB and 5

dB. The array has 40 sensors and the number of snapshots available to estimate

the SCM is 25. Note that the ratio between the array aperture and wavelength is

20. Also note that c = 1.6 and the normalized trace of the ensemble correlation

matrix is 5.42.

3.4 Preliminary Results on Behavior of Power Es-

timators

The power estimators P̂a and P̂b, viewed as functions of diagonal loading δ, are studied

in this section. In particular, some results concerning the behavior of squared bias and
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variance with respect to diagonal loading δ are presented. Throughout the section,

we do not explicitly show the dependence on steering direction vs in the notation for

power estimators, i.e., with slight abuse of notation we write P̂a(δ) and P̂b(δ).

3.4.1 Dependence of Squared Bias on Diagonal Loading

A study of how the squared bias, bias2(δ), depends on δ is centered around exploring

how the estimators and their expectations depend on δ. The results concerning the

behavior of the estimators P̂a and P̂b are summarized in the following lemma.

Lemma 3.1. For any (Hermitian non-negative definite) SCM R̂ and for δ ≥ 0, under

assumption 3., the following holds

1. P̂b(δ) ≥ P̂a(δ), with equality if and only if δ = 0.

2. P̂a(δ) is monotonically increasing for 0 < δ < ∞, unless all the eigenvalues of

R̂ are equal. Its slope is zero at δ = 0+ (i.e., when δ approaches 0 from the

positive side) and when δ → ∞.

3. P̂b(δ) is strictly monotonically increasing for all 0 ≤ δ ≤ ∞.

Proof. 1. From (3.14) and (3.15), two power estimators are related as

P̂a(δ) = P̂b(δ)− δ
Q2

Q2
1

Since the sample eigenvalues are uniformly upper bounded, Q2 > 0. Therefore,

P̂b ≥ P̂a. The equality holds when δ = 0.

2. Denoting the eigenvalues and eigenvectors of R̂ with λ̂i and q̂i, the power esti-

mator P̂a is using (3.8) expressed as

P̂a =
m∑

i=1

biλ̂i(
λ̂i + δ

)2

(
m∑

i=1

bi

λ̂i + δ

)−2

,
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where bi = |vH
s q̂i|2. Taking the first derivative of P̂a with respect to δ yields

dP̂a

dδ
= 2δ

∑

i,j:i<j

bibj
(
λ̂i − λ̂j

)2

(
λ̂i + δ

)3 (
λ̂j + δ

)3

(
∑

i

bi

λ̂i + δ

)−2

. (3.29)

Therefore, unless all the eigenvalues of R̂ are equal, dP̂a
dδ is positive for finite,

non-zero loading δ. On the other hand, the slope of P̂a is zero for δ = 0 and

when δ → ∞. Consequently, P̂a is convex when δ → 0+ and concave when

δ → ∞. Furthermore, P̂a converges to a finite value both when δ → ∞ and

when δ → 0+.

3. The estimator P̂b can be expressed in terms of bi and λ̂i as

P̂b =

(
m∑

i=1

bi
λi + δ

)−1

The first derivative of P̂b with respect to loading δ is then given by

dP̂b

dδ
=
∑

i

bi(
λ̂i + δ

)2

(
∑

i

bi

λ̂i + δ

)−2

.

Since dP̂b
dδ > 0, the estimator P̂b is a strictly increasing function. Its slope is

positive at δ = 0. When δ → ∞, its slope converges to 1/m.

In words, both estimators P̂a and P̂b are monotonically non-decreasing functions

of δ. While P̂a converges to a finite value as δ → ∞, the estimator P̂b is unbounded.

For the same non-zero loading δ, the estimator P̂b is greater than P̂a.

These results carry over to E
[
P̂a(δ)

]
and E

[
P̂b(δ)

]
whenever the derivative and

expectation can interchange the order. The following lemma summarizes how the

expected values of the power estimators behave when δ = 0 and δ → ∞. The result

corresponding to the case of δ = 0 follows from later development, but is presented

here for completeness.
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Lemma 3.2. Assuming the expectation is taken over all possible realizations of the

SCM R̂ and δ ≥ 0,

1. For any fixed m and n, limδ→∞E
[
P̂a(δ)

]
= 1

m2vH
s Rvs.

2. In the limit when m,n → ∞ at the same rate such that m
n → c ∈ (0, 1), for both

estimators, P̂ (0) → 1−c
vH
s R−1vs

, almost surely.

Proof. 1. When δ → ∞, the MPDR beamformer becomes a matched filter (i.e.,

the conventional beamformer) with array weight vector w(vs) =
vs

vH
s vs

. There-

fore,

lim
δ→∞

P̂a(δ) =
1

m2
vH
s R̂vs. (3.30)

The proof is completed after taking the expectation of both sides of (3.30).

2. This result follows directly from Lemma 3.4 by taking δ = 0. Recall that due

to rapid convergence,

E
[
P̂ (0)

]
≈ 1−m/n

vH
s R−1vs

. (3.31)

Note that if m > n and δ = 0, both power estimates are equal to 0, unless some

sort of subspace processing is employed.

The functional dependence ofE
[
P̂a

]
andE

[
P̂b

]
on diagonal loading δ is visualized

in Fig. 3-1. Although the plot is generated for a specific scenario, this behavior is

typical.

So far we have considered how power estimators and their expectations depend on

diagonal loading. We now examine how the squared bias associated with the power

estimators depends on diagonal loading. Namely, the behavior of the squared bias is

directly implied from the preceding results and summarized as follows. As such, for

a non-negative diagonal loading δ,

1. The squared bias corresponding to the power estimator P̂a attains a unique

global minimum, equal to zero, at a finite, non-zero δ̃opt if the true power P satis-
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Figure 3-1: Typical behavior of the expectations of the estimators P̂a and P̂b. The
scenario used to generate the plots is described in the caption of Fig. 3-28. The
steering angle is 89o. The normalized trace of the ensemble correlation matrix of the
considered model is 21.

fies E
[
P̂a(0)

]
< P < limδ→∞ E

[
P̂a(δ)

]
. If the true power P ≥ limδ→∞E

[
P̂a(δ)

]
,

then the squared bias corresponding to P̂a decays as δ → ∞.

2. The squared bias corresponding to the power estimator P̂b attains a unique

global minimum, equal to zero, at a finite, non-zero δ̃opt if the true power P

satisfies E
[
P̂b(0)

]
< P < ∞.

3. If the true power P ≤ E
[
P̂ (0)

]
, then the squared bias of either of the estimators

is minimized at δ̃opt = 0.

4. The squared bias is monotonically decreasing for 0 ≤ δ ≤ δ̃opt and monotonically

increasing for δ ≥ δ̃opt.

3.4.2 Dependence of Variance on Diagonal Loading

This part presents results which show how the variances of the power estimators P̂a

and P̂b behave with respect to loading δ.

First, under assumption 2, the norm of the SCM R̂ is uniformly bounded and

consequently P̂a, P̂ 2
a , P̂b and P̂ 2

b are all uniformly bounded. This implies that the first
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and second moments of the estimators are also bounded. Therefore, the variances of

the power estimators are finite for a finite loading δ.

Note that as δ → ∞, P̂a converges to the power estimator associated with the

matched filter, whose variance is finite. Consequently, the variance of P̂a(δ) is finite

as δ → ∞.

In general, var
(
P̂a(δ)

)
(= var

(
P̂b(δ)

)
. However, it turns out that these variances

are equal when δ → ∞. From that result, we conclude that the variance of P̂b is

finite in the limit δ → ∞. In addition, if the input process is Gaussian, we are able

to analytically characterize this variance. The results are summarized and proved in

the following lemma.

Lemma 3.3. Under assumption 2, the following holds,

1. limδ→∞ var
(
P̂a(δ)

)
= limδ→∞ var

(
P̂b(δ)

)
.

2. If the received snapshots z(i) are Gaussian distributed, then

lim
δ→∞

var
(
P̂a(δ)

)
=

(
vH
s Rvs

)2

nm4
(3.32)

Proof. 1. The difference between the two variances is after simple algebraic ma-

nipulations expressed as

var
(
P̂a

)
− var

(
P̂b

)
= E [AB]−E [A]E [B] , (3.33)

where A = δQ2

Q2
1
and B = δQ2−2Q1

Q2
1

. The goal is to find the limit of (3.33) when

δ → ∞. This is solved by considering the leading order terms in A and B. To

do so, the quadratic form Qk, k ∈ {1, 2} is expressed as

Qk = tkvH
s

(
tR̂+ I

)−k
vs

= tk
m∑

i=1

|vH
s qi|2

(tλ̂i + 1)k
, (3.34)

where t = 1/δ. In the t → 0 regime and since the eigenvalues λ̂i are upper
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bounded, tλ̂i - 1. Therefore, using the Taylor series expansion of (1 + tλ̂i)−k

yields

Q1 = t
∞∑

j=0

(−1)jtjaj (3.35)

Q2 = t2
∞∑

j=0

(−1)j(j + 1)tjaj , (3.36)

where aj = vH
s R̂

jvs. Substituting Q1 and Q2 into expressions for A and B

yields

A =
1

mt
− 2a1

m2
+

3a2t

m2
+O(t2) (3.37)

B = − 1

mt
+

a2t

m2
+O(t2). (3.38)

Simple algebra further shows that E [AB]− E [A]E [B] = O(t), and thus

lim
δ→∞

var
(
P̂a

)
− var

(
P̂b

)
= 0. (3.39)

Since limδ→∞ var
(
P̂a

)
exists, the two variances become equal when δ → ∞.

2. Pushing the limit operator inside the expectations and using (3.30) yields

lim
δ→∞

var
(
P̂a(δ)

)
= var

(
1

m2
vH
s R̂vs

)

=
1

m4

[
E

[(
vH
s R̂vs

)2]
−E2

[
vH
s R̂vs

]]
. (3.40)

Substituting R̂δ from (3.19) with δ = 0 into (3.40) yields

lim
δ→∞

var
(
P̂a(δ)

)
=

1

n2m4

[
E
[(
sHYYHs

)2]−E2
[
sHYYHs

]]
, (3.41)

where s = vH
s Q. The first expectation in (3.41) is evaluated by unfolding the
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squared quadratic form and applying the integration by parts formula (2.66),

E
[(
sHYYHs

)2]
=

∑

i,j,k,p,q,r

s∗i sks
∗
psrE

[
YijY

∗
kjYpqY

∗
rq

]

(a)
=

∑

i,j,k,p,q,r

s∗i sks
∗
psrλiE

[
∂
(
Y ∗
kjYpqY ∗

rq

)

∂Y ∗
ij

]

=
∑

i,j,k,p,q,r

s∗i sks
∗
psrλiE

[
δkiYpqY

∗
rq + Y ∗

kjYpqδirδjq
]

(b)
=

∑

i,j,k,p,q,r

s∗i sks
∗
psrλi (λpδkiδpr + λpδkpδjqδirδjq)

=
(
sHDs

)2
(n2 + n), (3.42)

where
(a)
= is obtained by applying (2.66) with f(Y) = Y ∗

kjYpqY ∗
rq, while

(b)
= is

obtained in a similar way with f(Y) being Y ∗
rq for the first term and Y ∗

kj for the

second term in the summand. Substituting (3.42) into (3.41) and noting that

E
[
sHYYHs

]
= nsHDs and sHDs = vsRvs, the proof is completed.

Note that from the last part of the preceding lemma, we conclude that for Gaussian

input process, if the number of senors and observations are of the same order, as

formalized in assumption 1., the variance of both estimators is O(m−3) (recall that

under assumption 4, ‖vs‖2 = O(m)).

3.5 Asymptotic Behavior of Power Estimators

This section characterizes the asymptotic behavior of power estimators P̂a and P̂b for

a fixed diagonal loading δ. The theoretical result characterizing how power estimators

and their expectations behave in the limit when m,n → ∞ such that m/n → c ∈

(0,∞) are presented in the first part. Then, an asymptotically unbiased spatial power

estimator is proposed. Finally, in the last part, the obtained results are validated via

simulations. Throughout the section, we do not explicitly show the dependence on

diagonal loading δ in the notation for power estimators, i.e., with slight abuse of
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notation we write P̂a(vs) and P̂b(vs).

3.5.1 Asymptotic Analysis of Power Estimators

The asymptotic analysis of power estimators P̂a and P̂b is performed in the limit

when both the number of snapshots n and the number of sensors m grow large at

the same rate so that m/n → c, c (= 0. The assumption that m and n grow at the

same rate captures the fact that we often do not have enough snapshots to estimate

accurately the input correlation. On the other hand, the assumption that m,n → ∞

does not have practical justification, but is simply a mathematical necessity which

enables analytical derivations.

The following lemma characterizes the asymptotic behavior of power estimators

P̂a and P̂b.

Lemma 3.4. Under assumptions 2 and 4, in the limit when m,n → ∞ at the same

rate, i.e., m
n → c ∈ (0,∞),

P̂a(vs) →
Q̄1 − δQ̄2

Q̄2
1

a.s. (3.43)

and

P̂b(vs) →
1

Q̄1
a.s., (3.44)

where Q̄1 and Q̄2 are the quantities that the quadratic forms Q1 and Q2 converge to

in the limit. They are given by

Q̄1 = vH
s

m∑

k=1

qkqH
k

λk

(
1− c+ cδM̄1

)
+ δ

vs (3.45)

and

Q̄2 = vH
s

m∑

k=1

qkq
H
k

λkc
(
M̄1 − δM̄2

)
+ 1

[
λk

(
1− c+ cδM̄1

)
+ δ
]2vs, (3.46)

where M̄1 and M̄2 are the limiting moments corresponding to diagonally loaded SCM

of the rectangulary windowed snapshots.
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Proof. The convergence results (3.43) and (3.44) directly follow from the convergence

of quadratic forms Q1 and Q2, and (3.14) and (3.15). The convergence of Q1 and Q2

is proved using Theorem 2.2.

The empirical Eigenvector Stieltjes Transforms corresponding to SCM R̂ and di-

agonally loaded SCM R̂δ are defined with respect to the signal replica vector vs (i.e.,

s1 = s2 = vs),

FR̂(z) = vH
s

(
R̂− zI

)−1

vs (3.47)

FR̂δ
(z) = vH

s

(
R̂δ − zI

)−1

vs. (3.48)

These transforms are using (3.6) and (2.11) related as

FR̂δ
(z) = FR̂(z − δ). (3.49)

The existence and characterization of the limiting Eigenvector Stieltjes Transform

corresponding to a random matrix model (3.16), used to describe the SCM R̂, is

stated in Theorem 2.2. With the assumptions that the spectral norm of the ensemble

correlation matrix R and norm of the signal replica vector vs are uniformly bounded

(assumptions 2 and 4), the conditions of Theorem 2.2 are met. Therefore,

FR̂(z) → F̄R̂(z) a.s., (3.50)

where

F̄R̂(z) =
m∑

i=1

vH
s qiqH

i vs

λi

(
1− c− czS̄R̂(z)

)
− z

. (3.51)

Recall that S̄R̂(z) is the limiting Stieltjes transform corresponding to the SCM R̂.

The existence of the limiting eigenvector Stieltjes transform directly follows from (3.49)

and (3.50). It is characterized using (3.49) by

F̄R̂δ
(z) = F̄R̂(z − δ). (3.52)
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The quadratic form Q1 is related to the empirical eigenvector Stieltjes transform

corresponding to diagonally loaded SCM as

Q1 = lim
z→0−

FR̂δ
(z) (3.53)

Recall that z → 0− compactly represents '{z} = 0 and *{z} → 0−. Note that this

limit exists because either δ > 0 or n > m with zero probability of receiving two

snapshots that are identical up to a scaling.

Hence, we conclude from (3.50) and (3.53) that the quadratic form Q1 almost

surely converges to non-random Q̄1, given by

Q̄1 = lim
z→0−

F̄R̂(z − δ).

Finally, taking the above limit and recalling that the limiting moment

M̄1 = lim
z→0−

S̄R̂(z − δ), (3.54)

we obtain (3.45).

The quadratic form Q2 can be expressed in terms of the first derivative of the

empirical Stieltjes transform corresponding to diagonally loaded SCM (provided it is

analytic) as

Q2 = lim
z→0−

d

dz
FR̂δ

(z). (3.55)

As already pointed pointed out, this limit exists because either δ > 0 or n > m and

the probability of receiving two snapshots identical up to a scaling is zero. Therefore,

from (3.50) and (3.55), the quadratic form Q2 almost surely converges to non-random

Q̄2, given by

Q̄2 = lim
z→0−

d

dz
F̄R̂(z − δ).

Taking the above limit and recalling (3.54) and

M̄2 =
1

2
lim
z→0−

∂

∂z
S̄R̂(z − δ), (3.56)
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yields (3.46).

The limiting moments M̄1 and M̄2 in (3.45) and (3.46) are for diagonally loaded

SCM evaluated from rectangularly windowed snapshots (observations) character-

ized in Section 2.5.2 and given as the solutions to the fixed point equations (2.51)

and (2.52).

In comparison to the approach used here, note that [35] characterizes Q̄1 as a

part of the study of the SINR at the MPDR output. The deterministic equivalent Q̄1

obtained therein is given in terms of the unique solution B0 (in a certain set) to

B0 =
1

m

m∑

i=1

λi (1 + cB0)

λi + δ (1 + cB0)
(3.57)

Also, the study in [35] uses the true correlation R rather than R̂ in the definition of

the power estimator (3.8). We believe that the estimator as defined in (3.8) is better

suited for the spatial spectrum estimation.

3.5.2 Asymptotically Unbiased Spatial Power Estimator

The convergence result established in the previous part is used here to develop an

asymptotically unbiased power estimator with respect to the alternatively defined

true power (3.28).

First, assuming that the number of snapshots n is greater than the number of

sensors m, recall that the power estimators P̂a and P̂b are equal for diagonal loading

δ = 0. Substituting δ = 0 in (3.44) yields that in the limit m,n → ∞ such that

n > m and m
n → c ∈ (0, 1)

P̂ (vs) →
1− c

vH
s R

−1vs
a.s. (3.58)

Recalling that the estimated spatial power for known correlation matrixR is given

by 1/vH
s R

−1vs, we conclude that the unloaded power estimator is asymptotically

biased with respect to the true power evaluated using (3.28).
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The asymptotically unbiased power estimator P̂ ub(vs) is then obtained from (3.58)

by dividing the unloaded estimator P̂b(vs) with 1− c and is given by

P̂ ub(vs) =
1

1− c

1

vH
s R̂vs

, (3.59)

where m is the number of sensors, n is the number of observations and c = m/n.

Note that while division by (1− c) in (3.59) produces an asymptotically unbiased

estimator, the variance of the obtained estimator increases 1/(1− c)2 times. This has

detrimental effect on the quality of the estimation if the number of observations n

is only slightly higher than the number of sensors m. For example, if c = 0.9, the

variance increases 100 times!

3.5.3 Approximate Expectation of Power Estimators

As has been shown, both power estimators almost surely converge to corresponding

deterministic quantities in the limit when m,n → ∞ at the same rate such that

m/n → c ∈ (0,∞). According to the dominated convergence theorem [7], if power

estimators P̂a and P̂b are uniformly bounded as m,n → ∞, their expectations con-

verge to the same deterministic quantities. Indeed, under assumptions 2, 3 and 4, P̂a

is uniformly upper bounded for all m and n = n(m). Similarly, power estimator P̂b is

under same assumptions uniformly bounded for all m and n = n(m) , provided that

diagonal loading is finite. Therefore, the power estimators converge in expectation,

E
[
P̂a(vs)

]
→ Q̄1 − δQ̄2

Q̄2
1

(3.60)

E
[
P̂b(vs)

]
→ 1

Q̄1
(3.61)

Although the established convergence results hold when m,n → ∞ at the same

rate such that m/n → c, due to rapid convergence the asymptotic expressions accu-

rately approximate the expectations of power estimators for relatively small n and
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m. Therefore, for finite n and m,

E
[
P̂a(vs)

]
≈ Q̄1 − δQ̄2

Q̄2
1

(3.62)

E
[
P̂b(vs)

]
≈ 1

Q̄1
, (3.63)

where Q̄1 and Q̄2 are evaluated using (3.45) and (3.46) with given m, n and c = m/n.

These approximations are validated via simulations in the following part.

3.5.4 Numerical Validation of Derived Expressions

Approximations (3.62) and (3.63) are validated using Monte-Carlo simulations. We

consider a standard, vertical, linear array with half-wavelength separation between

elements. The MPDR algorithm is used to estimate directions of arrival and the

corresponding powers. Spatially uncorrelated, zero-mean noise with a variance of one

corrupts the signal snapshots. We point out that the derived characterizations hold

for more general arrival process, ambient noise and array shapes.

The simulations and analytical expressions are compared on the expected esti-

mated power versus angle of arrival plots for fixed diagonal loading value, as well

as on the expected estimated power versus diagonal loading plots for fixed steering

angle. Two different scenarios are considered.

Scenario 1

In the first scenario, 2 signals are arriving at elevation angles of 90o and 92o and each

has power 10. The array has 30 sensors and 50 snapshots are used to estimate the

sample correlation matrix. Note that the corresponding c = 0.6 and the normalized

trace of the ensemble correlation matrix is 21.

The comparison between the mean of the estimate of the input power evaluated

via simulations using (3.8) and the corresponding theoretical prediction (3.62) for the

diagonal loading value of 0.3 is shown in the top part of Fig. 3-2. A similar agreement

between the mean of power estimate (3.9) evaluated via simulations and theoretical
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Figure 3-2: Scenario 1: Expected power versus diagonal loading for steering angle of
87o. The normalized trace of the corresponding ensemble correlation matrix is 21.

prediction (3.63) for the same value of diagonal loading 0.3 is obtained in the bottom

part of Fig. 3-2. Note that the diagonal loading of 0.3 is 1.43% of the normalized

trace of the ensemble correlation matrix.

The comparisons between the simulated means of power estimators (3.8) and (3.9)

and theoretical predictions (3.62) and (3.63) for a steering angle of 87o are shown in

Fig. 3-3. A good agreement between the plots validate the accuracy of the asymptotic

results in predicting the expected values of the power estimators for finite values of

m and n.
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Figure 3-3: Scenario 1: Expected power versus steering angle for diagonal loading of
0.3. This value of diagonal loading is 1.43% of the normalized trace of the ensemble
correlation matrix.
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Scenario 2

In the second scenario, 2 signals are arriving at elevation angles of 90o and 94o and

their SNR’s are 1 dB and 5 dB, respectively. The array has 40 sensors and 25

snapshots are used to estimate the sample correlation matrix. Note that the number

of snapshots per sensor in this scenario is smaller than 1, i.e., c = 1.6 and the

normalized trace of the ensemble correlation matrix is 5.42.

The comparisons between the expected values of P̂a and P̂b, obtained from Monte-

Carlo simulations, and the corresponding theoretical predictions (3.62) and (3.63) for

diagonal loading of 20 and varying steering direction and shown in Fig. 3-5. These

comparisons are for steering direction of 87o and varying diagonal loading shown in

Fig. 3-4. The presented plots validate the accuracy of the theoretical predictions.

Note that the normalized trace of the corresponding ensemble correlation matrix is

3.6 Mean Square Error of Power Estimators

As discussed in the Section 3.5.2, the asymptotically unbiased diagonally unloaded

estimator might have large variance when the number of snapshots n is only slightly

greater than the number of sensors m. This motivates the study of variance and

estimation mean square error. The variance and estimation MSE corresponding to

power estimator P̂a are evaluated in this section.

The received snapshots are assumed to be Gaussian distributed throughout this

section. Using the Gaussian tools from Section 2.6, we evaluate the mean of the power

estimator P̂a in the largem,n limit. Although the asymptotic analysis of the means of

power estimators has been conduced in the previous section, by restricting the process

to be Gaussian distributed, we are able to characterize the order of convergence of

the expectations of power estimators to their limiting values.

Furthermore, by imposing the Gaussian assumption on the received snapshots,

we prove that the deviation of the power estimator P̂a from its mean converges in

distribution, when m and n grow large at the same rate, to the Gaussian random

variable. The variance of the Gaussian distribution is evaluated and it relatively
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Figure 3-4: Scenario 2: Expected power versus diagonal loading for steering angle of
87o. The normalized trace of the ensemble correlation matrix is 5.42.
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Figure 3-5: Scenario 2: Expected power versus steering angle for diagonal loading of
20. The normalized trace of the ensemble correlation matrix is 5.42.
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accurately approximates the variance of the power estimator P̂a for finite m and n.

The method presented in this section closely follows the Gaussian Method in-

troduced in [25], wherein the limiting behavior of the mutual information of MIMO

channels is studied. This section outlines the steps used in characterizing the MSE

performance of power estimator P̂a. The derived characterization is validated via

Monte-Carlo simulations and these results are presented in the second part.

3.6.1 Major Steps in the Derivation of Estimation MSE

In short, the following analysis studies how the estimator P̂a behaves in the limit

when m,n → ∞ such that m/n → c ∈ (0,∞). In particular,

We first evaluate the mean values of the quadratic forms Q1 and Q2, denoted

respectively by µ1 and µ2. To keep the notation simple, the explicit dependence

of the quadratic forms on diagonal loading δ is suppressed.

Then, it is shown that the deviation of the vector g =
[
Q1 Q2

]T
from its

mean g =
[
µ1 µ2

]T
converges in distribution, in large m,n limit, to the

Gaussian random variable. The covariance matrix Σ of the limiting distribution

is computed.

Finally, it is obtained that the estimator P̂a is approximately Gaussian dis-

tributed. The mean value and variance of the approximating distribution are

evaluated.

Evaluation of µ1: Step 1

This and the subsequent part analyze behavior of the first moment of the quadratic

form Q1. Their purpose is to show how the Gaussian tools work in practice and to

give a glimpse of how other quantities important for characterizing P̂a are evaluated.

As a starting point, we introduce a resolvent identity, directly obtained from the

definition of H in (3.22)

H = I− t

n
HYYH. (3.64)

93



Since s = QHvs is deterministic,

E
[
tsHHs

]
= tsHE [H] s (3.65)

It follows from (3.64) that

E[Hij] = δD(i− j)− t

n
E
[
(HY Y H)ij

]
. (3.66)

The second term in (3.66) is given by

E
[
(HY Y H)ij

]
=

m∑

k=1

n∑

l=1

E
[
HikYklY

∗
jl

]
. (3.67)

Using the integration by parts formula (2.66) with f(Y) = HikY ∗
jl, the summand

in (3.67) is expressed as

E
[
HikYklY

∗
jl

]
= λkE

[
∂
(
HikY ∗

jl

)

∂Y ∗
kl

]
. (3.68)

The derivative of the resolvent H is for (any) indices i, j, k and l given by [25]

∂Hij

∂Y ∗
kl

= − t

n
(HY )ilHkj. (3.69)

Substituting (3.69) into (3.68) yields

E
[
HikYklY

∗
jl

]
= λkE

[
HijδD(j − k)− t

n
(HY )ilHkkY

∗
jl

]
, (3.70)

Now, summing (3.70) over k yields

E
[
(HY )ilY

∗
jl

]
= E

[
λjHij −

t

n
tr{DH}(HY )ilY

∗
jl

]
. (3.71)

Introducing β = 1
ntr{DH}, expressing it as β = α+β̂ where α = E [β] and E

[
β̂
]
= 0,
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and substituting into (3.71) yields

(1 + tα)E
[
(HY )ilY

∗
jl

]
= E

[
λjHij − tβ̂(HY )ilY

∗
jl

]
(3.72)

Summing (3.72) over l leads to

(1 + tα)E
[
(HY Y H)ij

]
= nλjE [Hij]− tE

[
β̂(HY Y H)ij

]
(3.73)

Dividing (3.73) with 1+ tα, substituting the resulting expression into (3.66) and after

simple algebraic manipulations we obtain

E [Hij] = gjδD(i, j) +
t2gj

n(1 + tα)
E
[
β̂(HY Y H)ij

]
, (3.74)

where gj =
1+tα

1+t(α+λj )
. Note that gj’s are uniformly bounded because the eigenvalues

λj’s are upper bounded (according to assumption 2). Finally, substituting (3.74)

into (3.65) yields

E [Q1] = tsHGs +
t3

n(1 + tα)
E
[
β̂sHHYYHGs

]
, (3.75)

where G = diag{g1, g2, . . . , gm}. Using a similar reasoning as in [25], it can be proven

that

sHGs = sHTs+O

(
1

n

)
, (3.76)

where T = (I+ tyD)−1 and y is a unique and positive solution of the non-linear

equation

1 +
t

n

m∑

i=1

λi

1 + tλiy
=

1

y
. (3.77)

To complete the evaluation of µ1, it remains to characterize the second term

in (3.75). In fact, the following part shows that this term decays as 1/n. In doing so,

the Poincare-Nesh inequality (2.67) is exploited.
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Evaluation of µ1: Step 2

The second term in (3.75), denoted by Q̃1, is after introducing

Φ =
1

n2
sHHYYHGs (3.78)

compactly written as

Q̃1 = nKE
[
β̂Φ
]
= nKE

[
β̂Φ̂
]
, (3.79)

where Φ̂ = Φ− E[Φ] and K = t3

1+tα = O(1). From the Cauchy-Schwartz inequality,

Q̃1 ≤ nK
√

var (β)
√

var (Φ). (3.80)

It has been shown in [25] that var(β) = O(n−2). In the following, we prove that

var (Φ) = O(n−2).

Applying the Poincare-Nesh inequality (2.67) on functional Φ yields

var (Φ) ≤
m∑

i=1

n∑

j=1

λiE

[∣∣∣∣
∂Φ

∂Yij

∣∣∣∣
2

+

∣∣∣∣
∂Φ

∂Y ∗
ij

∣∣∣∣
2
]
. (3.81)

Unwrapping Φ, taking its derivatives with respect to Yij and Y ∗
ij and summing

back yields
∂Φ

∂Yij
=

1

n2
(Φ1 + Φ2) and

∂Φ

∂Y ∗
ij

=
1

n2
(Φ3 + Φ4) (3.82)

where

Φ1 =
(
sHH

)
i

(
YHGs

)
j
, Φ2 = − t

n

(
sHH

)
i

(
YHHYGs

)
j
,

Φ3 = (Gs)i
(
sHHY

)
j
Φ4 = − t

n

(
sHHY

)
j

(
HYYHGs

)
i
.

Using the inequality (a+b)2 ≤ 2(a2+b2), and substituting (3.82) into (3.81) yields

var (Φ) ≤
m∑

i=1

n∑

j=1

2λi

n4
E
[
|Φ1|2 + |Φ2|2 + |Φ3|2 + |Φ4|2

]
(3.83)
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Now, we need to upper bound each expectation in (3.83). Here, we evaluate an

upper bound of the term involving Φ2. Namely,

m∑

i=1

n∑

j=1

2λi

n4
E
[
|Φ2|2

]

=
2t2

n6
E
[
sHGYYHHDHYYHGssHHYYHHs

]

(a)

≤ 2t2

n6
E
[
‖s‖4 ‖G‖2 ‖H‖4‖D‖

∥∥∥
(
YYH

)2∥∥∥
∥∥YYH

∥∥
]

(b)

≤ 2t2

n6
KE

[√
tr
((

YYH
)4)
√

tr
((

YYH
)2)
]

(c)

≤ K

n2

√√√√E

[
1

n
tr

((
YYH

n

)4
)]√√√√E

[
1

n
tr

((
YYH

n

)2
)]

(d)
= O

(
1

n2

)
, (3.84)

where
(a)

≤ and
(c)

≤ follow from the Cauchy-Schwartz inequality. Inequality
(b)

≤ follows

from the definition of the matrix norm and facts that each of s, D, H and G are

uniformly bounded in norm because respectively, s is a unitary rotation of the array

manifold vector, the largest eigenvalue of R is uniformly bounded by assumption 2.,

and by definition, ‖H‖ ≤ 1 and ‖G‖ ≤ Gmax < ∞. Finally,
(d)
= follows from the

fact that E

[
1
ntr

((
YYH

n

)k)]
= O(1) for any integer k [25]. The similar reasoning is

applied for other terms in (3.82).

Finally from (3.80) and (3.84), we conclude that Q̃1 = O(n−1). Substituting this

result and (3.76) into (3.75) yields

E [Q1] = tsHTs+O(n−1). (3.85)

The method presented in this and the previous part is general in the sense that

it can be used to characterize first moments of different functionals of the resolvent

matrix H.
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Statistics of the Vector g

This part outlines a method used to prove that the deviation of g from its mean ḡ is

Gaussian distributed in the limit when m,n → ∞ such that m/n → c ∈ (0,∞). The

covariance Σ of the limiting distribution is given by

Σ =



 σ2
1 σ12

σ12 σ2
2



 , (3.86)

where σ2
1, σ

2
2 and σ12 are respectively the variances and covariance of/between Q1 and

Q2.

We introduce a new random variable Q as a linear combination of the centered

Q1 and Q2, namely

Q = A(Q1 − µ1) +B(Q2 − µ2), (3.87)

where µ1 and µ2 are the expectations of the limiting distributions of Q1 and Q2. Note

that µ1 has been evaluated in the previous part. The variance of Q is given by

σ2
Q = A2σ2

1 +B2σ2
2 + 2ABσ12. (3.88)

Note that the variances and covariance of/between Q1 and Q2 can be identified from

σ2
Q by inspection.

Further, we denote a characteristic function of Q by Ψ and resort to the fact that

if in the limit

Ψ = E
[
ejωQ

]
→ e−

ω2σ2
Q

2 , (3.89)

then, in distribution,

σ−1
Q

(
Q− Q̄

)
→ N (0, 1). (3.90)

In other words, if the characteristic function of Q converges to that of a Gaussian

random variable, then Q itself is Gaussian distributed in the limit. The conver-
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gence (3.89) is established by showing that (details in [25])

∂Ψ

∂ω
= −ωσ2

QΨ+ ε, (3.91)

where ε converges to zero in the limit. In addition, σ2
Q is recovered from (3.91).

To establish (3.91), we start by taking the first derivative of Ψ

∂Ψ

∂ω
= jAE

[
Q1e

jωQ
]
+ jBE

[
Q2e

jωQ
]
− jΨ (Aµ1 +Bµ2) . (3.92)

In the further development, we evaluate E
[
QkejωQ

]
for k = 1 and k = 2. This

is essentially done by using the integration by parts formula (2.66) and Poincare-

Nash inequality (2.67). After a long interplay between these two Gaussian tools,

Cauchy-Schwartz inequality and messy algebra, we obtain (3.91) and extract σ2
Q.

The components of σ2
Q are evaluated using (3.88) as

σ2
1 =

t4

n2
E
[
sHHDHs

]
E
[
sHHYYHGs

]

σ2
2 =

t6

n2
{E
[
sHHDH2s

]
E
[
sHHYYHG(I+H)s

]

+E
[
sHHDHs

]
E
[
sHHYYHG(I+H)s

]
}

σ12 =
t5

2n2
{E
[
sHHDH2s

]
E
[
sHHYYHGs

]

+E
[
sHHDHs

]
E
[
sHH2YYHGs

]

+E
[
sHHDHs

]
E
[
sHHYYHG(I+H)s

]
}

The expectations in the above expressions are evaluated using the Gaussian tools.

The resulting expressions admit closed forms in terms of y and traces and quadratic

forms involving diagonal matrices D and T. The only difficulty is to solve a non-linear

equation (3.77) for y, while the other quantities are easily calculated. We omit the

presentation of the final expressions.

Having established (3.91), we conclude that when m,n → ∞ such that m/n →

c ∈ (0,∞), Q has Gaussian distribution with mean Q̄ = Aµ1 +Bµ2 and variance σ2
Q.
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Similarly, the vector Q is also Gaussian distributed in the limit, i.e.,

Σ−1 (g − ḡ) → N (0, I) , (3.93)

where ḡ =
[
µ1 µ2

]T
is the expectation of the limiting Gaussian. The covariance

matrix Σ of the limiting distribution is evaluated using (3.86).

The final major step in the statistical characterization of P̂a is outlined in the

following part.

Statistical Characterization of P̂a

Having established (3.93), we use the Delta method [25] to conclude that in the limit

when m,n → ∞ such that m/n → c ∈ (0,∞),

σ−1
P̂a

(
P̂a − µP̂a

)
→ N (0, 1), (3.94)

in distribution, where µP̂a
and σ2

P̂a
are the mean value and variance of the limiting

Gaussian distribution. The mean value is evaluated as

µP̂a
=

tµ1 − µ2

tµ2
1

. (3.95)

On the other hand, the variance is evaluated using

σ2
P̂a

= ∇P̂a (µ1, µ2) Σ∇P̂ T
a (µ1, µ2) , (3.96)

where ∇P̂a (µ1, µ2) is a gradient of P̂ , evaluated at the point (µ1, µ2), i.e.,

∇P̂a (µ1, µ2) =
[

∂P̂
∂Q1

(µ1, µ2)
∂P̂
∂Q2

(µ1, µ2)
]
. (3.97)

Thus, by evaluating the derivatives of P̂a with respect to Q1 and Q2 at (µ1, µ2) and

making the necessary substitutions in (3.95) and (3.96), the final expressions for µP̂a

and σ2
P̂a

are obtained.
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As a last step, we exploit the fact that (3.94) converges rapidly so that the expec-

tation and variance of P̂a are for finite m and n approximated as

E
[
P̂a

]
≈ µP̂a

and var
(
P̂a

)
≈ σ2

P̂a
. (3.98)

Finally, the MSE of P̂a is evaluated by substituting (3.98) into (3.10).

3.6.2 Numerical Validation of Derived Expressions

The derived expression for the mean square error of the spatial power estimator P̂a

is validated using Monte-Carlo simulations. We consider a standard, vertical, linear

array with λ/2 separation of the elements. The received signal is composed of plane

waves. The MPDR algorithm is used to estimate their directions of arrival and the

corresponding powers. Spatially uncorrelated, zero-mean noise with a variance of

one corrupts the signal snapshots. The true power is defined in a standard way

using (3.27). Note that the derived characterization of estimation MSE holds for

more general arrival process, ambient noise and array shapes.

Scenario 1

In this scenario, 2 signals are arriving at elevation angles of 90o and 92o. Each signal

has power 10. The array has 30 sensors and 50 snapshots are used to estimate the

correlation matrix. Note that c = 0.6 and the normalized trace of the ensemble

correlation matrix is 21.

The comparison between the dependences of simulated and theoretically predicted

MSE’s on diagonal loading for fixed steering direction is shown in Fig. 3-6. The plots

in the top part correspond to steering away from the sources in the direction of 85o.

The comparison in the bottom part corresponds to steering halfway between the

sources in the direction of 91o. The true power is evaluated using the standard ap-

proach (3.27). The shown comparisons validate the accuracy of the derived theoretical

prediction.

The simulation study has shown that the derived prediction of the MSE perfor-
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Figure 3-6: Scenario 1: MSE versus diagonal loading when steering angle is 85o (top
figure) and 91o (bottom figure). True power uses the traditional definition as given
in (3.27).

mance is most sensitive around the values of optimal diagonal loading when steering

close to sources.5 To further investigate this issue, the MSEs obtained via simulations

and using the theoretical prediction are compared in Fig. 3-7. These MSE’s in each

steering direction are evaluated at the diagonal loading which minimizes the corre-

sponding simulated MSE. As can be observed, the largest deviation happens when

steering close to the source directions. As an aside note, it can be observed that the

optimized MSE is relatively large when pointing at the source. Addressing this issue

is a possible direction in future research.

Scenario 2

In this scenario, 2 signals are arriving at elevation angles of 90o and 94o and their

SNR’s are 1 dB and 5 dB, respectively. The array has 40 sensors and 25 snapshots

5However, this is an important case especially when steering towards a weak source near a strong
one.
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Figure 3-7: Scenario 1: Optimized MSE versus elevation angle. True power uses the
traditional definition as given in (3.27).

are used to estimate the correlation matrix. Note that in this case the number of

sensors is larger than the number of snapshots, i.e., c = 1.6. Also, the normalized

trace of the ensemble correlation matrix is 5.42.

The comparisons between dependences of the simulated and theoretically pre-

dicted MSE’s on diagonal loading for particular values of steering directions and true

power defined in a standard way using (3.27) are shown in Fig. 3-8. The comparison

in the top part corresponds to steering away from the sources in the direction of 87o,

while that in the bottom part corresponds to steering halfway between the sources in

the direction of 92o.

As in previous scenario, the theoretical prediction of the MSE performance is

most sensitive when the steering close to sources and the diagonal loading is around

the optimal diagonal loading. The comparison between the optimal MSE’s evaluated

via simulations and by using the theoretical prediction is shown in the top part of

Fig. 3-9. The bottom part of Fig. 3-9 compares the dependences of the simulated

and theoretically predicted MSE’s on diagonal loading when steering very close to
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Figure 3-8: Scenario 2: MSE versus diagonal loading when steering angle is 87o (top
figure) and 92o (bottom figure). True power uses the traditional definition as given
in (3.27).

the sources in direction of 89.5o. As can be observed from these comparisons, the

theoretical prediction of the MSE is inaccurate when steering close to source directions

and the diagonal loading is around the diagonal loading which optimizes the MSE

performance. Finding the causes for this disagreement and improving the prediction

is one possible future direction.

3.7 Optimization of Mean Square Error

Having established how the squared bias and variance depend on loading δ, we turn

our attention to studying how these quantities are interrelated. This section con-

jectures in the first part that the variance has insignificant impact on the diagonal

loading which optimizes the estimation MSE performance. The numerical validation

of this result is presented in the second part.

Throughout this section, we do not explicitly show the dependence of the power
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Figure 3-9: Scenario 2: Optimized MSE versus elevation angle (top figure). MSE
versus diagonal loading for steering angle of 89.5o (bottom figure). True power uses
the traditional definition as given in (3.27).
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estimators on steering direction vs, i.e., with slight abuse of notation we write P̂ (δ).

3.7.1 Estimation MSE versus Squared Bias Optimization

In this part, we present arguments to support our conjecture that var
(
P̂ (δ)

)
has

negligible impact on the value of optimal loading δopt.

The following two lemmas establish bounds and orders of decay on first derivatives

of power estimators and on variances and their first derivatives. The proofs are given

in Appendices A and B.

Lemma 3.5. For a non-negative loading δ and under assumptions 2 and 3, the fol-

lowing bounds hold almost surely

1. ∂P̂a
∂δ ≤ K(δ)

m

2. C1(δ)
m ≤ ∂P̂b

∂δ ≤ C2(δ)
m ,

where K, C1 and C2 are some positive constants.

Lemma 3.6. If the received snapshots u(i) are Gaussian distributed, then under

assumptions 1-4, the following hold,

1. var
(
P̂a

)
≤ O(m− 5

2 ) and var
(
P̂b

)
≤ O(m− 5

2 )

2. var
(

∂P̂a
∂δ

)
≤ O(m− 5

2 ) and var
(

∂P̂b
∂δ

)
≤ O(m− 5

2 ).

Recall that the previous lemma holds if we replace m with n because m and n

grow at the same rate according to assumption 1.

It can be concluded that the same bounds as established in Lemma 3.5 apply

to the expectations of power estimators. In short, E
[
∂P̂ (δ)
∂δ

]
= O(m−1). Note that

the orders of decay established in Lemma 3.6 are not necessarily tight. Namely,

Lemma 3.3 shows that if the input is Gaussian, δ → ∞ and m and n are of the same

order, the variance of both estimators is O(m−3).

To conjecture that the variance has negligible impact on optimal loading, we first

note that outside some region around a point at which the squared bias attains zero,
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the variance is significantly smaller than the squared bias. Namely, note that the

expected values of both estimators are O(m−1) at δ = 0 and as δ → ∞, the estimator

P̂a is of O(m−1), while P̂b is unbounded. On the other hand, the variances of both

estimators are finite across whole δ region and of O(m− 5
2 ).

Next we consider how the slopes of the variance and squared bias behave with

respect to loading δ. Starting from the former, the slope of the variance is expressed

as the scaled correlation between the estimator and its slope and is upper bounded

using the Cauchy-Schwartz inequality,

∂

∂δ
var
(
P̂
)

= 2 cov

(
P̂ ,

∂P̂

∂δ

)

≤ 2

√√√√var
(
P̂
)
var

(
∂P̂

∂δ

)
. (3.99)

The bounds on the variance of the estimator and its derivative are given in Lemma 3.6

and therefore the slope of the variance is upper bounded

∂

∂δ
var
(
P̂
)
≤ O(m− 5

2 ). (3.100)

On the other hand, the slope of the squared bias is given by

∂

∂δ
bias2(δ) = 2E

[
P̂ (δ)− P

]
E

[
∂P̂

∂δ

]
. (3.101)

Therefore, the slope of the squared bias achieves zero at δ = δ̃opt. Outside the region

around a point at which it attains zero, the slope is of O(m−1). The slope of the

squared bias corresponding to P̂a is zero at δ = 0 and as δ → ∞. Overall, the slope

of the squared bias varies more significantly than the slope of the variance.

To summarize,

1. The variance is significantly smaller than the squared bias outside some region

around the point at which the squared bias equals zero.

2. The slope of the squared bias varies more significantly and is much larger than
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the slope of the variance.

The preceding two arguments imply that the variance has no significant impact on

the value of optimal loading. In other words, the loss incurred by using δ̃opt instead of

δopt is negligible. This loss is quantified for spatial power estimator P̂b in the following

part.

3.7.2 Estimation MSE Loss for Power Estimator P̂b

Strictly speaking, δ̃opt is not an optimal diagonal loading which minimizes the MSE.

However, according to the arguments presented in the previous part, δopt and δ̃opt are

not far from each other. To make the argument more precise, we study how much

the MSE is degraded by using δ̃opt as an optimal loading. A MSE loss incurred by

setting δ̃opt instead of δopt is defined as

L(δopt, δ̃opt) = MSE(δ̃opt)−MSE(δopt). (3.102)

We show that in the large m,n regime, the MSE loss L becomes negligible compared

to the optimal MSE. In doing so, we assume without loss of generality that the true

power P is such that the optimal loading δopt is non-zero and finite.

The squared bias attains zero at δ̃opt. It is convex and approximately quadratic

in a certain interval around δ̃opt. Therefore, the squared bias is within that interval

approximated with a second order Taylor polynomial,

bias2(δ) ≈ 1

2

∂2bias2(δ̃opt)

∂δ2

(
δ − δ̃opt

)2
. (3.103)

Invoke that bias2(δ̃opt) = 0 and ∂
∂δbias

2(δ̃opt) = 0. The second derivative of the

squared bias at δ̃opt is obtained by differentiating (3.101) and is given by

∂2bias2(δ̃opt)

∂δ2
= 2E2

[
∂P̂b(δ̃opt)

∂δ

]
. (3.104)

108



The squared bias is then approximated as

bias2(δ) ≈ E2

[
∂P̂b(δ̃opt)

∂δ

](
δ − δ̃opt

)2
. (3.105)

On the other hand, the variance is approximated with a first order Taylor polyno-

mial around δ̃opt. This is because the variability in the slope of the variance is much

smaller than that of the squared bias. Hence, using (3.99),

var
(
P̂b(δ)

)
≈ var

(
P̂b(δ̃opt)

)
+

∂var
(
P̂b(δ̃opt)

)

∂δ
(δ − δ̃opt)

= var
(
P̂b(δ̃opt)

)
+ 2 cov

(
P̂b(δ̃opt),

∂P̂b(δ̃opt)

∂δ

)
(δ − δ̃opt). (3.106)

Given that the squared bias and variance are approximated respectively with

quadratic and linear functions, the problem of evaluating the MSE loss is boiled down

to determining the loss incurred by declaring that the minimizer of the sum of these

two functions is the argument which minimizes the quadratic function (Appendix C).

Applying (C.3), this yields

L(δopt, δ̃opt) ≈
cov2

(
P̂b(δ̃opt),

∂P̂b(δ̃opt)
∂δ

)

E2
[
∂P̂b(δ̃opt)

∂δ

] . (3.107)

The MSE loss (3.107) is upper bounded by invoking that ∂P̂b
∂δ > K

m from Lemma 3.5

and by utilizing (3.99) and (3.100). Therefore,

L(δopt, δ̃opt) = O(m−3). (3.108)

Finally, in the limit when m and n grow large at the same rate,

L(δopt, δ̃opt) - MSE(δopt). (3.109)

i.e., the MSE loss is negligible compared to the optimum MSE in the large (m,n)
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regime.

3.7.3 Numerical Validation

The presented results are validated via Monte-Carlo simulations. We consider dif-

ferent scenarios with respect to number of arrivals, their powers and directions of

arrival.

A standard, vertical, linear array with a half-wavelength separation between the

elements is considered in each scenario. In addition, a spatially uncorrelated, zero-

mean noise with a variance of one corrupts the signal snapshots.

Scenario 1: Two Closely Spaced Arrivals with High SNR

In this scenario, 2 signals are arriving at elevation angles of 90o and 92o and each has

power 10 (i.e., the SNR is 10 dB). The array contains 30 sensors and 50 snapshots are

used to estimate the sample correlation matrix. Note that c = 0.6 and the normalized

trace of the ensemble correlation matrix is 21.

The simulated dependence of the squared bias, variance and MSE on diagonal

loading is shown in Fig. 3-10 for the true power defined in a standard way (3.27) and

in Fig. 3-11 when the true power is defined using an alternative approach (3.28). A

steering angle is 87o and the plots show that the variance has almost no influence on

a diagonal loading which minimizes the MSE.

The figures also show that the diagonal loading which optimizes the MSE corre-

sponding to power estimator P̂b is not greater than the loading which optimizes the

MSE corresponding to P̂a. This is because both power estimators are monotonically

non-decreasing functions of δ, P̂b(δ) ≥ P̂a(δ) and the conjecture that the bias term

controls the optimal diagonal loading.

Finally, note that the optimal loading minimizing either estimator when the true

power is defined in a standard way is larger than the optimal loading when the power

is defined in an alternative way. This is due to the combined effect of the facts that (1)

both power estimators are non-decreasing functions of δ, (2) the true power evaluated
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with (3.28) is greater than the true power evaluated in a standard way using (3.27)

and (3) our conjecture that bias controls the value of optimal diagonal loading.

A similar set of plots corresponding to steering angle of 89o are given in Fig. 3-12

and Fig. 3-13. As can be observed from Fig. 3-12, when the true power is defined in

a standard way using (3.27), the optimal loading for both estimators is zero. This

happens because the true power in such direction (and in general in directions suffi-

ciently close to the directions of arrival) is below the expected smallest value of either

power estimator, achieved for zero loading. Therefore, since the power estimators

are non-decreasing functions of loading δ, an unloaded power estimator minimizes

the bias and hence, due to our conjecture, the estimation MSE. Intuitively, as the

steering direction gets closer to but is not pointed exactly at the source, the optimal

diagonal loading is reduced as the estimator needs to maintain more adaptability to

null the source.

On the other hand, if the true power is evaluated using (3.28), the corresponding

bias (and hence the estimation MSE) is minimized for non-zero loading because the

expected smallest value of either power estimator is above the alternatively defined

true power whenever c < 1.

The optimal MSE and the MSE evaluated at a loading which minimizes the

squared bias are compared in Fig. 3-14 for power estimator P̂a and true power evalu-

ated according to (3.27). The plots highlight two different ranges of steering angles.

As shown, the performance loss is larger when steering away from the main beams,

but remains within 1 dB of the optimal MSE. A smaller performance loss is observed

in Fig. 3-15, which corresponds to the estimator P̂b.

The corresponding comparisons for power estimators P̂a and P̂b and true power

evaluated using (3.28) are shown in Figures 3-16 and 3-17. Again, the largest per-

formance loss is observed for power estimator P̂a when steering away from the main

beams and it remains within 1 dB of optimal MSE.

Finally, note that the optimized estimator P̂b outperforms the optimized estimator

P̂a. The comparison between the power estimators is given in Section 3.9.
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Figure 3-10: Scenario 1: Squared bias, variance and MSE corresponding to estimators
P̂a and P̂b versus diagonal loading for steering angle of 87o. True power uses the
traditional definition as given in (3.27).
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Figure 3-11: Scenario 1: Squared bias, variance and MSE corresponding to estimators
P̂a and P̂b versus diagonal loading for steering angle of 87o. True power uses the
alternative definition as given in (3.28).
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Figure 3-12: Scenario 1: Squared Bias, variance and MSE corresponding to estimators
P̂a and P̂b versus diagonal loading for steering angle of 89o. True power uses the
traditional definition as given in (3.27).

10
−2

10
−1

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

10
2

diagonal loading

power estimator (a)

 

 

squared bias

variance

MSE

10
−2

10
−1

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

10
2

diagonal loading

power estimator (b)

 

 

squared bias

variance

MSE

Figure 3-13: Scenario 1: Squared bias, variance and MSE corresponding to estimators
P̂a and P̂b versus diagonal loading for steering angle of 89o. True power uses the
alternative definition as given in (3.28).
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Figure 3-14: Scenario 1: MSE
(
P̂a

(
δ̃(a)opt

))
and MSE

(
P̂a

(
δ(a)opt

))
versus steering an-

gle. True power uses the traditional definition as given in (3.27).
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Figure 3-15: Scenario 1: MSE
(
P̂b

(
δ̃(b)opt

))
and MSE

(
P̂b

(
δ(b)opt

))
versus steering angle.

True power uses the traditional definition as given in (3.27).
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Figure 3-16: Scenario 1: MSE
(
P̂a

(
δ̃(a)opt

))
and MSE

(
P̂a

(
δ(a)opt

))
versus steering an-

gle. True power uses the alternative definition as given in (3.28).
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Figure 3-17: Scenario 1: MSE
(
P̂b

(
δ̃(b)opt

))
and MSE

(
P̂b

(
δ(b)opt

))
versus steering angle.

True power uses the alternative definition as given in (3.28).
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Scenario 2: Separated Arrivals with Low SNR in a Snapshot Poor Regime

In this scenario, 2 signals are arriving at elevation angles of 90o and 94o with respect

to the broadside of the array. Their SNR’s are respectively 1 dB and 5 dB. The array

has 40 sensors and the number of snapshots available to estimate the SCM is 25. Note

that c = 1.6 and the normalized trace of the ensemble correlation matrix is 5.42.

The simulated dependences of the squared bias, variance and MSE on diagonal

loading for estimators P̂a and P̂b, true powers evaluated using (3.27) and (3.28) and

steering angle of 94.5o are shown respectively in Figures 3-18 and 3-19. The same set

of plots corresponding to steering angle of 87o is shown in Figures 3-20 and 3-21. The

plots confirm that the variance has almost no influence on a diagonal loading which

minimizes the MSE.

Note that when steering close to the source direction, the MSE performance is

optimized for non-zero loading, as shown in Fig 3-18. This is because the parameter

c = m/n is above 1 (i.e., the SCM is rank deficient) so that as δ → 0, the estimators

P̂a and P̂b converge to 0. Thus, as long as the true power is non-zero, the optimal

diagonal loading is positive.

As in Scenario 1, a diagonal loading which optimizes the MSE corresponding to

P̂b does not exceed a loading which optimizes the MSE corresponding to P̂a. Also, the

optimal loading pertaining to true power evaluated using (3.27) is smaller than the

optimal loading pertaining to true power evaluated with (3.28) for both estimators.

The optimal MSE and the MSE evaluated at the minimizer δ̃opt of the squared bias

are compared for estimators P̂a and P̂b when the true power is evaluated with (3.27)

in Figures 3-22 and 3-23. The corresponding comparisons when the true power is

evaluated with (3.28) are given in Figures 3-24 and 3-25.

As can be observed from the plots, the largest performance loss appears with

estimator P̂a when steering away from the main beams. However, this loss is still

within 1 dB. The performance loss corresponding to estimator P̂b is negligible. The

theoretical characterization of this loss is given in Section 3.7.2.

As a final remark, the optimized estimator P̂b outperforms the optimized estimator
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Figure 3-18: Scenario 2: Squared bias, variance and MSE corresponding to estimators
P̂a and P̂b versus diagonal loading for steering angle of 94.5o. True power uses the
traditional definition as given in (3.27).

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−5

10
0

10
5

diagonal loading

power estimator (a)

 

 

squared bias

variance

MSE

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−5

10
0

10
5

diagonal loading

power estimator (b)

 

 

squared bias

variance

MSE

Figure 3-19: Scenario 2: Squared bias, variance and MSE corresponding to estimators
P̂a and P̂b versus diagonal loading for steering angle of 94.5o. True power uses the
alternative definition as given in (3.28).
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Figure 3-20: Scenario 2: Squared Bias, Variance and MSE corresponding to estimators
P̂a and P̂b versus Diagonal Loading for Steering Angle of 87o. True power uses the
traditional definition as given in (3.27).
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Figure 3-21: Scenario 2: Squared Bias, Variance and MSE corresponding to estimators
P̂a and P̂b versus Diagonal Loading for Steering Angle of 87o. True power uses the
alternative definition as given in (3.28).
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Figure 3-22: Scenario 2: MSE
(
P̂a

(
δ̃(a)opt

))
and MSE

(
P̂a

(
δ(a)opt

))
versus steering an-

gle. True power uses the traditional definition as given in (3.27).

P̂a. The comparison between the estimators is treated more formally in Section 3.9.

3.8 Behavior of Optimal Diagonal Loading

The diagonal loading which minimizes the squared bias and approximately minimizes

the estimation MSE is analyzed in this section and it is shown that the optimal

diagonal loading depends on the steering direction. The analysis exploits the results

from Section 3.4 pertaining to the behavior of the squared bias.

In general, for a given steering direction vs, the optimal loading δ̃opt which mini-

mizes the squared bias is for estimator P̂a

δ̃(a)opt






= 0, if P ≤ E
[
P̂a(0)

]

∈ (0,∞), if E
[
P̂a(0)

]
< P < limδ→∞ E

[
P̂a(δ)

]

→ ∞, if P ≥ limδ→∞E
[
P̂a(δ)

]
(3.110)

119



89 90 91 92 93 94 95

−50

−40

−30

−20

−10

0

10

20

steering angle
1
0
*l

o
g

1
0
(e

s
ti
m

a
to

r 
M

S
E

)

 

 

for loading which minimizes MSE

for loading which minimizes squared bias

76 78 80 82 84 86 88
−55

−50

−45

steering angle

1
0
*l

o
g

1
0
(e

s
ti
m

a
to

r 
M

S
E

)

 

 

for loading which minimizes MSE

for loading which minimizes squared bias

Figure 3-23: Scenario 2: MSE
(
P̂b

(
δ̃(b)opt

))
and MSE

(
P̂b

(
δ(b)opt

))
versus steering angle.

True power uses the traditional definition as given in (3.27).
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Figure 3-24: Scenario 2: MSE
(
P̂a

(
δ̃(a)opt

))
and MSE

(
P̂a

(
δ(a)opt

))
versus steering an-

gle. True power uses the alternative definition as given in (3.28).
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Figure 3-25: Scenario 2: MSE
(
P̂b

(
δ̃(b)opt

))
and MSE

(
P̂b

(
δ(b)opt

))
versus steering angle.

True power uses the alternative definition as given in (3.27).

and for estimator P̂b,

δ̃(b)opt





= 0, if P ≤ E

[
P̂b(0)

]

∈ (0,∞), if P > E
[
P̂b(0)

]
,

(3.111)

where P is the true power in the direction described by vs with respect to which

the MSE of a power estimator is optimized. The limiting expectations E
[
P̂ (0)

]
and

limδ→∞ E
[
P̂ (δ)

]
are evaluated using the results of Lemma 3.2.

In addition, invoking that P̂b(δ) ≥ P̂a(δ), we immediately conclude that for a given

steering direction vs and the true power P associated with it,

δ̃(b)opt ≤ δ̃(a)opt, (3.112)

with equality for P ≤ E
[
P̂ (0)

]
(in which case, these loadings are equal to zero).

In the following parts, arrival models consisting of a single and multiple plane

waves embedded into spatially uncorrelated noise (i.e., the noise is isotropic and the
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Table 3.1: Expected Power Estimators in the Limit

vs = vo vs (= vo

limδ→∞E
[
P̂a(δ)

]
= Po +

σ2
v
m Po

|vH
s vo|2
m2 + σ2

v
m

E
[
P̂ a(0)

]
= E

[
P̂ b(0)

]
≈

(
1− m

n

) (
Po +

σ2
v
m

)
σ2
v(1−m

n )(σ2
v+mPo)

m(σ2
v+mPo)−Po|vH

s vo|2

sensors are separated half-a-wavelength) are considered. The behavior of the optimal

diagonal loading is analyzed with respect to the standard definition of true power in

the first part of this section. The analysis corresponding to the alternative definition

of true power is given in the second part. The last part validates the obtained results

via simulations.

3.8.1 Single Source in Uncorrelated Noise

An ensemble correlation matrix R of the received snapshots originating from a sin-

gle source transmitting a signal of power Po in the direction described by vo and

embedded into an uncorrelated noise of variance σ2
v is

R = Pov
H
o vo + σ2

vI. (3.113)

Using the matrix inversion lemma, the inverse of the spatial correlation matrix can

be written as

R−1 =
1

σ2
v

(
I− PovH

o vo

σ2
v +mPo

)
. (3.114)

Substituting (3.113) and (3.114) into the expressions of Lemma 3.2, the results

concerning the limiting behavior of the power estimators for δ = 0 and δ → ∞

when steering in and off the source direction vo and when n > m are obtained and

summarized in Table 3.1. Recall that the power estimator P̂b is unbounded when

δ → ∞ and this case is not shown in the table. Note that when m > n and δ = 0,

the SCM has zero eigenvalues so that the power estimate in the steering direction

becomes zero unless some sort of subspace processing is employed.
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The true power is using (3.27) given by

P (vs) =






σ2
v
m , if vs (= vo

Po +
σ2
v
m , if vs = vo.

(3.115)

From the results in Table 3.1, true power definition (3.115) and characteriza-

tions (3.110) and (3.111), we deduce some facts about optimal loading δ̃opt. Namely,

when steering in the source direction such that vs = vo, the squared bias pertaining

to P̂a is minimized (canceled out) when δ → ∞, i.e., the optimal processor in this case

is the matched filter. Since P̂b(δ) is unbounded when δ → ∞, the optimal loading

δ̃(b)opt is always finite.

On the other hand, when steering off the source direction such that vs (= vo,

the optimal loading δ̃opt depends on the value of the inner product vH
s vo. Namely,

from (3.110) and (3.111), the squared bias corresponding to both P̂a and P̂b is min-

imized for zero loading when P = σ2
v
m ≤ E

[
P̂ (0)

]
. This condition is in the n > m

regime using the result from Table 3.1 equivalent to

∣∣∣∣
vH
s vo

m

∣∣∣∣
2

≥ m

n

(
1 +

σ2
v

mPo

)
. (3.116)

For the case when vs and vo are orthogonal, then the true power P = σ2
v
m coincides

with limδ→∞ E
[
P̂a(δ)

]
and consequently, δ̃(a)opt = ∞. In other words, when vH

s vo = 0,

the matched filter completely removes the interference originating from the source

meaning that it is the optimal processor. In addition, as vs moves away from vo, the

inner product |vH
s vs| tends to decrease such that limδ→∞ E

[
P̂a(δ)

]
approaches the

level of the true power P . Hence, the optimal loading δ̃(a)opt tends to increase. The

behavior of the optimal loading δ̃(b)opt corresponding to P̂b exhibits similar trends, with

the distinction that it is always finite.

The preceding observations are summarized in Table 3.2. A graphical visualization

of the results is given in Fig. 3-26, where the true power P and the expected values

of the estimator P̂a when δ = 0 and δ → ∞ for a range of steering angles, are shown.

The specific scenario used to generate Fig. 3-26 is described in its caption. A value
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Table 3.2: Properties of δ̃opt

vs = vo vs (= vo

δ̃(a)opt ∞
∞, if vH

s vo = 0
0, if condition (3.116)
∈ (0,∞), otherwise

δ̃(b)opt finite
0, if condition (3.116)
∈ (0,∞), otherwise

of E
[
P̂a(δ)

]
is always between E

[
P̂ (0)

]
and E

[
P̂a(∞)

]
because P̂a monotonically

increases. For a given steering angle and if P is above E
[
P̂ (0)

]
, as δ changes from

0 to ∞, the expected estimate moves from the E
[
P̂a(0)

]
curve, intersects a curve

representing the true power P and asymptotically approaches E
[
P̂a(∞)

]
curve. As

a rule of thumb, whenever the true power P gets close to E
[
P̂a(∞)

]
, the optimal

loading δ̃(a)opt becomes large. When P is below E
[
P̂a(0)

]
, the squared bias is minimized

for δ = 0. A graphical representation corresponding to the estimator P̂b is similar,

with the difference that E
[
P̂b

]
blows up as δ → ∞ such that δ̃(b)opt is always finite.

The dependance of optimal loading δ̃(a)opt on steering angle is shown in Fig. 3-27. As

expected from Fig. 3-26, the optimal loading oscillates and increases as the steering

angle moves away from the source direction. The optimal loading is clipped at 200.

In contrast, the optimal loading δ̃(b)opt for the considered example is 15.5 in the source

direction and does not exceed the value of 0.38 when steering off the source direction.

This happens because P̂b is much larger than P̂a when δ is moderately greater than

zero such that E
[
P̂b

]
intersects the level of P much sooner than E

[
P̂a

]
does.

3.8.2 Multiple Sources in Uncorrelated Noise

Now we consider a case of a number of sources M , each transmitting a signal of power

Pi in the direction specified by vi such that the ensemble correlation matrix of the

received snapshots is6

R =
M∑

k=1

Piv
H
i vi + σ2I, (3.117)

6This model is called separable souces in [52].
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Figure 3-26: True power according to (3.115), E
[
P̂a(0)

]
and E

[
P̂a(∞)

]
. A signal

has power 10 and arrives from 90o. Noise is uncorrelated and its variance is 1. The
array has 30 sensors and 50 snapshots are available.
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Figure 3-27: Optimal loading δ̃(a)opt. A signal is of power 10 and arrives from 90o.
Noise is uncorrelated, of power 1. A diagonal loading is clipped at 200. Whenever
the steering and source directions are the same or orthogonal, δ̃(a)opt = ∞.
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where σ2 is the variance of the uncorrelated noise.

The limiting expectation of the estimator P̂a when the steering direction vs (= vi,

i = 1, . . . ,M , is using Lemma 3.2 given by

lim
δ→∞

E
[
P̂a(δ)

]
=

M∑

k=1

Pi

∣∣∣∣
vH
s vi

m

∣∣∣∣
2

+
σ2
v

m
. (3.118)

Therefore, since in general, limδ→∞ E
[
P̂a(δ)

]
> P = σ2

v
m , the optimal loading δ̃(a)opt is

finite. In a special case when vs is orthogonal with each of vi, i = 1, . . . ,M , the

optimal beamformer is a matched filter.

Similarly, when steering in a source direction,

lim
δ→∞

E
[
P̂a(δ)

]
= P1 +

M∑

k=2

Pi

∣∣∣∣
vH
s vi

m

∣∣∣∣
2

+
σ2
v

m
, (3.119)

where without loss of generality vs = v1. Again, in general, limδ→∞E
[
P̂a(δ)

]
> P =

P1 +
σ2
v
m so that the optimal loading is finite. In a special case when vH

s vi = 0 for

i = 2, . . . ,M , the optimal estimator is a matched filter.

Certainly, when steering slightly away from the source direction, the true power

P = σ2
v
m is below the smallest expected estimate achieved for δ = 0. The squared

bias is minimized for δ = 0 in such a case. A general characterization of the steering

directions for which δ̃(a)opt = 0 is cumbersome due to lack of compact expression for

R−1. Therefore, we need to resort to a specific assignment of the arriving directions

vi and powers Pi.

A graphical visualization of the stated results is given in Fig. 3-28 where two

arrivals have the same power and are closely spaced. A similar discussion as given for

a single source case applies here as well. A plot of optimal loading δ̃(a)opt is shown in

Fig. 3-29. Again, when non-zero, the optimal loading δ̃(b)opt is much smaller than δ̃(b)opt

and does not exceed the value of 0.38 when steering off the main beams.
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Figure 3-28: True power according to (3.27), E
[
P̂a(0)

]
, E
[
P̂a(∞)

]
and the expected

optimized power estimate obtained via Monte-Carlo simulations. Scenario 1 is con-
sidered, namely, each of two plane waves has power 10 and they arrive at 90o and 92o

to the broadside. The noise is uncorrelated and its variance is 1. The array is linear,
u/2 spaced and has 30 sensors. 50 snapshots are available.
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Figure 3-29: Optimal loading δ̃(a)opt for Scenario 1.
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3.8.3 Alternative Definition of True Power

In the example of a single source in uncorrelated noise, it can be shown that if the

array is steered in the source direction, then the power P as defined in (3.28) is

P = lim
δ→∞

P̂a(δ), (3.120)

i.e., the optimal loading δ̃(a)opt → ∞. In comparison, the squared bias corresponding

to P̂b is always minimized for finite loading δ̃(b)opt.

A more interesting fact is to observe using Lemma 3.2 that

E
[
P̂ (0)

]
≈ 1− c

vH
s R−1vs

≤ P, (3.121)

where c < 1 is implicitly assumed by considering the unloaded estimator.

This means that unless c = 0, when no loading is needed, the optimal loading δ̃opt

is positive. This is graphically shown in Fig. 3-30, which corresponds to the same

scenario as in Fig. 3-28. Since the true power is always greater than E
[
P̂a(0)

]
, the

optimal loading δ̃(a)opt is always non-zero.

Note that when steering away from the source direction, the powers defined

in (3.27) and (3.28) converge such that the associated optimal loadings coincide. On

the contrary, when steering close to the source direction, diagonal loadings optimized

with respect to two definitions significantly differ.

3.8.4 Numerical Validation

This section validates the results which describe behavior of optimal diagonal loading

when the arrival process is composed of plane waves. A standard, vertical, linear

array with u/2 separation of the elements is considered. In addition, a spatially

uncorrelated, zero-mean noise with a variance of one corrupts the signal snapshots.

Two different scenarios are considered.

128



80 85 90 95 100
−20

−15

−10

−5

0

5

10

15

steering angle in degrees

p
o

w
e

r 
in

 d
B

Two Sources in Uncorrelated Noise

 

 

No loading
Inf loading
True Power

Figure 3-30: True power according to (3.28), E
[
P̂a(0)

]
and E

[
P̂a(∞)

]
for Scenario

1

Scenario 1

In this scenario, 2 signals are arriving at elevation angles of 90o and 92o and each has

power 10 (i.e., the SNR is 10 dB). The array contains 30 sensors and 50 snapshots

are used to estimate the sample correlation matrix.

To validate the theoretical findings in this section, the simulated optimal diagonal

loadings versus steering angle are plotted in Fig. 3-31 for true power evaluated using

a standard approach (3.27). As shown, there is a range of steering directions for

which a nearly diagonally unloaded estimator achieves the lowest MSE. The smallest

diagonal loading used in the simulation tests is 10−2 and is optimal when steering

close to main beams. In addition, the estimator P̂b is optimized at smaller values of

diagonal loading which do not vary significantly across the steering directions.

The plots of simulated optimal diagonal loadings versus steering angle for true

power evaluated using the alternative approach (3.28) are shown in Fig. 3-32. As

theoretically elaborated in previous parts, when an alternative definition of true power

is used, the performance is optimized for positive loadings.
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Figure 3-31: Scenario 1: δopt and δ̃opt versus steering angle for P̂a and P̂b. True power
uses the traditional definition as given in (3.27).

Scenario 2

In this scenario, 2 signals are arriving at elevation angles of 90o and 94o with respect

to the broadside of the array. Their SNR’s are respectively 1 dB and 5 dB. The array

has 40 sensors and the number of snapshots available to estimate the SCM is 25.

The plots of the simulated optimal diagonal loading versus steering angle for true

powers evaluated using both the standard and alternative approaches are respectively

shown in Figures 3-33 and 3-34. As expected, the optimal diagonal loading is always

positive because in this scenario, c > 1 (i.e., the SCM is rank deficient). However,

even though the SCM is rank deficient in this case, the optimal diagonal loading

when steering close to source directions is small. This is in accordance with our

earlier observation that when steering close to main beams, the optimal estimator

tends to perform adaptation as much as possible, fully relying on the available data.

As a rule of thumb, it has been observed that the sensitivities of the MSE and

squared bias around their minimizers decrease as δopt and δ̃opt get large. This effect,
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Figure 3-32: Scenario 1: δopt and δ̃opt versus steering angle for P̂a and P̂b. True power
uses the alternative definition as given in (3.28).

together with the variability in the simulated curves, causes a disagreement in the

peaks of the simulated δ(a)opt and δ̃(a)opt. In addition, this likely contributes to the per-

formance loss observed in the simulations (such as in Figures 3-16 and 3-14) when

steering away from the sources. As an illustration, the dependence of the squared

bias, variance and MSE corresponding to power estimator P̂a on diagonal loading

when steering in the direction of 76o is shown in Fig. 3-35.

3.9 Comparison between Power Estimators

The optimized mean square errors and sensitivities to optimal diagonal loading of

the power estimators P̂a and P̂b are compared in this section. The theoretical result

concerning the estimation performance is stated and proved in the first part. The

sensitivities of the power estimators on optimal diagonal loading are compared in the

second part. The simulation results presented in the last part validate the theoretical
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Figure 3-33: Scenario 2: δopt and δ̃opt versus steering angle for P̂a and P̂b. True power
uses the traditional definition as given in (3.27).

finding.

3.9.1 Comparison based on Estimation Performance

In comparing the MSE performance of power estimators, we rely on the conjecture

that the difference between the MSE’s evaluated at optimal loading δopt and the load-

ing δ̃opt which minimizes the squared bias is negligible for both estimators. Therefore,

we first compare the MSE’s of the two estimators evaluated at respectively δ̃(a)opt and

δ̃(b)opt.

The following result establishes that estimator P̂a has larger variance than the

estimator P̂b when both variances are measured at loadings which minimize the cor-

responding squared biases.

Lemma 3.7. Denoting by δ̃(a)opt and δ̃(b)opt the loadings which minimize the squared biases

of respectively P̂a and P̂b for some steering direction described by vs and true power
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Figure 3-34: Scenario 2: δopt and δ̃opt versus steering angle for P̂a and P̂b. True power
uses the alternative definition as given in (3.28).
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P ≤ limδ→∞E
[
P̂a(δ)

]
, the corresponding variances are related as

var
(
P̂a(δ̃

(a)
opt)
)
≥ var

(
P̂b(δ̃

(b)
opt)
)
. (3.122)

Proof. In a trivial case when P ≤ E
[
P̂ (0)

]
, the two biases are minimized for δ = 0

so that (3.122) follows directly with the equality sign.

A slightly more involved case arises when P > E
[
P̂ (0)

]
. To simplify the exposi-

tion, the notation Qk,a = Qk

(
δ̃(a)opt

)
and Qk,b = Qk

(
δ̃(b)opt

)
is introduced.

Due to assumption P ≤ limδ→∞E
[
P̂a(δ)

]
, it follows that δ̃(a)opt and δ̃(b)opt null out

the corresponding biases so that

E

[
1

Q1,a
− δ̃(a)opt

Q2,a

Q2
1,a

]
= E

[
1

Q1,b

]
. (3.123)

In addition, from (3.112), δ̃(a)opt ≥ δ̃(b)opt. Therefore, since P̂b(δ) =
1

Q1(δ)
is a monotonically

increasing function, it follows that almost surely

1

Q1,a
≥ 1

Q1,b
. (3.124)

Thus, for some positive constant K, it holds

1

Q1,a

(
1

Q1,a
−K

)
≥ 1

Q1,b

(
1

Q1,b
−K

)
(3.125)

Taking the expectation of both sides of (3.125) and rearranging the terms yields

E

[
1

Q2
1,a

]
−KE

[
1

Q1,a
− 1

Q1,b

]
≥ E

[
1

Q2
1,b

]
(3.126)

The second term on the left hand side of (3.126) is evaluated using (3.123). In

addition, since
δ̃
(a)
optQ2,a

Q2
1,a

> 0, adding its expectation to the left hand side of (3.126)
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does not change the inequality. Hence,

E

[
1

Q2
1,a

]
−KE

[
δ̃(a)optQ2,a

Q2
1,a

]
+ E




(
δ̃(a)optQ2,a

Q2
1,a

)2


 ≥ E

[
1

Q2
1,b

]
(3.127)

Now we set K =
2
(
D̂m+δ̃

(a)
opt

)

m > 0 and upper bound the left hand side of (3.127) by

using (A.1) (from Appendix A) which implies that 1
Q1,a

≥ K
2 . Namely,

E



 1

Q2
1,a

− 2
δ̃(a)optQ2,a

Q3
1,a

+

(
δ̃(a)optQ2,a

Q2
1,a

)2




≥ E



 1

Q2
1,a

−K
δ̃(a)optQ2,a

Q2
1,a

+

(
δ̃(a)optQ2,a

Q2
1,a

)2




≥ E

[
1

Q2
1,b

]
(3.128)

Recognizing that the left most hand side of (3.128) is the quadratic of P̂a

(
δ̃(a)opt

)
yields

E
[
P̂ 2
a

(
δ̃(a)opt

)]
≥ E

[
P̂ 2
b

(
δ̃(b)opt

)]
. (3.129)

Finally, from (3.123), which implies that E2
[
P̂a

(
δ̃(a)opt

)]
= E2

[
P̂b

(
δ̃(b)opt

)]
, and (3.129),

we obtain (3.122).

If the true power P ≤ limδ→∞ E
[
P̂a(δ)

]
, the squared biases corresponding to P̂a

and P̂b at respectively δ̃(a)opt and δ̃(b)opt are equal. Given the inequality between their

variances (3.122), we conclude that their MSE’s are related as

MSE
(
δ̃(a)opt

)
≥ MSE

(
δ̃(b)opt

)
. (3.130)

We now invoke the conjecture that the MSE loss made by using δ̃opt instead of

δopt is negligible for both estimators. Therefore, the optimal MSE’s are approximately

related as

MSE
(
δ(a)opt

)
≥ MSE

(
δ(b)opt

)
. (3.131)
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3.9.2 Comparison based on Sensitivity to Optimal Diagonal

Loading

It has been observed in the simulation study that the power estimator P̂b is more

sensitive to optimal diagonal loading than the power estimator P̂a. Relying on the

conjecture that the variance has negligible impact to the value of optimal diagonal

loading, we define the sensitivity to optimal diagonal loading as the curvature of the

squared bias around the diagonal loading which nulls out the squared bias.

Combining the results proved in Lemma 3.1 that

- the power estimator P̂b is greater than the power estimator P̂a for diagonal

loading δ > 0;

- the power estimator P̂a is monotonically non-decreasing and has zero slope as

δ → 0+ and δ → ∞ and

- the power estimator P̂b is strictly monotonically increasing for all δ ≥ 0,

and that the squared bias corresponding to P̂b is minimized at smaller diagonal load-

ing than that corresponding to P̂a, given by (3.112), we conjecture that the power

estimator P̂b is more sensitive to optimal diagonal loading than the power estimator

P̂a.

Proving this conjecture or finding the specific conditions under which it holds is

a possible direction for future study.

3.9.3 Numerical Validation

This part verifies the theoretical result from previous part via simulations. The

two scenarios are considered and the true power is evaluated in a standard way us-

ing (3.27).

The comparison between the MSE’s of the two power estimators when the arrival

process and number of sensors and snapshots is as specified by Scenario 1, is shown

in Fig. 3-36. The MSE’s in the top figure are evaluated at diagonal loadings which
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minimize the bias. The plots in the bottom figure compare the optimized MSE’s. The

simulation results in the top figure validate that the MSE corresponding to estimator

P̂a is lower bounded by the MSE corresponding to the estimator P̂b, both evaluated

at the loadings which optimize corresponding squares biases. The bottom figure

confirms the same conclusion for the optimized MSE’s. Note that the MSE’s of P̂a

and P̂b, compared in Fig. 3-36, are equal when steering close to the source directions.

These are the ranges within which the optimal loading is close to zero and the two

estimators are nearly identical.

The comparisons between the optimized MSE’s and the MSE’s evaluated at the

diagonal loadings which optimize the corresponding squared biases of the two power

estimators in Scenario 2, are shown in Fig. 3-37. In comparison to Scenario 1, a

larger difference between the MSE’s of the estimators P̂a and P̂b is observed when the

number of snapshots is smaller than the number of sensors.

3.10 Conclusions

This chapter presents how two diagonally loaded, MPDR beamformer based spatial

power spectrum estimators behave in the snapshot deficient regime.

The almost sure convergence of the considered power spectrum estimators to non-

random limits when the number of snapshots and number of sensors grow large at

the same rate is proved using the random matrix theory methods. The variance and

estimation MSE of one of the power estimators are characterized under the assumption

that the input process is Gaussian distributed.

Further, the dependences of the spatial power estimators, their expectations and

variances on diagonal loading are studied. Unlike in standard theory, it is shown that

due to specifics of the deficient sample support regime, the biases of both estimators

are in general minimized for non-zero loadings. In addition, the MSE loss caused by

using the minimizer of the squared bias as the optimal diagonal loading is negligible.

In addition, the dependence of optimal loading on steering direction is also an-

alyzed. It is shown that when steering in the direction of a source which is well
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Figure 3-36: Scenario 1: Comparison between MSE performances of two power esti-
mators. The MSE is evaluated at the loading which minimizes bias (top) and at the
optimal diagonal loading (bottom).
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Figure 3-37: Scenario 2: Comparison between MSE performances of two power esti-
mators. The MSE is evaluated at the diagonal loading which minimizes bias (top)
and at the optimal diagonal loading (bottom).
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separated from the interferers, the optimal processor is a matched filter so δopt → ∞.

If the sources are closely spaced, the optimal loading is finite. Furthermore, we show

that when steering close to the source direction, the optimal loading is small and

can even be zero, meaning that the optimal estimator tends to perform adaptation

as much as possible, fully relying on the available data. On the other hand, when

steering direction moves away from the source directions, the optimal loading tends

to increase.

Finally, the performances of two power estimators are compared and it is proved

that the optimized P̂b outperforms the optimized P̂a; and the optimal δ is lower for

estimator P̂b than it is for estimator P̂a. However, the performance of estimator P̂b is

more sensitive to the determination of the correct diagonal loading than is estimator

P̂a. All the presented results are validated via Monte-Carlo simulations.

As a possible future work, the stated conjecture about the negligible impact of

variance on the value of optimal diagonal loading needs to be rigorously proved.

Also, a rigorous sensitivity analysis of power estimators on optimal diagonal loading

is needed to complete the comparison of power estimators. In addition, the results

developed for Gaussian distributed snapshots could possibly be extended to more

general snapshot statistics. Furthermore, we point out that the ultimate goal con-

cerning the problem of diagonal loading for adaptive beamforming is to develop a

scheme which determines the optimal diagonal loading based on the received data

and steering direction. Also, the presented study on how spatial power spectrum es-

timation depends on diagonal loading could be applied to other estimation methods

which rely on diagonal loading. Finally, the presented approach could possibly be

applied for studying other regularization methods.
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Chapter 4

Time-Varying Channel Tracking

4.1 Introduction

The identification of an unknown channel from the input signal and output noisy ob-

servations using the Least Squares (LS) solution is a long-standing problem studied

for different applications in the areas such as adaptive signal processing [27], estima-

tion theory [29], machine learning [8] and communications [57]. The Recursive Least

Squares (RLS) algorithm is an efficient implementation of the LS algorithm which

has the ability to recursively update the estimate of the channel based on the most

recent input-output sample pair. This leads to an application of the RLS algorithm

for tracking slowly varying channels [27]. One of the areas where this application

is particularly important is wireless communications where the receiver tracks the

channel and detects the transmitted symbol based on the estimated channel impulse

response [48], [39].

The tracking performance of the RLS algorithm has been extensively studied in

the literature. As such, the steady-state mean-square estimation error is analyzed

in [39], [19] and [32], where the impulse response of a channel is modeled as an au-

toregressive process. The tracking performance of the RLS algorithm in both transient

and steady-state regimes is studied in [17].

The literature also reports performance studies of the RLS algorithm in some spe-

cific scenarios. As such, the steady state performance of the RLS based identification
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of an unknown LTI channel, modeled as a finite impulse response (FIR) filter whose

length is shorter than the unknown channel length, is reported in [63]. The impact

of round-off errors on tracking performance is studied in [1]. The performance of the

RLS based tracking of a time-varying channel whose coefficients are modeled using

Jakes’ model is studied in [47]. The convergence properties of the RLS algorithm

and their dependence on the initialization is analyzed in [36]. The performance of

the RLS algorithm when used to detect symbols received from a frequency flat fading

channel on an array is studied in [5].

The main challenge in the analysis of the performance of the RLS algorithm is

to characterize the sample correlation matrix (SCM) of the input process and the

inverse of this matrix when the number of observations is comparable to the dimen-

sion of the matrix (e.g., the size of the filter). The common approach in addressing

this issue essentially includes approximating the SCM with the ensemble correlation

matrix. While these matrices are approximately equal when the number of station-

ary observations is large, they might differ significantly in the observation deficient

regime. The performance study presented in this chapter addresses this problem by

exploiting the tools and results from random matrix theory (RMT).

A performance study of the RLS algorithm when it is used to track a channel which

varies according to a first order Markov process in presented in this chapter. The ex-

pressions for signal prediction and channel estimation mean square errors (MSE) are

derived and validated via simulations. The general results are applied for specific

scenarios and as special cases we consider the behavior in the steady-state, perfor-

mance of LS-based identification of linear time-invariant channel and performance

of the sliding window RLS algorithm. Finally, several practical results such as those

characterizing the optimal exponential forgetting factor in the exponentially weighted

RLS or optimal averaging window length in the sliding window RLS algorithm are

obtained.

The characterization of the Stieltjes transform of the channel estimation correla-

tion matrix when the RLS and extended RLS algorithms are used to track a channel

modeled as a random walk is reported in [56] and [55]. The transient behavior of
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the signal to interference plus noise ratio (SINR) at the output of the RLS estimator

in a time-invariant channel is studied in [38]. The analysis therein is fairly general

and the performance metric is given as a solution to a set of non-linear equations. In

comparison to those results, we consider the signal prediction and channel estimation

MSE’s as performance metrics, study the transient behavior of the RLS algorithm

directly and obtain the steady state results as a special case. In addition, we model

the channel variations as a first order Markov process. Finally, by employing assump-

tions justifiable in the scenarios of practical interest, we obtain cleaner and, where

possible, closed form characterizations.

This chapter is organized as follows. The background on channel tracking is sum-

marized in Section 4.2. A general theory for the performance characterization of the

LS based tracking of the first order Markov channel is developed in Section 4.3. The

subsequent sections use the general results and specialize them for specific problems.

As such, Section 4.4 studies the algorithm’s performance in the steady state. An LTI

system identification is treated in Section 4.5. The sliding window LS algorithm is

studied in Section 4.6. The comparison between the exponentially weighted LS and

the sliding window LS algorithm when used to track a first order Markov channel is

discussed in Section 4.7. Section 4.8 concludes this chapter.

4.2 Background

The problem of tracking a time-varying channel using the Least Squares algorithm

and the challenges associated with analyzing it are introduced in this section. In

addition, relevant performance analysis results from the literature are given. Finally,

the assumptions used in the theoretical analyzes and their justifications are presented.

4.2.1 Problem Formulation

Given the inputs to a finite impulse response (FIR) channel and the channel outputs

corrupted by noise, the channel impulse response is estimated using the Least Squares

(LS) algorithm. A channel of length m has impulse response at time n expressed as
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a vector w(n). The channel variation is modeled as a first order Markov process

w(n) = aw(n− 1) + ω(n), (4.1)

where ω(n) is a zero mean i.i.d. process noise with correlation matrix σ2
oI. The

channel impulse response at initial time w(0) is random and has identity covariance.

A parameter a < 1 is a state transition constant. For a = 1, (4.1) becomes a random

walk model.

The channel input at time n is the vector u(n) whose entries are input samples

u(k), k = n, n− 1, . . . , n−m+ 1. The channel output is corrupted with an additive

noise process v(n) such that the channel output at time n is

d(n) = wH(n)u(n) + v(n). (4.2)

We assume the input and additive noise are independent. The noise process, v(n), is

i.i.d. with zero mean and variance σ2
v . In addition, the input signal vectors u(n) are

assumed to be zero-mean with correlation matrix E
[
u(n)uH(n)

]
= R.

Given the input signal vectors u(i) and the corresponding desired outputs d(i) up

to time n, the estimated channel impulse response ŵ(n) is [27]

ŵ(n) = R̂−1(n)r̂(n), (4.3)

where R̂(n) is a sample correlation matrix (SCM), computed as

R̂(n) =
n∑

i=1

λn−iu(i)uH(i) + λnδI (4.4)

and r̂(n) is an input-output cross-correlation vector, given by

r̂(n) =
n∑

i=1

λn−iu(i)d∗(i). (4.5)

A forgetting factor λ ∈ (0, 1), usually very close to 1, accommodates the time-
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variability of the channel by suppressing the past observations not relevant for current

estimation. The real-valued, non-negative quantity δ in (4.4) is a diagonal loading

parameter which handles the start-up transient of the algorithm [27].

The performance of the tracking algorithm is measured via channel estimation

error ε(n),

ε(n) = w(n)− ŵ(n), (4.6)

and the signal prediction error ξ(n),

ξ(n) = d(n)− ŵH(n− 1)u(n). (4.7)

4.2.2 Relevant Results

The relevant results of the studies reported in the literature are derived and outlined

in [27]. The performance analysis in [27] relies on the direct averaging assumption

and the approximation of the sample correlation matrix R̂(n) of the stationary input

process (such that the unity forgetting factor is used) with 1
nR̂(n) ≈ R, which holds

true when the number of observations n is much larger than the channel length m.

When a channel vector varies according to an ”almost” random walk model (a

model from (4.1) with a → 1) and the forgetting factor λ is very close to 1, the

channel estimation error in a steady state is given by [27]

E
[
‖ε(n)‖22

]
→ 1− λ

2
σ2
vtr
{
R−1

}
+

1

2(1− λ)
tr {Ro} , (4.8)

where ‖‖2 is the L2 norm of a vector, tr{} denotes the trace of a matrix and Ro is a

covariance matrix of the process noise ω(n). By equating the error terms correspond-

ing to the process and observation noise, the optimal value of the forgetting factor

λopt is evaluated as [27]

λopt = 1− 1

σv

(
tr{Ro}
tr {R−1}

) 1
2

. (4.9)

For the case when the system is LTI, i.e., a = 1 and Ro = 0, and λ = 1, the
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expressions for the mean-square values of the channel estimation and signal prediction

errors are for n / m given by [27]

E[‖ε(n)‖22] ≈
1

n
σ2
vtr{R−1}, (4.10)

and

E[‖ξ(n)‖22] ≈
1

n
σ2
vtr{R−1}+ σ2

v . (4.11)

The performance analysis given in [27] assumes the number of observations n is

much larger than the channel lengthm. However, when n andm are of the same order,

the estimated and true correlation matrices may differ significantly. The theoretical

characterization of the LS algorithm, developed in this chapter with the use of random

matrix theory methods, does not require n be large. Furthermore, compared to [27],

the performance of the LS-based tracking of a broader class of channel variations is

characterized.

4.2.3 Assumptions and Remarks

The main assumptions used in the performance characterization presented in this

chapter are as follows.

(1) The forgetting factor, λ, is assumed to be close to 1 in the derivation of both

the channel estimation and signal prediction MSE.

(2) The state transition parameter, a, is assumed to be close to 1 in the derivation

of signal prediction MSE.

(3) The input observation vectors u(n) are assumed to be independent and identi-

cally distributed.

Note that the analysis in [27] uses the same assumptions.

Although these assumptions might seem somewhat too restrictive, the simulations

show that the derived expressions are valid for the ranges of λ and a that are in fact

of practical importance. This is shown in Figures 4-4 and 4-17 and emphasized in the
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corresponding discussions. In short, the RLS algorithm fails to accurately track a first

order Markov varying channel whose state transition parameter a is not sufficiently

close to 1. Also, the effective averaging window size corresponding to a value of

forgetting factor λ not sufficiently close to 1 might be too short with respect to the

number of unknown coefficients, which in turn does not lead to acceptable tracking

performance.

The third assumption is used in the evaluation of the moments of the SCM using

random matrix methods, in particular Theorem 2.1, as elaborated in Section 2.4. In

reality, the observation vectors at the input of an FIR filter are not independent.

However, the results obtained via simulations conducted such that the consecutive

observation vectors are shifted with respect to each other, confirm the validity of the

derived expressions. In addition, this assumption is fairly common in adaptive filter

theory.

As a final remark, random matrix theory provides tools for evaluating the per-

formance metrics of our interest without restricting λ and a be sufficiently closed to

1. However, our intention is to characterize the performance using a relatively clean

and, where possible, closed form expressions. Such expressions are derived under the

stated assumptions which are justified in the regime of practical importance where

the RLS algorithm is able to track the channel reasonably well.

4.3 Performance Analysis

This channel estimation and signal prediction MSE’s associated with the LS-based

tracking of first order Markov channel with deficient sample support are characterized

in this section.
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4.3.1 Channel Estimation Error

A channel impulse response, modeled as a first order Markov process (4.1), is at time

n expressed in terms of the initial impulse response w(0) as

w(n) = anw(0) +
n∑

i=1

an−iω(i). (4.12)

Substituting (4.2) into (4.5), the cross-correlation vector is expressed as

r̂(n) =
n∑

i=1

λn−iu(i)(uH(i)w(i) + v∗(i)). (4.13)

After substituting (4.13) into (4.3) and using (4.12), the estimated channel vector

becomes

ŵ(n) = R̂−1(n)
n∑

i=1

aiλn−iu(i)uH(i)w(0)

+ R̂−1(n)
n∑

i=1

λn−iu(i)uH(i)
i∑

j=1

ai−jω(j)

+ R̂−1(n)
n∑

i=1

λn−iu(i)v∗(i). (4.14)

The channel estimation error, after substitution of (4.12) and (4.14) into (4.6), can

be decomposed into three terms

ε(n) = ε1(n) + ε2(n) + ε3(n), (4.15)

where ε1(n) is the error induced by the initial channel response

ε1(n) =

[

anI− R̂−1(n)
n∑

i=1

aiλn−iu(i)uH(i)

]

w(0), (4.16)
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ε2(n) is the error induced by the random portion of the channel dynamics (process

noise),

ε2(n) =
n∑

i=1

an−iω(i)− R̂−1(n)
n∑

i=1

λn−iu(i)uH(i)
i∑

j=1

ai−jω(j), (4.17)

and ε3(n) is the observation noise induced error

ε3(n) = −R̂−1(n)
n∑

i=1

λn−iu(i)v∗(i). (4.18)

Due to assumed independence of the initial channel response, input process and obser-

vation and process noises, the three error terms are uncorrelated. In the following, the

expected norms of these error terms are evaluated. The identities tr {AB} = tr {BA}

and E [tr {A}] = tr {E [A]} are used.

The mean square value of the initial channel response induced error ε1(n) is, after

some algebraic manipulation, given by

E
[
‖ε1(n)‖22

]
= ma2n − 2an

n∑

i=1

λn−iaiE
[
uH(i)R̂−1(n)u(i)

]

+
n∑

i=1

n∑

j=1

ai+jλ2n−i−jE
[
tr
{
u(i)uH(i)R̂−2(n)u(j)uH(j)

}]

(4.19)

Recall that the initial channel response vector w(0) is assumed to be random and of

identity correlation. Therefore, its correlation matrix gives rise to multiplication with

m in the first term and is absorbed in the trace operator in the last term of (4.19).

The channel dynamics induced error ε2(n) can be expressed as a sum of the

uncorrelated error terms (which are denoted ek(n))

ε2(n) =
n∑

k=1

ek(n), (4.20)
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where

ek(n) =

(

an−kI− R̂−1(n)
n∑

i=k

λn−iai−ku(i)uH(i)

)

ω(k). (4.21)

The mean square value of ε2(n) is thus

E
∥∥ε2(n)‖22

]
=

n∑

k=1

E
[
‖ek(n)‖22

]
, (4.22)

where the expression for E [‖ek(n)‖22], obtained after some algebraic manipulation, is

given by

E
[
‖ek(n)‖22

]
= σ2

oma2(n−k) − 2σ2
oa

n−k
n∑

i=k

ai−kλn−iE
[
uH(i)R̂−1(n)u(i)

]

+ σ2
o

n∑

i=k

n∑

j=k

ai+j−2kλ2n−i−jE
[
tr
{
u(i)uH(i)R̂−2(n)u(j)uH(j)

}]

(4.23)

Finally, the expected norm of the observation noise induced error ε3(n) is given by

E
[
‖ε3(n)‖22

]
= σ2

v

n∑

i=1

λ2(n−i)E
[
uH(i)R̂−2(n)u(i)

]
. (4.24)

Overall, the channel estimation MSE is

E
∥∥ε(n)‖22

]
=

3∑

i=1

E
∥∥εi(n)‖22

]
. (4.25)

4.3.2 Signal Prediction Error

Substituting (4.2) into (4.7) and using model (4.1), the signal prediction error is

expressed as

ξ(n) =
(
awH(n− 1)− ŵH(n− 1)

)
u(n) + ωH(n)u(n) + v(n). (4.26)
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The simulation results, presented in Section 4.6.2, imply that a channel varying

according to a first order Markov model is not tractable unless a is close to 1. Con-

sequently, to obtain a compact representation of ξ(n), it is assumed that a ≈ 1 so

that

ξ(n) ≈ εH(n− 1)u(n) + ωH(n)u(n) + v(n). (4.27)

While ξ(n) does not explicitly depend on a, this dependence is implicitly accounted

for via the dependence of ε(n) on the state transition parameter, a.

If the input process has identity correlation, the signal prediction MSE is, us-

ing (4.27), given by

E
[
‖ξ(n)‖2

]
≈ E

[
‖ε(n− 1)‖22

]
+mσ2

o + σ2
v . (4.28)

Thus, to evaluate the signal prediction MSE, we need to characterize the first term

in (4.28).

4.3.3 Theoretical Prediction of Unknown Quantities

The MSE values of the error terms expressed with (4.19), (4.23) and (4.24) depend

on two quantities which we define as

Vk(n,m, i) = E
[
uH(i)R̂−k(n)u(i)

]
(4.29)

W (n,m, i, j) = E
[
tr
{
u(i)uH(i)R̂−2(n)u(j)uH(j)

}]
(4.30)

The index k in Vk can be either 1 or 2. These quantities are studied in the following

parts and approximately expressed in terms of the expected moments of the SCM

M̃k(m,n) defined as the expected normalized trace of the powers of the SCM inverse,

that is

M̃k(m,n) =
1

m
E
[
tr
{
R̂−k(n)

}]
. (4.31)
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We are interested in the expected moments whose corresponding index k is 1 or 2.

Note that M̃0(m,n) = 1.

Two cases are considered. In the first case, the ensemble correlation matrix of the

input processR is unconstrained and the expected moment M̃1(m,n) is approximated

for n > m and δ = 0 with the limiting moment, as is elaborated in Section 2.7.

The limiting moment M̄1 corresponding to the exponentially weighted SCM with

forgetting factor λ and δ = 0 is characterized in Section 2.5 and given by (2.37).

Hence, the expected first moment is approximately given by the solution to the fixed

point equation

1

M̃1(m,n)
=

n∑

k=1

λn−k

1
mtr{R−1}+mλn−kM̃1(m,n)

. (4.32)

Note that in a special case when λ = 1, M̃1(m,n) is given in a closed form

M̃1(m,n) =
1

m(n−m)
tr{R−1}. (4.33)

In the second case, R = I and there is no restriction on the number of observation

vectors, n. This means that n can be smaller than m and a positive diagonal loading

factor δ, is needed. The expected moments with the corresponding index k = 1, 2 are

approximated with the limiting moments, evaluated in closed form in Section 2.5 and

given by

M̃1(m,n) = max

(
0, 1− 1

c

)
1

δ
+

√
δ2 + (m− n)2 + 2δ(m+ n)− |n−m|− δ

2δm
(4.34)

and

M̃2(m,n) = max

(
0, 1− 1

c

)
1

δ2
− |n−m|

2δ2m
+

(m− n)2 + δ(m+ n)

2δ2m
√

δ2 + (m− n)2 + 2δ(m+ n)
.

(4.35)
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Evaluation of Vk

We approximate in this part the quadratic form Vk for k = 1, 2. As a remark, an

exact asymptotic characterization can be obtained by using the tools from random

matrix theory, such as the integration by parts formula and Poincare-Nash inequality.

However, our goal is to obtain a simple, yet accurate characterizations by employing

the assumption justified in practical scenarios.

A rectangular window (λ = 1) is considered first. In that case, each input snapshot

u(i), i = 1, 2, . . . , n contributes to the sample correlation matrix R̂(n) equally, with

unit weight. Due to symmetry, Vk(n,m, i) does not depend on the index i, i.e.,

Vk(n,m, i) = Vk(n,m). Therefore,

Vk(n,m) =
1

n

n∑

i=1

Vk(n,m)

=
1

n

n∑

i=1

E
[
uH(i)R̂−k(n)u(i)

]

=
1

n
E

[

tr

{

R̂−k(n)
n∑

i=1

u(i)uH(i)

}]

=
1

n
E
[
tr
{
R̂−k(n)

(
R̂(n)− δI

)}]

=
m

n

(
M̃k−1(m,n)− δM̃k(m,n)

)
. (4.36)

When exponential weighting is employed, different observation vectors are weighted

differently, so that Vk(n,m, i) depends on the observation index i. In the absence

of a better approach, we assume forgetting factor λ is very close to 1 such that

Vk(n,m, i) ≈ Vk(n,m). This approximation is further justified because k can only

take on values 1 or 2 (larger values of k make the approximation less accurate).

Therefore,
n∑

i=1

λn−iVk(n,m, i) ≈ 1− λn

1− λ
Vk(n,m). (4.37)
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Without the approximation, the expression becomes

n∑

i=1

λn−iVk(n,m, i) = E

[
tr

{
R̂−k(n)

n∑

i=1

λn−iuH(i)u(i)

}]

= m
(
M̃k−1(m,n)− δλnM̃k(m,n)

)
. (4.38)

Therefore, equating the right-hand sides of (4.37) and (4.38),

Vk(n,m, i) ≈ m
1− λ

1− λn

(
M̃k−1(m,n)− δλnM̃k(m,n)

)
. (4.39)

Letting λ → 1 and noting that (1−λ)/(1−λn) → 1/n, (4.36) is recovered from (4.39).

In addition, note that the expected moments M̃k from (4.39) correspond to the ex-

ponentially weighted SCM.

To confirm the reasoning for λ = 1 and approximation for λ close to 1, Vk(n,m, i)

for i = 1, 2, . . . , n and k = 1, 2 are evaluated using Monte-Carlo simulations. The

corresponding plots are shown in Figures 4-1 and 4-2 for respectively λ = 1 and

λ = 0.995. As can be observed, the conclusion that Vk(n,m, i) does not depend on i

when λ = 1 is validated in Fig. 4-1.

On the other hand, the approximation V2(n,m, i) ≈ V2(n,m) is less accurate

when λ < 1, as shown in Fig. 4-2. In the absence of more accurate and algebraically

simple characterization for Vk(n,m, i) when λ < 1, we use (4.39) in the analysis. The

validation of the results obtained in the later parts confirm that approximation (4.39)

is acceptable. As a final note, the approximation is getting more accurate as λ is

approaching one.

Evaluation of W

The approximation of quantity W is derived in this part. As for Vk, our goal is to

characterize this quantity with relatively simple and accurate expressions by utilizing

the assumption justified in realistic scenarios.

Based on whether the indices i and j in Wk(n,m, i, j) are equal or not, two new

154



0 100 200 300 400 500
0.059

0.0595

0.06

0.0605

0.061

0.0615

observation index i

V
1
(n

,m
)

0 100 200 300 400 500
2.74

2.76

2.78

2.8

2.82

2.84

2.86
x 10

−5

observation index i

V
2
(n

,m
)

Figure 4-1: V1 (top figure) and V2 (bottom figure) versus observation index i for
n = 500, m = 30 and λ = 1.

quantities are defined

X(n,m, i) = E
[
tr
{
u(i)uH(i)R̂−2(n)u(i)uH(i)

}]
(4.40)

and

Y (n,m, i, j) = E
[
tr
{
u(i)uH(i)R̂−2(n)u(j)uH(j)

}]
, i (= j. (4.41)

When using the rectangular window, X(n,m, i) = X(n,m) and Y (n,m, i, j) =

Y (n,m, i0, j0) for the same reason as was stated for the case of Vk(n,m, i). Here, i0

and j0 are fixed and not equal.

The quantity X is expressed as

X(n,m) = E
[
‖u(i)‖22uH(i)R̂−2(n)u(i)

]
(4.42)

and we assume that ‖u(i)‖22 and uH(i)R̂−2(n)u(i) are independent random variables
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Figure 4-2: V1 (top figure) and V2 (bottom figure) versus observation index i for
n = 500, m = 30 and λ = 0.995.

when n and m are of the same order. Namely, uH(i)R̂−2(n)u(i) is a norm of a

vector obtained by rotating u(i) with the eigenvectors of R̂(n) and scaling the entries

of the resulting vector with the squared inverse of the eigenvalues of R̂(n). While

rotating a vector with an orthogonal matrix has no impact on its norm, scaling its

entries by randomly chosen eigenvalues from broad support (because n and m are

comparable) makes uH(i)R̂−2(n)u(i) and ‖u(i)‖22 approximately independent. Hence,

X is approximated as

X(n,m) ≈ tr{R}V2(n,m). (4.43)

The theoretical approximation (4.43) is compared with the simulation results for

different n and m = 30 and the plots are shown in Fig. 4-3. Excellent agreement

is obtained even for large values of n. The input process in this test is Gaussian

distributed. A similar agreement is also obtained for a uniformly distributed binary

input sequence.

When an exponential weighting is employed, λ is assumed to be very close to
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Figure 4-3: Comparison between the Simulated and Approximated X(n, 30)

1. Thus, X(n,m, i) ≈ X(n,m), Y (n,m, i, j) ≈ Y (n,m, io, jo), where io (= jo, and

X(n,m) is evaluated using (4.43).

To evaluate Y , two possible decompositions of the weighed sums involving W (n,m, i, j)

are given by

n∑

i=1

n∑

j=1

λ2n−i−jW (n,m, i, j) ≈
n∑

i=1

λ2(n−i)X(n,m) +
n∑

i=1

n∑

i &=j=1

λ2n−i−jY (n,m, io, jo)

=
1− λ2n

1− λ2
X(n,m) + 2

(1− λn)(λ− λn)

(1− λ)2(1 + λ)
Y (n,m, io, jo)

(4.44)

and

n∑

i=1

n∑

j=1

λ2n−i−jW (n,m, i, j) = E

[

tr{
n∑

i=1

λn−iu(i)uH(i)R̂−2(n)
n∑

j=1

λn−ju(j)uH(j)}
]

= m
(
M̃0(m,n)− 2δλnM̃1(n,m) + δ2λnM̃2(n,m)

)

(4.45)
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By equating the right hand sides of (4.44) and (4.45), we obtain the relation

between X and Y

1− λ2n

1− λ2
X + 2

(1− λn)(λ− λn)

(1− λ)2(1 + λ)
Y = m

(
M̃0 − 2δλnM̃1 + δ2λnM̃2

)
, (4.46)

and evaluate Y for X approximated using (4.43).

Substituting λ = 1 (rectangular window) into (4.46), the exact relation between

X and Y reads as

nX + n(n− 1)Y = m
(
M̃o − 2δM̃1 + δ2M̃2

)
. (4.47)

4.4 Channel Tracking in Steady State

The theoretical framework developed in the previous section is used in this section

to analyze the performance of the exponentially weighted LS algorithm in the steady

state, i.e., when the number of input observation vectors n → ∞. In the first part

we evaluate the channel estimation MSE. The numerical validation of the derived

expression is given in the second part. In addition, the assumption that the forgetting

factor λ is close to 1, used in the derivations, is justified.

4.4.1 Performance Analysis

The steady state channel estimation MSE of the exponentially weighted LS algorithm

is evaluated in this part. Note that the channel varies according to the first order

Markov model and the non-unitary forgetting factor λ limits the estimator memory

and enables the algorithm to accommodate time-variability.

Taking the limit n → ∞ of (4.19), we conclude that the contribution of the

error term due to the initial channel vector to the overall channel estimation MSE

disappears in the steady state. This result is intuitively appealing.

Substituting the approximate expressions for Vk and W into (4.23), the obtained

expression into (4.22) and taking the limit n → ∞ of the result, the power of the
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error induced by the random portion of the channel dynamics is in the steady state

given by

P∞
dyn =

mσ2
o

(1 + a)(1− aλ)

(
2λ− 1 +

tr{R}
1 + λ

M̃∞
1

)
, (4.48)

Similarly, substituting the approximations for Vk and W into (4.24) and taking

the limit n → ∞, the power of the error induced by the observation noise is given by

P∞
noise =

mσ2
v

1 + λ
M̃∞

1 , (4.49)

The powers (4.48) and (4.49) are given in terms of the expected first moment if

the SCM in the steady state, M̃∞
1 , defined as

M̃∞
1 = lim

n→∞
E
[
M̃1(m,n)

]
. (4.50)

Note that here only the number of observation vectors n becomes large, while m is

kept constant. However, since λ < 1, the effective number of observation vectors is

finite so that the SCM might not approach ensemble correlation matrix R.

Taking the limit n → ∞ of (4.32), the moment M∞
1 is characterized with the fixed

point equation
1

M̃∞
1

=
∞∑

k=1

λk

1
mtr{R−1}+mλkM̃∞

1

. (4.51)

4.4.2 Numerical Validation and Discussion

The derived expression for the channel estimation MSE in the steady state is tested

by comparing its agreement with the estimation error obtained via Monte-Carlo sim-

ulations and characterization (4.8) from [27]. A simulated zero-mean Gaussian input

process with non-identity correlation is processed through a first order Markov vary-

ing channel with the state transition parameter a = 0.99 and process noise variance

0.01. The output signal is corrupted with white noise such that the signal-to-noise

ratio (SNR) of the output signal is 10 dB. The channel is estimated using the LS

algorithm with different values for the forgetting factor λ.

The top figure in Fig. 4-4 shows the comparison between the theory, simulations

159



and characterization (4.8) derived in [27] on a relatively wide range of forgetting

factors λ. The bottom figure in Fig. 4-4 shows the comparison between the theory

and simulations on a narrower range of forgetting factors λ.

Recall that the theoretical expressions (4.49) and (4.48) are derived under the

assumption that λ is close to 1. Also, characterization (4.8) is derived under the

same assumption, with the additional assumption that the state transition parameter

a → 1. As can be observed from the figures, the derived characterization accurately

predicts the performance when λ is close to 1. Next we argue that the range of

forgetting factors λ not sufficiently close to 1 has no practical importance.

Namely, given that in this example the algorithm is estimating m = 30 unknown

channel coefficients, a value of forgetting factor λ whose corresponding effective av-

eraging window size is not long enough to accommodate the adaptation of m = 30

coefficients, is not to be used in a practical scenario. Assuming that in the worst

case scenario we need at least one observation per unknown coefficient, the forget-

ting factor λ should be such that the corresponding effective averaging window size

neff is 30. A widely used rule of thumb relates the value of forgetting factor λ and

effective averaging window size neff as neff = 1/(1−λ). This implies that the effective

averaging window length of 30 corresponds to λ = 0.9667. Therefore, if λ < 0.9667,

the algorithm fails to reasonably well track the channel variations and these forget-

ting factors are not to be used in a practical application. Finally, the comparison in

Fig. 4-4 confirms that the theoretical characterization derived under the assumption

that λ is close to 1, is valid for the range of forgetting factors that are of practical

importance.

As a final remark, note that the value of the smallest λ to be used in a practical

scenario is a conservative estimate because more than one observation per dimension

is needed for achieving a satisfactory performance.
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Figure 4-4: Steady state channel estimation MSE for first-order Markov channel. The
input process has unconstrained covariance and the channel length is 30. Top figure
compares our theoretical prediction, result from Haykin’s text (4.8) and simulations
on a wide range of forgetting factors. The bottom figure compares our theoretical
prediction and simulations on a narrower range of forgetting factors. The values on
the vertical axis in both figures are relative to the L2 norm of the channel vector in
steady state, which is 15 in this case.
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4.5 Linear-Time Invariant Channel Identification

This section considers a linear time-invariant (LTI) channel identification problem

with the LS algorithm. The channel estimation and signal prediction mean square

errors are evaluated and the analytical expressions are validated via Monte-Carlo sim-

ulations. We show that at low SNR, a deterioration in the performance appears when

the number of observations is close to the channel length. This effect is characterized

and explained.

4.5.1 Performance Analysis

Channel Estimation Error

A performance characterization of the LS-based identification of a linear, time in-

variant channel is obtained from the theory developed in Section 4.3. An LTI chan-

nel is described with a = 1 and σ2
o = 0 in model (4.1), i.e., the channel vector

w(n) = w(0) = w0. Due to channel invariability in time, the input observations

are rectangularly windowed, i.e., λ = 1. Substituting a = 1, σ2
o = 0 and λ = 1

into (4.19), (4.22) and (4.24), the power of the error induced by the initial channel

vector is given by

E
[
‖ε1(n)‖22

]
= mδ2M̃2(m,n), (4.52)

where m is the channel length, δ is the diagonal loading and M̃2(m,n) is the expected

first moment corresponding to the SCM. The power of the error induced by the

observation noise is given by

E
[
‖ε3(n)‖22

]
= mσ2

v(M̃1(m,n)− δM̃2(m,n)), (4.53)

where σ2
v is the variance of the observation noise and M̃2(m,n) is the expected second

moment corresponding to the SCM. Note that the error due to channel dynamics ε2(n)

is 0. Overall, the channel estimation MSE is

E
[
‖ε(n)‖22

]
= mσ2

vM̃1(n,m)−mδ(σ2
v − δ)M̃2(n,m). (4.54)
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When the input process has identity covariance I, the functional dependence of

the channel estimation MSE on the number of observations n, channel length m

and diagonal loading parameter δ is obtained by substituting the closed form expres-

sions (4.34) and (4.35) for M̃1(m,n) and M̃2(m,n) into (4.54).

The expectation of the second moment M̃2(m,n) appears in the expression for

the channel estimation MSE in a product with the diagonal loading δ, which has

negligible impact on the performance when n > m. Consequently, for n > m, the

impact of the terms depending on δ is neglected. Substituting (4.33) into (4.54) yields

E
[
‖ε(n)‖22

]
=

σ2
v

n−m

m∑

k=1

1

λk
, (4.55)

where λk’s are the eigenvalues of the ensemble correlation matrix.

Signal Prediction Error

When the input process has identity correlation I, (4.28) gives the signal prediction

MSE in terms of the channel estimation MSE.

For an input process of unconstrained correlation R, the signal prediction MSE

is derived by assuming the diagonal loading δ is zero (meaning that the number of

observations is greater than the channel length). Using (4.27) we get

E[ξ(n)ξ∗(n)] = tr
{
E
[
ε(n− 1)εH(n− 1)R

]}
+ σ2

v . (4.56)

The correlation matrix of the channel estimation error could, for the LTI channel

identification problem and δ = 0, be shown to be

E
[
ε(n)εH(n)

]
= σ2

v

n∑

i=1

E
[
R̂−1(n)u(i)uH(i)R̂−1(n)

]

= σ2
vE
[
R̂−1(n)

]
. (4.57)

If the input process is Gaussian, the SCM is Wishart distributed. Using the

expression for the expectation of the inverse of the Wishart matrix [27], the covariance
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matrix of the channel estimation error becomes

E[ε(n)εH(n)] =
σ2
v

n−m− 1
R−1. (4.58)

For a general non-Gaussian case, the expectation of the SCM inverse is evaluated

using the RMT results. Namely, it is shown in Section 2.5.2 that if the order of

the SCM m and the number of observations n grow large at the same rate such

that m
n → c ∈ (0, 1), the inverse of the rectangularly windowed SCM almost surely

converges to the scaled inverse of the ensemble correlation matrix (2.54). Noting

that the SCM R̂ defined in (4.4) with λ = 1 and δ = 0 is a scaled version of the

model for rectangularly windowed SCM considered in Section 2.5.2, the convergence

result (2.54) is rewritten as

(
1

n
R̂(n)

)−1

→ 1

1− c
R−1 a.s. (4.59)

As elaborated in Section 2.7, the expected inverse of the SCM is approximated

with the limiting quantity in (4.59) such that

E
[
R̂−1(n)

]
≈ R−1

n−m
. (4.60)

Finally, from (4.58) and (4.56) the signal prediction MSE for Gaussian input

process is

E
[
|ξ(n)|2

]
=

n− 2

n−m− 2
σ2
v , (4.61)

which is valid for n > m+ 2. Note that this constraint carries no practical insight.

Similarly, substituting (5.26) into (4.57) and the obtained result into (4.56) yields

an approximation for the signal prediction MSE when the received signal has general

statistics,

E
[
|ξ(n)|2

]
≈ n− 1

n−m− 1
σ2
v , (4.62)

which is valid for n > m+ 1. Note that (5.28) also approximates the Gaussian case.
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A-Posteriori Signal Prediction MSE

Although not treated in the development of the general theory, the channel time

invariability renders relatively simple analysis of the a-posteriori signal prediction

error. This error, denoted ξa(n), is defined as

ξa(n) = d(n)− ŵH(n)u(n)

= (w(0)− ŵ(n))Hu(n) + v(n). (4.63)

Substituting a = 1 and λ = 1 into (4.14) and plugging the obtained result

into (4.63) yields

ξa(n) = δŵH
0 R̂

−1(n)u(n) + v(n)−
n∑

i=1

uH(i)R̂−1(n)u(n)v(i). (4.64)

Denoting the first and last terms in (4.64) with e1(n) and e2(n) and noting that e1(n)

and e2(n) as well as e1(n) and v(n) are independent, the mean-square value of the

a-posteriori prediction error becomes

E
[
‖ξa(n)‖2

]
= E

[
‖e1(n)‖2

]
+ E

[
‖e2(n)‖2

]
+ σ2

v − 2E[e2(n)v
∗(n)]. (4.65)

The power of e1(n) is evaluated as

E
[
‖e1(n)‖2

]
= E[δ2w0

HR̂−1(n)u(n)uH(n)R̂−1(n)w0]

= mδ2M̃2(m,n). (4.66)

Similarly, the expression for the power of e2(n) is obtained via

E
[
‖e2(n)‖2

]
= σ2

v

n∑

i=1

E[uH(n)R̂−1(n)u(i)uH(i)R̂−1(n)u(n)]

= mσ2
v

[
M̃1(m,n)− δM̃2(m,n)

]
. (4.67)
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The cross-power between e2(n) and noise sample v(n) is

E [e2(n)v
∗(n)] = E

[
n∑

i=1

uH(i)v(i)R̂−1(n)u(n)v∗(n)

]

= mσ2
vM̃1(m,n). (4.68)

Finally, substituting (4.66), (4.67) and (4.68) into (4.65) yields

E
[
‖ξa(n)‖2

]
= σ2

v −mσ2
vM̃1(m,n) +m(δ − σ2

v)δM̃2(m,n). (4.69)

If the input process is of identity correlation, the moments M̃1 and M̃2 are calculated

through (4.34) and (4.35). If, on the other hand, the input observations are of arbi-

trary correlation R, the a-posteriori MSE is computed for n > m by neglecting δ and

evaluating moment M̃1 using (4.33).

4.5.2 Theoretical versus Numerical Results

To test the accuracy of the derived expressions, the mean-square values of the channel

estimation and signal prediction errors are computed via Monte-Carlo simulations and

used as the ground truth. A channel with impulse response w0 processes the input

signal and the output is corrupted with the observation noise whose variance is σ2
v .

The plots of the mean-square values of the channel estimation and signal prediction

errors versus number of observations when the signal-to-noise ratio is 40 dB are shown

respectively in Fig. 4-5 and Fig. 4-6. The input data stream is an i.i.d. standard

Gaussian random process, a diagonal loading parameter used in the RLS algorithm

is δ = 0.01 and the channel has length 30.

The corresponding plots for SNR=5 dB, δ = 0.1 and i.i.d. standard Gaussian

input are given in Fig. 4-7 and Fig. 4-8. When the input process is a uniform bipolar

input sequence with SNR=5 dB and δ = 0.1, the comparison between the simulations

and theoretical predictions of the channel estimation and signal prediction MSE’s are

shown in Fig. 4-9 and Fig. 4-10.

When the input is a correlated multivariate Gaussian process, the corresponding
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Figure 4-5: Channel estimation MSE vs number of observations. The input process is
uncorrelated Gaussian, the channel length is 30 and SNR=40 dB. The corresponding
result from Haykin’s text is (4.10).
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Figure 4-6: Signal prediction MSE vs number of observations for independent Gaus-
sian input, channel of 30 taps and 40 dB SNR. The result from Haykin’s text is (4.11).
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Figure 4-7: Channel estimation MSE vs number of observations for independent
Gaussian input, channel of length 30 and SNR of 5 dB.
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Figure 4-8: Signal prediction MSE vs number of observations for independent Gaus-
sian input, channel of length 30 and SNR of 5 dB.
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Figure 4-9: Channel estimation MSE vs number of observations for bipolar uniform
input, channel of length 30 and SNR of 5 dB.
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Figure 4-10: Signal prediction MSE vs number of observations for bipolar uniform
input, channel of length 30 and SNR of 5 dB.
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Figure 4-11: Channel estimation MSE versus number of observation when the input
process has unconstrained correlation matrix, channel is of length 30 and SNR is 10
dB.

performance curves for SNR=10 dB and channel length 30 are shown in Fig. 4-11.

The figures also include the plots of the corresponding analytical expressions de-

rived in Haykin’s text [27] and given in (4.10) and (4.11). The presented plots show

that the derived expressions closely match the experimental curves. In addition, Fig-

ures 4-7, 4-8, 4-9 and 4-10 reveal deterioration in the algorithm’s performance when

the SNR is relatively small and the number of observations becomes close to the

channel length. This happens irrespective of the statistics of the input signal. We

explain this effect in the following part.

4.5.3 Performance Deterioration

In the following analysis the input process is assumed i.i.d., i.e., R = I. To explain

why the channel estimation and signal prediction errors exhibit a bump when the

number of observations n is around the channel length m, the algorithm’s update

equation is exploited [27]

ŵ(n) = ŵ(n− 1) + R̂−1(n)u(n)ξa(n). (4.70)
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Figure 4-12: Expected squared norm of the gain vector vs number of observations n.
The channel length is 30.

A gain vector k(n) = R̂−1(n)u(n) gives the direction of the update of the esti-

mated channel impulse response. Its expected squared norm is

E[kH(n)k(n)] = E[uH(n)R̂−2(n)u(n)] = V2(n,m). (4.71)

The comparison between the Monte-Carlo simulated E [‖k(n)‖22] and its analytical

characterization given in (4.71) and (4.36) is shown in Fig. 4-12. Aside from getting

very close match between the simulations and theory, it is observed that the squared

norm of the gain vector exhibits a bump when the number of observations n is close

to the channel length m.

To grasp the intuition behind such a behavior, the norm of the gain vector is

expressed in terms of the eigenvalues λk (arranged in decreasing order) and the cor-

responding eigenvectors qk of R̂(n),

‖k(n)‖22 =
min(m,n)∑

k=1

∣∣∣∣
qH
k u(n)

λk

∣∣∣∣
2

. (4.72)

Note that for n < m, the m− n smallest eigenvalues of R̂(n) are equal to δ. The
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eigenvectors qk corresponding to those ”trivial” eigenvalues are orthogonal to the sub-

space spanned by the received snapshots u(1), . . . ,u(n). Therefore, the summation

in (4.72) goes up to index min(m,n).

As can be noted from (4.72), the norm of the gain vector is dominated by the

smallest ”non-trivial” eigenvalue λmin(m,n). This eigenvalue becomes extremely small

for n ≈ m, which triggers the peak. To understand why, it is assumed that the obser-

vation vectors u(n) are drawn independently and uniformly from an m-sphere. Thus,

each one contributes statistically equally to the energy along each ”non-trivial” direc-

tion in the eigenspace of R̂(n). A new non-trivial direction is acquired with each u(n)

when n < m and the energy along that direction is approximately 1/n of the incom-

ing observation vector’s energy. Therefore, as n approaches m, the energy along the

newly acquired direction decreases. Consequently, the minimal non-trivial eigenvalue

decreases, which causes increase in the norm of the gain vector. When n exceeds m,

R̂(n) has full ”non-trivial” rank, so each new observation vector contributes energy

along all directions. The smallest eigenvalue increases, so the norm of the gain vector

decreases.

To visualize how the minimal ”non-trivial” eigenvalue depends on observation in-

dex n, the approach from [18] is adopted. Namely, the limiting eigenvalue density

µR̂(x) is viewed as a probability density function of a randomly chosen eigenvalue.

This is justified by the fact that if in a series of different realizations of R̂(n), an

eigenvalue is chosen uniformly at random for each realization, then the appropriately

scaled histogram of the collection of those eigenvalues closely matches the plot of

µR̂(x) [15]. Therefore, a cumulative distribution function of the k-ith largest eigen-

value Fk(x) = Pr [λk ≤ x] is expressed as

Fk(x) =
m∑

i=m−k+1

(
m

i

)
F i(x) (1− F (x))m−i , (4.73)

where F (x) is a cumulative distribution function corresponding to probability density

µR̂(x). The expected value of the smallest non-trivial eigenvalue is computed from

its cumulative distribution function and plotted for different numbers of observations
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Figure 4-13: Expected values of the smallest non-trivial eigenvalue vs number of
observations. The number of dimensions is 30.

n in Fig. 4-13. It can be observed that behavior of the smallest non-trivial eigenvalue

is on a par with the intuitive reasoning and the plots in Fig. 4-12.

Although the norm of the gain vector k(n) depends only on the input process,

the performance degradation for n ≈ m tends to appear at lower SNR’s. The reason

is revealed from (4.70). Namely, the channel impulse response is updated based on

the gain vector k(n) and the signal prediction error ξ(n). As SNR decreases, the

signal prediction error increases. In that case, the bump in the gain vector appearing

when n ≈ m is further amplified, causing increase in the norm of the correction term

in update equation (4.70). Consequently, the channel estimation error increases. In

turn, the signal prediction error at next iteration gets larger. Overall, the channel

estimation error and the signal prediction error are causing each other’s increase from

one iteration to the next. This effect persists until the bump in the norm of the gain

vector lasts.

As a final note, the SNR at which the performance degradation arises is determined

by other system parameters, mainly by the channel length m. Following the presented

intuitive reasoning, it is deduced that the largest SNR for which the performance

deteriorates when n is close to m, gets larger as the channel length increases.
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4.6 Sliding Window RLS Algorithm

The estimation performance of the sliding window LS algorithm is studied in this

section. The analytical expression for the channel estimation MSE is validated via

simulations. Also, the sliding window length which minimizes the channel estimation

MSE for uncorrelated input is approximated.

4.6.1 Performance Analysis

The channel estimation MSE of the sliding window LS algorithm used to estimate

a first order Markov channel is obtained using the developed theoretical framework.

Here, we set the forgetting factor λ = 1 and the number of observations n is viewed

as the sliding window length.

Thus, substituting λ = 1 and approximations for Vk and W into (4.19), (4.22)

and (4.24), the error powers P1(n), due to the initial channel vector, P2(n), due to

the channel dynamics, and P3(n), due to the observation noise, are evaluated in terms

of the expectations of the moment, M̃1(m,n) and M̃2(m,n). Assuming n > m, which

alleviates the need for diagonal loading δ, the power of the error due to the initial

channel vector is

P1(n) = ma2n − 2an+11− an

1− a

m

n
+ a2

1− a2n

1− a2
m

n
tr{R}M̃1(m,n)

+
2a2(1− an)(a− an)m

(
1− M̃1(m,n)tr{R}

)

n(n− 1)(1− a)2(1 + a)
, (4.74)

the power of the error due to the channel dynamics is

P2(n) = mσ2
o

1− a2n

1− a2
− σ2

o

2(1− an)(1− an+1)

(1− a)2(1 + a)

m

n

+
σ2
o

1− a2

(
n− a2

1− a2n

1− a2

)
m

n
M̃1(m,n)tr{R}

+σ2
om

1− M̃1(m,n)tr{R}
n(n− 1)

{
2na

(1− a)2(1 + a)
− 2a(1− an)

(1− a)3
+

2a2(1− a2n)

(1− a)3(1 + a)2

}

(4.75)
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and the power of the error due to the observation noise is

P3(n) = mσ2
v(M̃1(m,n)− δM̃2(m,n)). (4.76)

Overall, the channel estimation MSE is given by

E
[
‖ε(n)‖22

]
= P1(n) + P2(n) + P3(n). (4.77)

When the ensemble correlation matrix of the input process is identity I, the ex-

pressions (4.34) and (4.35) for moments M̃1 and M̃2 are used to evaluate P1, P2 and

P3. Also in that case a signal prediction MSE is approximated with (4.28). On

the other hand, when the input observations are of an unconstrained correlation R,

M̃1(n,m) is evaluated for n > m using (4.33).

4.6.2 Theoretical versus Numerical Results

The accuracy of the derived expressions is tested using Monte-Carlo simulations.

When R = I, the corresponding plots for a slowly varying channel (a = 0.995) are

shown in Fig. 4-14 and 4-15. When the channel varies more rapidly, i.e., for a = 0.95,

the corresponding plots for the channel estimation and signal prediction errors are

shown in Fig. 4-16 and Fig. 4-17.

The corresponding comparisons between the theory and simulations when an in-

put has an unconstrained correlation R are shown in Fig. 4-18 and Fig. 4-19 for

respectively slowly (a = 0.995) and more rapidly (a = 0.95) varying channel.

In all cases, the input process is Gaussian distributed, channel has length m = 30,

process noise is of variance σ2
o = 0.01 and SNR is 10 dB. As a technical detail, the

SNR is defined at the channel output. Since the input signal’s power per channel tap

is tr{R}/m and the expected squared L2 norm of the channel vector in steady state

is (mσ2
o)/(1− a2), the SNR is given by

SNR = 10 log10
σ2
otr{R}

σ2
v(1− a2)

. (4.78)
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The vertical axis in each plot is normalized with the L2 norm of the channel vector

in the steady state.

Note that as the window length n → ∞, the estimation MSE asymptotically

approaches 0 dB level. This is because all the channel variations are averaged out with

infinitely large rectangular window so that the estimated channel vector approaches

0. Therefore, the estimation error converges to the L2 norm of the channel vector

(i.e., to 0 dB in figures due to normalization).

For a finite averaging window length n, the performance curves exhibit different

behaviors depending on the value of the state transition parameter a. As such, when

the channel varies rapidly, the performance curve is above 0 dB level as can be ob-

served in Figures 4-16, 4-17 and 4-19, where a = 0.95. Effectively, the RLS algorithm

is not able to track such a channel and the channel estimation error is minimized for

a trivial estimator ŵ = 0. On the other hand, when the channel varies slowly, the

optimal channel estimation MSE is below 0 dB level and is achieved for a finite av-

eraging window length. This could be observed in Figures 4-14, 4-15 and 4-18 where

a = 0.995.

Furthermore, it could be noted that the performance curves corresponding to

smaller a shown in Figures 4-16 and 4-17 show the counterintuitive result that when

the number of observations drops below the dimensionality of the system, there is a

drop in the MSE as the number of observations is decreased. This result is not due

to the tracking of channel dynamics as is the case in the downward trend in MSE

as the number of observations is decreased and has been studied and explained in

Section 4.5.3.

Finally, recall that the characterization of signal prediction MSE has been derived

by assuming that the state transition parameter a is close to 1. Besides obtaining

a good agreement between the theoretical predication and simulations of the signal

prediction MSE corresponding to a slowly varying channel when a = 0.995 (not

shown in figures), a good agreement is obtained even for a rapidly varying channel

when a = 0.95, shown in Fig. 4-17. Although this latter case does not have practical

significance because the RLS algorithm is not able to track the channel reasonably
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Figure 4-14: Theoretical versus simulated channel estimation MSE for a=0.995, σo =
0.1 and SNR=10 dB.

well, it confirms that the derived characterization is valid at least for the range of a’s

corresponding to the cases of practical significance.

4.6.3 Optimal Window Length

An approximate expression for the optimal window length nopt is derived in this part

using the observation that the RLS algorithm reasonably well tracks the channel

when the state transition parameter a is close to 1. Therefore, we assume that the

channel vector exhibits a random walk (i.e., a → 1). In that case the steady state

mean square channel estimation error for a sliding window length n > m is obtained

from (4.77) by letting a → 1 and δ ≈ 0 as

E
[
‖ε(n)‖22

]
= σ2

o

m(2n2 − nm+ 5m− 4n)

6(n−m)
+ σ2

v

m

n−m
. (4.79)

Setting the first derivative of (4.79) to zero (or equating the error terms induced by

the channel dynamics and observation noise) and solving for n, yields the expression
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Figure 4-15: Theoretical versus simulated signal prediction MSE for a=0.995, σo = 0.1
and SNR=10 dB.
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Figure 4-16: Theoretical versus simulated channel estimation MSE for a=0.95, σo =
0.1 and SNR=10 dB.
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Figure 4-17: Theoretical versus simulated signal prediction MSE for a=0.95, σo = 0.1
and SNR=10 dB.
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Figure 4-18: Theoretical versus simulated channel estimation MSE for a=0.995, σo =
0.1, SNR=10 dB, and input process of unconstrained correlation.
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Figure 4-19: Theoretical versus simulated channel estimation MSE for a=0.95, σo =
0.1, SNR=10 dB, and input process of unconstrained correlation.

for the optimal sliding window length. When R = I, this expression simplifies to

nopt = m+

√
m2 +m+ 6σ2

v
σ2
o

2
. (4.80)

The accuracy of (4.80) is tested via simulations for different values of a, SNR

and process noise variance σ2
o , and the results are summarized in Table 4.1. The

entries nopt and nsim
opt pertain to respectively (4.80) and the simulated optimal window

length. The quantity ∆ is the difference between the simulated MSE’s corresponding

to window lengths nopt and nsim
opt . The channel length in all considered cases is 30.

As can be observed from the table, the error due to using nopt evaluated form (4.80)

does not exceed 0.05 dB.

Finally, note that the outlined method for finding the optimal sliding window

length is derived by assuming a random walk model for the channel. The simulation

results in Table 4.1 imply that the expression is fairly accurate when channel varies

according to a first order Markov process whose state transition parameter a is close to

1. However, this is in fact the regime of practical importance because the estimation
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Table 4.1: Optimal Sliding Window Length

a σ2
o SNR nopt nsim

opt ∆
1 0.01 10 dB 52 48 = 0.06 dB

0.99 0.01 10 dB 60 63 < 0.05 dB
0.98 0.01 10 dB 56 65 < 0.05 dB
0.99 0.01 20 dB 50 53 = 0.006 dB
0.98 0.0001 20 dB 52 58 = 0.017 dB
0.99 0.01 5 dB 74 77 = 0.027 dB

error when a state transition parameter a is not sufficiently close to 1 is relatively

high for any finite averaging window length, implying that the channel is effectively

not being tracked.

4.7 Insights in Exponentially Weighted and Slid-

ing Window LS Algorithms

This section develops some practical results about the LS algorithm when the input

process has identity correlation. These results are valid even if the input process

has few distinct eigenvalues. Namely, it has been observed that the eigenvalues corre-

sponding to the noise-only subspace of the input process which has few distinct eigen-

values, approximately behave as if the input process has identity correlation. This

qualitative observation has also been exploited to develop algorithms that estimate

the number of signals embedded into the noise with small number of samples [30].

4.7.1 Effective Number of Observations

When the input observations are exponentially windowed with forgetting factor λ,

it is often of practical importance to assess the equivalent number of stationary,

rectangulary windowed observation vectors that give rise to the same quality of the

SCM. A commonly used rule of thumb is neff = 1/(1− λ). A more accurate relation

is derived in this part using random matrix theory results.
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Formally, the problem can be formulated as finding neff such that

lim
n→∞

n∑

k=1

λn−kuL(k)u
H
L (k) ≈

neff∑

k=1

uR(k)u
H
R (k), (4.81)

where the vectors uL(k) and uR(n) of length m originate from the identical and

stationary processes of zero mean and identity correlation.

The SCM’s on the left and right hand sides of (4.81) are denoted respectively ΦL

and ΦR. The limiting Eigenvalue Density Function µL(x) of ΦL is parameterized

with q = m(1− λ) and is given by (2.63) and (2.4). The limiting Eigenvalue Density

Function µL(x) has a compact support whose endpoints x1 and x2 are given by

x1,2 = log x1,2 + q + 1. (4.82)

The limiting Eigenvalue Density Function µR of ΦR is given by Marcenko-Pastur

law (2.56) and is parameterized with c = m
neff

. The endpoints of the support are for

c < 1 given by

lmin =
(
1−

√
c
)2

, (4.83)

lmax =
(
1 +

√
c
)2

. (4.84)

Since the plots of µL and µR look alike when c < 1 (because then µR has no mass

at 0), equation (4.81) is approximately solved by matching the endpoints of the two

density functions. Thus, the effective number of observations neff for which the upper

limits x1 and lmax of µL and µR coincide is from (4.82) and (4.84) given by

(
1 +

√
c
)2

= 2 log
(
1 +

√
c
)
+ q + 1, (4.85)

where c = m
neff

. A requirement c < 1 is equivalent to q < 1.6. A similar equation can

be obtained for the lower limits to coincide.

To derive a more handy relation between λ and neff, the first two terms of the

Taylor series expansion of log function (the series exists because c < 1) are taken into
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Figure 4-20: The limiting Eigenvalue Density Functions of the exponentially weighted
SCM and SCM’s with rectangular windowing with the effective observation window
size computed from the derived expression (4.86) and conventional rule of thumb
1/(1 − λ). The dimension of the observation vector is m = 30, forgetting factor is
λ = 0.99 and q = 0.3.

account, which yields

neff =
2

1− λ
. (4.86)

The same expression is obtained if the lower limits x2 and lmin are matched and the

log function is approximated with first two terms of its Taylor series.

The relation (4.86) is tested by comparing the plots of the limiting EDF’s µL and

µR for λ = 0.99 and λ = 0.95 in Fig. 4-20 and Fig. 4-21, respectively. The limiting

EDF’s corresponding to the SCM with rectangular windowing whose observation

window size is computed using the conventional rule of thumb 1/(1 − λ) are also

shown. The problem dimension in both cases is m = 30. Note that parameter q

corresponding to Fig. 4-21 is 1.5, which is close to the value (of 1.6) for which a

resemblance between the two plots is possible. Also, since (4.86) is an approximation

of (4.85), the endpoints of the two density functions do not coincide exactly.
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Figure 4-21: The limiting Eigenvalue Density Functions of the exponentially weighted
SCM and SCM’s with rectangular windowing with the effective observation window
size computed from the derived expression (4.86) and conventional rule of thumb
1/(1 − λ). The dimension of the observation vector is m = 30, forgetting factor is
λ = 0.95 and q = 1.5
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4.7.2 Exponentially Weighted versus Sliding Window RLS

The LS algorithm suffers from the performance deterioration if the SCM is ill-conditioned.

The appearance of a bump in the channel estimation and signal prediction MSE’s, de-

scribed for the LTI channel identification case in Section 4.5.3, is intrinsically caused

by ill-conditioned SCM. The exponentially weighted and sliding window LS algo-

rithms are compared based on how well the corresponding SCM’s are conditioned.

Namely, comparing the plots of the limiting eigenvalue density functions from Fig-

ures 4-20 and 4-21, one may observe that the Eigenvalue Density Function of the

rectangularly windowed SCM tends to have eigenvalues closer to zero. In other words,

it is easier to bound the eigenvalues away from zero in the exponentially windowed

algorithm than in its rectangularly windowed counterpart. Consequently, it can be

conjectured that the exponential weighting with forgetting factor λ could be better

suited than the rectangular windowing with window length n.

More specifically, given the sliding window length n, it is possible to determine an

equivalent forgetting factor λ such that the upper end points of the limiting eigenvalue

densities of the corresponding SCM’s coincide. Consequently, the lower end point of

the density pertaining to the exponentially weighted SCM is slightly further away

from the origin meaning that the SCM is better conditioned. For a given sliding

window length n, the corresponding λ which ensures this is using (4.85), given by

λ = 1−
(1 +

√
m
n )

2 − 2 log(1 +
√

m
n )− 1

m
. (4.87)

The behaviors of the sliding window LS with the window length n and the LS with

the exponentially weighted window with forgetting factor λ, computed using (4.87),

are compared via simulations. The simulation study shows that the exponentially

weighted LS outperforms the sliding window LS for both LTI and first order Markov

channels. Fig. 4-22 and Fig. 4-23 show the performance plots of the considered

algorithms. It can be conjectured that given the window length n in a sliding window

RLS, it is always possible to compute forgetting factor λ using (4.87), such that the

exponentially weighted RLS outperforms a sliding window RLS in a steady state.
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Figure 4-22: Exponentially weighted versus sliding window RLS for SNR=10 dB. The
integers along the green curve represent the sliding window lengths equivalent to the
corresponding values of forgetting factor.

Furthermore, at low SNR’s, the optimal window length of the sliding window RLS

and the optimal forgetting factor of an exponentially weighted RLS are related as

in (4.87). At higher SNR’s, the optimal forgetting factor is slightly below the value

computed using (4.87) for a given n = nopt. However, the difference between the

MSE’s at optimal forgetting factor and that at λ corresponding to the optimal sliding

window length nopt when SNR is high is negligible.

4.7.3 Optimal Value of Forgetting Factor

The optimal λ for the exponentially weighted LS algorithm is approximated by us-

ing the expression for the optimal window length of the sliding window RLS algo-

rithm (4.80) and the relationship between λ and the effective number of observations

n in the rectangularly windowed SCM (4.86). The justification for such an approach

is the observation that even at large SNR’s, the difference between the MSE’s at
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Figure 4-23: Exponentially weighted versus sliding window RLS for SNR=5 dB. The
integers along the green curve represent the sliding window lengths equivalent to the
corresponding values of forgetting factor.
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Table 4.2: Optimal Forgetting Factor Value

a σ2
o SNR λsim

opt λ(1)
opt ∆1[dB] λ(2)

opt ∆2[dB]
0.99 0.01 5 dB 0.975 0.973 0.045 0.977 0.04
0.99 0.01 10 dB 0.960 0.967 0.065 0.972 0.155
0.99 0.01 20 dB 0.949 0.962 0.153 0.968 0.309
0.99 0.01 40 dB 0.942 0.962 0.235 0.968 0.375
0.98 1 5 dB 0.980 0.969 0.107 0.973 0.075
0.98 1 10 dB 0.969 0.964 0.074 0.970 0.019
0.98 1 20 dB 0.953 0.961 0.037 0.968 0.108
0.98 1 40 dB 0.956 0.961 0.048 0.968 0.137

optimal forgetting factor and that at λ corresponding to the optimal sliding window

length nopt is negligible. Overall from (4.80) and (4.86),

λ(1)
opt = 1− 2

m+

√
m2+m+6σ2

v
σ2
o

2

. (4.88)

A potentially more accurate expression for the optimal forgetting factor λ(2)
opt is

obtained by substituting n = nopt, evaluated using (4.80), into the exact expres-

sion (4.87).

The derived expressions are tested by comparing λ(1)
opt and λ(2)

opt with the optimal

forgetting factor obtained via simulations for given system parameters. The results

are summarized in Table 4.2. The channel length in all cases is 30. The quantities

∆1 and ∆2 represent the performance loss due to respectively choosing theoretically

calculated values λ(1)
opt and λ(2)

opt instead of λsim
opt . The optimal forgetting factor (4.9)

from [27] is also tested and it fails to yield accurate result (in fact, it yields too small

values for λ), which comes at no surprise since it is derived under the assumption that

both λ and a are very close to 1. As can be observed from the table, the performance

loss due to using optimal forgetting factor proposed here does not exceed 0.5 dB.

Overall, for relatively small SNR, both expressions give accurate results. On the

other hand, when SNR is high, the optimal forgetting factor is below that computed

using (4.87), (refer to Fig. 4-22). In that case, λ(1)
opt is more accurate because it is

always smaller than λ(2)
opt and hence closer to the true optimal value.
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As a final remark, note that although the characterization of optimal forgetting

factor is derived for a → 1, the simulations show that it is fairly accurate for the

values of a smaller than 1 for which the RLS algorithm reasonably well tracks the

corresponding channel.

4.8 Conclusions

An analysis of the Least Squares algorithm when employed to track a time-varying

channel is performed using results and tools from the theory of large dimensional

random matrices. A time-varying channel is modeled as a first order Markov pro-

cess and the performance metrics of interest are mean square values of the channel

estimation and signal prediction errors. These metrics are characterized for a given

number of observations, channel length and the parameters describing the channel

dynamics. The results borrowed from the random matrix theory enable the analysis

which does not rely on the direct averaging assumption and the assumption that the

expectation of the inverse of the sample correlation matrix is a scaled inverse of the

ensemble correlation matrix.

The simulation study validates the derived analytical expressions. In addition, sev-

eral practical results are revealed by specifying the general theory for simpler cases.

First, an expression for the optimal window length in the sliding window LS algorithm

is derived. Second, based on the comparison between the exponentially weighted and

sliding window LS algorithms, it is conjectured that former outperforms the latter, if

forgetting factor is appropriately selected given the sliding window length. The corre-

sponding expression for such a forgetting factor is derived. Third, a relation between

forgetting factor used for calculating an exponentially weighted sample correlation

matrix and the effective number of stationary, rectangularly windowed observations

is established. Fourth, this relation is further exploited to evaluate the optimal value

of the forgetting factor in the exponentially weighted LS algorithm. Finally, the effect

of performance deterioration appearing when the number of observations is close to

channel length (i.e., the number of dimensions) is observed, theoretically analyzed
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and intuitively elaborated.
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Chapter 5

Channel Equalization

5.1 Introduction

The wireless communication channels through which signals are transmitted are often

time-varying and characterized by multipath propagation. The multipath propaga-

tion gives rise to a delay spread, resulting in intersymbol interference (ISI) in the

received signal, while the time-variability results in the Doppler spreading of the sig-

nal [49]. These effects are even more profound in the setting of underwater acoustic

communications, wherein along with a high latency appearing due to a relatively slow

speed of propagation (nominally 1500 m/s), and frequency dependent attenuation of

the transmitted signal, these effects pose significant challenges to communication sys-

tem design [51].

Different techniques have been developed for mitigating these effects [50]. A survey

of the approaches used for the underwater acoustic communication system design is

given in [48]. Most techniques rely in part or completely on channel equalization with

a Decision Feedback Equalizer (DFE) being the most commonly used form [39]. A

multi-channel DFE (MC-DFE) is one which processes the signals received at multiple

spatially separated sensors. The MC-DFE is particularly effective at compensating

for the ISI induced by the multipath commonly present in the underwater acoustic

communication channel.

One of the main challenges in optimally configuring a multi-channel equalizer is
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the choice of the number of sensors and length of the constituent filters. Namely, due

to channel time variability, the number of coefficients that can be adapted over the

time interval within which the channel is approximately time invariant is limited such

that a smaller number of coefficients might lead to better equalization performance.

Another challenge related to optimally configuring the mutli-channel equalizer is

the selection of the separation between sensors. While the sensors in a multiple input

multiple output (MIMO) system need to be sufficiently apart so that the signals

at their outputs are uncorrelated [20], conventional wisdom is that array processing

applications require that sensors be separated by no more than one half the shortest

wavelength of the received signals [52]. However, because an inherently wideband

signal is transmitted through a sparse underwater acoustic communication channel,

selection of optimal sensor separation is a more subtle problem.

Although equalizers have been in common use for a while, a great deal of what

is currently known is learned from simulations and processing of experimental data,

while the analytical results appeared relatively recently. As such, [62] studies the

signal-to-noise-puls-interference ratio (SINR) at the output of the LS-based linear

equalizer for a time invariant frequency flat fading channel. A more general analysis

in [38] characterizes the SINR at the output of the LS-based linear equalizer for time

invariant frequency selective channels. Both works exploit random matrix theory

results which, as elaborated in Section 2.7, while theoretically valid in the limit, are

fairly accurate in modeling equalizer performance in practical finite observation time

scenarios. In terms of optimal DFE design, [23] and [24] discuss how the decision

delay, feed-forward and feedback filter lengths should be selected such that the signal

prediction MSE of the MMSE based DFE equalizer of an LTI channel is minimized.

However, these works inherently assume that the observation period is infinitely long,

which is not the case in non-stationary channels where only a limited number of

stationary observations are available for adaptation.

The contributions of this chapter are threefold. First, a performance of least

squares (LS)-based MC-DFE equalization method is theoretically analyzed. The case

of linear equalization is included as a special case. The transmission channel is non-
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stationary and modeled as a frequency selective filter which is time-invariant over only

short time intervals. A signal prediction error is adopted as the performance metric

and characterization of its mean square value is derived. In comparison to [38], in

addition to handling the case of DFE equalization and evaluating the signal prediction

MSE, the analysis technique is different and yields a greatly simplified closed-form

result, which is exact when the received signal is Gaussian distributed. The derived

expression is validated via Monte-Carlo simulations.

The derived expressions quantitatively support the observed performance char-

acteristic that, when working with signals that have passed through time-varying

channels, an equalizer with relatively short constituent filters can outperform one us-

ing longer filters [40]. The optimal number of taps in the equalizer’s constituent filters

is presented as a trade-off between two competing requirements. On one hand, for a

perfectly known environment, the MMSE error criterion is a non-increasing function

of filter length. On the other hand, the insights from random matrix theory imply

that for a given number of observation vectors, the shorter constituent filters lead to

more accurate estimate of the correlation matrix and therefore improved performance.

Finally, the chapter analyzes how the number of and separation between the sen-

sors impacts the equalization performance in a time-varying underwater acoustic com-

munication channel. Our model for the arrival process takes into account that the

underwater acoustic communication signal received on an array of sensors is wideband

and spatially spread. The signal prediction mean square error (MSE) is evaluated

using this model. An illustration of how the equalization performance depends on the

number of sensors and their separation for a particular arrival model is then provided.

Finally, the bit error rate (BER) and signal prediction MSE performance, obtained

from processing experimental data using a multi-channel equalizer with different sen-

sor separations, are presented. This justifies the conclusion that the equalization

performance is optimized for a non-trivial sensor separation.

Although the problems considered in this chapter are mainly motivated by un-

derwater acoustic communications, the developed theoretical results and insights are

also applicable to other settings. As such, the performance analysis of time varying
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channel equalization is general and the insights hold for other applications of least

squares based equalizers. Furthermore, the study of the impact of sensor separation

on the performance of multi-channel equalization is, for example, applicable to the

contexts of increasingly popular 60 GHz ultra-wideband communications [64] and

optimal receiver design based on massive MIMO [31].

The rest of the chapter is organized as follows. A background on the MC-DFE

which describes its structure, analytical framework and updating algorithm is given

in Section 5.2. Section 5.3 presents the performance analysis of the MC-DFE when

adapting using a limited number of observations of the received signal. Section 5.4

argues that the optimal number of coefficients which optimize the equalization per-

formance is a trade off between two competing requirements. The model for sparse,

wideband and spatially spread arrivals, inherent to the underwater acoustic environ-

ment is presented in 5.5. The impact of sensor separation and array aperture on

performance of multi-channel equalizer is studied in Section 5.6. Finally, Section 5.7

concludes the chapter.

5.2 Background

The structure of the multi-channel decision feedback equalizer (MC-DFE), analytical

framework and least squares based adaptation algorithm are briefly described in this

section.

5.2.1 MC-DFE: Structure

The structure of the MC-DFE equalizer is shown in Fig. 5-1. It contains a feed-

forward (FF) filter bank, feedback (FB) filter and a decision device. The FF filter

bank consists of one linear filter to process the input from each channel (sensor).

A signal received at each sensor is after some pre-processing (such as conversion to

the baseband) processed by a corresponding FF filter. The ultimate goal of the FF

processing is to coherently combine the received signal energy and attenuate inter-

symbol interference (ISI) and ambient noise signals. On the other hand, the linear
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Figure 5-1: Block diagram of multi-channel decision feedback equalizer.

FB filter processes the equalizer’s outputs (i.e., estimates of the transmitted symbols)

with the goal to remove remaining ISI caused by the channel and the FF portion of

the equalizer. A decision device produces a hard estimate of the transmitted symbol

from a soft-decision estimate, obtained from the combined FF and FB filtering. All

the constituent filters are assumed to be finite impulse response (FIR) filters.

5.2.2 MC-DFE: Analytical Framework

A mathematical framework of the MC-DFE is presented [39]. The received signal is

assumed to originate from a single source. A channel between the source and the i-th

sensor (i = 1, 2, . . . , N) is modeled with a linear filter and additive noise. In such a

model, a symbol ui(n), received by a sensor i at discrete time n is

ui(n) = gH
i (n)x(n) + v(n), (5.1)

where gi(n) is a vector form of the i-th channel impulse response at time n. The

transmitted symbols that give rise to ui(n) are compactly represented with a column

vector x(n).

Without loss of generality, all the channels are assumed to have the same length

Lc. In addition, we assume the channels have the same lengths of the causal and
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anti-causal parts, denoted respectively by Lc
c and La

c . Therefore, the vector x(n) is

formatted as

x(n) =
[
x(n + La

c ) . . . x(n) . . . x(n− Lc
c + 1)

]T
. (5.2)

Similarly, the FF filters are assumed to have the same length Lff. Also, their

lengths of the causal and anti-causal parts, denoted respectively by Lc
ff and La

ff, are

equal.

The i-th FF filter output at time n is driven by the received symbols ui(n +

La
ff), . . . , ui(n), ui(n − 1), . . . , ui(n − Lc

ff + 1). They are collected in a column vector

ũi(n) which is expressed as

ũi(n) = Gi(n)x(n) + vi(n), (5.3)

where Gi(n) is the Lff-by-(Lff + Lc − 1) channel matrix, obtained by appropriately

shifting and stacking gT
i (n + La

ff), . . . , g
T
i (n− Lc

ff + 1) into its rows. The transmitted

symbols x(n+ La
ff + La

c ), . . . , x(n− Lc
ff − Lc

c + 2) impacting ũi(n) are collected into a

column vector x(n). Similarly, vi(n) is a compact vector representation of the noise

samples influencing ũi(n).

Stacking up the vectors ũ1(n), ũ2(n), . . . , ũN(n) into a column vector, a signal

vector ũ(n), which represents a signal received at the equalizer’s FF section at time

n, is constructed and given by

ũ(n) = G(n)x(n) + v(n), (5.4)

where the noise vector v(n) and (NLff)-by-(Lff +N − 1) multi-channel matrix G(n)

are constructed in a similar manner by stacking up the corresponding constituents

vertically.

The input to the FB filter at time n is a sequence of the equalizer’s estimates

x̂(n − 1), . . . , x̂(n − Lfb), where Lfb is the FB filter length. These estimates are

collected in a column vector x̂(n). Note that the index n corresponds to an index of
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a symbol that is being estimated.

A soft decision estimate x̂soft(n) is evaluated as

x̂soft(n) = wH(n)u(n), (5.5)

where w(n) =
[
wT

1 (n) . . . wT
N(n) −wT

fb(n)
]T

is the equalizer’s weight vector

(i.e., its impulse response) and u(n) =
[
ũT (n) x̂T (n)

]T
is the input to the equal-

izer at time n. A hard decision estimate x̂(n) is computed from x̂soft(n) and the

constellation diagram of the signaling employed in the communication scheme.

As a final remark, note that the overall number of equalizer coefficients is

m = NLff + Lfb. (5.6)

5.2.3 MC-DFE: Optimization of Weights

The equalizer weights w(n) are evaluated with respect to some optimization criterion.

A minimization of the mean square error (MSE) between the transmitted symbol x(n)

and its soft decision estimate x̂soft(n) is one of the most popular approaches, in which

the weight vector w(n) is chosen such that the signal prediction mean square error

ξ(n) = E
[
|x(n)− x̂soft(n)|2

]
(5.7)

is minimized. The solution to this optimization problem is referred to as the MMSE

receiver given by,

wMMSE(n) = R−1(n)r(n), (5.8)

whereR(n) and r(n) are the ensemble correlation matrix of the input signal and cross-

correlation vector between the input and desired output signal. They are evaluated

as

R(n) = E
[
u(n)uH(n)

]
(5.9)

r(n) = E [u(n)x∗(n)] . (5.10)
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The signal prediction MSE of the MMSE filter wMMSE is after substituting (5.8)

into (5.7), given by

σ2
MMSE(n) = E

[
|x(n)|2

]
− rH(n)R(n)−1r(n). (5.11)

The ensemble statistics are rarely known and are replaced by time-average statis-

tics. The cost function for an exponential weighting of the time-average statistics

is [27]

C(n) =
n∑

i=1

λn−i|wH(n)u(i)− x(i)|2, (5.12)

where λ ≤ 1 is a positive forgetting factor which accommodates the time-variability

of the channel by reducing the impact of past data which is less relevant than current

data for the current estimation problem.

A weight vector which minimizes this cost function is evaluated via

w(n) = R̂−1(n)r̂(n), (5.13)

where R̂(n) and r̂(n) are the exponentially weighted sample correlation matrix (SCM)

and input-desired output cross-correlation vector, given by

R̂(n) =
n∑

i=1

λn−iu(i)uH(i) (5.14)

r̂(n) =
n∑

i=1

λn−iu(i)x∗(i). (5.15)

Note that these quantities are also introduced in the context of channel estimation in

Chapter 4.

In the Recursive Least Squares (RLS) implementation of (5.13), the inverse of the

SCM is calculated recursively and thus the computational requirements are reduced

from order N3 to order N2 where the total number of equalizer parameters is given

by N [27].

The described method of updating equalizer coefficients is referred to as a direct
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adaptation approach and is of our interest in this chapter. In comparison, the equal-

izer weights can also be calculated based upon the estimates of the channel impulse

response for each sensor and the ensemble statistics of the observation noise. This

approach is labeled as a channel estimate based equalization and is studied in [39].

5.3 Performance Analysis of Equalization of Time-

Varying Channels

The first part of this section presents the theoretical analysis of the signal prediciton

MSE corresponding to the MC-DFE operating in time-varying channel. The obtained

characterization is numerically validated via Monte-Carlo simulations in the second

part. The theoretical analysis is fairly general and the results hold for any least

squares based equalization with non-trivial filter lengths.

5.3.1 Theoretical Analysis of Signal Prediction MSE

The signal prediction MSE in the soft decision (i.e., the summed outputs of the FF

and FB filters in Fig. 5-1) is adopted as the performance metric. To model the channel

non-stationarity, we assume the channel is time invariant over a finite time interval

and that the equalizer time averaging window for the purpose of calculating equal-

izer filter coefficients is limited to this time interval length. These observations are

processed by the MC-DFE equalizer which operates in a training mode. This means

that the input to the FB filter are the true transmitted symbols as are the symbols

x(i) used in the calculation of r̂(n) in (5.15). The analysis of training mode operation

allows the analysis of the impact of channel time-variability and thus limited obser-

vations intervals to be handled in a clearer manner and provides useful insights into

performance trade-offs. Other contributions to the performance analysis of equalizers

also assume operation in the training mode [39], [38].

Intuitively, when infinitely many observations are used to train the equalizer

weights, the LS based MC-DFE with the rectangular window (i.e., a forgetting fac-
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tor λ = 1) approaches the MMSE MC-DFE equalizer for a time-invariant channel.

The impulse response vector wMMSE of the MMSE filter and the corresponding sig-

nal prediction MSE (also called the minimum achievable error (MAE)) σ2
MMSE, given

by (5.11), are conditioned on the impulse response of the transmission channel. Recall

that the prediction error at the MMSE filter output is white and uncorrelated with

the input [27].

A crucial point in our analysis is the observation that the least squares based

adaptation of the equalizer’s coefficients w(n) can be framed as a channel identifica-

tion problem, where an unknown channel is the MMSE filter wMMSE which processes

the input u(n) and whose output is corrupted with a white noise process q(n) of the

power σ2
MMSE, such that a sequence of transmitted symbols x(n) is produced, i.e.,

x(n) = wH
MMSEu(n) + q(n). (5.16)

Intuitively, as the number of observation vectors u(n) grows, the equalizer weight

vector w(n) approaches that of the MMSE equalizer. Consequently, we view the

DFE equalizer as an adaptive processor which is ”trying” to get as close as possible

to the MMSE processor. Since the statistics of the received process are unknown and

estimated using time-domain averaging, the DFE equalizer behaves as an adaptive

processor which is estimating the MMSE processor based on the received signal and

the desired output. This concept is depicted in Fig. 5-2.

Therefore, a signal prediction error ξ(n) is using (5.5) and (5.16) expressed as

ξ(n) = x(n)− x̂soft(n)

= εH(n− 1)u(n) + q(n), (5.17)

where

ε(n) = wMMSE −w(n) (5.18)

measures how far the estimated equalizer weight vector w(n) is from the optimal

(MMSE) equalizer wMMSE. We refer to it as an equalizer estimation error.
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Figure 5-2: DFE performance analysis.

Since the noise process q(n) is uncorrelated with the received signal u(n) and

equalizer estimation error ε(n− 1), the signal prediction MSE is therefore given by

E
[
|ξ(n)|2

]
= E

[
εH(n− 1)u(n)uH(n)ε(n− 1)

]
+ σ2

MMSE. (5.19)

Using the facts that tr{AB} = tr{BA}, for square matrices A and B, and that the

expectation and trace operators commute, the signal prediction MSE is further given

by

E
[
|ξ(n)|2

]
= tr

{
E
[
u(n)uH(n)ε(n− 1)εH(n− 1)

]}
+ σ2

MMSE. (5.20)

Assuming that the received signal u(n) at time n and the equalizer estimation error

ε(n− 1) at time n− 1 are uncorrelated, the signal prediction MSE is expressed as

E
[
|ξ(n)|2

]
= tr

{
RE

[
ε(n− 1)εH(n− 1)

]}
+ σ2

MMSE, (5.21)

where R is the ensemble correlation matrix of the received process, defined in (5.9).

Note that the first term in (5.21) is the signal prediction excess error. It appears

because the number of symbols used to train the equalizer’s coefficients is finite and

the channel is time-varying. The analysis from here on assumes finite n but that
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λ = 1.

The equalizer estimation error ε(n) can be expressed using (5.16) and (5.13) as

ε(n) = wMMSE − R̂−1(n)r̂(n)

= wMMSE − R̂−1(n)
n∑

i=1

u(i)
(
uH(i)wMMSE + q∗(i)

)

= −R̂−1(n)
n∑

i=1

u(i)q∗(i). (5.22)

A correlation matrix of the equalizer estimation error is using (5.22) evaluated as

E
[
ε(n)εH(n)

]
= E

[

R̂−1(n)
n∑

i=1

u(i)q∗(i)
n∑

j=1

q(j)uH(j)R̂−1(n)

]

= σ2
MMSEE

[
R̂−1(n)

]
, (5.23)

where the last equality follows from the fact that noise process q(i) is white and

uncorrelated with the received signal u.

Note from (5.22) that the correlation matrix of the estimation error of the equal-

izer weights scales with the variance of the MAE. That is, the more difficult the

channel (not counting the dynamics), the more difficult it is to adapt and track the

corresponding equalizer. Also, the more rapidly the channel fluctuates, the smaller

n, and the larger the expected value of the inverse of the time-averaged correlation

matrix.

To proceed further, we employ the results which characterize the expectation of the

SCM inverse. If the received signal is Gaussian, which happens when the transmitted

signal is Gaussian itself and/or the transmission channels gi are long enough such that

their outputs are approximately Gaussian by the central limit theorem, the SCM R̂(k)

is Wishart distributed and the expectation of its inverse is [27]

E
[
R̂−1(n)

]
=

R−1

n−m− 1
, (5.24)

where m = NLff + Lfb is the overall number of equalizer coefficients.
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For a general non-Gaussian case, the expectation of the SCM inverse is evaluated

using the randommatrix theory results. Namely, it is shown in Section 2.5.2 that if the

order of the SCMm and the number of observations n grow large at the same rate such

that m/n → c ∈ (0, 1), the inverse of the rectangularly windowed SCM almost surely

converges to the scaled inverse of the ensemble correlation matrix (2.54). Noting that

the SCM R̂ as defined in (5.14) with λ = 1 is a scaled version of the matrix model

considered in Section 2.5.2, the convergence result (2.54) is rewritten as

(
1

n
R̂(n)

)−1

→ 1

1− c
R−1 a.s. (5.25)

As elaborated in Section 2.7, the expected inverse of the SCM is approximated

with the limiting quantity in (5.25) such that

E
[
R̂−1(n)

]
≈ R−1

n−m
. (5.26)

Finally, substituting (5.24) into (5.23) and the obtained result into (5.21) yields the

exact expression for the signal prediction MSE when the received signal is Gaussian,

E
[
|ξ(n)|2

]
=

n− 2

n− (NLff + Lfb)− 2
σ2
MMSE, (5.27)

which is valid when n > NLff + Lfb + 2. Note that this constraint comes from (5.24)

and carries no practical insights.

Similarly, substituting (5.26) into (5.23) and the obtained result into (5.21) yields

an approximation for the signal prediction MSE when the received signal has general

statistics,

E
[
|ξ(n)|2

]
≈ n− 1

n− (NLff + Lfb)− 1
σ2
MMSE, (5.28)

which is valid for n > NLff + Lfb + 1. Note that (5.28) also approximates Gaussian

case.

The derived characterization reveals that the signal prediction MSE at the LS-

based MC-DFE output is proportional to the signal prediction MSE at the MMSE
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equalizer output (i.e., the minimal achievable error, σ2
MMSE), and the proportional-

ity constant does not depend on the channel impulse response. Note however that

σ2
MMSE does depend on the noise and channel characteristics as well as the lengths of

the equalizer’s feedforward and feedback filters. A similar relationship between the

SINR’s at the outputs of the linear equalizer and its corresponding MMSE equalizer

is obtained in [38].

5.3.2 Numerical Validation

The derived characterization for the signal prediction MSE is validated via simula-

tions. In the first example we consider a single LTI channel whose impulse response

is shown in Fig. 5-3. The transmitted symbols are binary {+1,−1} with uniform dis-

tribution. They are transmitted through the considered channel and noise is added

to the obtained symbols. The Gaussian distributed noise is non-white and generated

such that its correlation properties correspond to the ambient ocean noise [12]. The

received symbols are processed by a single channel DFE equalizer.

The comparison between the simulated and theoretically computed signal predic-

tion MSE when the received SNR is 10 dB and the DFE equalizer has 22 taps in the

FF filter and 20 taps in the FB filter is shown in Fig. 5-4. As can be observed, the

derived characterization (5.28) accurately predicts the MSE performance.

In the second example, we consider the transmission of a binary sequence {+1,−1}

through a 5-channel LTI transmission system. The impulse response of one of the

channels in shown in Fig. 5-3. The impulse responses of other channels are obtained

by randomly perturbing the impulse response shown in Fig. 5-3. The additive noise is

Gaussian distributed and generated such that its power density spectrum corresponds

to the ambient ocean noise [12]. The received symbols are processed by a 5-channel

DFE equalizer.

The comparison between the simulated and theoretically computed signal predic-

tion MSE when the received SNR is 10 dB and the DFE equalizer has 10 taps in each

sensor FF filter and 10 taps in the FB filter is shown in Fig. 5-5. As can be observed,

the derived characterization (5.28) accurately predicts the MSE performance.
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Figure 5-3: Channel impulse response used in simulations.

0 50 100 150 200 250 300 350 400 450 500
−14

−12

−10

−8

−6

−4

−2

0

2

4

number of observations

1
0

lo
g

1
0
(M

S
E

)

 

 

theoretical prediction
Monte−Carlo simulations

Figure 5-4: Signal prediction MSE versus number of observations for DFE equalizer
with 22 taps in FF and 20 taps in FB filter. The transmission channel has length 50
and its impulse response is shown in Fig. 5-3. The noise is colored (ocean ambient
noise) and the received SNR is 10 dB.
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Figure 5-5: Signal prediction MSE versus number of observations for 5-channel DFE
equalizer with 10 taps in each FF and 10 taps in FB filter. The noise is colored (ocean
ambient noise) and the received SNR is 10 dB.

5.4 Equalizer Design: Optimal Number of Coeffi-

cients

This section considers a problem of determining an optimal number of coefficients in a

multi-channel DFE equalizer which optimizes the signal prediction MSE. We assume

the number of sensors (channels) of a multi-channel equalizer is fixed and analyze

how the number of coefficients contained in the equalizer’s constituent filters impacts

the signal prediction performance.

5.4.1 Insights into the Expression for Signal Prediction MSE

The insights into effects that impact the optimal number of coefficients which min-

imizes the signal prediction MSE could be gained from the characterization of the

signal prediction MSE (5.28).

Namely, the constant of proportionality in (5.28) is an increasing function of the

overall number of equalizer weights m when the number of observations n is fixed. On
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the other hand, the MAE σ2
MMSE can be shown to be a monotonically non-increasing

function of the equalizer length m. Therefore, the signal prediction MSE is minimized

at a point where these two competing effects are balanced.

In other words, the optimal equalizer is a trade off between the MMSE require-

ments and those justified by the RMT insights. From the point of view of minimizing

the MAE, the fact that the channel has a finite impulse response indicates that the

best filter should be an IIR filter. However, the best estimate of the sample correlation

matrix R̂(n) when the number of stationary observations, n, is fixed (and controlled

by the channel) is achieved if the order of the SCM, m, is 1, i.e., if there is only one

equalizer coefficient.

To illustrate how the number of stationary observations, n, impacts the quality of

the SCM, we recall the Marcenko-Pastur law from Section 2.5.3. As shown in Fig. 2-1,

the spread of the eigenvalues of the SCM corresponding to observations of zero mean,

unit power white noise around the ensemble eigenvalue depends on the parameter c,

whose inverse represents the number of observations per degree of freedom. Thus, as

the value of parameter c decreases, the eigenvalues of the SCM concentrate around

the ensemble eigenvalue and hence, the SCM more accurately estimates the ensemble

correlation matrix. The same reasoning applies when the input process is colored.

That is, the ensemble correlation matrix is not the scaled identity matrix. Again,

the eigenvalues of the SCM are spread around their ensemble counterparts and as

the number of observations per dimension, 1/c, increases, the sample eigenvalues

concentrate around ensemble eigenvalues.

Another insightful characterization of the signal prediction MSE is obtained by

representing it as a sum of the MAE and excess error as in (5.20). Namely, (5.28) is

equivalently expressed as

E
[
|ξ(n)|2

]
≈ σ2

MMSE +
m

n−m− 1
σ2
MMSE. (5.29)

Note that the excess error is viewed as a product of the factor which depends only

on the number of equalizer weights m and averaging interval n and the MAE σ2
MMSE,
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which is a function of the channel impulse response and number of coefficients m.

The conclusion that the optimal number of equalizer coefficients is a trade off be-

tween the MMSE requirements and those justified by the RMT insights is numerically

illustrated in the following part.

5.4.2 Numerical Illustration

In the first example, we consider an LTI channel whose impulse response is shown in

Fig. 5-3. The received signal is processed through a single channel DFE equalizer. The

signal prediction MSE corresponding to the MMSE equalizer coefficients is evaluated

using (5.11). Its dependence on the number of taps contained in the FF and FB filters

is shown in Fig. 5-6 for SNR of 0 dB (top figure) and SNR of 10 dB (bottom figure).

As expected, the signal prediction performance improves as the number of equalizer

coefficients increases.

A trade off between the MMSE requirement for longer filters and random matrix

theory insight which favors shorter equalizers, is visualized by showing the dependence

of the signal prediction MSE on the FF and FB filter lengths. This dependence is

shown in Fig. 5-7 for the received SNR of 0 dB (top figure) and 10 dB (bottom figure).

We assume the adaptation of equalizer weights is performed with 150 stationary

symbols.

The number of coefficients in the constituent filters of the optimal DFE which

minimizes the signal prediction MSE for different SNR’s is shown in Table 5.1. The

channel impulse response is as shown in Fig. 5-3 and the averaging interval is 150. As

shown in table, for a given, fixed averaging interval, the optimal number of coefficients

increases with SNR. In addition, the optimal distribution of coefficients between the

constituent filters with increasing SNR is such that the number of coefficients in the

FF filter decreases, while the number of coefficients in the FB filter increases.

Intuitively, the FF filter is the only one that can attenuate the noise. On the other

hand, both filters attenuate the inter-symbol interference. However, the FF filter can

only attenuate ISI to the extent that it has a different temporal signature than the

desired symbol. Consequently, more coefficients are allocated to the FF filter at low
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Figure 5-6: The minimum achievable signal prediction MSE in dB versus number
of taps in FF and FB filter of the DFE equalizer for SNR=0 dB (top figure) and
SNR=10 dB (bottom figure). The impulse response of the transmission channel is
given in Fig. 5-3.
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Figure 5-7: Analytically computed signal prediction MSE in dB versus number of taps
in FF and FB filters of the DFE equalizer for SNR=0 dB (top figure) and SNR=10
dB (bottom figure). The impulse response of the transmission channel is given in
Fig. 5-3. The number of snapshots (≈ number of received symbols) is 150.
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Table 5.1: Optimal Number of Coefficients

SNR 0 dB 5 dB 10 dB 12 dB 14 dB 15 dB 20 dB 25 dB
Lff 22 22 22 16 15 15 15 15
Lfb 28 31 41 48 48 48 48 48

m 50 53 63 64 63 63 63 63
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Figure 5-8: Channel impulse response at one of the sensors in KAM11 experiment.

SNR than at high SNR in order to reduce the noise. On the other hand, when SNR

gets large, the ISI is the dominant source of distortion so that the optimal number of

coefficients in the FB filter increases in order to eliminate the ISI.

In the second example we consider optimal MC-DFE design for the underwater

acoustic communication channel observed during the KAM11 field experiment [28].

The number of channels (sensors) is 5 and a snapshot of a channel impulse response

between a source and one of the sensors is shown in Fig. 5-8. The dependence of the

signal prediction MSE on the lengths of FF and FB filters for received SNR of 22 dB

and experimentally observed spatially correlated ambient noise is shown in Fig. 5-9.

The number of stationary symbols used for adaptation is 500. It can be noted that

the optimal equalizer uses 16 taps in each FF filter and 10 taps in a FB filter and

achieves signal prediction MSE of −7.33 dB.
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Figure 5-9: Signal prediction MSE in dB versus number of taps in FF filter per
sensor and number of taps in FB filter. The number of sensors is 5, channel impulse
response and spatially correlated ambient noise are as observed in field experiment.
The received SNR is 22 dB and the channel coherence time is 500 symbols.

5.5 Sparse Wideband Channel

The previous section presents how to optimally choose the number of coefficients in

an adaptive equalizer. It is concluded that the optimal number of coefficients is a

trade off between two competing requirements. The presented insights are illustrated

with the examples in which the number of sensors used in a multi-channel equalizer

and the separation between them is fixed and predetermined.

This section develops a theoretical framework suitable for analyzing of and gaining

insights in how the equalization performance depends on the array design, i.e., the

selection of the number of and separation between the sensors. We first present the

arrival model consisting of two wideband and spatially spread arrivals impinging on

an array of sensors. The input correlation matrix and cross-correlation vector are

then evaluated for the described arrival model.

Without loss of generality, this section considers linear multi-channel equalization.

However, the model could be extended to include a multi-channel DFE.

212



5.5.1 Arrival Model

We assume that a single source is isotropically transmitting a wideband signal of

power 1, confined within a frequency range between ωL and ωU rad/s. The one-sided

power spectrum density of the transmitted signal is given by1

Px(ω) =






P0 if ω ∈ [ωL,ωU ]

0 otherwise.
(5.30)

We assume that on the receiver side, a linear vertical and uniformly spaced array

of sensors with sensor separation d is receiving the transmitted signal. The coordinate

system has the origin at the position of the top-most sensor and its z-axis is along

the array and oriented downwards. The projection of the spatial wavenumber vector

k onto the z-axis is denoted with kz. The directional cosine is defined as u = cos(θ),

where θ is the elevation angle with respect to the array such that θ = 90o corresponds

to the broadside of the array.

To model the received signal, we assume that the underwater acoustic communi-

cation system is wideband as is the case for most single carrier systems. Also, the

impulse response of the underwater acoustic communication channel is sparse. Fur-

thermore, processing of data from a variety of underwater acoustic communication

experiments shows that the acoustic energy is usually confined to a limited region of

the delay-vertical wavenumber domain. As an example, the distribution of acoustic

energy, received in the field experiment (KAM11) [28], across the elevation angle and

delay domains, averaged over the time period of 60 seconds, is shown in Fig. 5-10.

Therefore, without loss of generality, we assume that the array receives acoustic

energy from two different directions. The acoustic energy corresponding to each

arrival is wideband and spatially spread in the angle domain.

To formalize the model, the transmission channel is viewed as a filter whose re-

sponse in the ω − kz domain has two non-zero, non-overlapping patches. Each patch

1The power amplifier is part of the communication channel in this model. Hence, the signal at
the input of a power amplifier is the transmitted signal in our model.
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Figure 5-10: The distribution of acoustic energy received in the field experiment,
averaged over time period of 60 seconds.
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gives rise to one arrival. We assume the arrivals come from non-overlapping ranges

[un,l, un,u], n = 1, 2 in the directional cosine domain. The channel response is thus

given by2

H(ω, kz) =






h1 ω ∈ [ωl,ωu] and kz(ω) ∈ [ωc u1,l,
ω
c u1,u]

e−jωτ0(kz)h2 ω ∈ [ωl,ωu] and kz(ω) ∈ [ωc u2,l,
ω
c u2,u]

0 otherwise

(5.31)

where h1 and h2 are positive reals and τ0(kz) is the relative delay between the arrivals.

Here we assume that the delay within each patch is much smaller than the relative

delay between patches such that τ0(kz) ≈ τ0.

Given the channel model, the frequency−wavenumber spectrum of the received

signal, Py(ω, kz), is then given by

Py(ω, kz) = |H(ω, kz)|2Px(ω). (5.32)

The presented arrival model can be extended to mimic more realistic cases which

include more arrivals, non-flat frequency responses over the possibly overlapping

patches in the frequency−wavenumber domain, as well as a more general shape of an

array of sensors. However, for the purpose of gaining insights in how sensor separation

impacts the performance, the more important aspect of the model is that it accounts

for wideband and spatially spread nature of the received signal.

In the following parts, we evaluate the correlation matrix and cross-correlation

vector corresponding to the considered model.

2We assume that the power amplification is absorbed in the channel response.
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5.5.2 Evaluation of Correlation Matrix R

The ensemble correlation matrix R is obtained from the space−time correlation func-

tion ρuu∗(τ,∆p) of the received signal, defined as

ρuu∗(τ,∆p) = E [u(t, p)u∗(t− τ, p−∆p)] , (5.33)

where u(t, p) is the continuous signal received at time t and position p along the z-

axis. The sample of the continuous time signal u(t, p) received at sensor i at discrete

time n is denoted by ui(n). In general, the space−time correlation function describes

the correlation between the signals received at points separated by vector ∆p and at

time instances separated by a delay τ . However, we are only interested in correlation

between signals received by sensors in an array. Since the sensors are aligned along

the z-axis, the second argument in the space−time correlation function (5.33) is a

scalar and describes the z-coordinate of a particular sensor.

The correlation function ρuu∗(τ,∆p) is evaluated from the frequency−wavenumber

spectrum of the received signal and is given by [52]

ρuu∗(τ,∆p) =
1

(2π)2

∫ ωU

ωL

∫ +ω/c

−ω/c

Py(ω, kz)e
−j(ωτ−kz∆p)dωdkz

=
1

2π

∫ ωU

ωL

Sy(ω,∆p)e−jωτdω, (5.34)

where Sy(ω,∆p) is the temporal spectrum spatial correlation function. Note that

since the z-axis is along the array and we are interested in correlations between

signals received on an array, k∆p = kz∆p.

The temporal spectrum spatial correlation function is for a channel response given

in (5.31), evaluated in a closed form

Sy(ω,∆p) =
1

2π

∫ +ω/c

−ω/c

Py(ω, kz)e
jkz∆pdkz

=
P0

π

2∑

n=1

|hn|2∆kz,ne
−jk̄z,n∆psinc(∆kz,n∆p) (5.35)
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where sinc(x) = sin(x)
x and

k̄z,n =
ω

c

un,l + un,u

2
, ∆kz,n =

ω

c

|un,u − un,l|
2

. (5.36)

are the wavenumbers corresponding to respectively the mean and width of the range

of directional cosines pertaining to each arriving patch.

The space−time correlation function ρuu∗(τ,∆p) is then obtained by substitut-

ing (5.35) into (5.34) and performing integration. The final result can not be evalu-

ated in a closed form for a given model and is computed numerically.

To specify the correlation matrix R, we first note from the construction of the

signal vector u and definition (5.9), that the correlation matrix R is a block matrix

whose block in the position (i, j) is

R̃ij = E
[
uiu

H
j

]
, (5.37)

where i, j = 1, . . . , m. Recalling that the observation vector ũi collects all the samples

of the received signal at sensor i which impact the output of the associated filter at

a particular time instant, the element in the position (t, s) of R̃ij is given by

[
R̃ij

]

t,s
= ρ ((t− s)Ts, (i− j)d) , (5.38)

where d is the sensor separation (i.e., the sampling interval in spatial domain) and

Ts is the sampling interval in time domain.

5.5.3 Evaluation of Cross-Correlation Vector r

The cross-correlation vector r is obtained from the cross-correlation function ρux∗(τ, p),

defined as

ρux∗(τ, p) = E [u(t, p)x∗(t− τ)] , (5.39)

where p is the position of the considered sensor along the z-axis.

Recall that the cross-correlation function between the input and output from a
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linear time invariant filter is given as the inverse Fourier transform of the cross-

spectral density. The cross-spectral density is evaluated as a product of the channel

frequency response and power spectral density of the input process [26]. Analogously,

the cross-correlation function ρux∗(τ, p) is evaluated as

ρux∗(τ, p) =
1

(2π)2

∫ ωU

ωL

∫ ω/c

−ω/c

Px(ω)H(ω, kz)e
j(ωτ−kzp)dkdω. (5.40)

Since we are interested in evaluating the statistics of the signals received on the array,

p is a (scalar) distance between the origin and a particular sensor.

Denoting with S̃ux∗(ω, p) the solution to the integration in (5.40) over kz, the

cross-correlation function is expressed as

ρux∗(τ, p) =
1

2π

∫ ωU

ωL

S̃ux∗(ω, p)e−jωτdω. (5.41)

The function S̃ux∗(ω, p) is for the considered model (5.31) evaluated in a closed

form and given by

S̃ux∗(ω, p) =
1

2π

∫ +ω/c

−ω/c

Px(ω, kz)H(ω, kz)e
−jkzpdkz

=
P0

π

2∑

n=1

hn∆kz,ne
−jk̄z,npsinc(∆kz,np), (5.42)

where ∆kz,n and k̄z,n are as defined in (5.36).

The cross-correlation function ρux∗(τ, p) is finally obtained by substituting (5.42)

into (5.41) and performing integration. The final result is for a given model computed

numerically.

To specify the cross-correlation vector r, we first note that it has a block structure

whose i-th block r̃i is the cross-correlation vector between the observation vector ũi

and the transmitted signal x. Since ũi collects the time samples of the signal received

at sensor i which impact the output of the associated filter at a particular time instant,
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the s-th element in r̃i is thus given by

[r̃i]s = ρux∗ (sTs, id) , (5.43)

where d and Ts are the sampling intervals in, respectively, spacial and delay domains.

5.6 Equalizer Design: Optimal Array Selection

This section illustrates how the number of sensors and their separation impact the

signal prediction performance of the MMSE and LS adapted multi-channel equalizer

for a particular arrival structure. The last part presents experimental results which

validate that the equalization performance is optimized for a finite sensor separation

which is not necessarily equal to one half the shortest wavelength.

The dependence of signal prediction MSE on the number of sensors and their

separation is examined by using (5.11) and (5.28) for a particular arrival structure.

The theoretical framework presented in the previous section is used to evaluate the

correlation matrix R and cross-correlation vector r corresponding to the considered

arrival structure.

5.6.1 Optimal Sensor Separation

One of the challenges related to optimally configuring the multi-channel equalizer is

the selection of separation between sensors. While the sensors in a MIMO system

whose channel is characterized by rich scattering need to be sufficiently apart so that

the signals at their outputs are uncorrelated [20], conventional wisdom is that array

processing applications require that sensors be separated by no more than one half

the shortest wavelength of the received signals [52]. However, because an inherently

wideband signal is transmitted through a sparse underwater acoustic communication

channel, selection of optimal sensor separation is a more subtle problem.

As an illustration, we consider a particular arrival model whose bandwidth is

between 9 kHz and 17 kHz, motivated by the KAM11 experiment [28]. For a sound
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speed of 1535 m/s, as observed in some of the KAM11 data epochs, the corresponding

wavelengths are between 9.03 cm and 17.06 cm.

Here we consider an arrival model for which the acoustic energy arrives from

the ranges of elevation angles of [89o, 91o] and [84o, 86o]. The corresponding channel

responses are equal, i.e., h1 = h2, and the relative delay between the arrivals is much

larger than the delay within each patch and is equal to two sampling periods, i.e.,

τ0 = 2/Fs, where Fs = 40 kHz is the sampling frequency. Note that for a given signal

bandwidth of 8 kHz, the arrivals are not resolvable in the delay domain. The ambient

noise is directional and has power 1. It is confined within the range of elevation

angles between 80o and 100o. The signal-to-noise ratio (SNR) is 10 dB. The linear

multi-channel equalizer contains 10 sensors.

The dependence of the signal prediction MSE on sensor separation when the statis-

tics of the input process are known such that the equalizer coefficients are evaluated

using (5.8) and the equalizer has 1 tap in each sensor filter is shown in Fig. 5-11. The

case when each sensor filter contains 5 taps is shown in Fig. 5-12. As can be observed,

the performance is optimized for a finite sensor separation which is greater than one

half the shortest wavelength of the signals of interest.

When the statistics of the input process are unknown and estimated from the

received data, the signal prediction MSE is proportional to the signal prediction MSE

corresponding to the MMSE processor, as given by (5.28). Hence, the dependence of

the signal prediction MSE on sensor separation for the considered arrival model and

multi-channel equalizer is as shown in Figures 5-11 and 5-12 up to an appropriate

scaling of the vertical axes. The scaling depends on the averaging window size and

overall number of coefficients.

Finally, as an illustration, the dependence of signal prediction MSE on the number

of sensors and their separation when the equalizer weights are computed using the

least squares solution (5.13) and the channel is non-stationary and approximately

time-invariant over 500 symbols is shown in Fig 5-13. The signal prediction MSE is

evaluated using (5.28). Under the constraint that each sensor filter has 5 taps, the

signal prediction performance is optimized when equalizer contains 12 sensors and
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Figure 5-11: Signal prediction MSE versus sensor separation for MMSE equalizer.
The sensor separation in normalized with the half-a-wavelength corresponding to the
highest frequency of interest. Each of the 10 single sensor feedfoward filters has a
length of 1 tap.
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Figure 5-12: Signal prediction MSE versus sensor separation for MMSE equalizer.
The sensor separation in normalized with the half-a-wavelength corresponding to the
highest frequency of interest. Each of the 10 single sensor feedfoward filters has a
length of 5 taps.
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Figure 5-13: Signal prediction MSE versus number of sensors and sensor separation
for LS equalizer. The sensor separation in normalized with the half-a-wavelength
corresponding to the highest frequency of interest. The dashed lines are curves of
constant aperture.

their separation is almost 6λmin, where λmin = 9.03 cm. Note that the Note the lines

of constant aperture shown in Fig. 5-13. This effect is examined in the following

section.

5.6.2 Optimal Array Aperture

The dependence of optimal sensor separation on the number of sensors and number

of taps per sensor filter is illustrated here using the same arrival model as considered

in the previous section. The only distinction is that the relative delay between two

arrivals is τ0 = 5/Fs so that longer sensor filters are needed in order to suppress the

interference in the delay domain. Note that the arrivals are not resolvable in the delay

domain.

The dependence of optimal sensor separation, normalized with half the shortest

wavelength of the received signal, on the number of sensors when each sensor filter

contains L = 7 taps is shown in Fig. 5-14. The statistics of the input signal is assumed
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Figure 5-14: Optimal sensor separation versus number of sensors. Each sensor feed-
forward filter has 7 taps. Each point on the blue curve optimizes the signal prediction
MSE in the theoretical model. The red curve is the line of constant aperture, obtained
from averaging the apertures corresponding to each point on the blue curve.

known and the optimal sensor separation optimizes (5.11). The input correlation

matrix R and cross-correlation vector r for the considered model are evaluated as

described in Section 5.5.

As shown in Fig. 5-14, the optimal sensor separation decreases as the number of

sensors increases in such a way that the array aperture is approximately constant.

This is confirmed by plotting the constant aperture curve in Fig. 5-14, where the

constant aperture is obtained from averaging the optimal apertures evaluated for the

considered numbers of sensors.

The dependence of optimal sensor separation on the number of sensors N and

number of taps per sensor filter L in the MMSE processor is shown in Fig. 5-15. As can

be observed the optimal array aperture is approximately constant and independent of

L when L ≥ 6. Recall that the relative delay between the arrivals in the considered

example is 5/Fs and the taps in a sensor filter are separated by 1/Fs. Therefore, the

sensor filters containing L ≥ 6 taps extend over both arrivals in the delay domain

and the processor reasonably well suppresses the interference.
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Figure 5-15: Optimal sensor separation as a function of the number of sensors and
number of taps per sensor filter.

On the other hand, when L ≤ 5, the optimal sensor separation tends to increase

as the length of sensor filters L decreases. In other words, given that the suppression

capability is fairly limited in the delay domain due to short sensor filters, the aperture

of the optimal processor increases so that the interference is better suppressed in the

spatial domain. In addition, when the number of sensors N is not unreasonably small

(i.e., N is above 4 in this example), the optimal aperture remains approximately

constant and depends on L.

The behavior of optimal aperture remains the same when equalizer coefficients are

evaluated using the LS algorithm. Namely, recall that the signal prediction MSE of

the LS based equalizer is proportional to the signal prediction MSE corresponding to

the MMSE processor. The constant of proportionality is a function of the number of

coefficients and observation window length. Therefore, the optimal sensor separation

which minimizes the signal prediction MSE for a given number of sensors N and

number of taps per sensor filter L is the same for the MMSE and LS based processors.
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Finally, we conclude that the optimal aperture is determined by the arrival struc-

ture of the received signal. As long as the arrival structure remains unchanged during

the observation period, the length of the observation interval does not impact the

aperture of the optimal multi-channel processor.

5.6.3 Experimental Evidence

For experimental evidence that sensor separation is an important factor in determin-

ing equalizer performance, the following results obtained from processing the data

collected in KAM11 field experiment [28] are useful. The underwater acoustic com-

munication signal received at a vertical linear and uniformly spaced array is processed

through a linear multi-channel equalizer and the transmitted symbols are detected.

The equalizer contains 4 sensors and each sensor filter has 20 taps. The equalizer

coefficients are adapted using the recursive least squares (RLS) algorithm using the

forgetting factor λ which yields the best bit error rate performance. The measured

signal prediction MSE and BER performance versus sensor separation is shown in

Fig. 5-16 in respectively top and bottom part. Note that the best signal prediction

MSE and BER performance is achieved for d = 30 cm. The minimal and maximal

wavelengths corresponding to the signal of interest in the KAM11 experiment are re-

spectively 9.03 cm and 17.06 cm. Note that the optimal separation is approximately

6λmin/2, which corresponds to the optimal sensor separation obtained for the arrival

structure considered in the previous part (refer to Fig. 5-12). As a final remark,

the linear equalizer is implemented in time domain and no Doppler compensation is

employed.

5.7 Conclusions

The performance analysis and optimal design of multi-channel equalizers of time-

varying channels is presented in this chapter. An analytical characterization of the

signal prediction MSE achieved at the output of the multi-channel DFE equalizer

operating in a non-stationary channel is first presented. The channel is modeled as
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Figure 5-16: Experimentally measured signal prediction MSE (top figure) and BER
(bottom figure) versus sensor separation for a 4-sensor linear equalizer with 20 taps
per sensor filter.
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a frequency selective filter which is time invariant over short time intervals such that

the number of stationary observations used to adapt the equalizer weights is finite

and limited. The equalization problem is framed as a channel identification problem

where an ”unknown” channel is the MMSE equalizer. It is shown that the signal

prediction MSE at the output of the LS-based MC-DFE equalizer is proportional to

the signal prediction MSE at the output of the corresponding MMSE equalizer and

the proportionality constant does not depend on the channel impulse response. The

derived expression is validated via Monte-Carlo simulations.

Further, the chapter studies the problem of optimal equalizer design. Namely,

the obtained characterization of the equalization performance highlights that the

optimal number of equalizer coefficients is a trade off between the MMSE requirement

for longer filters and the insight that finite number of observations can effectively

adapt only a limited number of equalizer weights. This is validated via Monte-Carlo

simulations and processing of experimentally collected data.

Finally, an analysis of how performance of multi-channel equalizer of time-varying

underwater acoustic communication channels depends on the number of sensors and

the separation between them is presented. While the sensors in a conventional MIMO

system need to be sufficiently apart so that the signals at their outputs are uncorre-

lated, conventional wisdom is that array processing applications require that sensors

be separated by no more than one half the shortest wavelength of the received signals.

However, the selection of optimal sensor separation is a more subtle problem in the

context of underwater acoustic communications. To study this problem, we intro-

duce an arrival model which accounts for wideband and spatially spread nature of

the received underwater acoustic communication signals. Using a particular arrival

structure we show that the performance is optimized for a non-trivial selection of

the number of sensors and their separation. Finally, these findings are confirmed by

processing the experimental data.

As a possible future research, the presented arrival model could be extended such

that the dependence of optimal number of sensors on total wavenumber spread and

wavenumber spread of the arrivals we aim to separate, is revealed. Also, the ar-
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rival model could be generalized to mimic more realistic arrival structures so as to

include more arrivals, non-flat frequency response over the patches in the frequency-

wavenumber domain and to account for non-negligible delay within the arrival. A

possible application of the developed results and insights might be in the design of

subarray-based equalization method for rapidly varying communication channels.

Although the emphasis in this chapter is on underwater acoustic communications,

the derived characterizations and gained insights are applicable in other settings. As

such, the derived characterization of equalization performance holds in other appli-

cations that rely on least squares based adaptation in the deficient sample support

regime using non-trivial constituent filter lengths.

Another potential application area is ultra-wide band communications and, in

particular, an increasingly popular 60 GHz communications. Namely, since an under-

water acoustic communication channel is wideband, it shares some features with an

ultra-wideband radio communication channel. Specifically, both channels are sparse

and the received signals consist of a limited number of wideband and spatially spread

arrivals. In addition, given the fact that the receivers in ultra-wideband communi-

cation systems are envisioned to contain many antennas (i.e., massive MIMO), the

optimal receiver design may benefit from our analysis and the insights in how sensor

separation impacts the equalization performance.

228



Chapter 6

Conclusions and Future Work

The coefficients in adaptive processors are often obtained as a solution to an opti-

mization problem whose objective function is based on the second order statistics of

the input process. Second order statistics are usually used because they arise natu-

rally in squared error criteria involving linear signal and processing models and the

estimation of higher order statistics is often difficult due to limited data with which

to estimate statistics. In addition, adaptive processing with higher order statistics

requires more computations, which is usually a scarce resource.

The adaptive processor weights, obtained as a solution to an optimization problem

with objective function based on second order statistics, depends on the ensemble

correlation matrix of the input process. However, the ensemble correlation matrix

is often unknown and is estimated from the observed data. The sample correlation

matrix (SCM) is a widely used estimator or building block in other estimators of the

ensemble correlation matrix. The SCM accurately estimates the ensemble correlation

matrix when the number of observations is sufficiently many times larger than the

number of coefficients, which is rarely the case in practice.

The SCM evaluated from deficient sample support might significantly differ from

the ensemble correlation matrix. The problem of deficient sample support arises as a

result of one or more of the following reasons. First, the statistics of the input signal

might be non-stationary because the signal has propagated through a time-varying

environment, such as in terrestrial wireless communications. Second, the length of
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the observation interval that can be used to estimate the time-varying statistics might

not be sufficient, such as in medical applications. Finally, the number of dimensions

might be very large so that the number of observations is small compared to the

number of dimensions, such as in modern radar and sonar systems.

This thesis studied the problems associated with adaptive processing based on

second order statistics in the deficient sample support regime. The applications of

adaptive processing considered in the thesis were adaptive beamforming for spatial

spectrum estimation, tracking of time-varying channels and equalization of commu-

nication channels. More specifically, the thesis analyzed the performance of the con-

sidered adaptive processors when operating in the deficient sample support regime.

In addition, it gained insights into behavior of different estimators based on the es-

timated second order statistics. Finally, it studied how to optimize the adaptive

processors and algorithms so as to account for deficient sample support and conse-

quently improve the performance.

6.1 Random Matrix Theory

The problems of adaptive processing in the deficient sample support have been ana-

lyzed and addressed by exploiting the results and insights from random matrix theory.

The random matrix theory is a mathematical area which studies how eigenvalues and

eigenvectors of a random matrix behave. It shows that certain encodings of the

eigenvalues and eigenvectors of some random matrix ensembles exhibit deterministic

behavior in the limit when the order of a matrix grows large. The estimate of the

ensemble correlation matrix, the SCM, is a random matrix of our interest. From that

hand, this thesis could be viewed as a study of what random matrix theory can teach

as about adaptive processing in the deficient sample support regime.

More specifically, we have utilized the characterizations of the limiting behavior

of eigenvalue and eigenvector Stieltjes transforms corresponding to different SCM

models. The considered SCM models involve unity or non-unity forgetting factor

and have zero or non-zero diagonal loading. Furthermore, the limiting moments
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corresponding to these SCM models have been evaluated using the Stieltjes transform

method. Finally, the Gaussian tools characterizing the expected value and variance

of a functional of Gaussian vector have been exploited in characterizing the behavior

of the deviation of the quadratic forms involving the inverse of the SCM from their

asymptotic counterparts.

In the following, we briefly summarize the problems considered in each application

of adaptive processing and enumerate the contributions.

6.2 Spatial Power Spectrum Estimation

In the context of adaptive spatial power spectrum estimation, we have focused on

two commonly used spatial power spectrum estimators based on the MPDR beam-

former and studied how regularization in the form of diagonal loading, introduced

with the goal to alleviate the problems caused by deficient sample support, impacts

the estimation performance. The following results have been obtained.

First, it has been shown that both power estimators almost surely converge to

deterministic limits when the number of sensors and observations (snapshots) grow

large at the same rate. Given that both power estimators are bounded for finite value

of diagonal loading, it has been concluded that the expectations of the power esti-

mators converge to the same limits. Although asymptotic, as are the other results in

large dimensional random matrix theory, due to rapid convergence, the deterministic

limits fairly accurately approximate the expected values of power estimators for finite

and relatively small number of sensors and snapshots.

Second, under the assumption that the snapshots are Gaussian distributed, the

rate of convergence of one of the power estimators to its deterministic limit, its vari-

ance and estimation mean square error have been characterized. In doing so, the

Gaussian tools which characterize the expectation and variance of a functional of a

Gaussian vector have been exploited.

Third, a variety of results characterizing how the power estimators, their expec-

tations and variances depend on diagonal loading have been obtained. We have
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conjectured from these results that the variance has negligible impact on the value of

optimal diagonal loading which minimizes the estimation mean square error, meaning

that the optimal diagonal loading is controlled by the squared bias. The performance

loss incurred by using the diagonal loading which minimizes the squared bias instead

of the one which optimizes the estimation MSE has been shown to be insignificant.

Forth, using the stated conjecture, we have investigated how optimal diagonal

loading depends on steering direction when the arrival model consists of plane waves

contaminated with uncorrelated noise. We have shown that when steering close to

the source direction, the optimal loading is small and can even be zero, meaning that

the optimal estimator tends to perform adaptation as much as possible, fully relying

on the available data. On the other hand, when steering direction moves away from

the source direction, the optimal loading tends to increase and follows an oscillatory

behavior.

Finally, the MSE performances of the two power estimators have been compared

and it has been shown that the estimator P̂b performs better (lower MSE) than the

estimator P̂a at the expense of increased sensitivity to optimal diagonal loading.

All obtained results are validated via Monte-Carlo simulations.

6.3 Time-Varying Channel Tracking

In the context of time-varying channel tracking problem, the performance of the

Recursive Least Squares algorithm when used to estimate and track the channel

whose variations are modeled with a first order Markov process has been studied and

the following results have been obtained.

First, the channel estimation and signal prediction mean square errors are char-

acterized in the deficient sample support regime.

Second, the general results are applied for specific scenarios and as special cases,

the tracking performance in the steady-state, performance of the LS-based identifi-

cation of linear time-invariant channel and performance of the sliding window RLS

algorithm are characterized.

232



Third, several practical results have been obtained using the developed analy-

sis. As such, an expression for the optimal window length in the sliding window

LS algorithm has been derived. Also, based on the comparison between the expo-

nentially weighted and sliding window LS algorithms, it has been conjectured that

former outperforms the latter, if forgetting factor is appropriately selected given the

sliding window length. The corresponding expression for such a forgetting factor has

been derived. Furthermore, a relation between forgetting factor used for calculating

an exponentially weighted sample correlation matrix and the effective number of sta-

tionary, rectangularly windowed observations has been established. In addition, this

relation has been further exploited to evaluate the optimal value of the forgetting

factor in the exponentially weighted LS algorithm. Finally, the effect of performance

deterioration appearing when the number of observations is close to channel length

(i.e., the number of dimensions) is observed, theoretically analyzed and intuitively

elaborated.

All obtained results are validated via Monte-Carlo simulations.

6.4 Channel Equalization

In the context of time-varying channel equalization, the problem of optimal config-

uring a multi-channel Decision Feedback Equalizer whose weights are evaluated and

adapted using the least squares algorithm in the deficient sample support regime has

been studied and the following results have been obtained.

First, the performance of the least squares based multi-channel DFE is theoreti-

cally characterized and it has been shown that the prediction MSE at the output of

the LS-based MC-DFE equalizer is proportional to the signal prediction MSE at the

output of the corresponding MMSE equalizer and the proportionality constant does

not depend on the channel impulse response. The derived expression is validated via

Monte-Carlo simulations.

Second, using the obtained characterization of the equalization performance it

has been highlighted that the optimal number of equalizer coefficients is a trade off
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between the MMSE requirement for longer filters and the insight that finite number

of observations can effectively adapt only a limited number of equalizer weights. This

is validated via Monte-Carlo simulations and processing of experimentally collected

data.

Finally, it has been shown that as opposed to standard MIMO systems and con-

ventional wisdom in array processing, the optimal separation between the sensors

which minimize the signal prediction MSE is a more subtle problem. To study it, we

have introduced an arrival model which accounts for wideband and spatially spread

nature of the received underwater acoustic communication signals. Using a particu-

lar arrival structure we have shown that the performance is optimized for a specific

selection of the number of sensors and their separation. Finally, these findings have

been confirmed by the processing of experimental data.

6.5 Future Work

In terms of future work, some of the results on optimal diagonal loading for spatial

power spectrum estimation could be strengthen and extended in several possible ways.

In a shorter term, the stated conjecture about the negligible impact of variance on

the value of optimal diagonal loading needs to be rigorously proved. In addition, a

rigorous sensitivity analysis of power estimators on optimal diagonal loading is needed

to complete the comparison of power estimators. Finally, the results developed for

Gaussian distributed snapshots could possibly be extended to more general snapshot

statistics.

In a longer term, the ultimate goal concerning the problem of diagonal loading for

adaptive beamforming is to develop a scheme which determines, in real-time, the opti-

mal diagonal loading to be used in the computation of the beamformer’s weights based

on the received data and steering direction. Furthermore, the presented study on how

spatial power spectrum estimation depends on diagonal loading could be applied to

other estimation methods which rely on diagonal loading and possibly generalized to

other regularization approaches. Finally, the analysis of other regularization meth-
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ods applied to adaptive beamforming and spatial power spectrum estimation could

possible benefit from the tools and approaches used in the thesis.

In the context of optimal equalizer design, the presented arrival model could be

extended such that the dependence of optimal number of sensors on total wavenumber

spread and wavenumber spread of the arrivals we aim to separate, is revealed. Also,

the arrival model could be generalized to mimic more realistic arrival structures so as

to include more arrivals, non-flat frequency response over the patches in the frequency-

wavenumber domain and to account for non-negligible delay within the arrival. A

possible application of the developed results and insights might be in the design of

subarray-based equalization method for rapidly varying communication channels.

The derived results and obtained insights in the problem of time-varying channel

equalization could be possibly used for addressing problems arising in other appli-

cations. Namely, the derived characterization of the signal prediction MSE holds in

other applications which use least squares based adaptation and consequently could

be applied for studying issues caused by deficient sample support. In addition, the

model developed for studying how the number of and separation between sensors

impact the equalization performance could be adjusted to model sparse and spatially

spread arrivals inherent to signals received in an ultra-wideband terrestrial communi-

cation system. An example is a communication system in an increasingly popular 60

GHz frequency band and possible problems that might be tackled using the developed

arrival model are equalizer design and antenna selection in a massive MIMO receiver.
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Appendix A

Proof of Lemma 3.5

A quadratic form Qk can be written in terms of the eigen-decomposition of the SCM

R̂ as

Qk(δ) =
m∑

i=1

|vH
s q̂i|2

(λ̂i + δ)k
.

Due to assumptions 2 and 3, d̂m ≤ λ̂i ≤ D̂m and thus

m

(D̂m + δ)k
≤ Qk(δ) ≤

m

(d̂m + δ)k
. (A.1)

The derivatives of the estimators P̂a and P̂b are expressed in terms of quantities

Qk’s as

∂P̂a

∂δ
=

2δ

Q1

(
Q3

Q1
− Q2

2

Q2
1

)
. (A.2)

∂P̂b

∂δ
=

Q2

Q2
1

. (A.3)

Combining (A.1) with (A.2) and (A.3) yields

∂P̂a

∂δ
≤ 2δ(D̂m + δ)3

m

[
1

(d̂m + δ)4
− 1

(D̂m + δ)4

]
(A.4)
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and
1

m

(
d̂m + δ

D̂m + δ

)2

≤ ∂P̂b

∂δ
≤ 1

m

(
D̂m + δ

d̂m + δ

)2

, (A.5)

which completes the proof.

246



Appendix B

Proof of Lemma 3.6

The claims are proved by using the Poincare-Nesh inequality (2.67) wherein f(Y)

is one of the power estimators or their derivatives. Since the received snapshots are

Gaussian distributed, we stick to the equivalent representation of the quadratic forms

given in (3.21).

In proving Lemma 3.6, the following facts are used

The norm of the resolvent matrix is almost surely upper bounded by 1, i.e.,

‖H‖ ≤ 1. (B.1)

To confirm, note that its all eigenvalues are between zero and one.

The derivative of Hpg with respect to Y ∗
ij is given by [25]

∂Hpq

∂Y ∗
ij

= − t

n
(HY )pj Hiq. (B.2)

For k ≥ l,
Qk

Ql
≤ tk−l. (B.3)

This can be checked by writing Qk and Ql in terms of their eigendecompositions

and noting that (1 + tλ̂i)k ≥ (1 + tλ̂i)l because 1 + tλ̂i ≥ 1.
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As a preliminary step, we upper bound a quantity Tk, defined by

Tk =
∑

i,j

λiE

[∣∣∣∣
∂Qk

∂Y ∗
ij

∣∣∣∣
2
]
. (B.4)

In doing so, we first need to evaluate the corresponding derivatives of Qk’s. For

k = 2, the derivative of Q2 is computed via

∂Q2

∂Y ∗
ij

= t2
∑

p,q,u

s∗p
∂ (HpqHqu)

∂Y ∗
ij

su

(a)
= −t3

n

∑

p,q,u

s∗p [(HY )pjHiqHqu +Hpq(HY )qjHiu] su

= −t3

n

2∑

l=1

(
sHHlY

)
j

(
H3−ls

)
i
, (B.5)

where
(a)
= follows from (B.2). Given (B.5), it is easily generalized that

∂Qk

∂Y ∗
ij

=
k∑

l=1

(
sHHlY

)
j

(
Hk+1−ls

)
i
. (B.6)

Now, substituting (B.6) into (B.4), the upper bound for Tk is found as follows

Tk =
t2(k+1)

n2

∑

i,j

λiE




∣∣∣∣∣

k∑

l=1

(
sHHlY

)
j

(
Hk+1−ls

)
i

∣∣∣∣∣

2




(a)

≤ kt2(k+1)

n2

k∑

l=1

∑

i,j

λiE

[∣∣∣
(
sHHlY

)
j

(
Hk+1−ls

)
i

∣∣∣
2
]

=
kt2(k+1)

n2

k∑

l=1

E
[(
sHHlYYHHls

) (
sHHk+1−lDHk+1−ls

)]
, (B.7)

where
(a)

≤ follows from the inequality

(
k∑

i=1

ai

)2

≤ k

(
k∑

i=1

|ai|2
)

. (B.8)
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The summand in (B.10) is upper bounded as follows

E
[(
sHHlYYHHls

) (
sHHk+1−lDHk+1−ls

)]

(a)

≤ E
[
‖s‖4‖H‖2(k+1)‖D‖‖YYH‖

]

(b)

≤ E

[
S4
mH

2(k+1)
m Dm

√(
YYH

)2
]

(c)

≤ S4
mDmn

√√√√E

[(
YYH

n

)2
]

= S4
mDmn

√√√√E

[
m∑

i=1

λ̂2
i

]

(d)

≤ S4
mDmD̂mn

√
m (B.9)

where
(a)

≤ follows from the Cauchy-Schwartz inequality for matrix norms, i.e., ‖AB‖ ≤

‖A‖‖B‖. The inequality
(b)

≤ follows from the boundedness of the signal replica vector

and of the matricesH andD, i.e., ‖s‖ ≤ Sm, ‖D‖ ≤ Dm and ‖H‖ ≤ 1. The inequality
(c)

≤ follows from the Cauchy-Schwartz inequality for the expectation operator. Finally,
(d)

≤ follows from the boundedness of the eigenvalues of the SCM R̂.

The upper bound of Tk is finally obtained by substituting (B.9) into (B.10) such

that

Tk ≤ k2t2(k+1)S4
mDmD̂m

√
m

n
. (B.10)

Back to the variance problem, it can be shown that f(Y) being P̂ or ∂P̂
∂δ ,

∂f(Y)
∂Y ∗

ij
=

∂f(Y)
∂Yij

such that

var (f(Y)) ≤ 2
∑

i,j

λiE

[∣∣∣∣
∂f(Y)

∂Y ∗
ij

∣∣∣∣
2
]

(B.11)

In the following, the variance of each of the estimators and their derivatives is

upper bounded. The derivation for f(Y) = P̂a is given in more details. Other

derivations are similar and thus just outlined.
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Upper Bound of the Variance of f(Y) = P̂a

A derivative of P̂a with respect to Y ∗
ij is in terms of Qk expressed as

∂P̂a

∂Y ∗
ij

=
1

tQ2
1

[(
2
Q2

Q1
− t

)
∂Q1

∂Y ∗
ij

− ∂Q2

∂Y ∗
ij

]
. (B.12)

Using (B.8), the squared magnitude of (B.12) is upper bounded as

∣∣∣∣∣
∂P̂a

∂Y ∗
ij

∣∣∣∣∣

2

≤ 2

t2Q4
1

[(
2
Q2

Q1
− t

)2 ∣∣∣∣
∂Q1

∂Y ∗
ij

∣∣∣∣
2

+

∣∣∣∣
∂Q2

∂Y ∗
ij

∣∣∣∣
2
]

(B.13)

The coefficient of the first term in the above expression is using (B.8) and (B.3)

upper bounded by 10t2. Further, using (A.1) to lower bound the quadratic form Q1

yields ∣∣∣∣∣
∂P̂a

∂Y ∗
ij

∣∣∣∣∣

2

≤ 2(1 + tD̂m)4

t6m4

[
10t2

∣∣∣∣
∂Q1

∂Y ∗
ij

∣∣∣∣
2

+

∣∣∣∣
∂Q2

∂Y ∗
ij

∣∣∣∣
2
]
. (B.14)

Substituting (B.14) into (B.11) yields

var
(
P̂a

)
≤ 2(1 + tD̂m)4

t6m4

[
10t2T1 + T2

]

(a)

≤ 28(1 + tD̂m)
4DmD̂mS

4
m

√
m

nm4

(b)

≤ K

m5/2
, (B.15)

where
(a)

≤ follows from (B.10) and
(a)

≤ from the assumption that m and n are of the

same order and Sm = O(m1/2).

Upper Bound of the Variance of f(Y) = P̂b

Similarly as in the previous part, the derivative of P̂b with respect to Y ∗
ij is given by

∂P̂b

∂Y ∗
ij

=
1

tQ2
1

∂Q1

∂δ
. (B.16)
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Substituting (B.16) into (B.11) yields

var
(
P̂b

)
≤ 2

t2Q4
1

T1. (B.17)

Exploiting the upper bound for T1 (B.10) and the lower bound for Q1 (A.1) leads

to the upper bound for the variance of P̂b

var
(
P̂b

)
≤ 2t−2(1 + tD̂m)

4DmD̂mSm

√
m

nm4
. (B.18)

Thus, under the assumption that m and n are of the same order and Sm = O(
√
m),

var
(
P̂b

)
≤ Km− 5

2 , for some positive finite constant K.

Upper Bound of the Variance of f(Y) = ∂P̂a
∂δ

A derivative of P̂ ′
a =

∂P̂a
∂δ with respect to Y ∗

ij is in terms of Qk’s expressed as

∂P̂ ′
a

∂Y ∗
ij

=
2

tQ2
1

[(
3
Q2

2

Q2
1

− 2
Q3

Q1

)
∂Q1

∂Y ∗
ij

− 2
Q2

Q1

∂Q2

∂Y ∗
ij

+
∂Q3

∂Y ∗
ij

]
, (B.19)

The squared magnitude of the above expression is using (B.8) and (B.3) upper

bounded as

∣∣∣∣∣
∂P̂ ′

a

∂Y ∗
ij

∣∣∣∣∣ ≤
12

t2Q4
1

(
26t4

∣∣∣∣
∂Q1

∂Y ∗
ij

∣∣∣∣
2

+ 4t2
∣∣∣∣
∂Q2

∂Y ∗
ij

∣∣∣∣
2

+

∣∣∣∣
∂Q3

∂Y ∗
ij

∣∣∣∣
2
)

(B.20)

Substituting (B.20) into (B.11) and using the upper bounds for Tk (B.10) and

lower bound for Q1 (A.1), the variance of P̂ ′
a is upper bounded as

var
(
P̂b

)
≤ 612t2(1 + tD̂m)

4DmD̂mS
4
m

√
m

nm4
, (B.21)

i.e., if Sm = O(
√
m) and m and n are of the same order, var

(
P̂b

)
≤ Km− 5

2 , where

K is some positive, finite constant.
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Upper Bound of the Variance of f(Y) = ∂P̂b
∂δ

A derivative of P̂ ′
b =

∂P̂b
∂δ with respect to Y ∗

ij is in terms of Qk’s expressed as

∂P̂ ′
b

∂Y ∗
ij

=
1

Q2
1

[
∂Q2

∂Y ∗
ij

− 2
Q2

Q1

∂Q1

∂Y ∗
ij

]
. (B.22)

The squared magnitude of the above expression is using (B.8) and (B.3) upper

bounded as ∣∣∣∣∣
∂P̂ ′

b

∂Y ∗
ij

∣∣∣∣∣

2

≤ 1

Q4
1

(∣∣∣∣
∂Q2

∂Y ∗
ij

∣∣∣∣
2

+ 4t2
∣∣∣∣
∂Q1

∂Y ∗
ij

∣∣∣∣
2
)
. (B.23)

Substituting (B.20) into (B.11) and using the upper bounds for Tk (B.10) and

lower bound for Q1 (A.1) lead to

var
(
P̂b

)
≤ 20t2(1 + tD̂m)

4DmD̂mS
4
m

√
m

nm4
. (B.24)

Therefore, under the assumptions that m and n are of the same order and Sm =

O(
√
m), var

(
P̂b

)
≤ Km− 5

2 , where K is some positive, finite constant.
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Appendix C

Optimization Loss

Let f(x) = a(x − x̃)2 and g(x) = b(x − x̃) + c be respectively quadratic and linear

functions. The function f(x) reaches minimum at x = x̃. On the other hand, the

minimizer for the sum h(x) = f(x) + g(x) is after setting the first derivative of h(x)

to zero given by

x∗ = x̃− b

2a
. (C.1)

Therefore, the minimum of h(x) is

h(x∗) = − b2

4a
+ c (C.2)

The error made by setting the minimizer of h(x) to be x̃ instead of x∗ is

h(x̃)− h(x∗) =
b2

4a
. (C.3)

This result is used to approximate the MSE loss made by optimizing the squared

bias instead of the sum of the squared bias and variance. Therein, the approximation

of the squared bias is f(x), while the approximation of the variance is g(x).
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Nomenclature

m number of coefficients (dimensionality of the observation space)

qk the eigenvector of the ensemble correlation matrix corresponding to λk

λ̂k the k − th largest eigenvalue of the sample correlation matrix

q̂k the eigenvector of the sample correlation matrix corresponding to λ̂k

r cross-correlation vector

r̂ estimate of the cross-correlation vector

GAm(x) empirical Eigenvalue Distribution Function corresponding to Am

µAm(x) empirical Eigenvalue Density Function corresponding to Am

µA(x) limiting Eigenvalue Density Function

SAm(z) empirical Eigenvalue Stieltjes Transform corresponding to Am

S̄A(z) limiting Eigenvalue Stieltjes Transform

FAm(z) empirical Eigenvector Stieltjes Transform corresponding to Am

n number of observations (snapshots, samples)

F̄A(z) limiting Eigenvector Stieltjes Transform

Mk empirical k-th moment of a random matrix

M̄k limiting k-th moment of a random matrix
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M̃k expectation of the k-th empirical moment of a random matrix

M̃∞
k expectation of the k-th empirical moment of a matrix in the limit when its

order grows large

λ forgetting factor

λopt optimal forgetting factor

w vector adaptive processor weights

d separation between sensors in a line array

vs signal replica vector

N number of sensors

θ elevation angle

P̂ power estimate

P true power

MSE(δ) estimation MSE of power estimator for diagonal loading δ

bias2(δ) squared bias of power estimator for diagonal loafing δ

var(δ) variance of power estimator for diagonal loafing δ

δ diagonal loading

δopt diagonal loading which minimizes MSE(δ)

δ̃opt diagonal loading which minimizes bias2(δ)

v(n) observation noise at discrete time n

c ratio between the number of coefficients and number of observations

d(n) channel output at time n
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σ2
v variance of the observation noise

σ2
o variance of the process noise

ε channel estimation error

ξ signal prediction error

Lff feedforward filter length

Lfb feedback filter length

xsoft soft decision estimate

σ2
MMSE signal prediction MSE of the MMSE processor

σ2
LS signal prediction MSE of the LS processor

u(n) observation vector received at discrete time n

R ensemble correlation matrix

R̂ sample correlation matrix

R̂δ diagonally loaded sample correlation matrix

λk the k-th largest eigenvalue of the ensemble correlation matrix
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