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Abstract 

Single microphone speech enhancement systems have 
typically shown limited performance, while multiple mi- 
crophone systems based on a least-squares error crite- 
rion have shown encouraging results in some contexts. 
In this paper we formulate a new  approach to multi- 
ple microphone speech enhancement. Specifically, we 
formulate a maximum likelihood (ML) problem for es- 
timating the parameters needed  for canceling the noise 

ML problem is solved via the iterative EM (Estimate- 
in a two microphone speech enhancement system. This 

Maximize) technique. The resulting algorithm shows 
encouraging results when applied to the speech enhance- 
ment problem. 

1 Introduction 
The  problem of noise cancellation in  single and  multi le mi- 
crophone  environments  has been  extensively  studied [ly. The 
performance of the various  techniques in the  single  microphone 
case  seems t o  be limited. However,  in a two  or  multiple  micro- 
phone  case,  the  performance of an  enhancement  system  may  be 
improved  due  to  the  existence of reference  signals. 

microphone  case,  based  on  the  LMS  algorithm.  Adaptive soh- 
Widrow et  al. [2] suggested an  adaptive  solution  for  the  two 

tion  based  on  the RLS algorithm  also  exist,  and  these  algorithms 
have  been  applied in a speech  enhancement  context. [3], [ 4 .  

For  the single  microphone  case,  one of the variety of met 1, O ~ S  

proposed by Lim  and  Oppenheim [5]. Although  not  developed 
that  have been  suggested is the  iterative  enhancement  method 

from  this  point of  view, this  method  can  be shown to  be  an 
instance of a general  iterative  algorithm  for  maximum  likelihood, 
introduced by Dempster  et  al. (61 and  referred to  as  the  EM 
algorithm. 

In the  EM  algorithm,  the  observations  are  considered  “in- 
complete”  and  the  algorithm  iterates  between  estimating  the 
sufficient statistics of the  “complete  data” given the observa- 
tions  and a current  estimate of the  parameters  (the E step)  and 

mated sufficient statistics (the  M step). 
maximizing  the likelihood of the complete  data, using the  esti- 

the  observations  are  the  desired  signal  with  additive 
the  “complete  data” is the  signal  and  noise  separately. 

The  unknown  parameters  are  some  spectral  parameters of the 
signal  (LPC  parameters,  for  speech).  The  algorithm  iterates 

current  spectral  parameters of the  signal  (the E stepl,  and  up- 
between  Wiener  filtering  applied to  the  observations using the 

filter  (the M step). 
dating  the  spectral  parameters  using  the  results of  t  e  Wlener 

In this  paper we develop  and  demonstrate  a  method,  based 
on  the  EM  algorithm, for  noise  cancellation, in  a two  microphone 
situation. We emphasize  the  two  microphone  case,  although  the 
results  may  be  extended  to  the  more  general  multiple micro- 

likelihood  problem,  maximizing  the  likelihood  directly is compli- 
phone  case.  While  the  problem  may  be  posed as a  maximum 

cated,  and  consequently  the  EM  algorithm  is  used.  The  resulting 
procedure  may  be  considered  as  an  extension of the  method  in 

ased on the  EM  algorithm, which may  be  an  alternative  to 
o two  microphones. We also  propose  an  adaptive  algorithm 

Widrow’s  approach in 121. 
This  paper  is  organized as follows:  In the  next  section we 

describe  the EM algorithm. In section 3 we formalize  a ML 

canceling  the  noise.  This ML problem  is solved  via the EM 
problem  whose  solution  (the  estimated  parameters)  are used for 

algorithm.  The  solution,  together  with a possible  on-line  scheme 
for its  implementation, is described  in  section 4. We conclude, by 
evaluating  the performance of the  suggested  system,  especially 
compared  with  the  technique of Widrow, in [2]. 

p t 

2 The EM algorithm 
Let y denote  the  data vector  with  the  associated  probability 
density fv(y;e) indexed by the  parameter vector e E 8. 8 is a 
subset of the  Euclidean  K-space.  Given  an  observed y, the  ML 
estimate @ M L  is  the value of e that  maximizes  the log-likelihood, 
that  is Tg 1% fv(; 8) 3 B M L  (1) 

- 

complete,  and we can specify some  “complete”  data X related 
Suppose  that  the  data vector  can  be viewed as being  in- 

to  by 
H ( X )  = Y (2) 
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where H ( . )  is a non-invertible  (many to  one)  transformation. 
The EM algorithm is directed a t  finding  the  solution  to 

(1 ) ;  however it  does so by making  an  essential  use of the com- 
plete da ta  specification. The  algorithm  is  basically  an  iterative 
method.  It  starts  with  an  initial guess e('), and e("+') is defined 
inductively by 

where fx(z; e) is  the  probability  density of X, and E { ./y; e(")} 
denotes  the  conditional  expectation given y, computed  using  the 
parameter  value  The  intuitive  idea  is  that we would like 
to  choose tha t  maximizes log fx.(x; e) ,  the log-likelihood of the 
complete  data. However,  since logfx(z;8) is not  available t o  
us (because  the  complete  data  is  not  available), we maximize 
instead  its  expectation, given the  observed  data y. Since we 
used the  current  estimate  rather  than  the  actual  value of e which  is  unknown,  the  conditional  expectation  is  not  exact. 
Thus  the  algorithm  iterates,  using  each new  parameter  estimate 
to  improve  the  conditional  expectation  on  the  next  iteration 
cycle (the E step)  and  then  uses  this  conditional  estimate  to 
improve  the  next  parameter  estimate  (the M step). 

The EM algorithm  was first presented by Dempster  et  a]. 
in i6;. The  algorithm  was  suggested  before, however not in its 
general  form, by several  authors  e.g. [7], [8], 191. 

- 

3 The ~ W Q - I B ~ C I - O I ~ ~ Q I I ~  ML problem 

measures the desired  (speech)  signal with  additive noise,  while 
Suppose tha t  in a  two  microphone situation:  one microphone 

the second  microphone  measures  a  reference  noise  signal,  which 
is  correlated  to  the "noise" component of the  signal  measured 
in the  first  microphone. 

U'e assume  that we observe yl(t) and y z ( t )  as  indicated  in 
Figure 1, where A ( z )  is an FIR filter, e ( t )  is  Gaussian  white 
noise,  and s ( t )  is the desired  signal. 

Specifically,  then 

y1(t) = S ( t )  + %(t )  

P 

n( t )  = akyz( t  - k )  + e ( t )  (4) 
k=O 

or > 
P 

Yl(t) = s ( t )  + QY2(t - k )  t- 4 t )  (5) 
k=O 

The  desired  signal s(l), is a  speech  signal.  In  formulating 
the ML problem, we assume  that s ( t )  is a sample  function  from 
a  stationary  Gaussian  process  whose  spectrum is known up  to 
some  parameters.  The  unknown  parameters e,  are {ak}, the 
spectral  parameters of s i t )  (which  will  be  denoted $), and nz. 

For the  rest of the  paper we assume  that all the  signals  are 
discrete.  Assuming  that  the  observation  window, 0 5 t 5 T -- 1 , 
is long  enough so that   the  Fourier  coefficients are  uncorrelated, 

SIGNAL (SIGNAL + NOISE) 

SENSOR 2 
(:EFERENCE) 

Figure 1: The  observations 

Now, as shown in appendix A, maximizing ( 6) is  equivalent to  
minimizing 

wit'h  respect to 0' and  the coefficients of P,(w) and A(w), where 
A ( w )  is  the  frequency  response of the FIR filter  i.e 

P 

A ( w )  = x a k e - I W k  

and P3(w) is  the power spectrum of s ( t ) ,  e.g if s ( t )  is an AR 
process of order p ,  with  coefficients {b;}:=l and  gain G, 

k=O 

We recall that  the  objective is to  estimate  the signal s ( t )  
and/or  its  parameters. Solving the ML problem will provide us 
the  spectral  parameters of the  signal.  Having  the { a i }  parame- 
ters,  we  may  cancel  the  noise,  and  have a signal  estimate. 

A direct  maximum  likelihood  solution  (i.e  minimizing (7))  is 
complicated  and  therefore  the  use of the EM algorithm is sug- 
gested.  In  this  approach  the  complete  data  is chosen to be 

The c h oice of this  "complete  data" is motivated  b  the  simple 
maximum likelihood  solution  available if indeed sJ ) ,n ( t )  and 
y z ( t )  are  observed  separately.  The  maximum  likelihood  estimate 
of { a k }  and nz is achieved by least  squares  fitt,ing of y%(t) to 
n(t) .  The  spectral  parameters of s ( t )  are  also  easily  estimated, 
e.g by solving  the  normal  equation  resulting  from  the  sample 
covariance of ~ ( t )  for the LPC parameters. 

More specifically,  observing the expression for the likelihood 
of the  "complete  data"  (appendix B), the  parameters  are  esti- 
mated by 

{ s ( t ) ,  4 2  1 yz(t)>. 

and 4, the  spectral  parameters of Pa, by 
~ 

where S ( w )  is  the Fourier  transform of s ( t ) ,  i.e 

. T-1 

In some  special  cases, (9) is simpler;  e.g when s ( t )  is assumed to 
be  an AR process it reduces t o  solving the Yule-Walker equation, 
using the sample  autocorrelation of s( t ) .  
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Note,  observing eqs. (8) ,  (9), that  the sufficient statistics of 
the  complete  data is n(t),  and lS(w)I2. The sufficient statistics is 
linear for the noise part,  and  quadratic for the signal part.  Thus 
The E step of the  algorithm  requires  the following expectations; 

h ( t )  = E {n( t ) l s ( t )  + n(t)  = Yl(t), y z ( t ) ; @ ( ” ) }  (10) 

and 

isG)lz E { l S ( w ) l z / S ( w ) +  ~ ( w )  = ~I(t),~z(t);g(”)} (11)  

where  denotes  the  parameters ( a k } , U 2  and d, in  the nth 
iteration. 

In  the E step,  the  above  conditional  expectations  are  calcu- 
lated, using the  current  estimate of the  parameters e(“). The 
resulting  procedure is, 

Generate  a  signal ~ ( t )  

9 

s ( t )  = Yl(t) - a k Y Z ( t  - k) (12) 
k=D 

(Note  that given { U k } ,  ~ ( t )  = s(l) + e ( t ) . )  

* Apply a Wiener  filter t o  z( t ) .  Get  an  estimate of 

where E(&) is the  Fourier  transform of e ( t )  and X ( w )  is 
the  Fourier  transform of ~ ( t ) .  

e The  estimate of n(t) is 

9 
f i ( t)  = U k y z ( t  - k )  f z ( t )  (16) 

k=O 

For the M step, we substitute  the  expectation above in ( 8),( 9) 
instead of the measured  statistics.  The  resulting M step  is, 

0 Solve the following least  squares  problem 

0 Add  the  result  to  the  previous  estimate of (ak} to get  a 
new estimate of {ah} .  

0 Update  the signal  spectral  parameter 
For LPC parameters, solve the  normal  equation  using  the 
estimated  sample covariance matrix,  (the inverse  Fourier 
transform of IS(w)lz) .  

The EM algorithm  is  summarized  in  Figure 2. 
This  procedure  can be implemented  either  on  the  entire  data 

on  each  iteration or adaptively, so tha t  on  each  iteration  an 
updated  segment of data  is produced.  The  resulting  adaptive 
algorithm will be  an  alternative to the LMS and RLS algorithms 
suggested for solving the  least-squares  problem  that  arises in 
Widrow’s  approach in (21. 

5 Conclusion 
The  suggested  algorithm  has  been  implemented,  with s( t )  a 
speech  signal. The  signal y z ( t )  was  band  limited  noise  with a flat 
spectrum  from zero to  3 KHz. The  FIR filter A(z) ,  was of order 
10. y l ( t )  was  generated  according  to  Figure 1 ,  and  the SNR in 
y l ( t )  was  approximately -20 db.  The  results were compared  with 
a “batch”  version of the  least-squares  algorithm,  corresponding 
to  estimating  the { Q k } ’ S  via  the following least-square 

and  then canceling the “noise”  and  estimating  the  signal by 

k=l 

signal,  and  although  there  were  perceptible  differences,  the over- 
Both  algorithms produced  good  enhancement of the  speech 

all  quality of both  was  similar. 
The  direct  least-square  approach  assumes  that y z ( t )  and s(t) 

are  uncorrelated,  and  this  assumption is critical. Our algorithm 
do  not  require  this  assumption. In a second  experiment, yz(t) 
included  a  delayed version  of the  speech  signal.  The  direct  least 
squares  approach  canceled  part of the  signal,  together  with  the 
noise,  resulting  in poor quality. In comparison,  the  performance 
of our  algorithm,  was  still  good. 

gorithms.  Another  important.  project is the  evaluation of the EM 
Further  experiments will  include a comparison of adaptive al- 

algorithm  and  its  comparison  with  direct  least-squares  method, 
when  both  noise  and  signal  couple  into  both  microphones. 

SPECTRAL PARAMETERS 
PARAMETER 
SPECTRAL 

ESTIMATE 

h 

R$) 
SENSOR 

i ,SIGNAL 

Figure 2: The suggested  algorithm 
~~ - 
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A Derivation of (7) 
It  is  easier  to  express  the  joint  distribution of the  signals  yl(t) 
and  yz(t)  in  the frequency domain,  since  the  Fourier  transform 
of the  signals  generate in each  frequency  random  variables tha t  
are  independent of the variables in other frequencies.  Thus 

logP(Yl(t),Yz(l) ; e )  = c l o g P ( Y l ( w ) , Y z ( 4  ; 8 )  (17) 
W 

In each  frequency, 

where Y l ( w ) , Y z ( w )  are the Fourier  transforms of the  signals 
Yl(t), YZ(t). 

However, log p ( Y z ( w ) )  is independent of e. Given Yz(w) and 

(7). 
So, maximizing  the  likelihood,  is  equivalent to minimizing 

However, logp(y*(t)) is independent of @. Also, given yz(t),  s(t) 
and  n(t)  are  independent,  thus 

The  term  logp(n(t)/yz(t);@)  depends only on { a k }  and 0'. 
Maximizing  this  term is equivalent to  minimizing ( 8). 

ever,  this  relation  is  arbitrary,  and  unknown.  Thus, we assume 
Under  our  assumptions, yz(t) may  be  related  to  s(t). How- 

that   the  probability  distribution of s ( t )  given yz(t) will be  the 
a-priori  distribution of s(t).  This  distribution  depends only  on 
the  parameters of P s ( w ) ,  and  it is the  probability of a stationary 
random  process  with  power  spectrum Pp(w) ,  
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