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Abstract

This paper considers interleaved, multi-channel measurements as arise for example in time-interleaved analog-to-digital (A/D)

converters and in distributed sensor networks. Such systems take the form of either uniform or recurrent nonuniform sampling,

depending on the relative timing between the channels. Uniform (i.e. linear) quantization in each channel results in an effective

overall signal-to-quantization-error ratio (SQNR) in the reconstructed output which is dependent on the quantizer step size in

each channel, the relative timing between the channels and the oversampling ratio. It is shown that in the multi-channel sampling

system when the quantization step size is not restricted to be the same in each channel and the channel timing is not constrained

to correspond to uniform sampling, it is often possible to reduce the SQNR relative to the uniform case. Appropriate choice of

these parameters together with the design of appropriate compensation filtering is developed.

Index Terms

Multi-channel sampling, Recurrent nonuniform sampling, Interleaved A/D, Oversampling, Quantization

I. INTRODUCTION

High bandwidth signals or the use of large oversampling ratios often require the use of time-interleaved A/D converters [1].

Similarly in a sensor network environment, separate sensors might independently sample a shifted version of an underlying

signal with the sensor outputs then transmitted to a fusion center for interleaving and processing. The relative timing of the

channels is typically chosen so that simple interleaving results in uniform sampling. More generally, the interleaved samples

correspond to recurrent nonuniform sampling [2–6].

When interleaving is assumed to correspond to uniform sampling but fails to do so because of timing errors, the channel

timing is often referred to as mismatched; if not accounted for, this mismatch can lead to significant degradation in performance.

A variety of methods have been suggested in the literature to mitigate these problems. To reduce the errors introduced by

timing mismatches it is first required to detecting the timing errors. In general, there exist two approaches for detection of

timing errors: one which does not assume prior knowledge and is based on the output samples of the time-interleaved A/D

converter [7–14], and another which incorporates a known signal at the input to the system [15, 16]. Once the timing errors

have been measured, the correction can be done either by adjusting the sampling clock in each A/D converter to eliminate the

timing errors, or by digital processing of the output samples to obtain uniform samples.
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In single or multi-channel sampling systems for A/D conversion, quantization effects must also be taken into account.

Oversampling is a well established approach to mitigating the effects of quantization, effectively trading off between the

oversampling ratio and the required quantization step size for a fixed signal-to-quantization-error ratio. This tradeoff can be

accomplished in a direct way by following the quantizer with a sampling rate converter or by using noise-shaping techniques as

in delta-sigma A/D converters [17, 18]. A systematic alternative approach is introduced in [19, 20] to derive the time-interleaved

equivalent structure for an arbitrary delta-sigma converter. A vector quantization approach is used in [21] to develop a lower

bound on the mean squared reconstruction error for periodic bandlimited signals from the quantized oversampled signal. The

oversampling technique is further utilized in [22] to reduce the quantization error by modulating the input and the output of

the quantizer.

In this paper we consider the effects of uniform quantization in the environment of interleaved, oversampled multi-channel

measurements and the design of optimal reconstruction filters1. Modeling quantization error with an additive noise model, we

show that for the multi-channel case, when the quantizer step size is not constrained to be the same in each channel and

the channel timing is not constrained to result in uniform sampling, it is often possible to reduce the SQNR relative to the

uniform case. Specifically, we show that timing mismatches between channels can be compensated for by appropriate choice of

quantization step size in each channel rather than attempting to correct the timing mismatch. Alternatively, the choice of using

different quantizer step size in each channel can be matched by appropriate choice of the relative timing between channels

together with properly designed compensation filters. The concept of having different levels of accuracy in different channels

is similar to the approach in sub-band coding [23–25] in which each sub-band is quantized with an accuracy based upon

appropriate criteria.

The remainder of this paper is organized as follows. Section II introduces the sampling system and discusses perfect

reconstruction of the original signal in the absence of errors. In section III uniform quantization is applied to the output

samples of the multi-channel system, and the design of optimal reconstruction filters is discussed. Section IV illustrates with

examples the optimal choice of the quantizer step size in each channel and the relative timing between the channels. A summary

of the results is given in section V.

II. MULTI-CHANNEL SAMPLING AND RECONSTRUCTION

In this section we introduce the multi-channel sampling system and develop conditions on the reconstruction filters under

which perfect reconstruction is achieved in the case of uniform and recurrent nonuniform sampling.

A. Oversampled Multi-Channel System

The basic multi-channel sampling structure which we consider is shown in Figure 12 3. In this system the Nyquist rate4 of

the bandlimited input signal x(t) is denoted by 1/TN , and each of the M channels is sampled at a rate of 1/T = 1/(LTN )

1A preliminary version of some of this work has been presented in [6].
2This system can be viewed as a special case of the more general multi-channel case discussed by Papoulis [4].
3Throughout this paper, we use the real-valued variables Ω and ω to denote frequency variables for continuous-time and discrete-time, respectively.

Transform-domain signals are denoted with capitalized versions of the time-domain signals, e.g., X(Ω) and X(ejω) denote the continuous-time and discrete-
time Fourier transforms of x(t) and x[n], respectively, where ejω is used to further distinguish between the continuous-time and discrete-time Fourier
transforms. Parentheses are used for continuous-time signals and brackets for discrete-time signals.

4We refer to the Nyquist rate as the minimum sampling rate required to avoid aliasing, equal to twice the highest frequency contained within the signal.
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with M > L, corresponding to an effective oversampling factor of ρ = M/L > 1. We assume the usual Nyquist-Shannon

sampling model but with the sampling done in a multi-channel structure. The notation C/D in Figure 1 represents continuous-

to-discrete-time conversion and refers to ideal sampling, i.e., xm[n] = x(nT − τm) with τm as the time delay of the mth

channel.

x(t)

e−jΩτ1

e−jΩτM−1

x0[n]
C/D

L · TN

C/D
x1[n]

L · TN

xM−1[n]
C/D

L · TN

e−jΩτ0

Fig. 1. Multi-channel sampling.

Interleaving the outputs of the multi-channel sampling system, as shown in Figure 2, we obtain either uniform or recurrent

nonuniform samples of x(t), depending on the relative timing between the channels. Specifically, when

τm = (m/M) · T, m = 0, 1, . . . . ,M − 1, (1)

the interleaved sequence xM/L[n] will correspond to uniform samples of x(t) at a rate of M/L times its Nyquist rate. Otherwise,

with nonuniform spacing of the time delays, xM/L[n] will correspond to recurrent nonuniform samples of x(t).

e
jω

1

M

x0[n]

x1[n]

M e
jω(M−1)

xM−1[n]

+

M

xM/L[n]

Fig. 2. Interleaving the output samples of the multi-channel sampling system of Figure 1.
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B. Perfect Reconstruction

In the absence of errors and when the effective sampling rate of the multi-channel sampling system of Figure 1 meets

or exceeds the Nyquist rate of the input signal, perfect reconstruction of x(t) is possible from the multi-channel outputs

x̃m[n] = xm[n]. For example, perfect reconstruction can be accomplished by combining the sequences x̃m[n] through a

combination of expanders followed by filters, as shown in Figure 3, to form uniform Nyquist samples of x(t), from which the

original continuous-time signal is obtained by sinc interpolation5.

G1(e
jω)

G0(e
jω)

L

L
x̃0[n]

x̃1[n]

+
x̃[n]

TN

L GM−1(e
jω)

x̃M−1[n]

x̃(t)

Ω

TN

−

π

TN

π

TN

∑
n
x̃[n]δ(t− nTN )Sample

to
Impulse

Fig. 3. Multi-channel reconstruction.

When the time delays of the multi-channel system of Figure 1 are uniformly spaced as in (1), choosing the reconstruction

filters in the system of Figure 3 as

Gm(ejω) =
L

M
ejω

L
M m, |ω| < π, m = 0, 1, . . . ,M − 1, (2)

results in perfect reconstruction of x(t). With this choice of Gm(ejω), the discrete-time processing in the multi-channel

reconstruction of Figure 3 is equivalent (see Appendix A) to interleaving, as shown in Figure 2, followed by sampling rate

conversion by a noninteger factor of L/M . More generally, the filters Gm(ejω) are chosen to compensate for the nonuniform

spacing of the channel offsets τm so that x̃[n] represents uniform samples of x(t).

Perfect reconstruction of x(t) is obtained in the system of Figure 3 when

M−1∑
m=0

Gm(ejω) ·

 1

T

L−1∑
k=−(L−1)

X

(
ω − 2π

L k

TN

)
· e−j(ω− 2π

L k) τm
TN

 =
1

TN
X

(
ω

TN

)
|ω| < π. (3)

Since the sampling rate in each channel is 1/L times the Nyquist rate of the input signal, only L shifted replicas of the

spectrum of x(t) contribute to each frequency ω in the spectrum of each signal xm[n] in Figure 1. Consequently, at each

frequency ω, equation (3) imposes L constraints on the M reconstruction filters Gm(ejω). Of these constraints we impose

L− 1 to remove the aliasing components and one to preserve X(Ω). Rearranging eq. (3) then results in the following set of

5Throughout the paper we refer to convolution of an impulse train of samples with the function h(t) = sinc( π
TN

t) as sinc interpolation and use the

historical unnormalized definition of the sinc function, i.e., sinc(x) , sin(x)
x

.
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constraints:

M−1∑
m=0

Gm(ejω) · e−j(ω− 2π
L k)τm/TN = L · δ[k], ω ∈ ∆ωi,

k = −i,−i+ 1, . . . , L− 1− i, i = 0, 1, . . . , L− 1, (4)

where ∆ωi =
[
π − (i+ 1) 2πL , π − i 2πL

]
. When M = L, eqs. (4) uniquely determine the reconstruction filters Gm(ejω).

With M > L, i.e., with oversampling, there remain M − L degrees of freedom for design of the reconstruction filters. The

implications both when M = L and when M > L will be discussed in detail in section III.

If the reconstruction filters in Figure 3 are designed as finite impulse response (FIR) filters, considerable gain in computational

efficiency can be achieved by utilizing a polyphase decomposition of Gm(ejω) and rearranging the operations so that the filtering

is done at the low sampling rate.

III. MULTI-CHANNEL SAMPLING AND RECONSTRUCTION IN THE PRESENCE OF QUANTIZATION ERROR

In this section we consider uniform quantization applied to the multi-channel output samples of Figure 1, i.e., x̃m[n] =

Q(xm[n]), and we analyze its effect on the reconstructed signal at the output of the system in Figure 3. We design optimal

reconstruction filters and provide a lower bound on the output average noise power. The optimal choice of the quantizer step

size in each channel and the relative timing between the channels is discussed.

A. Quantization Noise Analysis

In our analysis we represent the error due to the uniform quantizer in each channel through an additive noise model [26–29].

Specifically, the quantizer output x̃m[n] in the mth channel is represented as

x̃m[n] = xm[n] + qm[n], (5)

where qm[n] is assumed to be a white-noise process uniformly distributed between ±∆m/2 and uncorrelated with xm[n],

where ∆m denotes the quantizer step size. Correspondingly, the variance of qm[n] is σ2
m = ∆m

2/12.

We denote by e(t) the total noise component in x̃(t) due to quantization. As shown in Appendix B, e(t) is a zero-mean

wide-sense cyclo-stationary random process. The output ensemble average power E
(
e2(t)

)
of e(t) is also averaged over time

to obtain the time and ensemble average power of e(t), denoted σ2
e and given by

σ2
e =

1

T

∫ T

0

E(e2(t))dt =
1

2π

∫ π

−π

M−1∑
m=0

(σ2
m/L) · |Gm(ejω)|2dω. (6)

B. Optimal Reconstruction Filters

In general, the design of Gm(ejω) can be formulated in a variety of ways, one of which is to use all degrees of freedom

to minimize the reconstruction error [30]. However, in the specific approach taken in this paper, the only characteristic of the

signal assumed to be known is its bandwidth. Consequently, we choose the optimal reconstruction filters Gm(ejω) to minimize

σ2
e under the set of constraints in (4), which guarantees perfect reconstruction in the absence of error due to quantization. As
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shown in Appendix E, the reconstruction filters Gm(ejω) that minimize σ2
e under the set of constraints in (4) are

Gm(ejω) = 1/σ2
m · ejωτm/TN

(
L−1−i∑
l=−i

λ
(i)
l · e−j2π(τm/LTN )l

)
= 1/σ2

m · ejωτm/TN · Λ(i)(ejωm) (7a)

= 1/σ2
m · ejωτm/TN ·

(
vm

Hλ(i)
)
ejωmi, ω ∈ ∆ωi (7b)

i = 0, 1, . . . , L− 1, m = 0, 1, . . . ,M − 1,

where Λ(i)(ejωm) is the discrete-time Fourier transform of the finite-length sequence {λ(i)
k }L−1−i

k=−i sampled in frequency at

ωm = 2πτm/(LTN ) (8)

and

vm
H =

[
1, e

−j2π τm
LTN , . . . , e

−j2π τm
LTN

(L−1)
]
. (9)

For each i = 0, 1, . . . , L− 1 the sequence λ(i) = {λ(i)
k }L−1−i

k=−i is defined as the solution to the following set of equations:

AM · λ(i) = L · ei, (10)

where ei is an indicator vector whose ith entry is 1 and all other entries are zeros, and AM is an LxL Hermitian Toeplitz

matrix such that

AM =
M−1∑
m=0

(vm · vmH)/σ2
m. (11)

Substituting the expression for Gm(ejω) from (7a) into (6) we obtain for the minimum achievable value of σ2
e

σe
2
min =

1

L

L−1∑
i=0

(
1

L

M−1∑
m=0

|Λ(i)(ejωm)|2/σ2
m

)
. (12)

Alternatively, using the expression for Gm(ejω) from (7b), the integrand in eq. (6) can be expressed as

M−1∑
m=0

(σ2
m/L) · |Gm(ejω)|2 =

1

L
·
(
λ(i)
)H (M−1∑

m=0

(
vm · vmH

)
/σ2

m

)
︸ ︷︷ ︸

AM

λ(i) =
(
λ(i)
)H

· ei, ω ∈ ∆ωi, i = 0, 1, . . . , L− 1. (13)

Noting that AM > 0 and using (13), an equivalent expression for the minimum value of σ2
e becomes

σe
2
min =

1

L

L−1∑
i=0

(
λ(i)
)H

· ei =
L−1∑
i=0

ei
HA−1

M ei = tr(A−1
M ). (14)

When M = L, i.e., with no oversampling, it is intuitively reasonable and straightforward to show that the optimal filters in

(7) are consistent with the unique solution obtained by solving the perfect reconstruction equations presented in (4). In this



7

case the impulse response gm(t) corresponding to the frequency response

Gm(Ω) =

 TN ·Gm(ejΩTN ) |Ω| < π/TN

0 otherwise
, m = 0, 1, . . . ,M − 1, (15)

is shown in Appendix C to be

gm(t) = sinc
( π
T
(t+ τm)

)
·

 L−1∏
l=0,l ̸=m

sin
(
π
T (t+ τl)

)
sin( πT (τl − τm))

 m = 0, 1, . . . , L− 1. (16)

Consequently, in the absence of error due to quantization and with the reconstruction filters corresponding to gm(t) in (16),

the output x̃(t) of the system in Figure 3, i.e.,

x̃(t) =
M−1∑
m=0

∞∑
n=−∞

x̃m[n]sinc
( π
T
(t− nT + τm)

)
·

 L−1∏
l=0,l ̸=m

sin
(
π
T (t− nT + τl)

)
sin( πT (τl − τm))

 , (17)

is a perfect reconstruction of the continuous-time signal x(t). The reconstruction formula in (17) is consistent with [2] and

[5]. While the derivation in [5] is based on the Lagrange interpolation formula, the derivation here is carried out by imposing

the conditions for perfect reconstruction. As shown in Appendix D, the output average noise power is

σ2
e,L = tr(A−1

L ) =
1

L
·
L−1∑
m=0

σ2
m

L−1∑
k=0

L−1∏
l=0

sin2( πL (k + τl/TN ))

sin2( π
LTN

(τm − τl))
. (18)

When M > L, eq. (14) together with the Woodbury matrix identity [31] suggest a simple recursive formula for the update

of the output average noise power σe
2
min. Specifically,

A−1
n = A−1

n−1 −A−1
n−1vnv

H
n A−1

n−1/(σ
2
n + vHn A−1

n−1vn) n = L+ 1, . . . ,M, (19)

σ2
e,n = tr(A−1

n ) = σ2
e,n−1 −

vHn A−2
n−1vn

σ2
n + vHn A−1

n−1vn
n = L+ 1, . . . ,M. (20)

C. Optimal SQNR in Sampled Interleaved Multi-Channel Systems

In previous sections the effects of quantization in the multi-channel sampling system of Figure 1 were analyzed and optimal

reconstruction filters were designed to compensate for the nonuniform spacing of the channel offsets and for the quantization

error. It was shown that the effective overall signal-to-noise ratio in the reconstructed output depends on the quantizer step

size, the relative timing between the channels and the oversampling ratio. We next discuss how to appropriately choose these

parameters for optimal overall SQNR.

Noting that the ith equation in (10) corresponds to

M−1∑
m=0

1/σ2
m · Λ(i)(ejωm) = L, (21)

and applying the Cauchy-Schwartz inequality to (21) results in

M−1∑
n=0

1/σ2
n ·

M−1∑
m=0

|Λ(i)(ejωm)|2/σ2
m ≥ L2, (22)
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for each i = 0, 1, . . . , L− 1. Combining eqs. (12) and (22) it follows that

σe
2
min ≥ L∑M−1

m=0 1/σ2
m

, (23)

where equality is achieved if and only if the following condition is satisfied

M−1∑
m=0

1/σ2
m · ejωml = 0 l = 1, 2, . . . , L− 1. (24a)

This condition is equivalent to each of the following conditions:

Λ(i)(ejωm) =
L∑M−1

n=0 1/σ2
n

i = 0, 1, . . . , L− 1

m = 0, 1, , . . . ,M − 1,
(24b)

λ
(i)
k =

L∑M−1
m=0 1/σ2

m

δ[k] k = −i,−i+ 1, . . . , L− 1− i. (24c)

When the quantizers in Figure 1 all have the same step size, we next show that τm as given by eq. (1) is optimal, i.e., the

relative timing between adjacent channels is a constant. The optimal reconstruction filters in (7) then reduce to the noninteger

delays in (2). Also in this case,

σe
2
min = (L/M) · σ2, (25)

where σ2 denotes the variance of the quantization noise source in each channel. To show this, we note that with σ2
m = σ2,

the condition of eq. (24a) becomes

M−1∑
m=0

ejωml = 0, l = 1, 2, . . . , L− 1, (26)

which is clearly satisfied for any L and M when the values ejωm are uniformly spaced on the unit circle, corresponding to

uniform sampling. However, this is in general not a unique solution as there are other distributions of ωm which satisfy eq. (26).

In summary, it follows from eq. (23) that for the reconstruction structure suggested in Figure 3 and with the quantization step

size the same in each channel, the uniform sampling grid achieves the minimum average quantization noise power (L/M) ·σ2.

Any other choice of τm, for which (26) is not satisfied, results in a higher average quantization noise power.

As we next show, by allowing the quantization step size to be chosen separately for each channel, so that quantization

noise sources qm[n] in the different channels have different variances σ2
m, better SQNR can often be achieved. For comparison

purposes, we will assume that the quantization noise power averaged over all channels is equal to a pre-specified fixed number

σ2 6 , i.e.,

1

M

M−1∑
m=0

σ2
m = σ2. (27)

6A similar result can be shown if instead of fixing the average power of the quantization noise sources in each of the channels we fix the total number of
bits used to quantize the samples.
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Applying the Cauchy-Schwartz inequality to the identity
∑M−1

m=0 σm · 1/σm = M , it follows that

M−1∑
m1=0

σ2
m1

·
M−1∑
m2=0

1/σ2
m2

≥ M2, (28)

and equivalently

L∑M−1
m=0 1/σ2

m

≤ (L/M) · σ2, (29)

with equality if and only if

σ2
m = σ2 m = 0, 1, . . . ,M − 1. (30)

Together with (23), we conclude that by having different levels of accuracy in the quantizers in the different channels, there

is the possibility of reducing the average quantization noise power. This suggests a way to compensate for the mismatched

timing in the channels of Figure 1 and increase the total SQNR. Alternatively, we can deliberately introduce timing mismatch

so that with appropriate design of the quantizers, we will achieve better SQNR as compared to the equivalent uniform sampling

with equal quantizer step size in each channel. The analysis and conclusions of course rely on the validity of the additive

noise model used for the quantizer, which becomes less appropriate as the quantizer step size increases or the relative timing

between adjacent channels decreases.

IV. SIMULATIONS

In this section, we consider the multi-channel sampling system of Figure 1 with M = 3 and L = 2 followed by uniform

quantization. Three cases are considered, each corresponding to a different assumption with respect to the relative timing

between the channels and the quantization step size in each channel. In the first case, the quantization step size in each channel

is fixed and equal in all channels, and the relative timing between channels is optimized. In the second case, the relative timing

between the channels is specified, and the bit allocation is optimized subject to a bit-budget constraint. In the third case, each

channel is allocated a different number of bits, and the relative timing between channels is optimized to maximize the SQNR.

Figure 4 shows the factor γ = σ2/σe
2
min representing the reduction in the average noise power for the case of σ2

m = σ2 ∀m

as a result of the reconstruction of Figure 3 with M = 3, L = 2, and τ0 = 0. As indicated, the maximum noise reduction is

achieved for τ1 = −τ2 = ±(2/3) · TN , for which σe
2
min = (2/3) · σ2.

It follows from eq. (23) and is illustrated in the preceding example that for the reconstruction structure suggested in Figure

3 and with the quantization step size the same in each channel, the uniform sampling grid achieves the minimum average

quantization noise power (L/M) · σ2. Any other choice of τm for which (26) is not satisfied results in a higher average

quantization noise power.

We next illustrate with an example that with appropriate design of the quantizer in each channel we can compensate for

the mismatched timing in the channels of Figure 1. With 4-bit uniform quantizers in each of the channels, it follows from eq.

(14) that when the time delays are τ0 = 0, τ1 = TN/8 and τ2 = −(3/4)TN , the output average noise power is increased by

approximately 20% relative to the case where {τm} are chosen according to (1). However, when the quantizer step size is not
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Fig. 4. The reduction factor γ in the average noise power at the output of the reconstruction of Figure 3 achieves its maximum value at τ1 = −τ2 =
±(2/3) ·TN , i.e., when the multi-channel sampling is equivalent to uniform sampling. Since this curve is based on the additive noise model of the quantization
error, which assumes uncorrelated errors, it is less accurate in the vicinity of τ1 = 0, τ2 = 0 and τ1 = τ2.

constrained to be the same in each channel, the reconstruction error variance can be reduced. Table I shows the performance

gain for different bit allocations as compared to the case in which each channel is allocated 4 bits. The results are sorted

from the most to the least preferable where in each choice only 1 bit is shifted from one channel to another, keeping the total

number of bits the same.

In general, we might intuitively expect that since the sampling instants of channel 2 are relatively far from those of the other

two channels, it should be allocated more bits in compensation. Also, the relative timing between channel 0 and channel 2 is

smaller than the relative timing between channel 2 and channel 1, suggesting allocation of more bits to channel 1 as compared

to channel 0. This intuition of bit allocation according to the relative timing between adjacent channels is consistent with the

results in Table I and in particular with the optimal choice shown in Figure 5, which suggests allocating 3 bits to channel 0,

4 bits to channel 1, and 5 bits to channel 2.

N0 N1 N2 (σe
2
min)(4,4,4)/(σe

2
min)(N0,N1,N2)

3 4 5 1.46
4 3 5 1.36
3 5 4 1.26
5 3 4 1.14
4 5 3 0.41
5 4 3 0.38

TABLE I
THE PERFORMANCE GAIN FOR DIFFERENT BIT ALLOCATIONS

We next fix the number of bits in channel 0 to 3, channel 1 to 4, and channel 2 to 4, and without loss of generality set τ0 = 0.

The values of τ1 and τ2 are chosen to minimize the output average noise power. Note that when τ1 = −τ2 = ±(2/3)TN , the

multi-channel sampling is equivalent to uniform sampling. More generally, solving (24) for the optimal time delays yields the

following equation:

64 + 256ejω1 + 256ejω2 = 0, (31)
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ℑ(z)

ℜ(z)

(4)

(3)

(5)

e
jω2

e
jω1

e
jω0

π

8

π

4

Fig. 5. Each vector represents a channel whose time delay τm is determined by the vector’s phase ωm according to the transformation ωm = 2πτm/(LTN ),
which maps the region τm ∈ [−TN , TN ] into the region ωm ∈ [−π, π]. The numbers associated with each of the vectors are the optimal bit allocations for
the case of τ0 = 0, τ1 = TN/8 and τ2 = −3TN/4.

for which ω1 = −ω2 = ±0.5402π (corresponding to τ1 = −τ2 = ±0.5402TN ) is a solution, as Figure 6 illustrates. Consistent

with the intuition expressed earlier, since channels 1 and 2 are both allocated 4 bits and channel 0 is allocated only 3 bits, the

optimal choice of τ1 and τ2 is such that the relative timing between channel 1 and channel 0, which is equal to the relative

timing between channel 0 and channel 2, is much smaller than that between channel 2 and channel 1, compensating for the

low accuracy in channel 0. If channel 0 were allocated 4 bits as the other two channels are, the optimal choice of the time

delays would have been τ1 = −τ2 = ±(2/3)TN , corresponding to uniform sampling; however, since channel 0 is allocated

fewer bits than the other two channels, the sampling instants of the other two channels are getting closer to that of channel 0

in compensation. Since this choice of time delays provides the solution to (24), the output average noise power σ2
e achieves

the lower bound in (23), i.e., σ2
e = L/(

∑M−1
m=0 1/σ2

m).

ℑ(z)

ℜ(z)

(4)

(3)

(4)

e
jω2

e
jω1

e
jω0

Fig. 6. With bit allocation N0 = 3, N1 = 4, and N2 = 4, the optimal choice of time delays is τ1 = −τ2 = ±0.5402TN , for which the multi-channel
sampling system is equivalent to recurrent nonuniform sampling.

Figure 7 shows the relative gain with respect to output average noise power for all values of τ1 and τ2 in the range [−TN , TN ],

as compared to the case of uniform sampling. As indicated, an improvement of 12.5% relative to the uniform sampling case

is achieved for the optimal choice τ1 = −τ2 = ±0.5402TN .

In summary, we have illustrated that with nonuniform spacing of the time delays, for which the interleaved multi-channel

outputs correspond to recurrent nonuniform sampling, equal quantization step size in each channel is not optimal. Allowing

different levels of accuracy in the quantizers in the different channels achieves a reduction in the noise variance. Alternatively,
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Fig. 7. The relative performance compared to uniform sampling as a function of τ1 and τ2 when τ0 = 0, N0 = 3, N1 = 4, and N2 = 4. Since this curve
is based on the additive noise model of the quantization error, which assumes uncorrelated errors, it is less accurate in the vicinity of τ1 = 0, τ2 = 0 and
τ1 = τ2.

when the quantization step size in each of the channels is fixed and varies among channels, choosing the realtive timing

between adjacent channels to be the same is not optimal, and lower average noise power is achieved with nonuniform spacing

of the time delays.

V. CONCLUSIONS

In this paper we have considered the effects of uniform quantization in the environment of interleaved, oversampled multi-

channel measurements. We have shown that with uniform quantization and equal quantizer step size in each channel, the

effective overall signal-to-noise ratio in the reconstructed output is maximized when the multi-channel sampling is equivalent

to uniform sampling. With different levels of accuracy in each channel, uniform spacing of the time delays is in general not

optimal, and better results can often be achieved with nonuniform spacing corresponding to recurrent nonuniform sampling.

Similarly, for the case of nonuniform spacing of the time delays, equal quantization step size in each channel is in general

not optimal and a higher signal-to-quantization-noise ratio can be often achieved when allowing different levels of accuracy

in the quantizers in the different channels. We have developed the optimal reconstruction filters to minimize the time and

ensemble average power of the reconstruction error under the constraints which guarantee perfect reconstruction in the absence

of quantization error.

APPENDIX A

MULTI-CHANNEL SAMPLING RATE CONVERSION

Interleaving the outputs of the multi-channel sampling system of Figure 1 and subsequent processing through sampling rate

conversion by a noninteger factor of L/M , we obtain the system of Figure A.1.

Interchanging expanders with filtering we obtain the system of Figure A.2, from which it follows that

Gm(ejω) =
L

M
ejω

L
M m, |ω| < π, m = 0, 1, . . . ,M − 1. (A-1)
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e
jω

1

M

x̃0[n]

x̃1[n]

M e
jω(M−1)

x̃M−1[n]

+

M

x̃M/L[n] x̃[n]

ωπ

M
π

M
−

L

L M

Fig. A.1. Interleaving followed by sampling rate conversion.

ejωL

1

ejω(M−1)L

+

ωπ

M
π

M
−

L

M

ωπ

M
π

M
−

L

M

ωπ

M
π

M
−

L

M

x̃[n]

M

L

x̃0[n]

x̃1[n]

L
x̃M−1[n]

L M

M

G1(e
jω)

GM−1(e
jω)

G0(e
jω)

Fig. A.2. Multi-channel sampling rate conversion.

APPENDIX B

THE OUTPUT AVERAGE NOISE POWER DUE TO QUANTIZATION

To analyze the effect of each channel of Figure 3 on the corresponding quantization noise, we consider the system of Figure

B.1 whose output q̃m(t) is

q̃m(t) =

∞∑
n=−∞

qm[n]gm(t− nT ), (B-1)

where gm(t) is the impulse response corresponding to the frequency response

Gm(Ω) =

 TN ·Gm(ejΩTN ) |Ω| < π/TN

0 otherwise
, m = 0, 1, . . . ,M − 1. (B-2)

Gm(ejω)L
q̃m[n]qm[n]

TN

q̃m(t)

Ω

TN

−

π

TN

π

TN

Sample
to

Impulse

Fig. B.1. A single channel in the reconstruction system of Figure 3.

Under the assumption that qm[n] is a zero-mean white-noise process with variance σ2
m, the autocorrelation function of q̃m(t)
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is

Rq̃mq̃m(t, t− τ) = σ2
m ·

∞∑
k=−∞

gm(t− kT )gm(t− τ − kT ), (B-3)

which is periodic in t with period T = LTN and q̃m(t) is therefore a wide-sense cyclo-stationary random process.

Alternatively, Rq̃mq̃m(t, t− τ) can be expressed as

Rq̃mq̃m(t, t− τ) =
1

2π

∫ π/TN

−π/TN

Sq̃mq̃m(Ω; t) · ejΩτdΩ, (B-4)

where

Sq̃mq̃m(Ω; t) =

 σ2
m · TNGm

∗(ejΩTN ) ·
∑∞

k=−∞ gm(t− kT )e−jΩ(t−kT ) |Ω| < π
TN

0 otherwise
. (B-5)

We denote by e(t) the total noise component in x̃(t) due to quantization, i.e.,

e(t) =
M−1∑
m=0

q̃m(t). (B-6)

With the assumption that the quantization noise is uncorrelated between channels,

Ree(t, t− τ) =

M−1∑
m=0

Rq̃mq̃m(t, t− τ), (B-7)

from which it follows that e(t) is also a wide-sense cyclo-stationary random process. Thus, the ensemble average power

E(e2(t)) of e(t) is periodic with period T . Averaging also over time and denoting by σ2
e the time and ensemble average power

of e(t), we obtain

σ2
e =

1

T

∫ T

0

E(e2(t))dt =
1

T

∫ T

0

Ree(t, t)dt =
M−1∑
m=0

1

T

∫ T

0

Rq̃mq̃m(t, t)dt. (B-8)

Expressing Rq̃mq̃m(t, t) in terms of Sq̃mq̃m(Ω; t) as in (B-5), eq. (B-8) becomes

σ2
e =

M−1∑
m=0

σ2
m

2πL
·
∫ π/TN

−π/TN

Gm
∗(ejΩTN ) ·

( ∞∑
k=−∞

∫ T

0

gm(t− kT )e−jΩ(t−kT )dt

)
dΩ

=
1

2π

∫ π

−π

M−1∑
m=0

(σ2
m/L) · |Gm(ejω)|2dω. (B-9)

APPENDIX C

PERFECT RECONSTRUCTION FROM NYQUIST SAMPLES

Writing the equations in (4) in a matrix form, we obtain

V ·



e−jω0i ·G0(e
jω) · e−jωτ0/TN

e−jω1i ·G1(e
jω) · e−jωτ1/TN

. . .

e−jωM−1i ·GM−1(e
jω) · e−jωτM−1/TN


= L · ei, ω ∈ ∆ωi, i = 0, 1, . . . , L− 1, (C-1)
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where ei is an indicator vector whose ith entry is 1 and all other entries are zeros, and V is an LxM vandermonde matrix of

the form

V =



1 1 . . . 1

α1 α2 . . . αM

α2
1 α2

2 . . . α2
M

. . .
. . . . . . . . .

αL−1
1 αL−1

2 . . . αL−1
M


(C-2)

with αm+1 = ejωm , m = 0, 1, . . . ,M − 1. When M = L and all αm are distinct, V is invertible. Using the explicit formula

in [32] for the inverse of a square vandermonde matrix in solving eqs. (C-1) for the case M = L results in

Gm(ejω) = L · ejωmi · ejωτm/TN · (−1)L−1−i∏L−1
l=0,l ̸=m (αm+1 − αl+1)

· σm+1
L−1−i,L−1, ω ∈ ∆ωi,

i = 0, 1, . . . , L− 1, m = 0, 1, . . . , L− 1, (C-3)

where the coefficients {σm+1
L−1−i,L−1}

L−1
i=0 are determined by the following expansion

L∏
l=1,l ̸=m+1

(x− αl) =
L−1∑
i=0

(−1)L−1−ixiσm+1
L−1−i,L−1. (C-4)

Denoting by gm(t) the impulse response corresponding to the frequency response Gm(Ω) in (15), it follows from eqs. (C-3)

and (C-4) that

gm(t− τm) =
1

2π

∫ π/TN

−π/TN

TNGm(ejΩTN )ejΩ(t−τm)dΩ (C-5)

=

(∑L−1
i=0 (−1)L−1−i(αm+1e

−j 2π
LTN

t
)i · σm+1

L−1−i,L−1

)
∏L−1

l=0,l ̸=m(αm+1 − αl+1)
· sinc(πt/T ) · ej

π
TN

(L−1
L )t

=
L−1∏

l=0,l ̸=m

(αm+1e
−j 2π

LTN
t − αl+1)

(αm+1 − αl+1)
· sinc(πt/T ) · ej

π
TN

(L−1
L )t

, m = 0, 1, . . . , L− 1. (C-6)

Substituting αm+1 = ejωm in (C-6) results in gm(t) as given in (16).

APPENDIX D

NYQUIST SAMPLING - THE OUTPUT AVERAGE NOISE POWER

With no oversampling, i.e., when M = L, AL can be represented as

AL = V Σ−1V H , (D-1)

where V is given by (C-2) and Σ = diag[σ2
0 , σ

2
1 , . . . , σ

2
L−1]. Since V is invertible, the minimum achieved output average noise

power can be written as

σe,L = tr(A−1
L ) = tr(UΣUH) =

L−1∑
m=0

σ2
m|um|2, (D-2)



16

where UH = V −1 and um denotes the mth column of U . Using the formula in [32] for the inverse of V in calculating the

norm of um, we obtain

|um|2 =
L−1∑
i=0

|ui,m|2 =

∑L−1
i=0

∣∣∣(−1)L−1−i · σm+1
L−1−i,L−1

∣∣∣2∏L−1
l=0,l ̸=m(αm+1 − αl+1)

. (D-3)

Substituting x = e−j 2π
L k in (C-4) results in the Discrete Fourier Transform of the sequence {(−1)L−1−i · σm+1

L−1−i,L−1}
L−1
i=0 .

Specifically,

L−1∑
i=0

(−1)L−1−i · σm+1
L−1−i,L−1e

−j 2π
L ki =

L−1∏
l=0,l ̸=m

(
e−j 2π

L k − αl+1

)
, k = 0, 1, . . . , L− 1, (D-4)

from which the numerator of the expression in (D-3) can be calculated using Parseval relation and eq. (18) then follows.

APPENDIX E

OPTIMAL RECONSTRUCTION FILTERS

To find the filters Gm(ejω) which minimize σ2
e in (6) under the constraints in (4), we use the Lagrange multipliers, where

the Lagrangian is defined as

L(i) =
M−1∑
m=0

σ2
m · |Gm(ejω)|2 +

L−1−i∑
k=−i

λ
(i)
k ·

(
M−1∑
m=0

Gm(ejω)e
−j(ω− 2π

L k) τm
TN − L · δ[k]

)
ω ∈ ∆ωi, i = 0, 1, . . . , L− 1. (E-1)

Differentiating (E-1) with respect to GR
m(ejω) = ℜ(Gm(ejω)) and GI

m(ejω) = ℑ(Gm(ejω)), we obtain

∂L(i)

∂GR
m(ejω)

= 2σ2
mGR

m(ejω) +
L−1−i∑
k=−i

ℜ(λ(i)
k )·ℜ

(
e
−j(ω− 2π

L k) τm
TN

)
+ ℑ(λ(i)

k )·ℑ
(
e
−j(ω− 2π

L k) τm
TN

)
∂L(i)

∂GI
m(ejω)

= 2σ2
mGI

m(ejω) +

L−1−i∑
k=−i

−ℜ(λ(i)
k )·ℑ

(
e
−j(ω− 2π

L k) τm
TN

)
+ ℑ(λ(i)

k )·ℜ
(
e
−j(ω− 2π

L k) τm
TN

)
ω ∈ ∆ωi, m = 0, 1, . . . ,M − 1. (E-2)

Solving (E-2) for Gm(ejω) results in

Gm(ejω) = 1/σ2
m · ejωτm/TN

(
L−1−i∑
l=−i

λ
(i)
l · e−j2π(τm/LTN )l

)
ω ∈ ∆ωi, i = 0, 1, . . . , L− 1, m = 0, 1, . . . ,M − 1,

(E-3)

where the values of λ(i)
l are determined by the constraints in (4), i.e.,

L−1−i∑
k=−i

λ
(i)
k ·

M−1∑
m=0

1/σ2
m · e−j 2π

L (k−p) τm
TN = L · δ[p], p = −i,−i+ 1, . . . , L− 1− i, i = 0, 1, . . . , L− 1. (E-4)
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