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Abstract—The ct q ponding to tent map dynamics
are potentially attractive in a range of engineering applications. Optimal
estimation algorithms for signal filtering, prediction, and smoothing in the
presence of white Gaussian noise are derived for this class of sequences
based on the method of Maximum Likelihood. The resulting algorithms
are highly nonlinear but have convenient recursive implementations that
are efficient both in terms of computation and storage. Performance eval-
uations are also included and compared with the associated Cramér-Rao
bounds.

Index Terms—Chaos, nonlinear dynamics, recursive estimation, maxi-
mum likelihood, Kalman filtering.

1. INTRODUCTION

Chaotic signals, i.e., signals which can be described as outputs
of nonlinear dynamical systems exhibiting chaotic behavior are
appealing candidates for use in a variety of engineering contexts.
In terms of signal analysis, these signals constitute potentially useful
models for a range of natural phenomena. In terms of signal synthesis,
the special characteristics of chaotic signals are potentially attractive
in a number of broadband communication and radar applications. In
order to exploit chaotic signals in both types of applications, there
is a need for robust and efficient algorithms for the detection and
estimation of these signals in the presence of various forms and
amounts of distortion.

A variety of heuristically reasonable algorithms have been pro-
posed for estimating chaotic signals in backgrounds of additive,
stationary white Gaussian noise given varying degrees of a priori
information; see e.g., [1]-[3]. However, the development of optimal
estimators for these scenarios has generally proved to be rather
difficult.

In this correspondence, we focus our attention on the particular
class of first-order, discrete-time chaotic signals whose dynamics are
governed by the so-called tent map. For these chaotic signals, we
develop estimators that are optimal in a Maximum-Likelihood (ML)
sense, possess highly convenient recursive implementations, and are
closely related to traditional Kalman filters.

II. CHAOTIC SEQUENCES FROM TENT MAPS

The chaotic sequences z[n] of interest in this work are generated
according to the following one-dimensional dynamics:

z[n] = F(aln — 1)) m
where F(-) is a symmetric tent map, i.e.,
F(z)=p8-1-3|z| 2)
with parameter 1 < 3 < 2.
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For almost all initial conditions [0} in (—1,8 — 1), it is well
known [4] that these mappings produce ergodic sequences whose
values remain in the range (—1,3 — 1). In the sequel, we restrict
our attention to the ergodic case, which allows us to use time- and
ensemble-averages interchangeably. The associated invariant distribu-
tion (first-order) is then obtained as a solution to the corresponding
Perron-Frobenius equation [5], although, in general, it cannot be
expressed in closed form. Likewise, these processes have broadband
spectra, although closed-form expressions are not available in general.

The Lyapunov exponent X is a measure of the numerical sensitivity
of the map, describing, in particular, the average rate at which
successive iterates generated from nearby initial conditions z[0)
diverge. For the tent maps given by (2)

X = E[log|dF/dx|] = log 3 (3

where we use E[-] to denote expectation with respect to a random
initial condition selected according to the invariant density p(z) of
the map [4].

For the map corresponding to 3 = 2, one can derive more detailed
results. In particular, the invariant density is uniform [4], i.e.,

pla) = {(1]{2

which implies, among other properties, that the sequences are zero-
mean. Furthermore, since both F(-) and the invariant density (4) are
even functions, it follows that the autocorrelation of such sequences
is given by
R[K] = Elz[n + Kafn]] = Ele[n]F (z[n])]
_[1/3. k=0
10, otherwise

where F¥)(-) denotes the k-fold composition of F(-) with itself.
Hence z[n] has a time-averaged spectrum that is white, i.e.,

la) <1
otherwise

G

S(w)=1/3. allw. 5)
For this reason, we refer to those sequences corresponding to B=2
as “chaotic white noise,” and we will frequently specialize our results
to this case.

Because F'(+) in (2) is unimodal and even, it has two inverse images
that differ only in sign—i.e., given v = F(2), x can be determined
from v to within its sign. For convenience, we denote the two inverses
of F(-) by

o = 2 ®
where s = £1. Thus we have the relation
v=F(z)=> 2= Fs;,llr(v).
For future reference we also define
Fi(z)=p—1-fsz )

and note that
F(x) = Fgn ().

Since, given s, Fy(-) and F, 1(.) are inverses, and since both are
linear in their arguments two useful identities can be readily verified.
First, for any a and b, and any s = +1, we have

la — F; ' (b)| = | Fe(a) = bl/B- ®)
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Second, for any wi,u2,- -, um, we have

g =1=F, (Zakuk) =

For convenience, we also introduce the following notation for
k-fold compositions of F,(-) and F; '(-); specifically,

m

Zﬂkps(uk)~

k=1

©

FoyoF, ,o-oF, ()2 FY, (2 (10)
F oFSZ 0.0 Fill(a) 2 FTE) (@) (1)

where s1,52,---, s and x are arbitrary.
Via inverse mappings, we obtain a useful alternative representation
for a sequence

2[0], z[1], - -

generated according to (1) with (2). In particular, for each n we
have, using the notation (11)

,z[N] (12)

aln] = FOTI0 v (21N (13)
with
s[n] = sgnz[n].
Hence
s[0, s[1].- -+, s[N — 1], z[N] (14)

is an equivalent representation for (12), and (13) defines the co-
ordinate transformation. It is this representation we exploit in the
sequel.

III. ML ESTIMATION OF TENT MAP SEQUENCES

Let us consider the estimation of a chaotic tent map sequence
from a set of NV noisy observations

y[U]v y[]-]’"'wy[lv]' (15)

Specifically, suppose

y[n] = z[n] + w[n] (16)

where w{n] is a stationary, zero-mean white Gaussian noise sequence
with variance o2, and x[n] is a tent map sequence generated by
iterating some unknown z[0] € (—1,3 — 1) according to (1) using
(2) for some parameter 1 < 3 < 2. The objective is to obtain ML
estimates of

z[0], 2[1], - -, 2[N]

from the noisy data.

For future convenience, let £[n|m] denote the ML estimate of z[n]
given y[k] for 0 < k < m. In addition, note that since ML estimation
is invariant to nonlinear transformations,

&ln|m)= F®(2[n - k| m)) a7

for any m and k¥ < n. Hence, given #[0|N], the remainder of the
sequence can, in principle, be obtained by iterating this estimate
according to (17). Although estimating 2[0] directly is therefore
appealing, this approach leads to a difficult optimization problem.
Indeed, as reported in [6], for chaotic maps of this type the associated
likelihood function is typically a highly irregular function with fractal
characteristics. Consequently, gradient descent algorithms cannot
practically be applied to this problem to obtain ML estimates of x[0].

A more effective approach, and the one we employ in this
correspondence, involves recasting the problem into one of finding
ML estimates for the coordinates (14) as an intermediate step. The
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resulting estimation is then naturally partitioned into a filtering stage
and a smoothing stage. Before proceeding with the derivation of the
algorithm, we first develop some preliminary results. .

We begin by denoting the parameters to be estimated by 8, where

6 = {300 | n]. 8L | n,---.8[n — 1| n],é[n [n]}  (18)
and where 3[n|m] denotes the ML estimate of s[n] given y[k] for
0 < k < m. Then, since for any n > 0, y[0],y[1],---,y[r] is
a collection of independent Gaussian random variables with equal

variance

6, = argmin <[n] (19)
6
where
=" (yl[k] — =[k])?. (20)
k=0
We may rewrite (20) in the form
£[n] = [ 1 8[0], s[1],- -+, s[n — 1], z[n]]
2
= Z ( s[k+1] s[n_lj(ﬂ"["])) 2n
=y gt (Fs‘{; stz (1K) = 2ln])
k=0
(22)

where (21) follows from (13), and where (22) follows from applica-
tions of the identity (8).

The following lemma will be especially useful, a proof of which
is provided in the Appendix.

Lemma 1: Let N and n be arbitrary integers such that 0 < n <
N -1, let s[0], s[1],- -+, s[n — 1], and s[n + 1], s[n + 2}, - -, 5[N]
be arbitrary binary (1) sequences, and let = be an arbitrary real
number such that € (—1,3 — 1). Then

argmin £[N; s[0], s[1],-- -, s[N — 1], 2]
s[n]

=sgn 3 BETIECTY L gWlkD. @3)

Note that the right-hand side of (23) is independent of both z
and s[n + 1], s[n + 2],-- -, s[N]. As an immediate consequence we
therefore have that

3[n|n]=3[n|N]

k—n n—k)
—sgnz ik )FB([" ) it

2, (WIED. 24

The right equality in (24) follows immediately from (23) and the
definition of $[n|n]. The left equality in (23) is a consequence of
the fact that the right-hand side of (23) is independent of the data
samples y[k] for k > n. As a result of (24), we will, without risk of
ambiguity, use 3[n] to denote both 3[rn|n] and 3[n|N].

Using the above results, the filtering, smoothing, and prediction
algorithms can all be derived in a straightforward manner, as we
now show.

A. Filtering

Filtering provides the ML estimates #[n | n] forn =0,1,---, N.
These estimates are obtained by sequential, causal processing of the
data using the following efficient recursive algorithm.
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Due to (19), &[n|n] is readily obtained by differentiating (22) with
respect to z[n| given s(k] = §[k] for k = 0,1,---,n—1, and solving
for the unique stationary point. In particular, we get

2 —n n—k
Z ﬂﬂk )Fg([n_l)]yg[,,_z]ym,g[k](y[k])

#n | n) = =2 _ (25)
2 2tk—m)
k=0
The recursion for #[n | n] then takes the form
#n | n] = G 1)ﬂ2"y[;]2:1+(»19:"_—1 Difnln =1 4
where, via (17), #[n|n — 1] is given by
#njn - 1] = F(&n—-1|n-1]) @n
.and where the initialization is
#010] = y[o). 8)

To verify (26), it suffices to apply the identity (9) to (27) with
#[n — 1| n — 1] expanded according to (25), and substitute the result
into the right side of (26). For sufficiently large n, the weights in
(26) settle to their steady-state values and the recursion simplifies to

Zn|n]= 5
It is important to recognize, however, that the quantities &[n | n]
computed according to the recursion (26) above are not quite the
ML estimates. This is because #[n | n] is only given by (25) when
the right-hand side is in the range (—1,3 — 1). However, it is
straightforward to verify that the true ML estimates Zmv[n | n] are
closely related. In particular, to generate Zmr[n | n} an intermediate
sequence is first generated via the recursion (26) initialized with (28),
then this intermediate sequence is amplitude-limited according to

.f’,ML[TL | n] = Ig(i’[n | 'ﬂ]) (29)
where
x, ze(-1,8-1)
I@(r) = —1, x S -1 (30)
3-1, z>3-1.

Interestingly, the ML filtering algorithm just developed is closely
related to the extended Kalman filter [7] for this problem. To see this,
we note that (26) may be rewritten in the form

in|n) =& |n—1+K@R)yr] —&n|n-1]) (Gla
where
K[n] = P[n | n]/o2, (31b)
and where
1/Pln|n]=1/P[n|n—1]+1/0% (31c)
1/P0| 0] =1/0% (31d)
with
Pln|n—1=3Pn-1|n-1]. (3le)

Noting, in addition, that the coefficient 5% in (31e) corresponds to

2 (@Y
' dx
we see that (31a)—(3le) are precisely the extended Kalman filter
equations for the problem, with '[n] denoting the Kalman gain and

r=2[n—1|n—1]

P[n | m] denoting a generalized error variance associated with the
estimate &[n|m].

As is well known, for nonlinear estimation problems, in general,
estimates produced by extended Kalman filters are usually not op-
timal with respect to any meaningful criterion, and the associated
generalized error variances do not correspond to the actual error
variances. However, in this particular estimation problem, we have,
somewhat remarkably, that the extended Kalman filter produces
estimates [n | n], which when amplitude-limited according to 29),
are true ML estimates 2y [r|n]. In addition, as will become apparent
in Section IV, the pseudo error variance Pin|n] in this case turns out
to be precisely the associated Cramér—Rao bound.

B. Smoothing

The ML filtered estimates i, [n|n] are obtained using a forward
pass through the data; to obtain the smoothed estimates Znr, [n| N ] re-
quires backward propagation of the filtered estimates. Specifically, as
an immediate consequence of the invertible coordinate transformation
(13), the backward recursion is

gmiln | N) = Fypn(@ae[n + 1] N])

(32)

and is initialized with #yr [N | N].
Furthermore, comparing (24) with (25), we see immediately that

$[n | N] = 3[n] = sgn &[n | n]. 33)

Consequently, the 3[n] are readily computed during the filtering pass.
In fact, since smoothing requires no further access to the data, the
estimation may be implemented so as to be efficient not only in terms
of computation, but also in terms of storage. In particular, each y[n]
for n < N may be replaced in memory with 3[n] as it is computed,
and y[N] may be replaced with Z[N|N].

Note, too, that (32) and (33) imply that for n >1

N} = F(émLln = 1| N]) (34)

Fme(n

consistent with (17).

C. Prediction

ML one-step predictors arise rather naturally in the solution to the
filtering problem. As a final remark, we note that, more generally,
ML K -step predictors can be also be readily derived. In particular,
as an immediate consequence of (17), we see that the K'-step ML
predictions are constructed via the recursion

imL[V + K | N]= F(émL[N + K = 1| N]) (35)

initialized with the ML filtered estimate #mp[V | V). This prediction
result (35) is also consistent with our smoothing result (34).

IV. PERFORMANCE CHARACTERISTICS

In this section we focus on two aspects of the performance of the
ML estimators developed in this work: bias and error variance.

A. Bias

In general, the ML estimates corresponding to filtering, smoothing,
and prediction are all biased. As an illustration, in Fig. 1, we plot the
magnitude of the bias in the estimates #[N + A | N] for 3 = 2,
N = 49, and =50 < K < 20 at three different SNR levels,
corresponding to 20, 30, and 40 dB.

Additional features are apparent in Fig. 2, where the dashed curve
indicates the steady-state bias in the filtered signal estimates as a
function of signal-to-noise ratio (SNR) for the case 3 = 2, as
determined from Monte Carlo simulations. The solid curve in this
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Absolute bias in estimate of X[N+K]

SNR gain (dB)

-50 -40 -30 <20 -10 0 10 20

Fig. 1. Magnitude of the bias in the ML estimates iy, [N + K | K] as a
function of K (3 = 2).

Absolute Bias in ML estimate

10- 10 0 10 20 30 40 50 60
SNR (dB)

Fig. 2. Bias in the ML estimates (3 = 2). The dashed curve corresponds to
the bias in filtering, while the solid curve corresponds to the bias in smoothing.

same figure plots the bias in the smoothed ML estimates for the case
3 = 2 based on Monte Carlo simulations. Note that the fact that the
ML estimates are asymptotically unbiased at high SNR is reflected
in these results.

B. Variance

It is straightforward to obtain the Cramér—Rao bound on the
variance of any unbiased estimate. In particular, we have, in general

var &[n | m] > 2073,/ E[8%<[m]/82%[n]) (36)

where E[] denotes expectation with respect to the observation noise
for a fixed initial condition." For the case of filtering, it is convenient
to express =[n] in the form (22), which when combined with 36
yields '

var &[n [ n] > 02 - (1- 37%) [1 = 37201 (37

'In fact, since, as we will see, this bound turns out to be independent of
the initial condition, this expectation can be interpreted as being with respect
to both the observation noise and a randomly chosen initial condition.

20
SNR (dB)
Fig. 3. SNR gain in the ML estimates (3 = 2). The dashed curve
corresponds to filtering, while the solid curve corresponds to smoothing.
The lower and upper dotted lines correspond to the Cramér-Rao bounds for
filtering and smoothing, respectively.

As n — oo, (37) decays to (1 — 372)o2,, which, for the case 3 = 2
corresponds to (3/4)c 2. Consequently, the asymptotic filtering gain

of the ML estimate is
2

101log,, 52’3—_1 dB (38)

or only approximately 1.25 dB in the case 3 = 2. In Fig. 3, the dashed
curve depicts the steady-state SNR gain (over simply amplitude-
limiting y[n]) in the filtered signal estimates as a function of SNR as
determined from Monte Carlo simulations. The lower dotted line in
Fig. 3 indicates the bound (38). Again, both correspond to the case
3 = 2. Note that, as expected, at high SNR the Cramér—Rao bound is
attained asymptotically, i.e., the estimates are asymptotically efficient.

We may similarly compute Cramér-Rao bounds on the variance
of unbiased smoothed estimates. In particular, using (36) with £[N]
expressed in the form

n—1
eV =3 (ulk] = Fyp Doy, o))’
k=0
N
+ Y (k] = F*(aln)))
k=n
we get
var #fn | N > 02 - (1 — g72%) - g2 =3)[1 — g72(V+01=1 0 (39)

Furthermore, it is straightforward to show using (39) that the average
estimation error in these estimates is bounded according to
1 o o2
— tn | N] > —2-. 40
N+1§0V“”["‘ 12 51 40
The solid curve in Fig. 3 indicates the average SNR gain in the
smoothed estimates over a range of SNR when N + 1 = 50 and
B8 = 2, as determined from Monte Carlo simulations. The upper
dotted line indicates the asymptotic average smoothing gain of

10log,o(N + 1) ~ 17 dB

computed from (40). Note that smoothing yields dramatically better
signal estimates than filtering alone, particularly in the high SNR
regime. Clearly, the backward-filtering stage of the smoothing al-
gorithm is critical to achieving good signal estimation performance.
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Variance of ML estimates

-40 -30 -20 -10 0 10

Fig. 4. Variance of ML estimates [N + K | N| (3 =2, N =49) as a
function of K. The successively lower solid curves correspond to the actual
estimator variance at SNR levels of 20, 30, and 40 dB, while the successively
lower dashed curves depict the associated Cramér-Rao bounds.

Fig. 3 also illustrates the asymptotic efficiency of the ML smoothed
estimates at high SNR.

Finally, the Cramér—Rao bound on the variance of unbiased A -step
predictors is given by

var [N + K | N] > 02 - (1= 87%)- g2 [1 = g72VHI171 @)

where we have used (36) with =[N] expressed in the form

N

N =Y (k] - Fleds] vy @IV + K])*.

k=0
Note that (41) implies that the error variance of unbiased predictors
necessarily grows exponentially with K at a rate given by the Lya-
punov exponent defined in (3). This is, of course, entirely consistent
with “the sensitivity to initial condition” characteristic of chaotic
maps.

1t is useful to view the relationship between the variance character-
istics associated with smoothing, filtering, and prediction. Indeed, we
note that (37), (39), and (41) all share a common form. In Fig. 4, the
solid curves depict the variance of the estimates #[V + K | N] as a
function of &A™ as determined from Monte Carlo simulations, while the
dashed curves depict the associated Cramér~Rao bounds (37), (39),
and (41). In all these experiments, we used 3 = 2, N = 49, and three
representative SNR levels: 20, 30, and 40 dB. Note that smoothing
applies for K < 0, filtering for X' = 0, and prediction for &' > 0.

From Fig. 4, we see that the ML estimate variance agrees with the
associated Cramér—Rao bound only for a range of values of K near
K = 0, although the extent of this range increases with SNR. This
is consistent with the notion that such estimates are asymptotically
efficient at high SNR.

The disagreement in the smoothing region (K < 0) can be
attributed to the sign errors that are made in the filtering stage.
Specifically, due to the small SNR gain during filtering (which
does not depend on N + 1, the sequence length), sign errors occur
inevitably. The higher the original SNR, the lower the sign error
rate, and the higher the attainable smoothing gain. Note that the
initial SNR determines the sign error rate and thus the maximum
achievable smoothing gain.

It is also important to note from Fig. 4 that despite what is
suggested by the Cramér-Rao smoothing bound, the ML estimator

does not yield a consistent estimator for the initial condition—in
particular, for long data sets, the error variance in the estimate of the
initial condition settles out at a threshold determined by the SNR of
the observations. This interesting behavior, which would appear to be
a consequence of the sensitive dependence characteristics of chaotic
nonlinear dynamics, clearly warrants further analysis in future work.

In the prediction region (K > 0) the disagreement between the
estimate variance and the respective bound is due to the inadequacy of
the model used to compute the bound (41). Specifically, the constraint
|z[n]] < 1 is not taken into account. This state-space constraint
implies that exponential error growth at rate B2 occurs only for
small error values. For large values of K, the error variance reaches
macroscopic proportions and saturates.

V. CONCLUDING REMARKS

We have derived ML estimation algorithms for a class of chaotic
signals, including a form of chaotic white noise, derived from
one-dimensional nonlinear maps. Their systematic description and
broadband characteristics make such sequences potentially appealing
in a number of applications involving signal synthesis. In addition,
while this class of signals may be overly restrictive for many signal
modeling and analysis applications, the results suggest a general
estimator structure with close connections to traditional Kalman
algorithms that may prove useful for much broader classes of chaotic
signals.

It is also apparent that the ML estimation algorithms when im-
plemented recursively constitute a dynamic programming algorithm.
As such there are potentially interesting connections between the
ML algorithms developed here and traditional Viterbi algorithms.
While exploring such connections is beyond the scope of this work,
it represents an interesting direction for future work and may provide
additional insights.

Finally, this preliminary work raises several interesting open ques-
tions regarding optimal estimation of chaotic sequences. For example,
while the ML estimators in this problem have some attractive
characteristics—including that the estimates satisfy the tent map
dynamics—it remains to be determined whether lower variance
estimators for such sequences can be constructed, and, in fact,
whether minimum-variance unbiased estimators exist. In terms of
performance, a number of aspects of both the bias and variance
characteristics of the ML estimates remain to be explored. For
instance, as discussed in Section IV, the Cramér-Rao bounds do
not predict the smoothing performance of the ML estimator that
is obtained in practice for large data sets. Clearly, there is a need
for some insightful analysis that would describe the asymptotic
relationship between SNR and the error variance in the estimate of
the initial condition.

APPENDIX
PROOF OF LEMMA 1

Using induction, suppose

5. = argmin €[N — 1; s[0], s[1], ..., s[V — 2], 2]
s(n]

is independent of x. Then because

e[N: 5[0], s[1], - - -, s[V — 1], 2]
= S[]V - 1; 5[0]~ 3[1]’ e 73[JV - 2]’1]} + (y[lV] - 'T)2

where

v=Fyn_y(%)
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we must also have

s, = argmin £[N; s[0], s[1],- -, s[N — 1], 2].

s(n]
Hence, it remains only to show

s, = argmin =[n + 1: 5[0], s[1],- - -, s[n], 2]
s{n]

k—n n—k
= sgn Z UQ( )Fé[n;l)].,.,,s[k](y[k])
k=0

to initiate the induction.
But since

s[n + 1: 5[0}, s[1],- - -, s[n], «] _
= =[n; s[0], s[1],- - -, s[n — 1], Fs_[;](r)] +(yln+1] - =)
we have
s. = argmin =[n + 1; s[0], s[1],.. ., s[n], z]
s{n
= argmin ST WD = oy (@) @3)
sl k=0
Expanding the quadratic terms in (43) and noting from (6) that, for
r € (=1,3-1)

Pl = 2

s[n]

44)

is independent of s[n], we get

s- = argmax {F;[,h(x) > ﬁz‘k—”’FS‘{;‘.ﬁ)},_,,sm(y[k])}. 5)
sin k=0

In turn, since

-1

s[n] = sgn F [,y (x)

for 2 € (—1,/3 — 1) in accordance with (6), (45) implies s. must be
given by the right-hand side of (42).
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Remarks on Linear and Nonlinear Filtering

Bernard Delyon

Abstract— This communication tries to give some insight into rela-
tionships existing between Viterbi and the Forward-Backward algorithm
(used in the context of Hidden Markov Models) on one hand and Kalman
filtering and Rauch-Tung-Striebel smoothing on the other. We give a
unifying view which shows how those algorithms are related and give
an example of a nonlinear hybrid system that can be filtered through a
mixed algorithm.

Index Terms—Nonlinear filtering, Viterbi algorithm.

1. INTRODUCTION

In this communication, we consider estimation of the state of semi-
Markov processes. These processes arise in two quite different fields:
Hidden Markov Models (widely used for speech recognition, [1]) and
Kalman-Bucy filtering; in the first case, the state-space is discrete
(generally finite) while in the second one it is the Euclidean space.
However, algorithms which are used have considerable similarities.
Inspection of these similarities will lead us first to a generalization of
Kalman—Bucy filtering in a particular extension to nonlinear systems
and secondly to extend this model to a state-space which is mixed
continuous-discrete.

A. Model

Semi-Markov processes (Y, ) are defined through their state-space
representation (X, Y5 ) (in some measurable space A" x J) where ¥’
is the observation and X is the hidden state; (X, Y, ) is a Markov
chain and the assumption is that the transition from (X., Y») to
(Xnt1. Yi1) does not depend on Y,, which implies that (X,)
is itself a Markov chain. This process is thus characterized by its
transition function M(x. ', y').

« In the case of discrete spaces

Ma. z', y') = P(Xnp1 =2, Vi = ¥ | X0 = )
¢ for continuous spaces
(e, 2, y')da' dy' = P(Xnt1 € d2’, Yoia € dy' | X =)

and analogous formulas for mixed discrete/continuous spaces.
An initial distribution is also given for Xo. The assumption
imply that (Y, ) “depends” only on (X,_1, X,) in the sense

that
P(Y;|Xo.- - Xn) = P(Ya|Xn-1, Xn)

= H(X"—]'a .X,,, y—n)/p(Xn—lv ‘XY’L‘)

where p(x, ') is the transition function of the chain (X5)
pla, 2') = /H(x. ',y dy'.

Thus the distribution of the process may also be realized by
first running the Markov chain (X, ) with its own law and
then drawing the random variables (Y;,) with their distribution
conditioned on (X,—1, Xu).
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