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of the waveguide.

The theory of a new transform, referred to as the Hilbert-Hankel transform, is
developed. Its consistency with the Hankel transform leads to an approximate real-
part/imaginary-part sufficiency condition for acoustic fields. An efficient reconstruc-
tion method for obtaining the complex-valued acoustic field from a single quadrature
component is developed and applied to synthetic and experimental data. The Hilbert-
Hankel transform is a unilateral version of the Hankel transform and its application
to this problem is based on the outgoing nature of the acoustic field. The theory of
this transform and its one-dimensional counterpart can be applied to a wide class of
problems.
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Chapter 1

Introduction

1.1 Background

This thesis is concerned with the signal processing of sound pressure fields in

shallow water oceanic waveguides. We have studied a simplified version of the gen-

eral problem, and have assumed that the pressure field is due to a time-harmonic

point source located within the waveguide. The waveguide and the underlying ocean

bottom are assumed to be horizontally stratified fluid media. The three main com-

ponents of the problem to be addressed in this thesis are: 1) determination of the

acoustic field given the specifications of the geoacoustic model, 2) determination of

certain geoacoustic model parameters given measurements of the acoustic field, and

3) development of related digital signal processing theory and algorithms.

The theory of propagation in horizontally stratified fluid media has been studied

by numerous researchers for some time 1][211[31[41[51. Given the specific geoacoustic

properties of the arious layers, it is possible to develop mathematical expressions for

the acoustic field as a function of spatial position. However, the inverse problem of

determining geoacoustic model parameters from acoustic pressure field measurements
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is of more recent interest and remains an active research area. Our motivation has

been to develop signal processing theory and algorithms in order to partially solve

this problem.

Our interest in the topic of signal processing of shallow water acoustic fields stems

from recent work done by others in the two related areas of deep water ocean acous-

tics [6j, and borehole acousticsf7j. In their research, a similar problem of extracting

geoacoustic information from measurements of an acoustic field was addressed. Al-

though there are some similarities between these two problems and the shallow water

problem, there are also some essential differences, as will now be discussed.

In deep water, the sound transmitted by a point source located within the ocean

arrives at a receiver hydrophone, also located within the ocean, via a direct path

and a single reflected path. The portion of the field which reflects off the surface

of a deep ocean can be gated out in time. The portion of the acoustic field which

reflects off the ocean bottom contains information related to the properties of the

bottom. In principle, if the reflected field can be separated from the direct field,

it is possible to infer information about the ocean bottom. The information, which

may be summarized in terms of a reflection coefficient, is obtained by applying signal

processing techniques to the acoustic field measurements, collected as a function of

range.

In a borehole, the sound transmitted by a source located within the borehole

arrives at a single receiving hydrophone, or at an array of hydrophones, also located

within the borehole. In this environment, the sound follows a complicated path due

to the multiple reflections which occur at the borehole boundaries. The non-direct

portion of the received field contains information related to the properties of the

media surrounding the borehole. In principle, if the direct and non-direct portions of

the field can be separated, it is possible to infer information about the surrounding

media. The information, which may be summarized in terms of a reflection coefficient,

7
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is obtained by applying signal processing techniques, which include dereverberation,

to the acoustic field measurements, collected as a function of depth.

In shallow water, the sound transmitted by a point source located within the

ocean arrives at a receiver hydrophone, also located in the ocean, via a direct path

and a complicated path comprised of multiple reflections off the ocean surface and

bottom. Although the reverberation within the shallow water waveguide is more

closely related to the borehole problem, the shallow water measurement geometry

is more closely related to the deep water problem. In principle, it is also possible

to infer information about the ocean bottom, which may be summarised in terms

of the reflection coefficient by applying signal processing techniques which include

dereverberation to the acoustic field measurements, collected as a function of range.

Thus, the shallow water problem contains certain features of both the deep water and

the acoustic borehole problems.

However, there are also essential differences which imply that the ihallow water

problem is not just a simple extension or trivial combination of these problems. For

example, although there are multiple reflections in both the borehole waveguide and

the shallow water waveguide, the reflection mechanisms differ. By this, we mean that

only one type of reflection can occur in the borehole waveguide, due to the impedance

contrast at the edge of the borehole, while two types of reflection can occur in the shal-

low water waveguide, due to the impedance contrast at both the surface and bottom

of the ocean. The difference implies that while there are only two basic components

of the field in a borehole waveguide (radially incoming and radially outgoing), there

are four basic components in the shallow water waveguide (vertically upgoing and

downgoing at the source, and vertically upgoing and downgoing at the receiver). The

manner in which these components can constructively and destructively interfere has

important impact on the character of the field in these two problems. Additionally,

while the geometric difference between oceanic waveguide and the borehole waveguide

may seem trivial, in that the oceanic waveguide is the borehole waveguide turned on

8
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its side, there are important differences in symmetry which occur. For example, cylin-

drical stratification in the borehole problem implies that measurements collected in

depth can be related to a one-dimensional vertical wavenumber decomposition, ex-

pressed in terms of a one-dimensional Fourier transform. Horizontal stratification

in the shallow water problem implies that measurements collected in range are re-

lated to a one-dimensional horizontal wavenumber decomposition, expressed in terms

of a one-dimensional Hankel transform. The difference in the fundamental transform

which relates the measurement and wavenumberdecomposition in these two problems

is indicative of the different signal processing techniques which must apply.

In fact, the shallow water problem is much more closely related to the deep water

problem than to the borehole problem, due to the fact that a Hankel transform is

involved. In the case of horizontal stratification, both deep and shallow water acoustic

fields can be expressed in terms of the Hankel transform of a Green's function. The

Green's function for the shallow water problem incorporates the reverberation effects

due to the presence of the ocean surface. In this sense, the deep water problem, in

which there is no surface present, can be considered as a special case of the more

general shallow water problem. A number of results in this thesis, developed in the

context of the shallow water problem, can be applied to the deep water problem as

well.

A portion of this thesis will focus on the development of the theoretical properties

of the Green's function. One of these properties will be exploited in a new method for

synthetic data generation. A second property can be used to determine a geoacoustic

property directly from the Green's function without first determining the reflection

coefficient. A third property relates to a fundamental sensitivity problem which occurs

in extracting the reflection coefficient in a reverberant environment. Additionally,

certain theoretical aspects of the Hankel transform have led to us to consider a related

transform, referred to as the Hilbert-Hankel transform. A major component of this

thesis consists of the application of this transform to the shallow water problem.

9
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In addition to having a theoretical component, this thesis contains an experi.

mental component as well. A number of signal processing algorithms, based on the

theoretical properties of the Green's function and Hilbert-Hankel transform, are ap-

plied to experimentally collected data. This acoustic data was obtained in several

ocean experiments conducted by the Woods Hole Oceanographic Institution[81. The

typical configuration for obtaining the experimental data used in this thesis is shown

in Figure 1.1. The ocean experiment consists of towing a harmonic source at fixed

depth away from one or more moored hydrophone receivers, over an aperture which

extends from zero range to several kilometers. The receivers quadrature demodulate

the harmonic pressure signal and digitally record the real and imagiary components

of the spatial part of the acoustic field. Typically, the field is sampled at a spatial

rate of at least two samples per acoustic wavelength. Explaining certain features of

this experimental data also provided the motivation for developing several new signal

processing methods discussed in this thesis.
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Figure 1.1: Ocean Experiment Configuration
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1.2 Outline

The thesis begins in Chapter 2 with a review of the theory of propagation of an

acoustic pressure field within a shallow water waveguide. The relationships between

the Green's function, the Hankel transform, and the acoustic field are developed. In

order to study these relationships further, a simple waveguide model, referred to as a

Pekeris waveguide, consisting of an isovelocity water column overlying an isovelocity

halfspace is next considered. The model provides the framework for relating poles,

branch-cuts, and the behavior of the Green's function on differing Riemann sheets.

Several existing viewpoints are unified in the discussion and a numerical example in-

volving a Pekeris Green's function and its associated Riemann sheets is provided. The

theory of a more general waveguide, consisting of a non-isovelocity waveguide overlying

a horizontally stratified ocean bottom, is next considered. A new technique of Green's

function migration, which will form the basis for numerical examples throughout the

thesis, is developed. A number of important properties of the reflection coefficient

and Green's function are derived.

The basic transform which relates the shallow water acoustic field to the Green's

function is the Hankel transform. In our work, we have developed a new transform

which also applies to this problem. The transform, referred to as the Hilbert-Hankel

transform, is a unilateral version of the Hankel transform. In Chapter 3, the the-

ory of unilateral transforms in both one and two dimensions is developed. To do

this, we first focus on the simpler one-dimensional theory. The theory of analytic

signals and the Hilbert transform is first reviewed. The analytic signal, can be di-

rectly related to a unilateral inverse Fourier transform, since the Fourier transform

of an analytic signal is one-sided or causal. However, the theory is extended in this

chapter to develop the concept of a signal which is approximately analytic. In partic-

ular, we will focus on the complex-valued even signal, which is the one-dimensional

counterpart of the two-dimensional complex-valued circularly symmetric signal. The

11



condition of causality does not apply since the Fourier transform of an even signal

must also be even. However, we will show that under some conditions there exists a

relationship between an even signal and its unilateral inverse Fourier transform. A

number of statements regarding an approximate real-part/imaginary-part sufficiency

condition, the unilateral inverse Fourier transform, and the unilateral Fourier trans-

form are made, and a numerical example is provided. The theory is then extended

to the two-dimensional circularly symmetric signal. A number of statements regard-

ing an approximate real-part/imaginary-part sufficiency condition, the Hilbert-Hankel

transform, and the complex Hankel transform are made. The connection between the

Hilbert-Hankel transform and an outgoing acoustic field is discussed. An asymptotic

version of the Hilbert-Hankel transform is next considered and its relationship to

both one and two-dimensional unilateral transforms is developed. Several important

properties of this transform are derived and signal processing applications to acoustic

fields are discussed.

To demonstrate the application of the Hilbert-Hankel transform and to study

aspects of the shallow water inversion problem, we developed a new synthetic data

generation technique for shallow water acoustic fields. This technique is discussed in

detail in Chapter 4. In the first portion of the chapter, a review of existing methods

for synthetic data generation is given. Next, the theory of the new method, based on

decomposing the Green's function into the sum of a trapped portion plus a continuum

portion, is presented. Although the decomposition is theoretically straightforward,

some important details related to the numerical implementation are discussed. Several

extensions of the method are then developed. These include an alternate method for

determining poles and residues and a method for computing the continuum portion

of the shallow water field. Numerical examples which illustrate the basic method and

the extensions are provided. Finally, the new technique is compared and contrasted

with several existing methods, and we point out that the method can also be applied

to deep water synthetic field generation.

12



In Chapter 5, two aspects of the shallow water inversion problem are addressed. In

the first portion of the chapter, we define the quantity of residual phase for a shallow

water acoustic field. The acoustic field residual phase is a complementary quantity

to the acoustic field magnitude and can be used in the context of forward modelling.

Although it has been previously thought that a major advantage of determining the

Green's function is that both magnitude and phase information is available, we show

that useful magnitude and phase information is available in the pressure field domain

as well. We point out that features such as modal cycle distance can be determined

not only from the field magnitude but also from the residual phase. Other applica-

tions of the residual phase are considered. These include determining the acoustic

source phase, which is an essential step required in the extraction of the ocean bot-

tom reflection coefficient, and determining range-dependent waveguide features. The

residual phase curves for several experimental fields are presented and discussed. In

the second portion of the chapter, the problem of extracting the reflection coefficient

from shallow water measurements is considered in detail We show that there is a

fundamental limitation in performing this inversion for certain configurations of the

acoustic experiment. The relationship between points of infinite sensitivity in the

inversion and invariant zeros of the Green's function is discussed, and the invariant

critical depth for a waveguide is defined. In the last portion of this chapter, synthetic

data is inverted in order to demonstrate that points of infinite sensitivity do not exist

if the source and receiver do not exceed the invariant critical depth.

In Chapter 6, the reconstruction of a complex-valued acoustic field from its real

or imaginary part is discussed. The approximate real-part/imagiary-part'sufficiency

condition is a consequence of consistency between the Hilbert-Hankel transform and

the Hankel transform, and is based on theoretical properties presented in Chapter 3.

A reconstruction algorithm in which the real (or imaginary) component of an acoustic

field is obtained from the imanary (or real) component is discussed. The algorithm

is applied to both deep and shallow water synthetic data, produced by the hybrid

method. The reconstruction quality is assessed in terms of acoustic field magnitude

13



and residual phase. We demonstrate that a reasonable approximation to the ocean

bottom reflection coefficient can be obtained by collecting complex samples in range

at a rate of one complex sample per acoustic wavelength. The reconstruction method

is applied to several experimentally collected shallow water acoustic fields, and it is

shown that samples of one quadrature channel can be successfully recovered from

samples of the alternate channel.
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Chapter 2

Propagation of an Acoustic

Pressure Field in a Waveguide

2.1 Introduction

In this chapter, we address a number of theoretical issues related to the propa-

gation of an acoustic pressure field due to a point harmonic source in a waveguide.

Much of the theory is presented as background for the remaining chapters in this

thesis and has been addressed by numerous researchers in underwater acoustics, and

in related disciplines [ll[21l[3[4l. However, in reviewing this background material, we

present several new perspectives on the problem which will lead to the development

of some important properties of the field and its associated Green's function. We

will exploit a number of these properties in the signal processing methods and theory

discussed in later chapters of this thesis.

In Section 2.2, we discuss the representation of the acoustic field in terms of the

Hankel transform of a function. A more formal approach which demonstrates that

this function is a Green's function will be pursued initially. Next, we follow a more

16



intuitive approach based on expressing the field in terms of an infinite number of

reflections which can occur at the surface and bottom of the waveguide. In Section

2.3, we will consider the field for a simple geoacoustic model, consisting of an isove-

Iocity waveguide overlying an isovelocity halfspace, in more detail. The relationships

between modes, virtual modes, branch-cuts and Riemann sheets will be discussed.

These relationships will form the important components of a new synthetic data gen-

eration method, which will be discussed in detail in Chapter 4. In Section 2.4, the

more general waveguide, consisting of an isovelocity water column overlying a hor-

izontally stratified fluid bottom, is considered. The results will be extended to the

non-isovelocity waveguide. In developing expressions for the Green's function and

field, we will review an existing method for migrating the reflection coefficient, and

present a new method for migrating the Green's function. These migration meth-

ods also provide the means for identifying some important properties regarding the

symmetry of the reflection coefficient and Green's function. These properties will be

derived in this chapter and will be referred to in later chapters of this thesis. Finally,

in Section 2.5, a summary of the important points in this chapter will be presented.

17
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2.2 Integral Representation of the Field

In this section, we discuss the integral representation of the acoustic pressure

field in a waveguide. There are numerous ways to construct this representation, and

in this section two separate methods are considered. The first method is based on

directly solving the governing partial differential equation and is important because

it emphasizes that the solution involves a Green's function [1][5]. The properties of

the specific Green's function for this problem are important and will form the basis

for many of the results which we will present later in this thesis. The second method

to be discussed is essentially a superposition approach which consists of decomposing

the source field into its constituent horizontal wavenumber components, determining

how each component propagates within the waveguide, and resynthesizing the com-

plete field from the propagated components [1]. The method is important because

it provides an intuitive description of acoustic propagation in the reverberant waveg-

uide environment. We will provide intuitive and physical explanations for many of

the theoretical results presented throughout this thesis.

The assumptions involved in the problem of determining the acoustic field in an

isovelocity waveguide are now reviewed. As shown in Figure 2.1, the isovelocity

waveguide is assumed to be bounded above by a series of layers underlying a halfspace,

and bounded below by a series of layers overlying a halfspace. The acoustic source,

located within the waveguide at the point S shown in Figure 2.1, is assumed to have

a harmonic time-dependence and can be expressed mathematically as 6(r - r)e-i'.

The layers are assumed to have fixed geoacoustic properties which are independent

of range, and to be of fixed thickness. Although the problem is inherently three-

dimensional, only two dimensions are required to describe the spatial dependence of

the acoustic field, because of the horizontal stratification. The problem is cylindrically

or circularly symmetric because of the fact that the field depends only on range and

depth, as opposed to azimuth, range, and depth. The layers and halfspaces are
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Figure 2.1: Horizontally Stratified Waveguide Model

assumed to be fluids and therefore only compressional field components can exist.

The problem at hand is to describe the acoustic field within the waveguide as a

function of the position of the receiver R.. In a later section, we will also determine

the field in the case that the source and receiver reside in different layers.

Although the exact specifications of the layers, i.e. the density, velocity, atten-

uation, and thickness, are important in terms of their influence on the field within

the waveguide, it is possible to completely characterize their effect in terms of two

quantities. One of these quantities incorporates the effect that the overlying medium

has on the propagation within the waveguide, and is referred to as the surface re-

flection coefficient. The other quantity incorporates the effect that the underlying

medium has on the propagation within the waveguide, and is referred to as the bot-

tom reflection coefficient. Each quantity completely characterizes the influence that

a stack of layers has on an impinging plane-wave. By knowing the layer properties, it

is possible to determine the reflection coefficient which relates the complex amplitude

of the reflected plane-wave to the complex amplitude of the incident wave. Because

of the fact that the two reflection coefficients completely describe the influence of the

underlying and overlying media on incident plane-waves, they will be of fundamental

importance in our study.
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Figure 2.2: Waveguide Model and Coordinate System

We will next develop an expression for the integral representation of the acoustic

pressure field p(r;ro) due to a point harmonic source within the waveguide, using a

Green's function approach. The spatial partial differential equation which applies to

the problem is

[V2 + k 2]p(r; rol = -4rb6(r- ro) (2.1)

where V 2 = a2/az2 + 82 /ay2 + a 2 /az 2, and where k = w/c is the wavenumber within

the waveguide. Also in this equation, ro = (zo, yo, zo) refers to the spatial position of

the source and r = (z, y, z) refers to the spatial position of the receiver at an arbitrary

point within the waveguide. Equation (2.1), referred to as the Helmholtz equation,

is the temporal Fourier transform of the acoustic wave equation, evaluated at the

harmonic frequency w of the source. The equation describes the spatial behavior of

the field, and the temporal behavior of the field is harmonic with a form identical to

that of the source.

The coordinate system in which this problem is solved can be positioned so that

the source is located at ro = (0, 0, z), with the z-axis pointing downward, as shown in

Figure 2.2. Although the conditions of circular symmetry could be incorporated in he

first steps of the derivation, so that p(r, ro) = p(r, z; r, zo) where r = (2 + y2 )1/ 2 and

rO = (2 + y2)1/ 2 , we refrain initially from imposing this symmetry. By doing this, it
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is possible to pursue the development of the solution in terms of the two-dimensional

Fourier transform, rather than in terms of the (one-dimensional) Hankel transform.

The approach emphasizes the relationship between the the two-dimensional Fourier

transform and the Hankel transform [61, [71, and we will discuss this relationship

further in the next chapter of this thesis.

We proceed by expressing the acoustic field in terms of a two-dimensional inverse

Fourier transform

p( y, z; Zo) = (2 f | (k,, k4, z; zo)e/('+"u')dk,dk (2.2)

In this equation, (k,, kt, z; zo) is the two-dimensional Fourier transform of the acous-

tic field and thus

g(k, k,, z; zo) = L i , 'Z; zo) - i( " + " d z dy (2.3)

Note that g is a function of the receiver depth z, as well as the source depth zo, since

the two-dimensional Fourier transform of p involves integration only over z and y.

Applying the operator a2/a2 + a 2/ay2 to both sides of equation (2.1), we find that

a2 82
{(T- + 2 )p(z, y, z; zo)) = -(k. + k)(k,, k,, z; zo) (2.4)

where 7 represents the two-dimensional Fourier transform.

By determining the two-dimensional Fourier transform of both sides of equation

(2.1), and by using equation (2.4), it:follows that

(-k - kY + + k 2 )(k., k,, z; zo) = -4r6(z - zo) (2.5)

Note that for fixed values of k, and k, g(k,,, z; zo) is a Green's function because

of the fact that it solves a homogeneous differential equation at every value of depth

z except at the single fixed depth zo. Also note that, if this equation could be solved

for (k,, k,, z; zo), the integral representation for the acoustic field would simply be

the two-dimensional inverse Fourier transform of the Green's function .
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We now determine the two-dimensional Fourier transform of. the field under the

assumption that it is circularly symmetric. Using the definitions

k, = k,cosO z = rcosO

k, = k, sin y = rsin (2.6)

k,= ( + k) 1/ = ( + y2)1/2

equation (2.3) can be re-written as

9(k,, , z; zo) =(r , ; ) p(r,-i' "(-')rdr (2.7)

Using the fact that p is circularly symmetric so that it is independent of 9, this

equation becomes

&(k, , p(; zo)[ -i c'rc"(-')dOrdr (2.8)

so that

(k, Z; o) = Zr p(r, z; zo)Jo(kr)rdr (2.9)

where the integral definition for the seroth-order Bessel function Jo(k,r) has been

used [8]. Note that in equation (2.9), the variables' and 9 no longer appear. This

is consistent with the fact that the two-dimensional Fourier transform of a circularly

symmetric function must also be circularly symmetric [6].

We will also find it convenient to use the definition

(k, ; zo) 2rg(k, ; zo) (2.10)

so that g(k,,z; zo) and p(r, z; z) are related directly via the Hankel transform as

g(k, ; zo) = jp(r, ; o)Jo( r)rdr (2.11)

Using the properties of Jo(kr), or alternately using the properties of two-dimensional

Fourier transforms, it is easily shown that the Hankel transform is self-inverse, so that

p(r, z; zo) = j g(k,, z; zo)Jo(kr)k,dk, (2.12)
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Next, using the definition 9 = 2rg, equation (2.5) becomes

(;-5 + k 2 - kA)g(k,,z;zo) = -26(z- zo) (2.13)

Before continuing further, we summarize what has been done. It has been shown

that the field can be represented as the two-dimensional inverse Fourier transform of

a quantity j(k,, , z; zo) so that

p(z,y, z; zo) ': k,, ,z;zo) (2.14)

The quantity g(k,, ki, z; zo) represents the solution of an ordinary second-order differ-

ential equation. Because of the cylindrical symmetry involved, the two-dimensional

Fourier transform collapses to a one-dimensional Hankel transform so that

p(r, ; zo) ,'o 2r(k,, ; zo) (2.15)

where the symbol Jo represents the Hankel transform operation. Finally, the quantity

g(k,, z; z; o) has been defined so that'

p(r, z; zo) I g(k, z; zo) (2.16)

where g(k,, z; zo) satisfies the equation for a Green's function

( d2 + k 2 - k2)g(k, z; zo) = -26(z - zo) (2.17)dz 2

The integral representation for the acoustic field within the waveguide is the Han-

kel transform of the Green's function g(k,,z;zo). The quantity g(k,,z;zo) is also

referred to as the depth-dependent Green's function to emphasize its dependence on

the source and receiver depths [9]. In our discussions, we will often eliminate the *

implicit dependence of g on z and zo, in order to simplify the notation, and we will

additionally refer to g as simply the Green's function.

The problem of determining the acoustic field has now been transformed to the

problem of solving equation (2.17). The boundary conditions for this second-order
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differential equation are determined by the impedance conditions at the surface and

bottom of the waveguide. We will initially consider the waveguide to be isoveloc.

ity and the non-isovelocity case will be treated later. As mentioned previously, the

impedance boundary conditions incorporate the influence on the field of the media

outside the waveguide. The impedance conditions can be written in terms of the

reflection coefficients at the top and bottom of the waveguide, defined as Rs(k,) and

Re(k,). We further define two solutions to the homogeneous version of equation

(2.17) which satisfy the impedance boundary conditions in terms of these reflection

coefficients. Therefore, the Green's function g(k,) has the form 

g(k,) = a(-iI8 + Rs.eis) < so (2.18)

= b(eik.(-) + Rae-i'.(8-4)) z > z

where h is the waveguide thickness. The constants a and b in this expression are

not arbitrary, since we have incorporated the two boundary conditions, and are now

determined [101. To do this, the continuity of the solution at z = zo is imposed, so

that the solution is written in terms of a new tonstant c as

g(k) = c(e-jik. + RSeik.z)(ej .'(o-h) + Re-ik(zo-k)) (2.19)

= c(,tik,(-) + RBC-ik.(S-))(ikA + RSiBko) z > Z

Note that this solution is continuous with respect to z, at z = zo. Next, the fact that

the first derivative of g(k,) must undergo a step change of -2 at z = zo in order for

the left side of equation (2.17) to match the right side is used. Taking the derivative

of equation (2.19) with respect to z, and evaluating at z = zo yields

cjk.[(CIk.(o-) _ RB -ji.(to-h))(C-jo + Rs,,o)-

(_,-i.,o + Rsci.kho)(ei.(,-A) + RBC-ik(zoh-)l = -2 (2.20)

Solving for the constant c gives

= _ (2.21)k,e-ikh(l - RsRBei2 A) (2.21)

'In the remainder of this section, we will drop the explicit dependence of the reflection coefficients

on k, in order to simplify the notation.
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Substituting this result for c into equation (2.19), and factoring the term e -i kih from

the numerator and the denominator, we obtain

g(k,) = j(e-ik,, + RsejkL)(eik + RBegk.(7-r,))

k,(l - RsRgeiZh) 

where the notation z r -maz(z, zo) and z min(z, zo) has been used to summarize

the solution for both z < zo, and 2 > Zo.

To summarize, it has been shown that the integral solution for the acoustic field

in a waveguide is

p(r, z; zo) = g(k,, z; zo)Jo(k, r)k,dk, (2.23)

where g(k,, z; zo) satisfies the ordinary differential equation

( + Vk - k,)g(k,, z; zo) = -26(z - zo) (2.24)

By solving this differential equation for g, the integral representation for p becomes

j( - i st, + Rsegk,,)(Cksuh + R.is(2h-))
p(r, z; 20) = Jo k,(l - RsR)ei* ~a)Jo(k,r)kdkt (2.25)

k,( - RsRBme) '

We have previously presented a method for obtaining the integral representation

for the acoustic field within a waveguide based on solving the Green's function differ-

ential equation. Although the method emphasizes that a Green's function is involved

in the solution for the field, we now provide an alternate, more intuitive, develop-

ment which is based on the concept of decomposing, weighting, and resynthesizing

the acoustic field in terms of its spatial wavenumber components.

To do this, the harmonic point source is first expanded [1] as

r = njeIz-ol
ps (r) =lfo-Jo(k~r)kdk, (2.26)

An interpretation of this integral is that for each value of horizontal wavenumber k,,

there exists a plane wave component, eilI-'ol. For values of k, less than the water

wavenumber, this component travels vertically and accumulates phase. For z > 0
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the plane-wave component is dowugoing, as is easily established from the presence of

the term ei'" in the integrand of equation (2.26) and the assumed time dependence

e-it'. For z < ze, the plane wave component is upgoing because of the presence of

the term c- i ' in the integrand. In the situation that this harmonic source is located

within a waveguide, we must consider the effect that the waveguide has on both the

upgoing and downgoing components.

First consider a downgoing component produced by the source. As the plane wave

component propagates downward, it is reflected and its amplitude is scaled by the

reflection coefficient R 3 . This component then reverses direction due to its reflection

and then travels upward until it reflects off the surface of the waveguide, where in a

similar manner, it is scaled by the surface reflection coefficient Rs and is reversed in

direction. Therefore, for a source field component of the form eik(-'), the effect of

the waveguide is to produce the series of reflected terms

(,-.o") ++ Rok(U(z+O)) + ' + RBR+ 

The symbol below each of these components denotes the path that each has followed

prior to arriving at the receiver depth z. The phase factor associated with each term

can be derived as follows. At the bottom interface, z = h, the downgoing wave is

changed only by the reflection coefficient scaling. Although the component reverses

direction, its phase just after reflection is unaltered with the possible exception of a

phase change due to a non-zero argument of RB. For example, at z = h, the first and

second terms of the above series have the identical phase, and the second term has

been scaled by the reflection coefficient.

A similar argument can be applied to an upgoing component produced by the

source. As the plane wave component propagates upward, it is reflected at the surface

and its amplitude is scaled by Rs. The component then reverses direction due to its

reflection and travels downward until it reflects off the bottom of the waveguide, where

it is scaled by the bottom reflection coefficient Rs. The effect of the waveguide on

26



the upgoing source component, e-ik, is to produce the series of reflected terms

Rseit.(+o) + R 3 Rs ,(2],s--io) + Rs RBRseik(2+(+'o)) +

Again, the symbol below each term denotes the path that a plane wave has travelled

prior to arriving at depth z. Note also, that the phase factors are consistent with

the length of the path that the component has followed, multiplied by the vertical

wavenumber k,.

If the two series are added together and the common term is factored, the resultant

sum becomes

[ek('-o'°) + Rseik( '+ so°) + Ri'(2-('+°)) + RaRsejik(2-(s-oo))]S (k,) (2.27)

where

S(k,) = 1 + RsRBeJ2g + (RsRa)2 Se4 + ... (2.28)

It can be seen that there are four kinds of propagating components involved in the

synthesis of the total field. Their direction of propagation as they encounter the

depth z and their interaction with either the surface, bottom, or both, is symbolically

indicated by arrows in the above expression. We will see later in Chapter 5, that there

are two possible ways in which these plane wave components can cancel at specific

values of horizontal wavenumber.

The term S(k,), in equation (2.27), incorporates the higher order reflections that

each one of these four components basic experiences in travelling from the source to the

receiver. That is, the n' term in S(k,) represents an additional n vertical traversals

of the waveguide, with corresponding n reflections off the surface and bottom. The

phase factor of the n ts term is consistent with the path length 2nh, times the vertical

wavenumber. If the S(k,) summation is written in closed form 2 so that

1
S(k,) = 1 - RR(2.29)

2Convergence of the sum is guaranteed if an arbitrarily small amount of attenuation is assumedl].
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and the four terms in equation (2.27) are factored into a product of two terms, we ob-

tain the result that for each of the individual components of the source field, eik'l'-ol,

the effect of the waveguide is to produce the component

(e-i.oo + Rsek.zo)(eik., + Raeik.(2-'z))
1- RsRei2 k

If the entire field is synthesized using the correct weighting for each of the source

components, it is apparent that

c o j(-ibs"°o + Rseik"xo)(CJk"z + RBk ' (2s - ' ))

P(r Z; Z0) - Jo^ ok,(1 - RsRB ) J()kdk (2.30)

Equation (2.30) was derived for the case that z > zo. In the situation that z < zo,

it can also be shown that field expression is identical to equation (2.30), with the

variables z and zo interchanged. Thus, the total field for either of these cases can be

written in a combined form as

- f, j(o i 'i + Rse'")(e/h'' + RBae'(2-"))
p(n 2; .°) Jo k,(1 - RsRePSf ) Jo(kr)kdk, - (2.31).

where * - maz(z, zo) and z min(z, zo).

This expression for the field within the waveguide is identical to the expression

derived previously in equation (2.25). The approaches used in deriving the two expres-

sions differed significantly however. In the first approach, the solution was obtained

as the two-dimensional inverse Fourier transform of the Green's function solution.

Because of the symmetry involved, the two-dimensional inverse Fourier transform be-

came a Hankel transform. In the second approach, a more intuitive development was

presented. The waveguide was interpreted in terms of its effect on the plane wave

components of the source. In the following section, we will examine the expressions

for the Green's function and acoustic field in more detail for specific assumptions

regarding the waveguide and surrounding media.
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2.3 The Field in a Pekeris Waveguide

In the previous section, an expression for the field in a waveguide was presented

in terms of the Hankel transform of a Green's function. In this section, we con-

sider a simpler geoacoustic model which consists of a waveguide surrounded by two

halfspaces. The overlying halfspace is assumed to be air so that the surface reflection

coefficient is -1, i.e. the upper interface of the waveguide is assumed to be a pressure-

release boundary. Below the waveguide, the medium is assumed to be a lossless liquid

halfspace with constant parameters of compressional speed and density.

The propagation of sound in this model was a problem first considered by Pekeris

in 1948 [111, and the model is correspondingly referred to as the Pekeris model Al-

though Pekeris considered the propagation of sound due to an explosive source in this

waveguide, a number of researchers have since considered the propagation due to a

harmonic source [2J, [121, [13j, [14j, [15]. The two problems are related, as the field

due to the explosive source is the inverse Fourier transform of the field due to the

single harmonic source weighted by its frequency spectrum.

The Pekeris waveguide problem, which is a special case of the more general waveg-

uide problem, is important to study for several reasons. First, the model is sufficienctly

complicated so that most of the propagation phenomena associated with more general

problems also occur in the Pekeris waveguide. For this reason, the Pekeris model will

form the basis for a number of examples in later chapters of this thesis. Additionally,

the model is simple enough so that expressions for the field can be written in terms of

the geoacoustic parameters. In our work, we have found this to be quite important, as

it provided a way in which to validate several numerical techniques related to both the

synthesis and inversion of acoustic fields. Finally, the study of the model is important

because, in some instances, it may be representative of the situation which occurs in

a real-life shallow ocean context. For these reasons, we now study the propagation of

acoustic fields in a Pekeris waveguide in more detail.
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The approach to be followed consists of applying the results of the previous sec-

tion to the simplified geoacoustic model. The approach taken is not new and other

researchers have also considered the propagation of sound in the Pekeris waveguide

in a similar manner [21, [151, [161, [171, [181, [191, [201. However, in the literature

there are a number of differing viewpoints regarding the choice of a branch-cut and

its relationship to the poles of the Green's function. In the review and discussion in

this section, we will unify several of these viewpoints, and relate alternate methods for

describing the field in this waveguide. To do this, we will begin with the Hankel trans-

form representation for the field in a Pekeris model waveguide. Next, in anticipating

the application of Cauchy's theorem, the equation which describes the location of the

poles of g(k,) in the complex k,-plane will be derived. The equation which describes

these poles is ambiguous in that it does not specify how the signs of several square

roots are to be determined. In order to explain how these should be chosen, we will

consider the problem in terms of Riemann sheets. In the discussion, we will review

several important concepts of Riemann sheets for a much simpler function prior to

considering the Green's function itself. Given this review, Cauchy's theorem will be

utilized to derive an expression for the field as a sum, due to pole contributions, plus

an integral, due to a branch-point contribution. We will point out that the definition

of this branch-cut is completely arbitrary and that different choices lead to different

representations of an identical field.

We begin by restating the Hankel transform integral representation of the field

presented in the previous section,

p(r) = g (k)Jo(kr)kddk (2.32)

where the Green's function, g(k,), is

g(k,) = j(e-iAu" + Rs(k,)ci'')(', + RB(k,)eij'h(2-,,) (2.33)
k,(1 - Rs(k)B(k ,),i 2) (

For the Pekeris waveguide, the surface reflection coefficient, Rs, is -1 so that the
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Green's function becomes

g(k,) = 2sin k, ztek., (1 + RB(k,)ei2ka(h-,)) (2.34)

k, (1 + Rg(k)ei,2k.)

Because of the simple structure of the medium underlying the waveguide, the reflec-

tion coefficient at the bottom of the waveguide, Rs(k,), is the Rayleigh reflection

coefficient. We will also use the notation ko to refer to the vertical wavenumber in

medium 0, the waveguide, and the notation k,s to refer to the vertical wavenumber

in the underlying halfspace, medium 1. Additionally, the density ratio b is defined as

b = Po/Pl where pi refers to the density in medium i.

The Rayleigh reflection coefficient for the interface at the bottom of the waveguide

can be shown [1J to be
k=o - bk,1

R (k,) = ko + bk,l (2.35)

where k, 0 = (kO - k)l 1/ 2 , k,1 = (kI - k,2)1/2 , kl = w/co, k = w/cl, and co, cl are the

compressional wave speeds in medium 0 and 1. If these results are substituted in the

equation for the Green's functioi, (2.34), the following expression results,

g(kf) = 2 sin kozj *,ao, (k,o + bk,1 ) + (k,o - bk,1)[cos ko(h - z) + j sin k,o(h - z,)12
,, [(k,o + bkL) + (k,o - bk,,)l[cos k,oh + jsin k,ohi2

(2.36)

This expression can be further simplified to yield the result

g(k,) = 2 sin k,orz [k,o cog k,o(h - z,) - jbk,l sin k,o(h - z,)] (2.37)
k,o [k,o cos k,oh - jbk, sin k,0oh

Although the Hankel transform integral representation in equation (2.32) requires

integration along the real-k, axis only, it is possible to use Cauchy's integral theorem

and equation (2.37) to obtain alternate representations for p(r). To do this, g(k,)

must be considered as a function of complex k,. To apply Cauchy's theorem, we first

recognize the fact that g(k,) is an even function of k,. As can be seen from equation

(2.37), g(k,) depends only indirectly on k, via the terms k,o and k,1 , and since these

terms are even functions of k,, g(k,) must also be even. Using this fact, and the
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representation for the Bessel function Jo(k,r) in terms of Hankel functions [81 as

Jo(kr) [ l(kr -Hl)(ekr)] (2.38)

the following integral expression 3 is obtained,

p(r) = Lo g(k,)Hol((kr)krdk, (2.39)

where g(k,) refers to equation (2.37). Note that equation (2.39) is equivalent to the

Hankel transform expression presented earlier, i.e.

p() = g(k)Jo(kr)kAdkv

since g(k?) is an even function of k,. Thus, the relationship between p and g in equation

(2.39) is sometimes also referred to as a Hankel transform. The path followed by the

Hankel transform integration contour in the complex k,-plane and the branch-cut

associated with the Hankel function [8] are shown in Figure 2.3.

In order to evaluate the integral in equation (2.39) using Cauchy's theorem, it is

necessary to determine the singularities of the integrand. Two kinds of singularities

in equation (2.37) must be considered. First, it may be possible or the denominator

to become zero whenever

k,o cos k,oh - jbk,l sin k,oh = 0 (2.40)

This type of singularity is represented by a pole in the complex k,-plane. Note that

although the denominator of equation (2.37) can also become zero when k,o = 0, a

straightforward application of L'Hopital's rule shows that g(k,) remains finite in this

case. Second, branch-point singularities exist in equation (2.37), due to the ambiguity

in choosing the signs of square roots. We will show shortly that the ambiguity exists

3 The integral representation is valid only for r > 0. In the remainder of this chapter we will assume,

in order to simplify notation, that all field expressions are valid only for r > 0, with the implication

that the field for negative values of r can be determined from the condition that p(r) must be an even

function of r.
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kr-plane

Figure 2.3: Complex k,-plane indicating path of contour integration and Hankel func-

tion branch-cut.

only for the choice of the sign associated with k,,. Specifically. the value that g(k,)

assumes for a particular value of k, depends only on the choice of the sign of k,,, and

not on the choice of the sign of k.o.

One way of resolving this ambiguity is to separately consider the behavior of g(k,)

on two planes or Riemann sheets 21]. On one sheet the sign is chosen one way,

and on the other sheet sheet the sign is chosen the opposite way. It is noted, from

equation (2.37), that the choice of the sign associated with :,o is arbitrary since g(k,)

is an even function of k,o ; either sign choice yields the same value when g(k,) is

evaluated. Therefore, the ambiguity exists only in the choice of the sign of k:l and

only two Riemann sheets are required. The ambiguity in the choice of the sign implies

that g(k,.) is not analytic along a line in the k,-plane. In order to better explain the

relationship between ambiguity and analyticity, we will digress to discuss the Riemann

sheets for the much simpler function z : /2.

Consider the polar representation of the complex number z = z - jy as Me ".

The square root of z can be easily determined as z: / 2 = Mi/2!/ 2. There is an

inherent ambiguity in this expression however, related to the proper defnition of 9
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z-plane

Figure 2.4: Complex z-plane indicating the branch-cut corresponding to the principal

value definition -ir < 9 < ir.

For example, although z = Mei' and 2 = Mei(+ 2 correspond to the same point,

/2 = M1/2 e/ 2 and z?12 = M 1I 2e(/2 2+) correspond to two different points - the same

point apparently has two possible values associated with its square root. To resolve

this ambiguity, 8 must be defined as a principal-valued quantity, which assumes values

only over an interval of length 2. For example, 9 defined over the interval [-r, ir), or

over the interval [0, 2r), are two possible definitions of principal value which eliminate

the ambiguity. However, for a given principal value specification, there exists for every

value of M, a value 8, such that

rM [Mgei(*+ _ ei(])I 1/2 A 0 (2.41)

In other words, zl/2 is discontinuous and therefore not analytic in the vicinity of the

point Meih. As an example, consider -r < < r. We note that [lei(-'1 )]
/2

while [le(-+'f)]1/2 -j, and thus z'/ 2 is discontinuous and not analytic at this point.

The values of z at which the function zL/2 is discontinuous are indicated in the

z-plane by the presence of a jagged line, referred to as the branch-lin, or branch.

cut, as indicated in Figure 2.4. In this figure the principal value definition for is

-ir < < r, so that Z1/ 2 is discontinuous along the ray which extends from 0 to -oo.

More general principal value definitions can also depend on the magnitude of z. It

is noted that, from the principal value definition it is possible to predict the branch-

34

1
__1_4 W_-



A
B-- aid

L
To

A'

-- I nf,
& / I. i4

Top Sheet

z-plane
Bottom Sheet

Figure 2.5: Top and bottom Riemann sheets. The function remains continuous as a

path from A to B' or from A' to B is followed. Point A is close to point B' and point

A' is close to point B.

line position, or alternately, from the branch-line position it is possible to predict the

principal value value definition.

By introducing Riemann sheets and connecting these sheets along the branch-line,

it is possible to resolve the ambiguity and consider the analyticity of zl/2 . To see this,

consider Figure 2.5 which illustrates the Riemann sheets for z / 2 with the principal

value definition of - < < r. The ambiguity in the choice of the square root

sign is represented by the presence of the two Riemann sheets, and the discontinuous

behavior is indicated by the presence of the branch-line on both sheets. The function

z1/ 2 is not continuous as a path is followed from point A on the top sheet to point

B on the top sheet. Similarly, zl/2 is discontinuous as a path is followed from the

point A' on the bottom sheet to the point B' on the bottom sheet. However, if a

path is defined from point A on the top sheet to point B' on the bottom sheet, or

from point A' on the bottom sheet to point B on the top sheet, the function z1/2 Will

remain continuous along this path. However, the definition of the square root must

change along the path, if either of the latter two paths are followed. In a sense, A

is considered as close to B', and A' is considered as close to B, with an implication

35

-A

.A

i.g

--Ob-

__uw
013I



Top-Sheet8

A' 8'
-80 (

. S

A'
0 

8'
.

Bottom-Sheet

Top-Sheet

Bottom-Sheet

Figure 2.6: Top and bottom Riemann sheets for two different branch-cut definitions.

of analyticity. Alternately, A cannot be considered close to B, because the function

becomes discontinuous as a path is traversed from A to B.

Note that both the principal value definition and the sheet specification, i.e. the

specification of which sheet is the top sheet, are required in order to completely specify

how the square root is to be performed for each value of z. For example, Figure 2.6

displays he Riemann sheets for two different choices of the definition of the principal

value of 6, i.e. for two different branch cut definitions. In Figure 2.6a, the four points

A, B, A', B' are defined such that A and A' are at the same location in the k,-plane

but lie on the top and bottom sheets respectively. The values of zI/2 at the locations

A, B, A', B' are also defined as a, b, a', b' respectively. Note that a' = -a and b' = -b.

In Figure 2.6b, the principal value definition has been changed as indicated by the

different location of the branch-cut, and the top sheet was defined such that the value

of zI / 2 at the point B is again b. However, it can be easily shown that the value of
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z1/2 at the point A for the two branch-cut definitions differs. Specifically, zi 2 at the

point labelled A in Figure 2.6b is actually a', while zL/2 at the point A in Figure 2.6a

is a. In other words, although the position of the point A is fixed and lies on the

top Riemann sheet in both cases, the particular specification of the branch-cut yields

different values for the associated square root.

A convenient mechanism for keeping track of the behavior of a function as the

position of the branch-cut is changed is now provided. Consider slowly twisting the

cut from its position in Figure 2.6a to its position in Figure 2.6b. As the cut encounters

the points A and A', we can consider the point on the top sheet falling to the bottom

sheet and vice versa. In other words, the 'sheets are considered as connected at the

branch-cut and as the cut is twisted, points from one sheet move to the other sheet.

For example, as the cut is twisted from its position in Figure 2.7a to its position in

Figure 2.7b, we see that the point A has moved to the bottom sheet and that the

point A' has moved to the top sheet. Using this concept, it is possible to predict the

values of z' / 2 for alternate branch-cut selections assuming that zI/2 is known fully for

one branch-cut selection. As the cut is moved, points on the bottom sheet migrate to

the top sheet and points on the top sheet migrate to the bottom sheet.

To summarise, we have shown that specifying the principal value definition is

equivalent to selecting the position of the branch-cut. Specifying the square root

at every point in the z-plane can be done by specifying the location of the branch-

cut, and by defining which sheet is the top sheet. The location of the branch-cut is

arbitrary and can be chosen for convenience with the constraints that it must begin at

z = 0, end at z = co, and not cross itself. The choice of which sheet is the top sheet

is not arbitrary and depends on the particular problem. Typically, some physical

constraint dictates which sheet is the top sheet, and the sheet selection process for

the Green's function will be considered shortly.

Given this review of Riemann sheets for the function z1/ 2, we next discuss the more
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Figure 2.7: Top Riemann sheet for two different branch-cut definitions. As the branch

cut is twisted from its position in a) to its position in b), point A falls to the bottom

sheet and point A' rises to the top sheet. Point B remains on the top sheet.
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complicated function g(k,) for the Pekeris geoacoustic model. Recall from equation

(2.37) that g(k,) depends only on k, through the quantities k,o, and k.i. As discussed

previously, only the sign of k, must be specified - the sign of ko may be chosen

arbitrarily since g(k) is an even function of ko. We wish to obtain the square root of

k,l 2 in the manner similar to obtaining the square root of z. There is an additional

complication however, in that the integration is to be performed in the k,-plane,

while the principal value definition applies to the k, 2-plane. An implication is that

the branch-cut which is present in the k,L2 plane must be mapped to the k,-plane,

using the relationship kl, = (k2 - k,2)l/ 2 .

In Figure 2.8 are shown a number of branch-cuts in the k,l 2-plane and their corre-

sponding mapping to the k,-plane. The branch-cut depicted in Figure 2.8a is referred

as the Ewing-Jardetzky-Press (EJP) cut [21 and the cut is specified via Im({k,} = 0.

Values of g(k,) on the top Riemann sheet sheet for this cut are obtained by comput-

ins k,l, and choosing the sign of k,l such that Im(k,l) > O. It is noted that most

computer complex variable subroutines define the square root operation using the

principal value definition shown in Figure 2.8d. Note that in Figure 2.8g, the vertical

cut in the k,-plane corresponds to a principal value definition in the k,l 2-plane which

is a function of magnitude. This vertical branch-cut in the k,-plane is referred as the

Pekeris cut [19].

The concepts discussed concerning the behavior of the function z 1/2 on the Rie-

mann sheets are also applicable to the more general function g(k,). For example, if a

path is traversed in the k,-plane which crosses the branch-cut, the function g(k,) will

change discontinuously. However, if the path begins on the top sheet, crosses the cut,

and continues onto the bottom sheet, g(k,) will remain continuous and analytic. This

also has direct impact on the application of Cauchy's integral theorem, which requires

a function to be analytic everywhere inside an integration contour except at isolated

singular points. The implication is that the integration contour must either dodge

the branch-cut, where the function becomes non-analytic along a line, or alternately
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must continue under the cut, onto the bottom sheet.

The Green's function g(k,) has significantly different behavior for specific values

of k, dependent on the sheet chosen. For example, consider equation (2.40) which

describes the location of the poles for the Pekeris model Green's function, and further

assume that the branch-cut is specified as Im{kl} = 0, i.e. as the EJP branch-cut.

It can be shown [41 [221 that this equation may only have solutions, k,i, such that k

is purely-real and k < k,, < k. In particular, there can be no poles on this Riemann

sheet which are in quadrant I of the k,-plane except those on the real-k, axis. This

restriction does not apply to the poles on the bottom sheet. In fact, as discussed

by Stickler [221, bottom sheet poles which have non-zero imaginary parts may exist.

Note that since g(k,) is an even function of k,, poles which appear in quadrant I must

also appear in quadrant m. However, we will ignore these poles in our discussion as

the Hankel transform integration contour will be closed in the upper k,-plane, and

thus the poles in quadrant m are of no interest. A point to be emphasized is that

although a pole at some value of k,i on the bottom Riemann sheet may exist, this

singularity is, in general, not present on the top Riemann sheet.

We next consider the effects caused by the proximity of poles on the top and

bottom Riemann sheets to the real k,-axis. As an example, consider the pole in

quadrant I of the bottom Riemann sheet depicted in Figure 2.9. Although the pole

does not appear on the top Riemann sheet, the effects of the pole are felt when g(k,)

is evaluated at values of k, on the top sheet near the pole. An essential point here is

that the top and bottom sheets are connected along the branch-cut. In this figure, the

point A on the top sheet is near the pole on the bottom sheet and thus it is expected

that the Green's function evaluated at point A will have large magnitude. Similarly,

points located just below the real axis on the top Riemann sheet will be strongly

influenced by the pole on the bottom Riemann sheet. Therefore, poles on both the

top and bottom sheets near the real-k, axis are responsible for the resonances in g(k,)

evaluated for real values of k,, provided that the branch-cut is in the appropriate
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Figure 2.9: Top and bottom Riemann sheets indicating a pole on the bottom sheet

near the branch-cut.

position. This effect is now illustrated in more detail using a numerical example.

The Green's function for the specific set of Pekeris model geoacoustic parameters

summarized in Table 2.1 was computed, and its magnitude is plotted as a function of

real-k, in Figure 2.10. 4 We have selected the EJP branch-cut and the top Riemann

sheet in order to evaluate k, 1 in computing the Green's function. For this choice of

the geoacoustic parameters, there are two poles of g(k,) which are located on the

real-k, axis, and these two points are identified in Figure 2.10 as A and B. There is

an additional resonance near k, = 0.13 which has been labelled as C in this figure.

This plot displays the magnitude of g(k,) evaluated along a single line in the complex

k,-plane. In order to see the effects of on-axis and off-axis poles more clearly, we next

display in Figure 2.11 a perspective plot of the magnitude of g(k,) as a function of

k, within quadrant I of the complex k,-plane. The location of the EJP branch-cut is

shown in this figure as the jagged line. The figure indicates that two poles are present

along the real-k, axis and these poles have been labelled as A and B. It is apparent

that the poles labelled as A and B in Figure 2.11 are responsible for the resonances

'To be more precise, this function was computed along a horizontal line in the complex k.-plane

displaced by e below the real-k, axis.
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Table 2.1: Geoacoustic Parameters for the Pekeris Model

43
4

Depth of source zo = 25 m

Depth of receiver z = 25 m

Waveguide thickness h = 50 m

Frequency f = 50 Hz

Water velocity co = 1500 m/sec

Sediment velocity cl = 2000 m/sec

Water density po = 1 g/cm3

Sediment density Pi = 1.5 g/cm3
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labelled as A and B in Figure 2.10. The resonance labelled as C in Figure 2.10 can

also be seen in Figure 2.11, however there is no pole in quadrant I which gives rise

to this resonance. It can be similarly shown that there is no pole in quadrant IV of

the complex k,-plane which is responsible for this resonance. The off-axis pole which

causes the resonance at C must be located on the bottom Riemann sheet.

In order to see this, we next display in Figure 2.12 a perspective plot of quadrant I

of the bottom Riemann sheet. The display indicates that there are a number of poles

near the imaginary axis of the complex k,-plane on the bottom Riemann sheet. The

relative heights, or amplitudes, of these poles are not accurately displayed due to the

sampling grid on which this function was computed. The two most interesting features

of this display however, are the poles labelled as C and D. From our discussion earlier,

it is apparent that certain points along the real-k, axis on the top sheet are close to

the pole on the bottom sheet labelled C because of the intervening EJP branch-cut.

The implication is that the pole labelled as C in Figure 2.12 is responsible for the

resonance labelled as C in Figure 2.10. However, the pole labelled as D on the bottom

sheet has negligible impact on the behavior of the Green's function along the real axis

on the top Riemann sheet - it is not close to any points on the top Riemann sheet

because there is no intervening branch-cut.

In our previous discussions, we pointed out that it is sometimes convenient to

visualize the effects of top and bottom sheet poles on the Green's function by twisting

the branch-cut from one position to another. We indicated that as the cut twists,

points from the top Riemann sheet fall to the bottom Riemann sheet and points from

the bottom Riemann sheet rise to the top Riemann sheet. We will now illustrate

this effect, in the context of this example, by twisting the branch-cut from its EJP

position, in Figures 2.11 and 2.12, to a vertical, or Pekeris-cut, position. In Figure 2.13

is shown a display of quadrant I of the top Riemann sheet for the Pekeris branch-cut

definition. As the cut was twisted from its previous position to this vertical position,

poles previously on the bottom sheet, near the imaginary axis, have now risen to
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become top-sheet poies. Additionally the cut has been twisted far enough so that

the pole labelled C is also exposed on the top sheet. The poles labelled as A and

B remain in place however, because they have not been encountered as the cut is

twisted. Additionally, the pole labelled as D remains on the bottom sheet for this

reason.

Given the selection of the vertical branch-cut, the cause of the resonance at C in

Figure 2.10 is now quite evident - it is due to the presence of the off-axis pole on

the top Riemann sheet depicted in Figure 2.13. The resonance at point C in Figure

2.10 is thus explained by the proximity of an off-axis pole to points along the real

axis. However, we emphasize that the definition of the branch-cut has absolutely no

effect on the computation of g(k,) for real values of k,. That is, the display of g(k,)

shown in Figure 2.10 does not depend on the selection of either the EJP or Pekeris

branch-cut - the function is identical in either case provided that the top sheet is

selected properly. The branch-cut definition affects g(k,) only for values of k, off

the real axis. The selection of a particular cut is completely arbitrary - in this case

we have used different definitions to demonstrate that the resonance at C in Figure

2.10 is due to an off-axis pole. The off-axis pole appeared either on the top or bottom

Riemann sheet dependent on the specific choice of the cut.

To summarize, we have demonstrated that it is useful to consider the behavior

of g(k,) on dual Riemann sheets. In analogy with the description of the sheets for

Z1/2, g(k,) exhibits different behavior on the two sheets. In particular, a pole located

at a particular position on one sheet is, in general, not located at the same position

on the alternate sheet. The relationship between the different choices of branch-cuts

can be conveniently visualized by twisting the cut from one position to another, and

correspondingly moving points off one sheet and onto the other. Finally, we have

pointed out that pseudo-resonances in g(k,) evaluated along the real-k, axis are due

to the proximity of poles. A pole may appear on the top or bottom sheet depending

SIn the remainder of this section, the top sheet can also be considered as the physical sheet.
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on the selection of the cut. However, for any branch-cut choice. the effect of the

pole on g(k,) along the real-k, axis is identical, provided that the proper top sheet is

selected.

We next discuss the application of Cauchy's theorem as a means for determining

the Hankel transform of g(k,). The presence of the branch-cuts and Riemann sheets

makes applying Cauchy's integral theorem non-trivial in this context. The devel-

opment which is followed is based on the Hankel transform integral representation

discussed earlier, as opposed to alternate methods based on eigenfunction expansions.

The two approaches will be related in Chapter 4 of this thesis. An advantage of the

Hankel transform approach is that it leads naturally to the technique for synthetic

data generation, which is also discussed in Chapter 4.

Consider the Riemann sheet diagram shown in Figure 2.14 which displays the po-

sition of the EJP branch-cut, a typical pole configuration, and the path of integration

for the Hankel transform integral

p(r) = f g(k,)Ho (ktr)kd, (2.42)

The branch-cut associated with the Hankel function Ho")(k,r) is assumed to e along

the negative real-k, axis and is not shown in Figure 2.14. The choice of the top, or

physical, Riemann sheet on which the integration in equation (2.42) is to be performed

must be made based on some physical constraint. The constraint invoked is that the

radiation condition must be satisfied. In simple terms, the radiation condition implies

that fields cannot grow exponentially as a function of distance from the source.

The selection of the choice of the physical sheet cannot be made by applying the

radiation condition to the field within the waveguide. In fact, performing the Hankel

transform of the Green's function on the bottom sheet yields a field which satisfies

the radiation condition, but which is physically incorrect. The selection of the sheet

on which the Hankel transform integration is to be performed can only be made

by considering the behavior of the field outside of the waveguide in the underlying
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Figure 2.14: Top and bottom Riemann sheets indicating Hankel transform integration

contour on top sheet and a typical pole configuration.

halfspace.

There are several ways of obtaining the integral representation in the underlying

halfspace. One approach is based on analytically continuing the Green's function, or

equivalently, analytically continuing the field. By invoking the continuity of pressure

and vertical derivative of particle velocity, the field in the bottom for the Pekeris

model can be expressed as

ps(r) = | ga(k)H(l'(k,r)k,dA, (2.43)

where
sin koZ, · /k"('-h2

9g(k,) = k, cos k,oh - jbk,l sin k,oh (2.44)
It can be verified that PB(r) satisfies the required continuity conditions with respect

to the function p(r). Specifically, by comparing equations (2.37), (2.39) and (2.43),

(2.44), it can be shown that

P(r)l.=, = PB()= (2.45)
(2.45)

a, flL=h = , k0o 0 . pi as

Equation (2.44) can be used to determine the physical Riemann sheet. In this
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equation there is a term present which has the form ei,', and this exponential sug-

gests the method for choosing the physical sheet. Specifically, consider values of

k, > kl so that k,1 becomes purely imaginary. The term eik9l is either exponentially

growing, or decaying, with depth z, depending on the choice of the sign of kl. Appli-

cation of the radiation condition implies that the minus sign must be chosen so that

the field does not grow exponentially with increasing depth. In other words, the top

or physical Riemann sheet should be selected so that Im{k,l} > 0 for real-k, > kl.

Note that the radiation condition does not imply that Im{k,l} > 0 for all k,, which

is the condition for the entire physical sheet, assuming the EJP branch-cut. Rather,

the radiation condition suggests the way in which the physical sheet is determined

for any branch cut. The procedure for determining the physical Riemann sheet which

describes the physically correct field within the waveguide is to therefore: 1) select a

convenient branch-cut which emanates from the branch-point at k, = kl, 2) define the

physical sheet, i.e. the sheet on which the Integration is to be performed, by choosing

the sign of Im(k,l} as positive, for values of real-k, > kl. It is emphasized that the

physical Riemann sheet is selected by applying the radiation condition to the acoustic

field at large depth, as opposed to large range, from the source.

Given this discussion, we can now evaluate the Hankel transform in equation (2.42)

using Cauchy's theorem. The approach is to choose an arbitrary branch-cut and to

select the physical sheet on which the integration is to be performed. Initially, we

will select the EJP branch-cut. Note that the integrand of the Hankel transform

becomes exponentially small for Ik,I large when Im{k,} > 0, so that the integration

contour can be closed in the upper-half of the k,-plane, as shown in Figure 2.15. Using

Cauchy's theorem and Figure 2.15, it is apparent that

+o C + gC(k) H.')(k, r)kdk, = rj i a 8 ) (kj r) (2.46)

where k,i is the i pole, a is the residue at this pole, and the sum is over all poles

which appear inside the contour of integration. Using equation (2.46), the fact that
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k,-plane

Figure 2.15: Complex k,-plane indicating poles and integration contour.

Jc1 = 0, and recalling that the desired field has the integral representation

(2.47)

it is apparent that an equivalent representation for p(r) is

p(r) = PT(r) + Pc(r)

where

PT(r) = irj ak,,ll) (k,,r)

and

Pc(r) = - Ha} (k,r) kdk,
[,

(2.48)

(2.49)

(2.50)

The field has now been decomposed into the sum of two components as indicated

by equation (2.48). The first component, pr(r), consisting of a finite sum of terms,

is the trapped or normal mode sum. Each term in this sum corresponds to a value of

horizontal wavenumber at which perfectly constructive interference occurs within the

waveguide. In other words, at this wavenumber, the downgoing plane wave produced

at the source adds perfectly in phase with all higher-order multiples due to additional

reflections off both the surface and bottom. Similarly, the upgoing component pro-

duced at the source adds perfectly in phase with all higher-order multiples. Because
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of the fact that there is no attenuation included in the Pekeris geoacoustic model and

the fact that the plane waves experience total internal reflection at both the surface

and bottom of the waveguide, i.e. the magnitude of the bottom reflection coefficient

must be unity, each mode is trapped within the waveguide.

The second term in equation (2.48) is referred to as the continuum contribution [19]

[231. This term represents the superposition of the remaining plane-wave components

within the waveguide which do not interfere in a perfectly constructive manner. We

emphasize that the integral expression for the continuum, pc(r), shown in equation

(2.50), is not a Hankel transform. Although the integrand of this expression has the

correct form of a Hankel transform, the limits of the integral do not. However, in

Chapter 4 of this thesis, we will develop a different method which does express the

continuum in terms of a Hankel transform. Specifically, the continuum portion of the

field will be defined in terms of the Hankel transform of the continuum portion of

the Green's function. The method will form the key element of a hybrid method for

synthetically generating acoustic fields not' only within a Pekeris waveguide, but in

more general waveguides as well.

Given the form of the Green's function for the Pekeris model, it is possible to

derive specific expressions for the continuum and trapped mode contributions. The

expression for the continuum portion of the field, assuming that the EJP branch-cut

has been selected, is

pc(r) - sin kz [ko cos k,o(h- z) - jbk,l sin k,0(h - z,)J H1 (kr)k,dk,

k.o [ko cos koh - jbk,1 sin koh]
(2.51)

where the contour C2 is defined in Figure 2.15. Substituting k,l = (k2 - k2)/ 2 into

equation (2.51) yields

(r) = sin koz, [ko cos k o(h - z,) - j bkl sin ko(h - z,)] Ho(,' (kr)k.ldkX
k,o [ko cos k,oh - jbkl1 sin k,ohl

(2.52)
+ 1 sink,oz, I[k.ocos ko(h - ,) - jbk,l sin ko(h - z,)] Hto(kr)k dk

ko [kocos k 0oh - jbk,, sin k,ohl
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If the integration variable in the second expression is changed from -k, to k, the

second integral can be combined with the first to yield

pc(r)=2jm sin kzo sin k,,z k, 2 (kr)dk,
= om o z sa -^Zl H)(ktr)dkl (2.53)ko 2 m2 cos2 ktoh + k,1 2sin 2 koh (2.53)

We again emphasize that this expression cannot be directly converted to the form of

a Hankel transform.

Similarly, an expression for the trapped mode contribution in the Pekeris geoa-

coustic model, assuming the selection of the EJP branch-cut, can be determined.

Previously, it was shown that the poles, k,, must satisfy the equation

k.o cos koh - jbk,l sin k.ohik,=,i, = 0 (2.54)

The residue, a;, at the pole, k,, must also satisfy the equation

a, Un li m g(~ = sin kozt [k,o cos k,o(h - z,) - jbkl sin k,o(h - z,)1
-i , lim g(k)k o H -L[k,COSk, o- bkSlinkohl IJ,=,, (2.55)k--,b~i kso ki. k cos k50h - jbk,l sin kokI

By performing the 8/ak, operation on the denominator and expanding the cosine and

sine terms in the numerator, the expression for a, becomes

sin koz sin k0,oz ko

a = hk,o sin koh cos koh - b2 sin k,oh tan k Ioh (2.56)

To proceed further, we use the relationship that

b = kh Ik,=h,.= (2.57)

obtained from the pole equation, and a trigonometric identity for sin k,oh cos k,oh to

get
sin k,oz sin k,oo (2.58)

2ka + ) k=k I(2.58)

Therefore, the trapped modal portion, pT(r), of the field in a Pekeris waveguide,

assuming the EJP branch-cut choice, is

N sin k,oz sin k,ozo
PT(r) = irj -_ + ij& b , hHo")( , ) (2.59)
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where N1 is the number of poles of g(k,) on the physical Riemann sheet. This equation

is identical to expressions for pT(r) found in both Tindle [141 and Bucker [191.

To summarize briefly, we have used Cauchy's theorem, for the Pekeris waveg-

uide model and the choice of the EJP branch-cut,'to decompose the field within the

waveguide as

p(r) = PT(r) + Pe(r) (2.60)

where pT(r) is the trapped modal sum and pc(r) is the continuum. The components

of the modal sum are perfectly trapped because the corresponding poles of g(k,) are

located on the real-k, axis. Because the integration contour encloses these poles,

they contribute to the total integral as a residue sum. The continuum, or branch-cut,

integral must be retained because the integration contour cannot cross the branch-cut

if g(k,) is to remain analytic. In deriving the one-sided integral expression for the

continuum in equation (2.53), we have used the fact that algebraic cancellation of

the real part of the Green's fuiction occurs' across the branch-cut. In the following

section of this chapter, we will see that the behavior of g(k,) on both sides of the

branch-cut also forms the basis of an important property concerning the finite extent

of the imaginary part of g(k,). Additionally, in the next chapter we will see that the

cancellation of the real part across the EJP branch-cut, is directly connected with the

property of real-part/imaginary-part sufficiency for the Green's function.

We next consider the effect of selecting a different branch-cut. We point out

that the total field cannot depend on the choice of the branch-cut since the Hankel

transform integral representation does not depend on the choice of the branch-cut.

We will show however, that the specification of the branch-cut determines how the

total field is partitioned between the modal sum and the continuum. Consider the

Riemann sheet diagram shown in Figure 2.16 where the branch-cut has been twisted

from its position in Figure 2.15 to its present position. The selection of this particular

branch-cut yields an additional physical sheet pole in quadrant I, as indicated in

Figure 2.16. In effect, the branch-cut has been twisted to expose one of the poles
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N

k,-pline

Figure 2.16: Complex k,-plane indicating new choice of the branch-cut and an addi-

tional pole which has been exposed.

on the bottom Riemann sheet, near the imaginary axis of the complex k-plane, as

previously displayed in Figure 2.11. Cauchy's theorem can again be applied to obtain

the representation

p(r) = PT(r) + PC(r) (2.61)

However, the precise decomposition differs from the one previously presented. Specif-

ically, the sum pT(r) for this choice of the cut differs from the sum PT(r) for the EJP

branch-cut due to the additional pole in quadrant I which is now enclosed within the

contour of integration. In addition, the continuum contribution differs from that pre-

sented earlier. Specifically, although the mathematical expression for the continuum

is identical to the expression presented earlier,

Pc(r) = g(kr) HI(1 ) (k r )kdk (2.62)

the continuum field itself differs due to the change in the contour path C 2.

The change in PT(r) due to the new choice of branch-cut can be simply described.

By examining equation (2.59) and the equations immediately preceding (2.46), it can

be seen that the assumption of the EJP branch-cut is not used in the derivation of

the trapped modal sum. Thus, the form of the trapped modal sum given in (2.59)
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must apply to other branch-cut selections as well. The choice of the branch-cut

affects only the number of poles which appear on the physical sheet and the manner

in which the sign of k,, is determined in equation (2.59). In particular, the sum

corresponding to the new choice of branch-cut is identical to the sum previously

discussed except that one additional pole contribution is included. The additional

pole has a positive imaginary part so that the corresponding Hankel function in the

sum behaves asymptotically in range as a decaying exponential. Physically, plane

waves produced by the source, which have a horizontal wavenumber corresponding

to the real part of this pole, undergo a partial interference which is nearly, but not

completely, perfect. In other words, there is a partial but not complete resonance

in the corresponding wavenumber decomposition. Essentially, the sum which has

resulted from the new choice of the branch-cut is no longer a trapped modal sum, but

rather a modal sum, due to the additional term which is not perfectly trapped.

The above analysis can be applied to other selections of branch-cuts as well. The

choice of the previous branch-cut caused one additional pole on the bottom sheet to

appear on the physical sheet. By twisting the cut further towards the Pekeris cut, ad-

ditional poles are exposed on the physical sheet and produce additional contributions

to the modal sum. Although the corresponding modal sum changes, the continuum

integral also changes in such a way that the sum of the two contributions, p(r), re-

mains fixed. The sum must be fixed because the Hankel transform integral itself does

not depend on the choice of the branch cut. Essentially, the EJP branch-cut and

the Pekeris branch-cut choices [17] represent extreme cases of an infinite number of

equivalent field representations. For the selection of the EJP cut, there are no phys-

ical sheet poles located off the real-k, axis. As the cut is twisted toward a vertical

position, i.e. toward the Pekeris cut, poles are exposed one-by-one until an infinite

number of poles [22] contribute to the modal sum. In this case, there is still a non-

6 This partial interference occurs both in magnitude and phase, ie. it is not possible to state that

the plane-wave component undergoes perfectly constructive interference with respect to phase, but

loses energy to the bottom due to a non-unity reflection coefficient magnitude.
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zero continuum contribution, even though there are an infinite number of terms in

the modal sum.

We have pointed out that the continuum portion of the field consists of plane-wave

components which do not interfere in a perfectly constructive manner. An implication

is that, at large ranges, the perfectly trapped modal portion of the field dominates

the continuum portion. In many applications, it is reasonable to assume that the

field is adequately represented by the trapped modal sum only. However, in other

applications, particularly those involving the determination of the bottom reflection

coefficient, the contribution of the continuum cannot be neglected. However, the

difficulty in numerically computing the continuum contribution has lead to a number

of different techniques for its synthesis.

One such approach, suggested by Tindle et.al. 14 , consists of approximating the

continuum in a Pekeris waveguide via a sum of virtual modes. These virtual modes are

due to the imperfect pseudo-resonances, or virtual poles of the Green's function. In

Tindle's approach, the branch-line integral is approximately computed by asymptoti-

cally expanding the integrand in the vicinity of the pseudo-resonances. The locations

of these pseudo-resonances are determined by the hard bottom eigenvalue equation.

The result is a virtual mode sum which resembles the trapped mode sum, exc-pt

that the virtual modes decay exponentially in range, and are weighted by a different

amplitude factor. The theory presented by Tindle is similar to the theory presented

above, in that both model portions of the continuum by including the contributions

due to resonances in the Green's function. However, there are a number of important

differences between the virtual mode formalism presented by Tindle and the theory

which we have just presented. In particular, Tindle determines the locations of these

resonances approximately by using the hard bottom eigenvalue equation. In our

approach however, we have shown that the equation which describes the exact loca-

'The hard bottom eigenvalue equation is only an approximation since the reflection coefficient at

the virtual pole locations has a non-zero imaginary part.
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tion of the virtual poles is identical to the equation used to determine the trapped

modes - only the choice of the sign of the square root must be specified carefully. Also,

Tindle incorporates the contribution of a virtual pole by asymptotically expanding

the Hankel transform integral in the vicinity of the resonance. In our approach, the

contribution of a virtual pole is included exactly via the use of Cauchy's theorem. In

other words, the virtual pole contributes to the modal sum in exactly the same man-

ner as a trapped mode contributes to the modal sum, except that the imaginary part

of the virtual pole is non-zero. Thus, the virtual mode sum has an identical form as

the trapped mode sum except that the poles are complex. Note that the amplitude of

the virtual mode contribution in Tindle's approach is based on several assumptions,

while in the theory just presented, an exact expression for the amplitude has been

developed. In particular, the modal amplitude, related to the residue a, at the off-axis

pole, is described exactly in equation (2.59). Finally, we have pointed out that the

error in approximating the continuum portion of the field by the virtual mode sum is

identically the Pekeris branch-line integral.

An implication of these conclusions is that a more accurate virtual mode sum

could be developed as a means for approximating the continuum. However, such a

sum would still neglect the remaining branch-line contribution. That is, if the infinite

number of off-axis poles were included using the above theory based on Cauchy's

theorem, it would still be necessary to compute the Pekeris branch-cut integral in

order to synthesize the field exactly. In our work, we have chosen not to develop such

an approximate method. Rather, we have chosen to compute the branch-line integral

exactly and efficiently by relating it to a Hankel transform, and relying on the use of

computationally efficient methods for computing the Hankel transform. The method

applies not only to the Pekeris model but to more complicated waveguide models as

well, and will be discussed further in Chapter 4.

To summarize, in this section we have considered a number of the issues relating

to the determination of the acoustic field in a Pekeris waveguide. We began with the
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Hankel transform integral expression in terms of the Green's function for the Pekeris

model. The Green's function was examined in detail and was shown to possess an

ambiguity in the specification of a square roct. To explain the ambiguity we consid-

ered the simpler function zl/2 and its associated Riemann sheets. This explanation

was then extended to the Green's function and a numerical example illustrating the

Riemann sheets, poles, branch-cuts and their relationships was presented. We pointed

out that an infinite number of representations for the acoustic field exist, dependent

on the definition of the branch-cut. The EJP branch-cut and Pekeris branch-cut were

shown to represent the extreme cases of these representations. Finally, we related

Cauchy's theorem and the off-axis poles with the virtual mode theory discussed by

Tindle, and pointed out their differences. In the following section, we will extend a

number of these ideas to more complicated waveguide models.
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2.4 The Field in a Layered Fluid Waveguide

In the previous section, the Green's function and the acoustic field for the simple

Pekeris geoacoustic model were discussed in detail. In some situations, the Pekeris

model is adequate for describing the behavior of an acoustic field within a waveguide.

In other situations however, a more complicated non-isovelocity waveguide overlying

a horizontally stratified bottom is required. In the most general case, the properties

of these layers may vary as a function of range and may support shear as well as

compressional propagation. This general problem is not completely solved and is

beyond the scope of this thesis. Instead, we will focus, in this section, on developing

expressions for the Green's function and acoustic field in a waveguide which consists

of fluid layers with range-independent properties.

In our discussion, we will, as in the case of the Pekeris waveguide, relate the

acoustic field within the waveguide to the depth-dependent Green's function via the

Hankel transform. Therefore, most of the presentation will concentrate on developing

the Green's function for the horizontally stratified fluid model. This basic idea of

relating the acoustic field to the Green's function is not new and has been discussed by

a number of researchers. In fact, there are a number of techniques already in existence

for determining the Green's function for a layered model [21, [91, [241, [25], [261 . These

techniques yield identical theoretical results but have differing properties with respect

to numerical accuracy and computational efficiency. In our work, a new technique,

referred to as Green's function migration, has been developed which again yields a

theoretically identical result for the Green's function. While we are not proposing that

the technique has superior numerical properties, it has been implemented numerically

and compares favorably with other techniques in terms of accuracy and efficiency. The

advantage of the new approach however, is that it provides the basis for developing a

number of important properties of the Green's function. We will find these properties

SNon-isovelocity refers to the source and receiver residing within layers having different acoustic

properties.
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pressure release surface

e' R_. xX fictitious receiver
R* -, -- I I

Rx

R ~ hf

halfspace

actual receiver

Figure 2.17: Non-isovelocity waveguide with a pressure release surface. The fictitious

receiver is located in the same layer as the source while the actual receiver is located

in an underlying layer.

to be useful in later chapters of this thesis.

The essential idea of the new technique is to determine the Green's function for a

non-isovelocity waveguide by first determining a fictitious Green's function, in which

the source and receiver reside within the same layer, and then migrating the Green's

function down through the layers to the appropriate depth. To see this more clearly,

consider the non-isovelovity waveguide depicted in Figure 2.17. To determine the

Green's function for this configuration of the source and receiver, we will first de-

termine the Green's function for the fictitious receiver located in the top layer and

then migrate the Green's function to the actual receiver depth. The method relies on

the fact that it is straightforward to determine the Green's function for the fictitious

receiver. This Green's function corresponds to an isovelocity waveguide overlying

a layered media, and has the identical form as the Pekeris model Green's function

except that the bottom reflection coefficient, Rg,, differs. 9

9In the remainder of this section. we will often omit the explicit dependence of reflection coefficients

and Green's functions on the horizontal wavenumberk,, for notational convenience.
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Specifically, the reflection coefficient RB, for the layered model is not a Rayleigh

reflection coefficient, and must be determined from the geoacoustic properties of all

underlying layers and the halfspace. Again, numerous methods exist for computing

this reflection coefficient. However, we will focus on a particular existing method [271,

[281 for computing the reflection coefficient. The method is based on determining the

reflection coefficient RE, by first determining the reflection coefficient, RBN I at the in-

terface between the lowest layer and the underlying halfspace, and then migrating this

reflection coefficient up through the layers. The reflection coefficient RB,~ is simply

determined since it is a Rayleigh reflection coefficient. This approach for determin-

ing RB,, which we will refer to as reflection coefficient migration, can be contrasted

with alternate propagator matrix based methods. In these latter methods, both the

upgoing fields and downgoing fields are propagated across layers, and at the top layer

their ratio is computed to yield the reflection coefficient. In the reflection coefficient

migration method however, the ratio itself is propagated, or migrated, directly. An

advantage of the formulation is that properties of the reflection coefficient, particu-

larly with respect to the influence of underlying layers, are more easily established by

working with this ratio throughout. Additionally, the reflection coefficient migration

technique yields the partial reflection coefficient at each intermediate layer interface.

The sequence of these partial reflection coefficients will be shown to be an important

component in the Green's function migration method. The reflection coefficient mi-

gration method also provides the basis for a convenient computational algorithm for

determining the reflection coefficient.

The material in this section is organized as follows. First, the reflection coefficient

migration approach will be discussed in detail. Next, using this approach, we will

derive two important properties of the reflection coefficient. The first property relates

to the number of branch points present in the case that there are multiple layers.

The second is a symmetry property in the complex k,-plane and will be required in

later discussions. Next, we will consider the 'situation that the source and receiver

are located within different layers, i.e. the non-isovelocity waveguide case. We will
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refer to the corresponding Green's function as the eztended Green's function. The

expression for the extended Green's function will be developed using the Green's

function migration method. Three important properties of the Green's function and

extended Green's function will then be derived. First, it will be shown that although

there are multiple layers present, the square root ambiguity implies that only two

Riemann sheets are present. Next, a symmetry property for the Green's function and

extended Green's function is presented. Using this property, we will next develop a

property related to the finite extent of the imaginary part of these Green's functions.

Finally, we will consider the application of Cauchy's theorem. Because there are only

two Riemann sheets of g(k,) present, most of the issues related to branch-cut selection,

resonances, and virtual modes are identical to those presented in the previous section.

Expressions for the pole locations and coresponding residues will be presented, and

these expressions will be used in the numerical examples in Chapter 4.

We begin the discussion by restating the form of the Green's function for an

isovelocity waveguide, in terms of the reflection coefficients at its top and bottom

j(C-i) I + RScJ'·t)(#^ , + Ryca·(U -'))
g(k) (k. 1+ su)(ei +(2.63)

k,(1m - RsRBei h)

In order to develop the relationship between g(k,) and the geoacoustic parameters

of the underlying media, the specific relationship between RB and these parameters

is required. We will now develop this relationship based on the reflection coefficient

migration approach.

To do this, consider the layered structure shown in Figure 2.18. Using the reflection

coefficient migration method, we will relate the reflection coefficient RB,, at the (i -

l)/i interface to the reflection coefficient RB,+,, at the next lower interface, i/(i + 1).

By relating these, it is possible to obtain the set of all reflection coefficients at the

layer interfaces, and we will refer to the complete set, (RB,}, as the reflectivity series.

Although it is only the first term in the reflectivity series which is required in the

isovelocity waveguide Green's function expression, we will later see that the other

terms are required for the extended Green's function construction. Note that each
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i + I hi | R-!i+2

Figure 2.18: Layer structure and various reflection coefficients. The reflection coeffi-

cient RB, refers to the total reflection coefficient looking down from layer i - 1. The

reflection coefficient R,/i+l refers to the Rayleigh reflection coefficient at the boundary

between layer i and i + 1.

term in the reflectivity series is not the Rayleigh reflection coefficient between two

adjacent layers. Rather, the properties of all underlying layers influence each reflection

coefficient in the reflectivity series. Therefore, as illustrated in Figure 2.18, RB refers

to the total reflection coefficient looking down from the (i - 1)'t layer. In this figure,

the reflection coefficient R,/i+l refers to the Rayleigh reflection coefficient looking

down from the i th to the (i + 1)A' layer.

Referring again to Figure 2.18, consider a particular plane-wave k, component of

the acoustic field propagating within layer i. The z-dependence of this component

must have the form

f(k,; z; i) = c(ek"-' + R+,e -i k "'.Iz (2.64)

which consists of a downgoing component, plus an upgoing component which is

weighted by the reflection coefficient at the i/(i + 1) interface. At this interface

we have assumed that z = 0, and the ratio of the second term to the first term above

is simply Rs,,. At the top of layer just below the interface, z = -i and this
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component has the form

f(k,; z; )-- = - .c[,CihXX + R,,I jhi; (2.65)

Next, assume that the wavenumber component within layer (i - 1) is of the form

f(k,; z; i - 1) = cfac.i- ('+ki) + be-i.,_I (,+hi)j (2.66)

This expression also consists of the sum of an upgoing term plus a downgoing term,
weighted by a reflection coefficient. By definition, the reflection coefficient at the
bottom of the (i - 1)h layer, where z = -h, is RB, = b/a. In order to determine the
coefficients a and b, we invoke the continuity conditions across the (i- 1)/i boundary

f(k,;z;i- 1)._,, = f(k,;z;i),- (2.67)
(2.67)

Pi-I"as l,=-k = ill=-h

Performing the required algebra to solve for a and b, and computing their ratio, we
obtain

.R._j/ + Rg,+, i.2k,
RX, = 1 + Ri-l/,R,+, ei".i (2.68)

In deriving this well known expression [27j, [281, the reflection coefficient R;,+, at the
lower interface has been migrated through a layer and across the next higher interface
to obtain the reflection coefficient RB,. From this expression, it is apparent that RB,
depends on the properties of layer i and on the properties of all underlying media
via RBi+,. Additionally, although the reflection coefficient has been migrated through
only a single layer, the approach for migrating it through additional layers is clear -
the reflection coefficient RB, at the bottom of layer i - 1 can be migrated through
this layer to obtain the reflection coefficient at the bottom of layer i - 2, etc. Thus,
the method for obtaining all the terms in the reflectivity series is to: 1) determine the
Rayleigh reflection between the lowest layer and the underlying halfspace, 2) migrate
the reflection coefficient up through each higher layer i using equation (2.68).

Although the form of the migrated reflection coefficient in equation (2.68) was
derived mathematically by matching boundary conditions, this form has a physical
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interpretation as well. Specifically, equation (2.68) incorporates all possible paths of

reflection which can occur when a piane wave is incident at the (i - l)/i interface. To

see that this is the case, assume for simplicity that i = 1. The reflection coefficient

Ra, is written in terms of R, using equation (2.68) as

aBt I/ + Ro / ei , ei2,, (2.69)1 + P.o/. R, d.,k,

The denominator of this expression can be expanded as a series so that

RB, = (/ 1 + R,e 2 jh')[1 - Ro/lRBsZ 2 " h' + (R/lRBeJti) 2 - ... ] (2.70)

Combining terms and simplifying, it is apparent that

RB, = Ro/l + (1 - Rol')Rei Lh - R 1%/(1 - l)RB, J4 kii + ... (2.71)

Now, using the definition of the transmission coefficient Tol 1 - Ro/1 and the

identity Rl/o = -R 0/1 , where the notation 1/0 indicates propagation from medium 1

to medium 0, we have that

RB, = Roll + To/lRB,T/oei 2 " 'uat + To/lRB,RloRB,Tlooei'l +*... (2.72)

From this series, it is apparent that R, accounts for all of the possible ways in which

the incident plane wave can be reflected. Specifically, the first term in equation (2.72)

accounts for the Rayleigh reflection due to the impedance contrast between medium

0 and medium 1. The second term in the series accounts for the reflection due to

transmission into media 1, reflection at the 1/2 interface, and re-transmission from

medium 1 to medium 0. Similarly, the higher order terms in equation (2.72) represent

the multiple reflections which can occur within layer 1. The associated phase factor of

each term accounts for the length of the path followed by each reflected component.

Also note that in the case that medium 1 is a thick high-speed layer, the imaginary

vertical wavenumber which occurs when k, > k, yields a reflection coefficient which

is approximately the Rayleigh reflection coefficient. That is,

RE, Ro/l (2.73)
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Figure 2.19: Layer model indicating overlying and underlying halfspaces.

when k,1 is purely imaginary and hi is large, as can be concluded by examining

equation (2.69). Similarly, it can be shown that the partial reflection coefficient at

any interface which overlies a thick high-speed layer approaches the Rayleigh reflec-

tion coefficient, for horizontal wavenumbers greater than the layer wavenumber. The

physical interpretation is that the underlying layers have negligible effect due to the

fact that insignificant penetration of energy occurs.

We have defined the reflectivity series as the set of all intermediate reflection

coefficients at layer interfaces within a stack of layers. Each term in the reflectivity

series is related to an adjacent term via equation (2.68), and a physical interpretation

of this equation has been provided. Referring to Figure 2.19, it can be seen that the

first term in this set is most important. This reflection coefficient, Rs,, incorporates

the geoacoustic properties of all underlying layers and summarizes the effect that the

stack of layers has on an impinging plane wave. This reflection coefficient is also

required in the expression for the isovelocity waveguide Green's function. In this

case the source and receiver are assumed to reside in layer 0, and the corresponding

Green's function expression is written as

g(k,) =(ek + Rse )(- RS R.;o Z,)) (2.74)
k,o(1 - RsR,ei4k-oho)

Because of its importance, we will now derive two useful properties of the reflection
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Figure 2.20: Simplified one layer model.

coefficient RB,. The first of these properties is well known [21, [291, however we believe

the second property to be new.

The first property to be developed is that RD, is an even function of each vertical

wavenumber k,. Essentially, the presence of additional k,i terms within the reflection

coefficient migration method suggests that additional square root ambiguities might

exist. In order to demonstrate that this is not the case, we will now show that RB, is

an even function of these wavenumbers. To prove this, consider the simplified layered

model depicted in Figure 2.20, and the reflection coefficient migration expression

RB, i, 1 1+ R/ e 2k h (2.75)
1 + 0ol1 RB, ei2hj,,h(.

Since medium 2 is a halfspace, both Bo1 and RB, are Rayleigh reflection coefficients

and thus

RB, = ks, - blk,2 where bl p /P (2.76)
k,l + b1k,2

and

B 11 Ro = - bok:, where bo Po/P (2.77)
R = k,o + bok..

Suppose that RB, for this model is evaluated at the same value of k, but with the

opposite sign choice for k,l. Notationally, we will use ' to denote evaluation of a
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quantity using the opposite choice of the sign of kl. Therefore,

-k.1 - blk,2 --. 78e
#B,= k+b 2= 1/R0 , (2.78)

-kL + b1Ik 2

and

-o = ok,

Substituting these values into the expression for RAB,, it is apparent that

;= 1 + =ej t hR0 + 1/Rs0/e9/t+ (2.80)
at= I + JRl ,e'J2b-*, = 1 + (l/Ro1 /)(1/Ras)e-Ci2kAta

Multiplying numerator and denominator by Ro/RBhei2*Js1,, we see that

-/ 1 + RoRlRi2k' 7= R, (2.81)

Thus, the choice of'the sign of the vertical wavenumberwithin layer 1, does not affect

the value of the reflection coefficient Re,.

This analysis can be applied in an identical manner to further prove that the reflec-

tion coefficient does not depend on the choice of the sign of the vertical wavenumber

within any layer, in the situation that multiple layers are present. It is straightfor-

ward to show that the reflection coefficient does depend on the choice of the sign of the

vertical wavenumber in any halfspace. For example, referring to Figure 2.19, where

media 0 and N are assumed to be isovelocity hIfspaces, it can be shown that RB, (k,)

is not an even function of k,o , and not an even function of k,N. An implication is

that it is necessary to consider four Riemann sheets, when evaluating the reflection

coefficient in the complex k,-plane.

The next property to be developed is the conjugate symmetry property for the

reflection coefficient

R, (k) = R, (k,) (2.82)

This property is important because it implies constraints on the poles, zeros, and

residues of the reflection coefficient. The property applies separately on each Riemann
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sheet and is only valid in the case that EJP branch-cuts are selected in determining

k.o and kNv. In evaluating this expression for real values of k,, we point out that since

there are branch-cuts which lie along a portion of the real axis, the expression must

be evaluated as the real axis is approached from either above or below. Additionally,

we will show that this property applies not only to the first term in the reflectivity

series but to all terms in this series as well.

To prove this, consider the reflection coefficient RN_, for the model shown in

Figure 2.19 where medium N is assumed to be an isovelocity halfspace. Using the

reflection coefficient migration equation, we have that

RD, (k,() = 1RN2/N.. + R ; RBN ei2N-IhN- (2.83)
1 + RN-21N-IR.Ol ejlsjv-linv-

Recall that RON is the Rayleigh reflection coefficient

RBN (k,) k br-lkN where bnr-l = pa-1/PN (2.84)
kN-, + bN-,kN

and that the vertical wavenumber in the i # medium is k,i =- (k - k,)l/2 . From

earlier arguments, all sign choices are arbitrary except for the sign associated with

k,N. We therefore choose all square root signs such that Im {k,i} 0, corresponding

to the EJP cut for each of these square roots. If we let k, - k*, it is apparent

that k', = :ki, where the sign must be chosen such that Im {k,,} > 0, and thus

k',i = -k,. Substituting this result into equation (2.84) for RBN, we find that

RB(k;) = RN,(k) (2.85)

Similarly, it is easily shown that RN-2/N-l(k;) = RN_2/_N-l(kr). Substituting these

results into the reflection coefficient migration equation (2.83), we have that

RB_ (k) R- 2/N-I + e R, (k) (2.86)
1+ R.2/ot_,RIN BN~_ ,.

Continuing in this manner, it follows that all reflection coefficients in the reflectivity

series must satisfy the property that R, (k) = RI, (k,).
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It is also possible to develop other interesting and important properties of the re-

dfection coefficient and the reflectivity series in a similar style. For example, by relating

adjacent terms in the reflectivity series using equation (2.68), statements concerning

constraints on the poles of these reflection coefficients can be made. Although we

have chosen not to further develop these properties in this thesis, their development

is suggested as an interesting topic for future research. Instead, given the expression

in equation (2.63) for the Green's function corresponding to an isovelocity waveguide

overlying a layered medium, we will next discuss a method for obtaining the extended

Green's function. With analogy to the reflection coefficient migration method, we

will develop the Green's function migration method as a means for determining the

extended Green's function.

Consider the form of the Green's function in equation (2.63) for the source and

receiver in layer 0. To emphasize the fact that the receiver resides within layer 0, we

will use the subscript 0, and re-write this expression as

go(k,) = co(eil " °' + RBI 2,.ooC-i.ok..)) (2.87)

where
= (e-Ao, + Rseikol)

(co RsR,ei 2k.oo) (2.88)

Now suppose that this fictitious receiver is moved downward towards the bottom of

layer 0. At some depth, the receiver depth z must exceed the source depth zo. Thus,

for larger receiver depths, z = z, and zt = z, and the corresponding Green's function,

go(k,), is written as

go(k) = co(e'o" + Ra, ei2*.ohoe-i.ox) (2.89)

This form of the Green's function indicates that, at each horizontal wavenumber, there

exists a downgoing component, Ceiko', plus an upgoing component, e- i oz, weighted

in amplitude by the reflection coefficient at the next lower interface. The downgoing

and upgoing components propagate with the vertical wavenumber in medium 0.
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The Green's function for the receiver located in the next lower layer must be of

the form

gl(k,) = aei'oz + be-i 'k" ' (2.90)

in order to satisfy the homogeneous ordinary differential equation for the Green's

function, as discussed in Section 2.2. The constants a and b must be chosen to satisfy

the continuity boundary conditions at the 0/1 interface - the two continuity conditions

exactly specify the two apparent degrees of freedom in the solution [281. By matching

this Green's function with the Green's function in equation (2.89), we have migrated

the Green's function across the boundary between layer 0 and layer 1.

A slightly more convenient choice for the Green's function gl (k,) is

g91(k,) = cl(eL,,('-"o)+ RB, C2Sj8jI ke - ik,( ' - °o)) (2.91)

Note that this form for g l (k,) is similar to the form for go(k), shown in equation

(2.89). In other words, this form of gl(k,) contains a downgoing component plus

an upgoing component weighted by the reflection coefficient RB,. These components

propagate with the vertical wavenumber in medium 1, and at z = ho + hi, the ratio

of the upgoing component to the downgoing component is Rs,. Also note that there

is only one apparent degree of freedom in this expression. In order for the expression

to be a valid expression for the Green's function, it is necessary that cl satisfy both

boundary conditions at the 0/1 interface. We now determine c and show that this

choice satisfies both of these boundary conditions.

The pressure continuity condition which must be satisfied is

go(k)lS=o = g1(kb)lx=,o (2.92)

Substituting z = ho into equations (2.89) and (2.91) for go and g1 yields the relation-

ship

cocik°oho(1 + RB,) = C1(1 + RBC2er . h,) (2.93)
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Thus, in order for the pressure continuity condition to be satisfied, cl must be chosen

such that

C = eikoloho (1 + R(2.94)
(1 + R,he i l" ) (2.94)

It is possible to put this expression in an alternate form using the formula for reflection

coefficient migration developed previously. Specifically, since

Re = 1 + Ro/,e,2th, (2.95)
1 + RolRas C2eJrai

Re, can be related to RB, as

RD' =Ra, - R 1 l -j2k3 .A 1 (2.96)
1- ,,Ro,

Substituting this expression for R 5 , into equation (2.94) and performing some algebra,

it is straightforward to show that

1+ RB, _ 1 k Po Pt (2.97)
1 ee, = k + -)( - R,Ro/) l(2.97)

and thus

, = ,)'.o'I( + -P)(1- Ri,/)-co (2.98)
2 ks, PI Po

We now show that this choice of cl also satisfies the particle velocity continuity

condition at the 0/1 interface. Specifically, evaluating the boundary condition

i1go~k,)1 1 ago__I
p1 (8)z=,o = I()=,o (2.99)

Po 8z PI ?z

using equations (2.89) and (2.91) for go and g0 yields

1 1
Cojkokode'jh °(l - RB,) = -cljk,(l - RsB, e2kl ) (2.100)

PO Pt

and thus

Cl =k 1 ei/h (1- RB ia) g) (2.101)pok.( - Rs, ei2k,)
Substituting the relationship between RB, and RB, in equation (2.96) into this equa-

tion and performing some algebra yields

Cl = Roeilo( o-)(1- R 5 Rol)p co (2.102)
2 k, PI Po
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Note that this choice of cl is identical to the value shown in equation (2.98) and thus

cl satisfies both continuity conditions.

To summarize, the form for the Green's function, when the receiver is located in

either medium 0 or medium 1 is

go(k,) = co(ei 'o + Rs,i2oeO- i b' ° ) ze < z < ho

1(k.) h= c,(i"'(-') + 2RBX,2kgeC-i 03(' - h ~) h0 < z < h)

where
= j(e-i',o' + RsCJos)/([k,o(l - RsR,,i2°oA)I (2.104)

C = iho ( + g)(l1 - RBRol)aLo

The migration approach can also be used to determine the Green's function in the

case that the receiver resides within layer 2. In this situation, the form of the Green's

function must be

*(k,) = c 2(Sc/'('-1') + RB, e/2k82'e- / "' (x - a : )) (2.105)

where HI = ho + hA. It is straightforward to show that c2 can be chosen such that

both continuity conditions at the 1/2 interface are satisfied, i.e. so that

n(S)l,-, - g(k)l,,
l(*tlJ -= ~f 2(k.) |X ~(2.106)

P a .=, = . as.

Performing the required algebra, we have that

C2 = ( )(1R (2.107)
2 k,2 P2 Pt

Note the similarity between equation (2.107), which relates c 2 to cl, and equation

(2.104), which relates cl and co.

Proceeding inductively, if the receiver is located in an arbitrary layer i, the migra-

tion method yields the extended Green's function expression,

g(k,) = c(e.i('-s_i-) + RB,+, 2,, he-j.,(s-,,)) (2.108)
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Figure 2.21: Non-isovelocity waveguide in which the source is not in the top layer.

The coordinate system can be redefined so that the overlying layer structure is in-

corporated in the surface reflection coefficient.

where

Hi ho + hi + ... A, . (2.109)

+ °;-' .)(1 - ci i > 0 (2.110)
( ki P P;-

and
(e-i',o + Rsej'.o')
~CO- Rs cw ho'l) (2.111)
kO ( - Rs B, e '·.o

Note that the terms Re,, which are required in the recursive computation of the

extended Green's function, are also the elements of the reflectivity series, discussed

earlier.

For the case in which the source is not in the top layer, an expression for the Green's

function and extended Green's function can be obtained from equations (2.108) and

(2.110) in a straightforward manner. The approach is to redefine the coordinate

system so that z = 0 corresponds to the top of the layer in which the source is

located. For example, as shown in Figure 2.21, the source is no longer in the top

layer. However, by defining a1l depth variables with respect to z = 0 at the 0/-1

interface, and by determining an expression for Rs looking from medium 0 toward
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medium -1, equations (2.108) and (2.110) apply. In addition. Rs for this case can

be determined by using the reflection coefficient migration method applied to the

overlying layers.

To summarize, an expression for the extended Green's function has been deter-

mined using the Green's function migration method. In this method, the isovelocity

waveguide Green's function is migrated across layer boundaries. In addition, we have

pointed out that the source need not reside within the top layer. In this case, the

location of the z = 0 coordinate is simply re-defined as the nearest interface above

the source, and the effects of the overlying media are incorporated in the definition

of the surface reflection coefficient, Rs. In our analyis, we have assumed that the

receiver is located at a depth greater than that of the source. In the opposite case,

the expressions for the Green's function and extended Green's function remain the

same, except that the variables z and zo are interchanged, from reciprocity. We will

next prove three important properties of the Green's function and extended Green's

function.

Previously, it was shown that the reflection coefficient R 8 , (k,) does not depend on

the choice of the sign of the vertical wavenumber within any layer. However, RB, (k,)

depends on the signs of both k,o and k,N. In the isovelocity waveguide problem

however, the important quantity to consider is not RB,(k,), but rather the Green's

function g(k,). From the definition '0 of g(k,), it is apparent that since the RB,(k,)

is even in k,l, 2,...klv, g(k,) must also be even in these variables. It can also be

shown that both RB, (k,) and g(k,) depend on the choice of the sign of the wavenumber

in the underlying halfspace. We now show that, although RB, (k,) is not even in k,0,

g(k,) must be even in k,o. To do this, we must prove that g(k,) in equation (2.74) is

l°Recall that go(k,) and g(k,) are identical functions. Both apply to the case that the receiver and

source reside within layer 0. We will refer to both g(k,) and go(k,) as the Green's function, and to

gi(k,) for i $ 0 as the extended Green's function.
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even in k,o. Consider replacing k,0 by -k,o in this equation so that

j(eik.o5° + Rse- iio')( -iko" + 2B, -i'2o(2-')))
.1's-Awl ) (a -i, - JrB 1)) (2.112)
-k.o(1 - RI Be, e-i2.o*o)

Using the facts that, RA,t (k,) = 1/Re, (k,), and RIs(k) = /Rs(k,), where ' indicates

the alternate choice of the sign of ko, and performing some algebra, it can be shown

that

g(k,) = g(k,) (2.113)

Thus, g(k,) does not depend on. the choice of the sign in ang layer, including layer 0.

Similarly, the extended Green's function does not depend on the choice of the sign

of the vertical wavenumber in any layer. It is difficult to argue this statement alge-

braically. However, this fact can be established using an alternate line of reasoning.

Consider the source and receiver positioned within the top layer. The presence or

lack of a branch point in the complex k,-pl ne associated with a square root ambi-

guity must be independent of the specific locations of the source and receiver within

the layer, i.e. independent of z and zo. This must also be the case' if the receiver is

re-positioned out of this layer. For example, if the receiver is located within layer 1,

the presence or lack of presence of a branch point must be independent of the position

of the receiver within this layer. Now, suppose that the receiver is located just below

the 0/1 interface, i.e. at z = ho. Using the continuity condition that

go(.)lS=h, = gl(k, )l,=ho (2.114)

we note that if go depends on the sign of a particular vertical wavenumber, g1 must also

depend on this choice of sign, in order to satisfy this continuity condition. Similarly, if

go is independent of a particular choice of square root sign, g must also be independent

of this choice. Thus, by invoking the continuity conditions at each interface, it is seen

that the extended Green's function must depend on the signs of k,i in czactly the

same manner as g0 depends on these quantities.

We have shown that both the Green's function and extended Green's function

are independent of the sign choice of the vertical wavenumber in any layer. However,
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these functions do depend on the sign of the vertical wavenumberin the overlying and

underlying halfspaces, assuming that each halfpace can support propagation. In the

ocean acoustics context, a reasonable assumption is that the uppermost interface is

pressure-release and thus propagation cannot be supported in the overlying haifspace.

In other words, the vertical wavenumber is not defined for this overlying halfspace.

An implication is that the Green's function and extended Green's function are inde-

pendent of the sign choice of all vertical wavenumbers except the vertical wavenumber

in the underlying halfspace. Thus, both the Green's function and extended Green's

function have a single branch-point in the complex k,-plane at k, = :kN. In the

remainder of this thesis, we will assume that propagation is not supported in the

overlying halfspace.

The next property to be developed is the conjugate symmetry property g,(k;) =

g9 (k,). This property is only valid if the EJP branch-cut has been selected. A related

symmetry property that does not depend on the branch-cut definition is g,(k,) =

gi(-k,). The latter property follows from the fact that the Green's function and

extended Green's function depend on k, only via the vertical wavenumbers, which

are even functions of k,. In order to demonstrate that g;(k;) = g(k,), we utilize the

property that

RB, (k,) = R;, (k,) (2.115)

which was developed earlier in this section. Substituting this relationship into equa-

tion (2.87) and performing some algebra, it can be shown that

go(k:) = go(k,) (2.116)

The property can also be derived for the extended Green's function, i.e. for

i f 0, using the same line of reasoning as previously presented for the branch point.

Namely, by invoking continuity across layer boundaries and by recognizing that equa-

tion (2.116) is independent of z and zo, it can be argued that the symmetry property
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also applies to the extended Green's function i.e.

gi(k,) = g (,) (2.117)

Note that this symmetry property applies separately on both Riemann sheets, as can

be determined by assuming that Im {k,i} < 0 in the previous derivation.

The conjugate symmetry condition in equation (2.117) implies a number of con-

straints involving the poles and residues of the Green's function and extended Green's

function. For example, if gi(k,) has a pole at k, = k,, where ki is real, and the cor-

responding residue is a,, the property gi(-k,) = gi(k,) implies that gi(k,) also has a

pole at k, = -ki with residue -a,. Frthermore, since gi(k;) = g,(k,), a, must be

real. Similarly, it can be argued that if gi(k,) has a complex pole at k, = k,,, it must

also have poles at k, = -ki, k,, -k,, and corresponding residues of -a,, a,, -a,.

The final property to be discussed relates to the finite extent of the imaginary part

of the Green's function and the extended Green's function. In particular, we will now

show that

Im {g,(k,)} = 0 (2.118)

for real-k, > k, and furthermore that Im {gj(k,)} = 0 only at isolated points for

real-k, < k. The fact that the deep-water Green's function can be approximated as

a function which has finite extent to the water wavenumber, i.e. that the magnitude

of the deep-water Green's function is approximately zero for k, > k 0, has been derived

elsewhere [30]. The property which is to be derived here relates not to the approximate

finite extent of g(k,) at the water wavenumber, but rather to the exact finite extent

of Im {g(k,)} at the underlying halfspace wavenumber. The property which we will

develop can be exploited in an inversion scheme to directly determine a geoacoustic

property from the Green's function. In particular, if p(r) is measured and g(k,) is

obtained by computing the Hankel transform of p(r), the maximum value of k, at

which Im {g(k,)} is non-zero corresponds to the branch point at k = WI/CN, where

cN is the velocity in the underlying halfspace. This property is valid independent
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of the velocities and densities of any intervening layers. The property is also useful

in the context of shallow water synthetic data generation and will be referred to in

Chapter 4.

There are several ways to derive the finite extent property. One way is to demon-

strate the property algebraically, using the reflection coefficient migration equation

and the Green's function migration equation. A disadvantage of this approach is that

it requires the consideration of a number of special cases. For example, separate treat-

ment of high speed and low speed layers within the media underlying the waveguide is

required. An alternate, more direct approach, which uses the two properties of gi(k,)

just presented, is now followed.

The first property to be used is that gi(k,) contains the single branch point at

k, = kN. Note that this property is valid independent of whether or not high or low

speed layers are present in the media which underlies the waveguide. In stating this

property, we have assumed that the overlying halfspace does not support propagation.

The second property to be used is g(k;) = g (k,), for the EJP branch cut assumption.

Together, these two properties imply the property in equation (2.118). To see this,

consider Figure 2.22 which depicts quadrants I and IV of the k,-plane and the EJP

branch cut emanating from the branch point at k, = kN. Also shown in this figure

are two points labelled kA and kA,. These two points are assumed to be located at

symmetric locations about the real-k, axis so that kA, = k. Furthermore, these

points are chosen such that Re {kA,) = Re {kA) < kN. Now, defining the value of the

extended Green's function g,(k,) at the point k, = kA as

gi()(k),r)= gtR + jg, (2.119)

it can be seen, from the expression g,(k;) = g(k,), that

9i(A)|=j, = - ijg (2.120)

Next consider moving the points kA and kA, closer to the real-k, axis while retaining

their symmetry about the axis. In particular, suppose kA is located e above the real-k,
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A

A'

kr- plane

kN

Figure 2.22: Quadrant I and IV of the complex k,-plane. Points A and A' are sym-

metrically located about the real axis. The EJP branch-cut was selected.

axis and kA, is located e below the real axis with Re (kA,} = Re {kA} < k. We note

that the conjugate symmetry property gi(k ) = gf (k,) is still valid so that equations

(2.119) and (2.120) apply. However, because the branch cut passes between these two

points, gi(k,) cannot be continuous in a region which includes points on either side of

the cut. Since the real part of gi(k,) is identical at the two points, the imaginary part

must change discontinuously from kA to kA,. Therefore, the imaginary part of gi(k,)

cannot be zero in a region along the real-k, axis for k, < knv. If it were zero in such

a region, the conjugate symmetry condition gi(k;) = gi(k,) would imply a gap in the

branch cut.

Now consider a similar argument for Re {kA} = Re {kA} > k. The conjugate

symmetry property for g(k,) must apply, and g(k,) must be continuous across the

real-k, axis except at isolated poles since there is no branch-cut here. Continuity

across the real-k, axis therefore requires that

,(,l.-,=,* = g,(k,)lh,h=,, (2.121)

and conjugate symmetry requires that

gi(k,)t=, =k g9(k,),k.=kA, (2.122)
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2.5 Summary

In this chapter, we have discussed the representation of an acoustic field within

a waveguide in terms of the Hankel transform of a Green's function. In Section 2.2,

we developed this integral representation using both a more formal approach, based

on solving the underlying partial differential equation and a more intuitive approach,

based on the superposition of plane waves. In the second approach, it was emphasized

that the field in a waveguide consists of four types of components. In Chapter 5, we will

see that the cancellation between these components bas some important consequences

in the context of the inversion problem.

In Section 2.3, we considered a simple waveguide consisting of a fluid layer over-

lying a fluid halfspace. In the discussion, we considered the behavior of the corre-

sponding Green's function on two different Riemann sheets, in order to point out the

relationship between Cauchy's theorem, trapped poles, virtual poles, and the branch-

cut definition. This theory was compared and contrasted with an alternate approach

for approximately describing the continuum in terms of virtual modes.

In Section 2.4, a more general layered fluid waveguide was considered. Here, we

developed expressions for the Green's function and extended Green's function, using

the Green's function migration method. In doing this, we found it convenient to de-

fine and derive the reflectivity series, which is the set of all intermediate reflection

coefficients at layer boundaries. The individual terms in this series were derived by

migrating the deepest reflection coefficient upwards through the layers. The reflec-

tion coefficient migration method provided a means for deriving several properties of

the reflection coefficient. Additionally, several properties related to the symmetry of

Green's function and the finite extent of its imaginary part were presented. In apply-

ing Cauchy's theorem, we pointed out the similarity with the theory in the previous

section, and provided equations for describing the pole locations and their associated

residues.
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Green's function go(k,), can be determined from equation (2.104) as

(1 - Rs(k,)R, (k,)ei2 Oh°)l,=,, * = 0 (2.124)

The same equation must also prescribe the locations of poles for the extended Green's

function gi(k,). This fact can be argued by using the continuity condition of the

extended Green's function across layer boundaries. The residue a, at the pole k, can

be determined by expressing g,(k,) as

N(k,)
gi(k) (k,) (2.125)

as in equation (2.108) and computing the residue as

, aD()/,=k,. (2.126)
(k,)k,

In summary, in this section we have discussed the Green's function and acoustic

field for the layered fluid waveguide. We have presented a method for migrating the

reflection coefficient and for migrating the Green's function. These methods led to the

development of several properties of the reflection coefficient and the extended Green's

function. Specifically, we showed that the reflection coefficient does not depend on the

sign of the vertical wavenumberwithin any layer and that it has a conjugate symmetry

property. Additionally, assuming that propagation is not supported in the overlying

halfspace, we showed that the extended Green's function depends only on the choice

of the sign of the vertical wavenumber in the underlying halfspace and that it also

has a conjugate symmetry property. These two properties were used to derive a finite

extent property for the imaginary part of the Green's function and extended Green's

function. Finally, in considering the application of Cauchy's theorem, we pointed out

that the theory presented in the previous section is applicable to this more general case

as well. Expressions for the poles and residues of the Green's function and extended

Green's function were given.
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Therefore, the imaginary part of g,(k.j must be zero in order to satisfy both of these

conditions.

Thus, when evaluated along the real k,-axis, the imaginary part of the Green's

function and extended Green's function must be of finite extent, and must be zero

for horizontal wavenumbers greater than the wavenumberof the underlying halfspace,

k,N. Although there can be isolated sero crossings of the imaginary part for Re {k,} <

kN,. no such region may exist as its presence would imply a gap in the branch cut. The

finite extent property is exact only under the conditions that all media are lossless

and that the overlying halfspace does not support propagation. The property does

not depend on the specific velocities and densities of intermediate layers.

In the final part of this section, we will consider the application of Cauchy's the-

orem to the layered waveguide problem. In the previous section, we pointed out that

Cauchy's theorem can be applied to the Pekeris model Green's function as one means

of evaluating its Hankel transform. The resultant acoustic field was written as

p(r) = Py(r) + Pc(r) (2.123)

where PT(r) represents the modal sum, and pc(r) represents the continuum. There are

an infinite number of ways in which this partioning of p(r) can be achieved, dependent

on how the branch-cut is defined. In fact, the identical theory can be applied to the

more general Green's functions discussed in this section. Thus, we can define trapped

and virtual modes in the more general case as well. The virtual modes are again due to

the off-axis poles which reside on either the top or bottom Riemann sheet, depending

on the branch-cut selection and they contribute to the total field as terms in a residue

sum. The only differences between the Pekeris waveguide model and the more general

layered model are the specific equations which describe the pole locations and their

associated residues. These equations are included here for completeness.

The equation which describes the pole locations, kj for the isovelocity waveguide
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Chapter 3

Unilateral Transforms in One and

Two Dimensions

3.1 Introduction

In the previous chapter, we reviewed the Hankel transform relationship between

the Green's function and the acoustic field in a waveguide. In this chapter, it is

shown that a unilateral version of the Hankel transform is also applicable to this

problem. The theory and properties of the unilateral transform will form an important

foundation for many of results to be presented in later chapters of this thesis.

It is well-known that a one-dimensional complex-valued signal which can be syn-

thesized in terms of a one-sided Fourier transform has an exact relationship between

its real and imaginary components. Similarly, a two-dimensional complex-valued sig-

nal has an exact relationship between its real and imaginary components if it can

be synthesized in terms a Fourier transform which is sero in a halfplane. In our

work, we have found that it is possible for signals to possess an approximate real-

part/imaginary-part sufficiency condition under other circumstances. For example, in
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some cases, it is possible for a one-dimensional complex-valued even signal, which has

an even Fourier transform, or a two-dimensional complex-valued circularly symmetric

signal, which has a circularly symmetric Fourier transform, to have an approximate

real-part/imaginary-part sufficiency condition. In this chapter, we will consider these

signals and their relationship to one and two-dimensional unilateral transforms in

detail.

In the first portion of Section 3.2 a review of one-dimensional analytic signals is

provided. The connection between an analytic signal, the unilateral inverse Fourier

transform, and the Hilbert transform is developed. In the second portion of the

section, the theory of one-dimensional approximate analytic signals is presented. A

number of statements involving the unilateral Fourier transform, the unilateral inverse

Fourier transform, causality, and approximate real-part/imaginary-part sufficiency are

made. A numerical example is also provided.

In Section 3.3, the theory is extended to two-dimensional circularly symmetric

signals. These signals, which can be equivalently described in terms of the Hankel

transform, are directly related to acoustic pressure fields propagating in a circularly

symmetric media. We will show that, under some conditions, it is possible to ap-

proximately relate the real and imaginary components of the acoustic field, which is

described in terms of the Hankel transform of the Green's function. To do this, we

will develop a unilateral version of the Hankel transform, referred to as the Hilbert-

Hankel transform. The transform can be used to approximately synthesize an out-

going acoustic field, and its consistency with the Hankel transform will be shown to

imply an approximate relationship between the real and imaginary components of the

outgoing field. The properties of the Hilbert-Hankel transform, and its relationship

to several other transforms, will be considered.

In Section 3.4, an asymptotic version of the Hilbert-Hankel transform is developed.

The transform is related to the Fast-Field-Program (FFP)[1], used to synthetically
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generate underwater acoustic fields. In addition to forming the basis for an effi-

cient computational algorithm, the asymptotic Hilbert-Hankei transform has other

important properties. These properties arise because of the close connection between

the asymptotic Hilbert-Hankel transform and the one-dimensional unilateral inverse

Fourier transform. Several of these properties and their applications to the acquisition

and processing of acoustic fields are discussed.
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3.2 One-Dimensional Exact and Approximate An-

alytic Signals

In this section, we will consider the relationship between the real and imaginary

components of a one-dimensional complex-valued signal. In general, these compo-

nents are completely unrelated, as they may be specified independently. However, for

certain classes of signals, there exists an exact coupling relationship between these

two components. In the first portion of this section, we will review some of the well-

known theory of signals which possess this exact condition. In the second portion of

the section, we consider the related property of approximate real-part/imaginary-part

sufficiency. Several statements concerning approximate causality and approximate

real-part/imaginary-part sufficiency will be made, and a numerical example will be

provided.

3.2.1 Analytic Signals and the Hilbert Transform

We begin the discussion by considering a complex-valued function of a complex-

valued variable. From the theory of analytic functions, the complex-valued function is

analytic at a point if it is both single-valued and has a unique derivative. By unique,

it is meant that the derivative is independent of the direction in which the derivative

is taken. A necessary condition for a unique derivative is that the real and imaginary

components of the function satisfy the Cauchy-Riemann conditions[2], which involve

the partial derivatives of the function. If these partial derivatives are also contin-

uous, the Cauchy-Riemann conditions form a necessary and sufficient condition for

analyticity at a given point.

The Cauchy-Riemann conditions imply that the real and imaginary components

of a function cannot be chosen independently, if the function is to be analytic. These
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conditions imply that if the real (or imaginary) component is specified within the

region of analyticity, the imaginary (or real) component can be determined. In some

cases, knowledge of one of the components along only the boundary of the analytic

region is sufficient to determine the alternate component [31 [41]. For example, if the

region of analyticity is a circle centered at the origin of the complex plane,' integral

relationships between the real and imaginary components of the function referred to

as Poisson integrals have been developed. Similarly, if the region of analyticity is a

halfplane which includes the real or imaginary axis, integral relationships between the

real and imaginary components of the function along the axis, referred to as Hilbert

transform integrals, have been developed.

In a signal processing context, we are perhaps more familiar with the concept that

a one-sided, or causal, condition in one domain implies a real-part/imaginary-part

sufficiency condition in the alternate domain. That is, a complex-valued signal has

a real-part/imaginary-part sufficiency condition if its Fourier transform is causal and

vice versa. A signal which can be exactly synthesized in terms of a one-sided Fourier

transform is referred to as an analytic signaL.

To explore this further, consider an arbitrary real-valued signal f(t) which has

a Fourier transform F(w). An analytic signal z(t), which is related to f(t), can be

constructed by synthesizing over only the positive frequency components of ir(w).

That is, the complex-valued signal z(t) can be synthesized as

z(t) = o F(w)eidw (3.1)

Here, z(t) is an analytic signal, since its Fourier transform is a causal function of

w. The synthesis equation for z(t) is valid for both real and complex values of t.

It can be shown that the one-sided integral in equation (3.1) implies that z(t) is

an analytic function in the upper half of the complex t-plane[51[6]. This one-sided

condition connects the theory of the analytic signal with the theory of the analytic

function.
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The relationship between the real and imaginary components of z(t) is now deter-

mined. Equating real parts on both sides of equation (3.1) yields

Rez(t)] = fi , Re[F(w)eiw']dw

= s fQo[F(w)ei' + F(w)e-i'dw (3.2)

= if0 F(w)ei"'dw = f(t)

Thus, the real part of the analytic signal z(t) is f(t). Similarly, equating the imaginary

parts on both sides of equation (3.1), we find that

f(t) - m[z(t)] = 2j F(w)/""dw + h -F(-w)ef d (3.3)

so that

?(t) = -jgn[wjF(w)dw (3.4)

The relationships between the real and imaginary components of z(t) and their

Fourier transforms can be summarised as follows

f(t) r F(w)

z(t) = f(t) + jr(t) r 2F(w)U(w) (3.5)

f(t) : -jsgn[wjF(w)

The signals f(t) and f(t) are said to form a Hilbert transform pair.

Although the Hilbert transform relationship between f(t) and (t) is conveniently

summarized in the frequency domain, it is also possible to use the convolution property

of Fourier transforms to state the relationship in the time domain. Determining the

inverse Fourier transform of -jsgn[w], we find that

(t) = 1 * (t) (3.6)

and similarly that
1 (3.7)

f(t)= --- (t) (37)
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where the integrals are interpreted as Cauchy principal valued.

In our work, we have been interested in extending some of the properties of analytic

signals to signals which do not posess a one-sided Fourier transform. Our primary

interest has been in two-dimensional circularly symmetric signals, which are related

to the two-dimensional circularly symmetric Fourier transform, or equivalently to the

Hankel transform. However, the extension of the theory of analytic functions can

best be presented by first considering the one-dimensional case. In the remainder of

this section the theory of one-dimensional signals which are approximately analytic is

developed, and a numerical example is provided. In the next section, he analogous

theory for two-dimensional circularly symmetric signals is presented.
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3.2.2 Approximate Analytic Signals and the Unilateral In-

verse Fourier transform

Consider a one-dimensional complex-valued signal f(t) which has the Laplace

transform Fo(s) given by

Fo(.) = J f(t)e-"dt (3.8)

The signal f(t) is restricted to be a stable signal, so that its Fourier transform F(w) =

Fo(s)l=i,, exists. We will further assume that the Fourier transform F(w) is a two-

sided function of w and thus the signal f(t) can be described in terms of the inverse

Fourier transform synthesis integral as

f(t) = '7 F(w)ewd (3.9)

We will find it convenient to define the related signal f(t) in terms of the unilateral

inverse Fourier transform as follows

.(t) I F(w)Cdw (3.10)

Note that f(t) is an analytic signal, since its Fourier transform is causal.

To extend the theory of analytic signals to the signal f(t) which has a two-sided

Fourier transform, we require that

f(t) ~ fA(t) (3.11)

That is, a signal f(t) which can be approximated by a unilateral version of its inverse

Fourier transform can be considered as approximately analytic.

The condition that a signai can be accurately synthesized in terms of its unilateral

inverse Fourier transform is rather restrictive, and certainly does not apply to any

arbitrary signal. For example, consider a signal, comprised of a sum of complex

exponentials, which has a rational Laplace transform. In Figure 3.1, we have indicated

the positions of several poles in the s-plane, corresponding to the arbitrarily chosen
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Figure 3.1: Complex s-plane indicating positions of poles, the inverse Laplace trans-

form integration contour, and the Laplace transform region of convergence.

signal, as well as the region of convergence for the Laplace transform. The condition

that f(t) f(t) is equivalent to the statement that the inverse Laplace transform

contour C 1+C 2, can be approximately replaced by the contour C1 . The approximation

will be poor if a pole, such as C, is located in Quadrant m or IV of the s-plane.

Essentially, the effects of this pole, quite important in determining the character of

the corresponding signal f(t), are only negligibly included by integrating along the

positive imaginary axis only. That is, if f(t) is exactly synthesized as

f(t) = j- Fo(s)c"ds (3.12)

so that

f(t) 2 j c Fo(s)e"ds + 2:r; Fo(s)e'ds (3.13)

the pole at position C contributes primarily to..the second of these. Thus, the approx-

imation

f(t) c FO(s)Ceds = Ls. f F(w)ew-dw t > (3.14)

is not accurate because of the position of pole C in the s-plane. Alternately, if there

are no poles in quadrant m or IV of the s-plane, the unilateral inverse transform can

yield an accurate version of f(t). This can be argued informally based on the fact that
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only the tails of the poles, such as A and B, are incorporated within the integrand of

the second integral in equation (3.13).

This concept of approximate analyticity is intuitive - if the signal f(t) can be

approximated by the analytic signal f,(t), f(t) is certainly approximately analytic.

Although it is possible to develop an approximate relationship between the real- and

imaginary components of f(t), there are no further consequences of the relationship

f(t) f(t). However, as will be indicated in the remainder of this section, many

interesting consequences occur if additional restrictions are placed on the signal f(t)

and the definition of approximate analyticity is slightly modified. For example, there

are interesting consequences which arise if f(t) is restricted to be a causal signal. In

our work, we have explored the consequences of requiring f(t) to be even. Essentially,

by considering f(t) to be an even signal, the case of the causal signal can be treated

as well, since an even (or causal) signal can always be invertibly constructed from

a causal (or even) signal. As will be discussed in the next section, the even signal

in one-dimension is completely analogous to the circularly symmetric signal in two

dimensions.

It is pointed out that any stable even function f(t) can be directly related to

a Fourier transform which is analytic. This follows from the fact that the Fourier

transform of the causal portion of f(t) must be analytic in the w domain. Our interest

is in the property of analyticity not in the w domain, but rather in the t domain.

To develop the theory, consider the even, complex-valued signal f(t) which has

a Laplace transform Fo(s). The signal is again required to be stable, so that its

Fourier transform F(w) = Fo(s)ij., exists. Since the signal is even, it follows that its

Fourier transform and Laplace transform must also be even. We will find it convenient

to define not only the Fourier transform and inverse Fourier transform, but their

unilateral counterparts as well. Thus,

f(t) - 1 {F(w)} L F(w)eJ (3.15)
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f5 (t)- {F,(w)} - F()e/i dw (3.16)

and

F(w) - {f(t)} - f(t)e-i'dt (3.17)

F,(Y)- f()} -o f(t) e-i"g dt (3.18)

where f,(t) represents the unilateral inverse Fourier transform of F(w), and F,(w)

represents the unilateral Fourier transform of f(t). Symbolically, and 7-1 repre-

sent the Fourier transform and inverse Fourier transform operations, and ;Y, and ;'," 1

represent the unilateral Fourier transform and unilateral inverse Fourier transform

operations.

It is pointed out that, while 7 and 7' are necessarily inverse operations, ;,

and T7-l are not necessarily inverse operations. Additionally, it is recognized that

both f,(t) and F,(w) are analytic signals, since their Fourier transforms are causal.

Therefore, the real and imaginary components of f,(t) are exactly related by the

Hilbert transform, and the real and imaginary components of F,(w) are exactly related

by the Hilbert transform. Additionally, it is noted that since f(t), and thus F(w), are

even signals, they can be synthesized in terms of the cosine transform as

f(t)= = F(w)coswtd d (3.19)

F(w) = f(t) cos wt dt (3.20)

To extend the theory of analytic signals to the signal f(t), we will require that

f(t) satisfy the condition

f(t) f(t) t > 0 (3.21)

That is, only those functions f(t) whici can be approximated by the unilateral inverse

Fourier transform for positive values of t will be considered. Note that this condition

differs from the condition in (3.11). Specifically, the unilateral inverse Fourier trans-

form is required to synthesize the even signal f(t) for positive values of t only. The
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even function f(t) will be defined as approximately analytic if the condition in (3.21)

is satisfied. To the extent that the approximation in equation (3.21) is valid, there will

also exist an approximate relationship between the real and imaginary components of

f(t), for t > 0. This result is the basis for a number of statements which will now be

made.

Statement 1 If f(t) f(t) for t > 0, then the real and imaginary components of

f(t) must be approzimately related by the Hilbert transform for t > 0.

The signal f,(t) must be analytic since its Fourier transform is causal in w. Equat-

ing the real and imaginary parts on both sides of equation (3.21) for t > 0, we have

that Re[f(t)] and Im[f(t)] must be related via the Hilbert transform, since Re[f,(t)]

and Im[f,(t) are related by the Hilbert transform.

The condition that the causal portion of a signal can be accurately bynthesized

by a unilateral version of the inverse Fourier tiansfrm is rather restrictive. For

example, consider the even signal f(t), comprised of complex exponentials, which has

the Laplace transform F(s). In Figure 3.2, we have indicated the positions of several

poles in the s-plane for an arbitrarily chosen even signal. The poles labelled A', B',

and C are in symmetrically-located positions with respect to the poles A, B, and C,

due to the fact that Fo(s) must be even. The condition that f(t) f(t), t > 0 is

equivalent to the statement that the inverse Laplace transform contour C1 + C 2, can

be approximately replaced by the contour C 1. The approximation will be poor if a

pole, such as C, is located in Quadrant III of the s-plane. Essentially, the effects of

this pole, quite important in determining the character of the corresponding signal

f(t) for t > 0, are only negligibly included by integrating along the positive imaginary

axis only. That is, if f(t) is exactly synthesized as

f(t) = j I+c,f(t) = 12r f Fo(s)e' d (3.22)

'The pole at C' determines the behavior of the function (t) primarily for values of t < 0.
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Figure 3.2: Complex s-plane indicating positions of poles, the inverse Laplace trans-

form integration contour, and the Laplace transform region of convergence.

so that

f(t) = - Fo(3)ds + Fo(s)ed (3.23)

the pole at position .C contributes primarily to the second of these two integrals, for

values of t > 0. Thus, the approximation

f(t) 2r' Fo(3)e"ds = "-1'(F(w)} (3.24)

is not accurate for t > 0 because of the position of pole C in the s-plane.

Alternately, if there are no poles or other singularities in quadrant m of the s-

plane, (and thus in quadrant I since Fo(s) is even), the unilateral inverse transform

can yield an accurate version of f(t) for values of t > 0. This can be argued informally

based on the fact that only the tails of the poles, such as A and B, are incorporated

within the integrand of the second integral in equation (3.23). More formally, if Fo(s)

is analytic in quadrant m, under the weak condition that Fo(s) - 0, as 1st - o in

this quadrant, the contour C2 can be deformed from its position along the negative

imaginary s axis, to a position C along the negative real axis, as shown in Figure

3.3. In this case, f(t) can be written exactly as

2 The fact that the contour integral at infinite radius is zero can be proved using Jordan's Lemma.
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Figure 3.3: Complex s-plane and integration contour deformation. The integrals along

C2 and C2 are identical.

f(t) = 27 J Fo(s)e'gda + L c Fo(s)e' ds (3.25)

From this equation, it is seen that the second integral consists of exponential terms

which are purely decaying in t. The implication is that, to the degree that these

exponential decaying terms can be neglected in the synthesis of f(t) for t > 0, the

approximation f(t) f,(t), t > 0 is valid. Additionally, the validity of the approxi-

mation increases for larger values of t.

Similarly, it can be argued that as the imaginary part of a pole located in quadrant

II, increases, so must the quality of the unilateral inverse Fourier transform synthesis.

Essentially, the contribution along the negative imaginary axis, due to the tail of this

pole, decreases as the pole is displaced upwards. Additionally, as the magnitude of

the real part of a pole increases, i.e. the Q-factor of the pole decreases, the unilateral

approximation becomes worse. However, as the magnitude of the real part of a pole

increases, its relative contribution to the signal f(t) also decreases for t > O. This fact

is consistent with the statement that .the unilateral inverse Fourier transform yields a

signal f(t) which more closely approximates f(t) for t > 0.

It is possible to determine an exact expression for the error in the unilateral inverse
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Fourier transform synthesis of a signal f(t). Specifically, by examining the definitions

of f(t) and f,(t), the error in the approximation f(t) f,(t), t > 0 can be written as

e(t) f(t)- f,(t) = 2 F(w)ei"d t > 0 (3.26)

This integral can be evaluated analytically by utilizing cosine and sine transform

tables, or it can be evaluated numerically, as is done in the example later in this

section. It is also possible to establish bounds on the error as a function of t. However,

we have chosen not to pursue the mathematical evaluation of the error function in

great detail. We focus instead, on other consequences of the unilateral approximation

f(t) f(t), t > O. Specifically, in the following statement, the approximation is used

to develop a causality property for f,(t).

Statement 2 If f(t) fv(t) for t > 0, then the unilateral inverse Fourier transform

f,(t) is approzimately causal.

Note from equation (3.16), that the unilateral inverse Fourier transform is defined

for all values of t. Thus, the causality condition stated above is not a consequence of

the definition of the unilateral inverse Fourier transform, but rather is a consequence

of the condition that f(t) ~ f,(t),t > O. To justify the statement, we note that

f(t) f,(t), t > 0 implies that

1 F()ew d 0 t > 0 (3.27)

so that

1/|F(w)e-idw 0 t > 0 (3.28)

The latter step follows from the fact that F(w) is even in w. From equation (3.28),

and the definition of the unilateral inverse Fourier transform, it can be seen that

f,(-t) 0, t > 0 (3.29)

and thus

f,(t) 0, t < 0 (3.30)
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Thus, under the condition that f(t) f,(t) for t > 0, the unilateral inverse Fourier

transform must be approximately causal.

As pointed earlier, in general, the unilateral Fourier transform and unilateral in-

verse Fourier transform are not inverse operations. However, the following statement

sumsmari es the relationship between these two transforms under the condition that

f(t) f"(t), t > 0 is valid.

Statement 3 If f(t) f.(t) for t > 0, then the unilateral Fourier transform and

unilateral inverse Fourier transform are related via

.,{ -1' {F(w)}} - F(w)U(w) (3.31)

To justify this, note that

A,, {- {F(w)}} = ;{f5 (t)} (3.32)

from the definition of f,(t). Next, it follows that

I{f(t)} {f{,(t)} (3.33)

since f(t) is approximately causal, from the preceding theorem. However, from the

definition of f,(t), it is also apparent that

Y{f,(t)} = F(w)U(w) (3.34)

Combining the three previous equations establishes the validity of the statement.

The next property to be discussed is a real-part/imaginary-part sufficiency con-

dition which occurs in the w domain. The fact that F(w) has an approximate real-

part/imaginary-part sufficiency condition is not completely unexpected, since, as pre-

viously discussed, there exists an approximate causality condition in the alternate t

domain. The real-part/imaginary-part sufficiency condition for F(w) is summarized

in the following statement.
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Statement 4 If f(t) f,(t) for t > 0, then the real and imaginary component of

F(w) must be related by the Hilbert transform for w > O.

To justify this, Statement 3 is used to establish that

~{t- {F(w)}} ~~ F(w)U(w) (3.35)

so that

TJ{f(t)} F(w)U(w) (3.36)

The signal F(w)U(w) is approximately analytic since it is related to the one-sided

Fourier transform on the left hand side of equation (3.36). Thus, since F(w)U(w) is

approximately analytic, its real and imaginary parts must be related via the Hilbert

transform.

Although we have previously considered several statements involving the relation-

ships between the Fourier transform, inverse Fourier transform and their unilateral

counterparts, it is also possible to derive a number of interesting relationships between

the cosine and sine transforms which comprise these. To develop the relationships,

the additional notation for cosine and sine transforms is defined as

C{F(w)} 1 J F(w) coswt d (3.37)

S{F(w)}- l F(w) sin wt dw (3.38)

Note that since the signal f(t) is even, and thus its Fourier transform F(w) is also

even, equations (3.15) and (3.17) can be written in terms of cosine transforms as

f(t) = 7'{F(w)} = C{F(w)} (3.39)

F(w) = Yr{f(t)} = 2rC{(f(t)} (3.40)

Additionally, the unilateral inverse Fourier transform and unilateral Fourier trans-

form, in equations (3.16) and (3.18), can be written in terms of cosine and sine

transforms as

f,(t)-= -'1 {F(w)} = C{F()} + j S{F(w)} (3.41)
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and

F,(w) = T,(f(t)} = rC{f(t)} - jrS{f(t)} (3.42)

Under the condition that f(t) f,(t),t > 0, the following statement, involving the

relationships between the various cosine and sine transforms, can be made.

Statement 5 If f(t) ~ f,,(t) for t > 0, then the cosine and sine transforms of the

real and imaginary components of F(w) are related, for t > 0, sa

C(Re(F(w)l } -S {ImF(w)J} (3.43)

C{Im[F(w)]} S{Re[F(w)l} (3.44)

Additionally, the cosine and sine transforms of the real and imaginary components of

f(t) are related, for w > 0, via

C{Ref (t)l} S{Im[f (t)l} (3.45)

C{Im[f(t)} -S {Re[f(t)j} (3.46)

To derive the first pair of equations, the fact that f(t) ~ f.(t), t > 0 implies

- 1 {F()} ,T-1 {F(w)} t > 0 (3.47)

is used. Substituting equation (3.39) into the left-hand portion of the expression and

equation (3.41) into the right-hand portion of the expression, and equating real and

imaginary parts on both sides, yields the first pair of equations. To derive the second

pair of equations, we utilize Statement 3, which relates the unilateral inverse Fourier

transform and the unilateral Fourier transform, to derive that

r(f(t)} X(f(t)} w > 0 (3.48)

Substituting equation (3.40) into the left-hand portion of the expression and equation

(3.42) into the right-hand portion of the expression, and equating real and imaginary

parts on both sides, yields the second pair of equations in the statement.
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Another interesting consequence of the validity of the uniiaterai synthesis of f(t)

for t > 0 is presented in the following statement.

Statement 6 If f(t) f(t) for t > 0, then f(t) can be approximately synthesized,

for t > 0, in terms of either the real, or imaginary components of F(w), as

f(t) 2' -'{Re[F(w)J} (3.49)

f(t) 2j ,l {Im[F(w)l) (3.50)

Additionally, F(w) can be approximtely analyzed, for w > O, in term of either the

real, or imaginary components of f(t), as

F(w) ~ 2({Re[f(t)li (3.51)

F(w) 2j,(Im[f(t)J} (3.52)

These relationships may be of importance if only one component of the signal (or

Fourier transform) is available and it is desirable to determine the Fourier transform

(or signal). To obtain equations (3.128) and (3.129), the fact that f(t) f(t), t > 0

implies

f(t) ~ ;-{F(w)} t > 0 (3.53)

is used. Next, the right-hand side of this equation is expressed in terms of cosine and

sine transforms, as in equation (3.41). The relationships stated in the first part of

Statement 5 are then substituted to derive equations (3.49) and (3.50). To obtain the

second pair of equations, we utilize Statement 3, which relates the unilateral inverse

Fourier transform and unilateral Fourier transform, to derive that

F(w) {f (t))} w > 0 (3.54)

Next, the right-hand side of this equation is expressed in terms of cosine and sine

transforms, using equation (3.42). The relationships stated in the second part of

Statement 4 are then substituted to derive equations (3.51) and (3.52).
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Figure 3.4: Complex s-plane indicating the location of poles st, 32, and their sym-

metrically-located versions.

Before concluding this section, we will consider a numerical example in order to

better illustrate the statements which have been made. To do this, we will choose a

simple signal f(t), comprised of complex exponentials, having the form

N

f(t) = a a.'"l,' Re[s,I < (3.55)

which has the Laplace transform

'v 2aiji
Fo(s) = s- (3.56)

Evaluating Fo(s) at s = jw, the Fourier transform is obtained as

F(w) = ,2 + (357)

From these expressions, it is seen that f(t), Fo(s), and F(w) are even functions. In

the example, N was chosen as 2, and, sl, 32 were selected to lie in quadrant II of the

s-plane, as indicated in Figure 3.4.

A difficulty which arises in constructing a numerical example is that the preceding

theory applies to continuous functions of t and w. By necessity, demonstrating the

theory numerically involves discretization. Although it is possible to develop the
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theory for discrete signals, we have chosen not to pursue this development in this

thesis. We are thus faced with the problem of demonstrating properties involving

continuous signals using their discrete representations. Thus, instead of computing the

Fourier transform, inverse Fourier transform, cosine transform, etc., it is the discrete

versions of these transforms which must be computed. The detailed algorithms used

to implement these discrete transforms are well-known, and will not be discussed here.

We point out however, that in constructing the discrete version of the inverse Fourier

transform and unilateral inverse Fourier transform it was necessary to map the. jw

axis to the unit circle in the z-transform domain, and in our approach, the impulse

invariant technique was used.

In the example, the specific values

st = (-8.0 * 10-' + jl.S)/&t (358)

32 = (-7.0 * 10-3 + j 1.6)/At

and

a, = 0.5e°0 's (3.59)

a = 0.4cil°

were chosen. The factor At in these expressions is arbitrary and corresponds to the

sampling rate associated with the discrete version of the continuous-time signal. Thus,

the discrete version of the signal f(t) is written as

2

fin] f(t)J=n = E aji tIn (3.60)
i1=

The magnitude and phase of this signal are displayed in Figure 3.5. From the

figure, it is seen that this signal is even and that it decays in Itl due to the non-zero

real parts of s1 and 2. The phase varies quite rapidly, and the slowly varying pattern

in the magnitude is related to the difference between the imaginary parts of sa and

s2. The magnitude and phase of the Fourier transform of this signal are displayed in
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Figure 3.5: Magnitude and phase of the signal comprised of two complex exponentials.
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Figure 3.6: Magnitude and phase of the Fourier transform of the signal in the pre-

ceding figure.
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Figure 3.6. From the figure, it can be seen that the Fourier transform is even in w.

The presence of the off-axis poles in the s-plane, which are close to the jw axis, are

indicated by the large peaks in the magnitude of the Fourier transform.

The preceding two figures indicate that the condition of exact analyticity is not

applicable to the signal or to its Fourier transform. Specifically, the signal (or Fourier

transform) is not causal so that the Fourier transform (or signal) cannot be analytic.

However, we will show that the theory of approximate analyticity is applicable to this

signal.

To begin, consider Statement 1, which summarizes the approximate real-part/imaginary-

part sufficiency condition for f(t). To demonstrate that f(t), shown in Figure 3.5, has

this property, the imaginary component was set to zero and then reconstructed from

the real component using the Hilbert transform. To compute the Hilbert transform,

the Fourier transform was computed and multiplied by 2U(w). The inverse Fourier

transform was then computed. The magnitude of the signal consisting of the real

component and the reconstructed imaginary component is displayed in Figure 3.7b

for positive values of t. The magnitude of the true signal for positive t is also displayed

in Figure 3.7a, for comparison. The curves compare closely except at small values of

t where the unilateral inverse Fourier transform synthesis approximation is not valid,

as discussed earlier. A comparison of the rapidly varying 3 phase curves is not shown

here.

To demonstrate Statement 2, the unilateral inverse Fourier transform of F(w) was

computed. The magnitude of the resultant signal is shown in Figure 3.8b for both

positive and negative values of t. For comparison, the original signal magnitude is

also shown in Figure 3.8a. The curves indicate that for values of t > 0, the signal

f(t) is approximately synthesized by the unilateral inverse Fourier transform. To

better illustrate this, the error (t), as defined in equation (3.26) was computed. The

SIn a later chapter, when the two-dimensional extension of this theory is considered, we will present

a, method for displaying rapidly varying phase curves iu a more meaningful manner.
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Figure 3.7: Magnitude of the original signal for positive values of t (a). Magnitude of

the reconstructed signal for positive values of t (b).
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Figure 3.8: Magnitude of the original signal for positive and negative values of t (a).

Magnitude of the signal synthesized by the unilateral inverse Fourier transform for

positive and negative values of t (b).
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magnitude of the error for positive values of t is dispiayed in Figure 3.9b, and the

original signal magnitude is plotted in Figure (3.9)a for reference. The largest error

in the synthesis occurs at small positive values of t, consistent with the theory which

was discussed earlier. For additional reference, the error is displayed on a logarithmic

scale in Figure 3.10.

As can be seen from Figure 3.8, the signal synthesized by the unilateral inverse

Fourier transform is approximately causal, which is also consistent with Statement

2. The departure from exact causality occurs primarily for small negative values of

t. The slight oscillations in f(t) for large negative values of t are due to the aliasing

which has occurred due to the use of the discrete version of the unilateral inverse

Fourier transform.

Statement 3 indicates that under the condition that the unilateral inverse Fourier

transform approximates the signal f(t) for t > 0, there exists an inverse relationship

between the unilateral Fourier transform and the unilateral inverse Fourier transform.

To demonstrate this, we computed the unilateral inverse Fourier transform, followed

by the unilateral Fourier transform. The magnitude of the result is plotted in Figure

3.1lb for positive and negative values of w. For comparison, the magnitude of the

true Fourier transform F(w) is also plotted in Figure 3.11a. From these curves, it can

be seen that f{'",-{F(w)}} F(w)U(w) as was predicted in Statement 3.

Statement 4 indicates that under the condition that the unilateral inverse Fourier

transform approximates the signal f(t) for t > 0, there exists an approximate real-

part/imaginary-part sufficiency condition for F(w)U(w). To demonstrate that the

Fourier transform F(w) has this property, the imaginary component was set to zero

and then reconstructed from the real component using the Hilbert transform. To

compute the Hilbert transform, the inverse Fourier transform of Re[F(w)U(w)J was

computed, and multiplied by 2U(t). The inverse Fourier transform was then com-

puted. The magnitude of the Fourier transform, consisting of the real component
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Figure 3.9: Magnitude of the original signal for positive values of t (a). Error in the

unilateral inverse Fourier transform synthesis for positive values of t (b).
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Figure 3.10: Magnitude of the error in the unilateral inverse Fourier transform syn-

thesis.
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Figure 3.11: Magnitude of the original Fourier transform for positive and negative

values of w (a). Magnitude of the function T(;-{L(F(w)}} for positive and negative

values of w (b).
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and the reconstructed imaginary component, is displayed in Figure 3.12b for values

of w > 0. The magnitude of the original Fourier transform for this range of w is

also displayed in Figure 3.12a for comparison. Although there are several differences

between the curves, attributed to both the approximation in the theory and the nu-

merical implementation, the agreement is quite good.

In order to demonstrate the relationship between the cosine and sine transforms

of the real and imaginary components, we have chosen to illustrate only the first

property in Statement 5, which is

C({Re[F(w)l} -S,{Im[F(w)J} t > 0 (3.61)

To demonstrate this, the discrete cosine transform was used to compute the left-hand

side of this expression and the discrete sine transform was used to compute the right-

hand side of the expression. In Figure 3.13a is shown the real-valued signal for t > 0

resulting from the cosine transform, and in Figure 3.13b is shown the real-valued

signal for t 0 resulting from the sine transform. The two curves compare quite

closely, as is further confirmed by examining a plot of the difference between these

two functions, shown in Figure 3.14.

Finally, in considering Statement 6, we have chosen to illustrate only the first

property which is

f(t) 27;',,{Rc[F(w)} t > 0 (3.62)

To demonstrate this property, the discret version of the unilateral inverse Fourier

transform was used to compute the right-hand side of this expression, and the mag-

nitude of the resulting signal is shown for t > 0 in Figure 3.15b. For comparison,

the magnitude of f(t) for t > 0 is also shown in Figure 3.15a. The curves agree,

although some differences, attributed to both the approximations in the theory and

the numerical implementation, are evident.

In summary, we have reviewed the theory of exact and approximate analytic sig-

nals. The theory of exact analytic signals was presented in terms of the properties
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Figure 3.13: Cosine transform of Re(F(w)I for positive values of t (a). Sine transform

of fm[F(w)] for positive values of t (b).
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of the Fourier transform. The theory was then extended to develop the notion of a

signal which is approximately analytic. Although such a signal does not have a causal

Fourier transform, its real and imaginary parts can be approximately related by the

Hilbert transform. The necessary condition for a even signal to possess this property

is that its causal portion must be accurately synthesized by the unilateral inverse

Fourier transform. If this is the case, there are a number of other interesting conse-

quences including an approximate real-part/imaginary-part sufficiency for both the

causal part of the signal and the causal part of its Fourier transform, and an inverse

relationship between the unilateral Fourier transform and unilateral inverse Fourier

transform. These consequences were summarized in several statements. Although

the theory was presented for one-dimensional even functions, its principal application

within this thesis will be to the two-dimensional circularly symmetric case. As will

be pointed out in the following section, the validity of the unilateral synthesis is par-

ticularly applicable to signals which correspond to propagating fields in a circularly

symmetric environment.
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3.3 The Hilbert-Hankel Transform

In the preceding section, it was shown that in the context of the one-dimensional

Fourier transform, the condition of causality in one domain implies the condition of

real-part/imaginary-part sufficiency condition in the alternate domain. Specifically,

it was shown that causality of the one-dimensional Fourier transform implies an exact

relationship between the real and imaginary components of the corresponding signal.

If the Fourier transform of the signal is not one-sided, the real and imaginary com-

ponents are generally not related. However, in the special case that the signal can be

approximated by a unilateral version of the iverse Fourier transform, it was shown

that the signal possesses an approximate real-part/imaginary-part sufficiency condi-

tion. Further, if the signal is even, it has an approximate real-part/imaginary-part

sufficiency condition if its causal portion can be approximated by the unilateral inverse

Fourier transform. In this section, we will extend the theory of approximate analyt-

icity to the two-dimensional circularly symmetric signal Although the theory can

be developed for the general multidimensional case, by considering the multidimen-

sional version of the unilateral inverse Fourier transform, we will focus primarily on

the special case of two-dimensional circularly symmetric signals. The motivation for

studying this special case is that the corresponding two-dimensional signal is closely

related to the propagating acoustic pressure field, considered in the previous chapter.

In the last chapter, the important relationship between the two-dimensional Fourier

transform of a circularly symmetric function and the Hankel transform was reviewed.

Specifically, it was shown that for fixed values of z and zo, the acoustic pressure field

p(z, y, z; zo) was related to the Green's function g(k,, ky, z; zo) via the two-dimensional

Fourier transform. Under the condition of circularly symmetry, the relationship can

be equivalently expressed in terms of the Hankel transform as

p(r, z;zo) = Jg(k, z; zo)Jo(kr)k,dk, (3.63)
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Dropping the explicit dependence on z and zo, this expression can also be written as

p(r)= g(k,)Jo(r)kdk (3.64)

This relationship implies that p(r) must be an even function of r, since Jo(k,r) is an

even function of r. Only positive values of k, are involved in the expression and thus

g(k,) can in principle, be arbitrary for negative values of k,. However, in writing the

inverse relationship between g(k,) and p(r) as

g(k,) = jp(r)Jo(kr)rdr (3.65)

it can be seen that g(k,) must also be an even function of k,, since Jo(k,r) is an

even function of k,. The causality condition, which was important in establishing

the exact real-part/imaginary-part sufficiency condition in the one-dimensional case,

is not applicable to the Hankel transform, since both g(k,) and p(r) are even, and

thus not causal. In the remainder of this section however, we will show that under

some circumstances, there exists an approximate real-part/imaginary-part sufficiency

condition for p(r) and g(k,). The theory which we will present will closely parallel

the one-dimensional theory presented in the previous section.

In order to develop the property of approximate analyticity for a two-dimensional

circularly symmetric signal, we must develop a unilateral version of the Hankel trans-

form. That is, with analogy to the one-dimensional bilateral inverse Fourier transform

and one-dimensional unilateral inverse Fourier transform, we wish to develop the Han-

kel transform and its unilateral version. In examining equation (3.64) it appears that

the Hankel transform is already unilateral, since the limits of integration are from zero

to infinity. However, this version of the Hankel transform is actually analogous to the

one-sided cosine transform considered n the previous section. Here, we must develop

the transform analogous to the Fourier transform, and then consider its unilateral

counterpart.

In order to do this, the zeroth-order Bessel function of the first kind is written in
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terms of Hankel functions{71 as

Jo(k,r) = 2 [HL (kr) + H(2(kr)] (3.66)

so that equation (3.64) becomes

p(r) = 2 j g(k,)H?1 (kr)kdk, + j g(k,)Ho2'(k,r)k,dk, (3.67)

which is valid for both positive and negative values of r. The expression can be

simplified by using the property [81 that

H' ~(,-') ( = -al (z) (3.68)

to yield 4

p(r) = | g(k,)) (k,r)k, dk, r > 0 (3.69)

The signal p(r) can be determined for negative values of r by utilizing this equation and

the fact that p(r) = p(-r). It is important to recognize that the bilateral transform

in equation '(3.69) correctly synthesizes the acoustic pressure field p(r) for positive

values of r only. Specifically, although p(r) is an even function of r, the Hankel

function Ho()(k,r) is not an even function of r, nor is g(k,) an odd function of k,, and

thus the expression in equation (3.69) is not correct for r < 0. The correct expression

for r < 0 can be obtained, using properties of Ho('(k,r) and H(2)(k,r), as

p(r) = I f g(k,)H(2)(kr)k,dk, < (3.70)

Alternately, a bilateral expression which describes p(r) correctly for both positive and

negative values of r can be written as

p(r) ) 1-'{g(k,)} - e g(k,)H'(k rl)kdk, (3.71)

The transform in equation (3.71) will be referred to as the bilateral inverse Hankel

transform.

'More precisely, the substitution yields p(r)= , fO,j g(k,)HI')(k,r)k,dk, for r > 0.
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We will define the unilateral version of the transform in equation (3.71) as

p(r) _= -'{g(k,)}- g(k,)HlI)(k,r)kdk, (3.72)

The operator ; 1t could be referred to as the unilateral inverse Hankel transform.

However, because the Hankel transform in equation (3.64) is already unilateral, the

name unilateral Hankel transform is ambiguous. Instead, we will refer to the trans-

form defined in equation (3.72) as the Hilbert-Hankel transform, because of its close

relationship to the Hankel transform and because, as will be discussed shortly, the

transform implies an approximate relationship between the real and imaginary com-

ponents of p(r).

The bilateral inverse Hankel transform and the Hilbert-Hankel transform can be

written in alternate forms by utilizing the relationship that

Hol'(k,r) = Jo(k r) + jYo(kr) (3.73)

where Yo(k,r) is the zeroth-order Bessel function of the second kind, also referred to

as the Weber function[8] or Neumann function[7j. We note that both Jo(k,r) and

Yo(k,r) are real-valued functions for real-valued arguments. Using this relationship,

the bilateral inverse Hankel transform can be written as

-L{g(k,)} | Z g(k,)[ Jo(kr) + jYo(krI) Ikdk (3.74)

and the Hilbert-Hankel transform can be written as

)( {g(k,)}-2 / g(k,)[ Jo(kr) + jYo(kr) ]k,dk, (3.75)

It is also possible to develop a bilateral transform for the inverse relationship

between p(r) and g(k,). Using equation (3.65) and the relationship in equation (3.68),

we obtain that

g(k,) - v{p(r)} p(r)I( )(jk r)urdr (3.76)2/:
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This expression will be referred to as the ilaterai Harnkel transform. Note that the

bilateral Hankel transform and bilateral inverse Hankel transform are identical oper-

ators although they apply to different domains.

The most obvious definition for the unilateral version of this transform is obtained

by replacing the lower limit in equation (3.76) by zero. However, we will find it

convenient to define the transform differently. In particular, the unilateral version of

the transform will be defined as

g(k) _= {p(r)} =2 p(r)[Jo(kr) - jHo(kr)jrdr (3.77)

The function Ho(z) is the eroth-order Struve function [81[91, which is a particular

solution of the differential equation

d2 wt dw 2z
d 2 dz-Z2= + dz + z2w' ~ (3:78)

Additionally, the eroth-order Struve function, Ho(z), and the seroth-order Bessel

function of the first kind, J(z), form a Hilbert transform pair [6]. To see this, J(z)

is expressed in terms of a Fourier synthesis integral as

Jo(z) = 1 (I - w 2)1/2 (3.79)

To compute the Hilbert transform 30(z), the integrand in this expression is multiplied

by -jsgn[wl to yield

1 f 2 2 [ sin wz
2(z = 2 i- (1 - W2 ) 1/ 2 ( 2)1/2(3.80)

The last integral is also the integral representation for the zeroth-order Struve function81.

The transform defined in equation (3.77) has also been considered by Papoulis[6][10

and has been referred to as the complez Hankel transform . It is noted that g,(k,)

5 The homogeneous solutions of this equation are JO(z) and Yo(z).
6 The complex Hankel transform defined by Papoulis did not have a preceding factor of 1/2. However,

we will find it convenient to retain this factor here.
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Figure 3.16: Relationships between the Abel, Fourier, Hankel, and complex Hankel

transforms.

must be an analytic signal, since its real and imaginary components are related by the

Eilbert transform. From preceding discussions, this implies that the one-dimensional

Fourier transform of g(k,) must be causal. This fact, and the use of the projec-

tion slice theorem for two-dimensional Fourier transforms [111[12], provides the basis

for expressing the complex Hankel transform in terms of the Abel transform, which

is the projection of the two-dimensional circularly symmetric function, and the one-

dimensional Fourier transform. Specifically, the complex Hankel transform of p(r) can

be determined by computing the Abel transform of p(r), retaining the causal portion,

and computing the one-dimensional Fourier transform. The relationships between

the Abel, Fourier, Hankel, and complex Hankel transforms are summarized in Figure

3.16. In this figure, the operator A refers to the Abel transform defined as

pA(-) = A{p(r)} p(r)dy(3.81)

where r = ( + y:)1/ 2 . We note that

A{p(r)u(z)} = 2i p(r)u(z)dy = p.()u() (3.82)

The definitions for the bilateral and unilateral transforms are now summarized
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below

p(r) = x -f{g(k)}-- | ,g(k)[Jo(k,r) +jYo(klr)lJkdk, (3.83)

ps(r) = )(.I(C)} j-- g(k,)[Jo(kr) + jYo(kr)]k, , (3.84)

g()- _{p(r)} 2|/ p(r)[Jo(kr) + jYo(Iklr)lrdr (3.85)

(3.86))(v{P( 7)}- jp(r)Jo(kr) -jHo(kr)lrdT (3.86)

where p,(r) represents the Hilbert-Hankel transform of g(k,) and g(k,) represents

the complex Hankel transform of p(r). These equations are analogous to equations

(3.15)-(3.18), developed in the one-dimensional context in the preceding section. It is

also convenient to define the following transforms and symbolic notation.

Jo{g(k,)} g(k,)Jo(kr)kdk, (3.87)

Yo{g(k,)} f g(k)Yo(k.)kdk, (3.88)

Ho{g(k,)} j g(k,)Ho(kr)kdk (3.89)

To develop the theory of two-dimensional circularly symmetric signals which are

approximately analytic, we will require that

p(r) -p.(r) r > 0 (3.90)

That is, only circularly symmetric signals p(r) which can be approximated by'the

Hilbert-Hankel transform for r > 0 will be considered as approximately analytic.

This condition is analogous to the condition stated in the previous section that f(t) ~

f,(t), t > 0. To the extent that the approximation in equation (3.90) is valid, there will

also exist an approximate relationship between the real and imaginary components of

p(r), for r > 0. This result is the basis for the first of several statements which will

now be discussed. The statements will closely parallel the one-dimensional versions

in the preceding section.
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Statement 1 If p(r) p.(r) for r > O, then the real and imaginary component of

p(r) must be approzimately related for r > O, as

Relp(r)] - -Y{J{Imp(r)lJ))

ImIp(r) Yo{Jo{Rep(r)))}} (3.91)

The statement can be justified as follows. The condition that p(r) p,(r), r > 0

can be equivalently written as

Jo{g(k,)} - i' {g(k,)) r > (3.92)

so that

Jo(g(kr)} Jo{g(k,)} + jYo{g(k,)} r> 0 (3.93)

Using the facts that Jo and Yo are real operators and that Re[p(r)] = Jo{Re[g(k,)J},

Im[p(r)] = Jo{Im(g(k,)]), the statement is established by equating real and imaginary

parts on both sides of equation (3.93).

The condition that p(r) p,(r), r > 0 is restrictive in the context of the general

clas of circularly symmetric signals p(r). For example, in Figure 3.17, the positions of

several poles in the k,-plane corresponding to a rational function g(k,) are indicated.

The poles labelled A', B', and C are in symmetrically-located positions with respect

to poles A, B, and C, due to the fact that g(k,) is even. The condition that p(r) 

p,(r), r > 0 is equivalent to the statement that the bilateral inverse Hankel transform

integration contour C 1+C 2, can be approximately replaced by the contour C1. Clearly,

the approximation will be poor if a pole, such as C, is located in Quadrant II of the

k,-plane. Essentially, the effects of this pole, quite important in determining the

character of the corresponding signal p(r) for r > 0, are only negligibly included by

integrating along the positive real axis only. 7 That is, if p(r) for r > 0 is exactly

synthesized as

p(r) =g(,(k,) o) (k, r) kdk, (3.94)

'The pole at C' determines the behavior of the signal p(r) primarily for values of r < 0.
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Figure 3.17: Complex k,-plane indicating positions of poles and the bilateral inverse

Hankel transform contour.

so that

p(r)= , g(k,)HO11 (k,r)kdk, + g(k,)Ho' (kr)k,d, (3.95)

the pole at position C contributes primarily to the second of these two integrals, for

values of r > O. Thus, the approximation

p(r) 2 g(k,)H()(kr)k,dk, = )(,,{g(k,)} (3.96)

is not accurate for r > 0, because of the position of pole C in the k,-plane.

Although the condition that p(r) p,(r), r > 0 is a restrictive condition for the

general class of two-dimensional circularly symmetric functions p(r), the condition is

apparently much less restrictive in the context of wave propagation. Essentially, the

condition p(r) p,(r), r > 0, when written in the form

p(r) j g(k,)HO('(kr)kdk, r > 0 (3.97)

can be interpreted as the statement that p(r) is accurately approximated by a su-

perposition of positive, or outgoing, wavenumber components only. Here, the term

outgoing has been associated with the function Ho')(k,r). This association can be

justified by asymptotically expanding H 1()(kr), for r > O. For example, the prop-

agating acoustic field, with temporal variation included, can be written for r > 0
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as

1p(r, gO(k, c-as/ e'-WO k,dk, (3.98)

The field is seen to be comprised of the superposition of outgoing plane-waves of the

form ei(k,-'t). It is also possible to write the error in the Hilbert-Hankel transform

approximation as

e(r) -p(r) - p.(r) = g(kl)H(2)(kr)kdk r> O (3.99)

The error can be interpreted as a synthesis over the incoming wavenumbercomponents

of p(r). Here, the term incoming has been associated with the function H(2)(kr). This

association can be justified by asymptotically expanding HZ2)(k,r), for r > 0. The

error, with temporal variation included, can thus be written as

(( t) 1 (2,)'/2 | g(.)ei -i("+ kdkr (3.100)
(2,),/,/O (Qt~(r1

The error is seen to be comprised of the superposition of incoming plane-waves of the

form e-i(',+~')

The unilateral synthesis implied by the condition p(r) p,(r), r > 0 is widely used

in the area of underwater acoustics. For example, the unilateral synthesis implied by

the Hilbert-Hankel transform is an important component in a number of synthetic

data-generation methods for acoustic fields, such as the Fast-Field-Program (FFP).

This is due to the fact that, in many cases, it is reasonable to assume that an acoustic

field is comprised of outgoing components only. In Chapter 4 of this thesis, we will

show several examples of acoustic fields, generated synthetically to represent realistic

ocean environments, which support the statement that the acoustic field can be ade-

quately described in terms of its outgoing components only. The implication is that

the two-dimensional theory of approximately analytic signals, based on the condition

p(r) pu(r), r > O, is applicable to the wide class of outwardly propagating acoustic

fields. In Chapter 6 of this thesis, we will present a number of examples of acoustic

fields which possess the property of approximate real-part/imaginary-part sufficiency

as a further justification of the preceding theory. In the remainder of this section, we
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will consider other theoretical consequences of the approximatiot p(r) ~ p.(r), r> O.

Statement 2 If p(r) p(r) for r > O, then the Hilbert-Hankl transformn, p,(r), is

approzimately cu.sal.

Note from equation (3.84), that the Hilbert-Hankel transform is defined for all

values of r. Thus, the causality condition stated above is not a consequence of the

definition of the Hilbert-Hankel transform, but rather is a consequence of the condition

that p(r) p,(r), r > O. To justify the statement, we note that p(r) p,(r), r > 0

implies that

g(k,)H((kr)kdk, o r > 0 (3.101)

so that

- | j g(k,)H()(-k,r)kdk, 0 r> 0 (3.102)

The latter step follows from the fact that g(k,) is even in k,. From this equation, and

the definition of the Hilbert-Hankel transform, it can be seen that

p.(-r) 0 r > (3.103)

and thus

p.(r) 0 r < 0 (3.104)

Therefore, under the condition that p(r) p,(r), r > 0, the Hilbert-Hankel transform

must be approximately causal.

In general, the Hilbert-Hankel transform and the complex Hankel transform are

not inverse operations. However, the following statement summarizes the relationship

between these two transforms, under the condition that p(r) p,(r), r > 0.

Statement 3 If p(r) p(r) for r > 0, then the Hilbert-Hankel transform and com-

plez Hankel transform are related via

tx' fsg(k)})) 13 g(k,)u(k,) (3.105)
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To justify the statement, the complex Hankel transform is written in terms of R

operators Jo, Yo, and H as

{~p.(rt)} = g(*,) + ;Ho{ Yo{g(k,)} } + j( Jo{ Yo{g(k,)} } - Ho{ Jo{g(k,)} } )

(3.106)

which is valid for all k,. Next, from the approximation p(r) p,(r), r > 0, it follows

that

Jo{g(k,)} !Jo{g(k,)} + 2jYo{g(k,)} r> 0 (3.107)2 2

so that

Jo{g(k,)} jYo{g(k,)} r > 0 (3.108)

Substituting this expression into equation (3.106), we find that

1 1 1
M,{p(r)} - g(k,) + -Ho{Yo{g(k.)}} + j( -jJo{Jo((k)}} - jHo{Yo{g(k,)}} )

(3.109)

valid for all k,. Substituting the orthogonality relationships [13] [141

Jo{ Jo{g(k,)} } = g(k) (3.110)

and

Ho{ Yo{g(k,)} } = gn[k,.]g(k,) (3.: .1)

into equation (3.109) justifies the statement that

X ,(p.(r)} g(k,)u(k,) (3.112)

The next statement concerns a real-part/imaginary-part sufficiency condition which

occurs in k, domain. The fact that g(k,) has an approximate real-part/imaginary-

part sufficiency condition is not completely unexpected, since, as previously discussed,

there exists an approximate causality condition in the alternate r domain. The real-

part/imaginary-part sufficiency condition for g(k,) is summarized in the following

statement.
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Statement 4 If p(r) p.(r) for r > o, then the real and imaginary components of

g(k,) must be related by the Hilbert transform for k, > 0.

To justify this, Statement 3 is used to obtain the expression

)M,{p,(r)} g(k,)u(k,) (3.113)

Writing the operator x, in terms of the operators Jo and Yo yields

Jo{Riep,(r)l} + Ho{Im(p,(r)} + j( -Ho(Re[p(r)l} + Jo{Im[p(r)l} )

- Re[g(k,)] + jlm[g(k,)] k, > 0 (3.114)

It is noted that the real and imaginary components on the left-hand side of this

expression form a Hilbert transform pair, so that the real and imaginary components

on the right-hand side are also related approximately by the Hilbert transform.

Although we have previously considered several statements involving the relation-

ships between the Hilbert-Hankel transform and the complex Hankel transform, it is

also possible to derive a number of interesting relationships between the Jo, Yo, and

H 0 transforms which comprise these. To develop these relationships, we write the

Hilbert-Hankel transform and complex Hankel transform as

p(r) ;({g(k,)} = Jo{g(k,)} + jYo{g(k)} (3.115)
2 2

and

g.(k,) = )(M{p(r)} = Jo{p(r)} - Ho{p(r)} (3.116)

Using these relationships, two statements involving the relationships between the Jo,

Y, and Ho transforms are now made.

Statement 5 If p(r) p,(r) for r > O, then the Jo and Yo transforms of the real and

imaginary components of g(k,) are related for r > 0 via

Jo{Re[g(k,)]} - -Yo{Im[g(k,)]} (3.117)
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JO{Img(k),) J} Yo{Re(g(k,)i}

Additionally, the Jo and Yo transforms of the real and imaginary components of p(r)

are related for k, > 0 mia

Jo{Re(p(r)l} ~ Ho({m[p(r)]} (3.119)

Jo{Im(p(r))} -Ho{Re(p(r) } (3.120)

To justify the first part of this statement, the condition p(r) p(r), r > 0 is

written as

Jo{g(k)} I Jo{g(k,)} + jYo{g(k,)} r> O (3.121)

so that

Jo{g(k)} ~ jYo{g(k)} r > O (3.122)

If the real and imaginary parts on both sides of this expression are equated, the

first pair of equations in the statement are obtained. To derive the second pair of

equations, we use Statement 3, which relates the Hilbert-Hankel transform and the

complex Hankel transform, to derive that

Jo{p(r)} ){p(r)} k > o (3.123)

Using equation (3.116), this expression betomes

Jo{g(k)} I Jo{p(r)} - lHo{p(r)} k > 0 (3.124)

so that

Jo{p(r)} -jHo{p(r)} k, > 0 (3.125)

Equating the real and imaginary parts on both sides of this expression yields the

second pair of equations.

An additional consequence of the validity of the unilateral synthesis of p(r) for

r > 0 is summarized in the following statement.
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Statement 6 If p(r) p,(r) for r > 0, then p(r) can be approzimateiy synthesized,

for r > 0, in terms of either the real, or imaginary components of g(k,), as

p(r) ~ 2MX'(ReCg(k) } (3.126)

p(r) ~ 2jM'{Img(k,)]} (3.127)

Additionally, g(k,) can be approzimately analyzed, for k, > O, in terms of either the

real, or imaginary components of p(r), as

g(k,) 2),(Re[p(r)l} (3.128)

g(k,) 2j),(Im[p(r)]} (3.129)

These relationships may be of importance if only one component of the pressure

field (or Green's function) is available and it is desirable to determine both components

of the Green's function (or pressure field). To develop the first pair of equations, we

use the fact that

p(r) ~ .JO{g(k,)} + Yo{g(k,)} r > 0 (3.130)

If equations (3.117) and (3.118) are substituted into the right-hand side of this ex-

pression, the first pair of equations are obtained. To derive the second pair, we use

Statement 3, which relates the Hilbert-Hankel transform and complex Hankel trans-

form, to derive that

g(k.) M X.{p(r)} k, > 0 (3.131)

If equations (3.119) and (3.120) are substituted into the right-hand side of this ex-

pression, the second pair of equations is obtained.

In the previous section, a numerical example was presented in order to demonstrate

the one-dimensional theory of approximate analyticity. In the two-dimensional circu-

larly symmetric case, presenting an analogous example is more difficult due to fact

that there is no efficient numerical algorithm for computing the Hilbert-Hankel trans-

form. That is, although efficient algorithms exist for computing the Hankel transform,
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and the complex Hankel transform, no such algorithm exists for the Hilbert-Hankel

transform. In the next section however, we will develop the asymptotic version of the

Hilbert-Hankel transform. The asymptotic version of the Hilbert-Hankel transform

not only forms the basis for a computationally efficient algorithm, but has a number

of other interesting and important properties as well. These properties will be devel-

oped in the next section, and will be illustrated using numerical examples of acoustic

fields in Chapter 6.

To summarize, in this section the property of approximate analyticity was ex-

tended to two-dimensional circularly symmetric signals. To do this, we developed a bi-

lateral version of the inverse Hankel transform and its unilateral counterpart, referred

to as the Hilbert-Hankel transform. Under the condition that the two-dimensional cir-

cularly symmetric signal is approximated by the Hilbert-Hankel transform for r > 0,

it was shown that the real and imaginary parts of such a signal are approximately

related. The Hilbert-Hankel transform was also related to another unilateral trans-

form, referred to as the complex Hankel transform. A number of other consequences

based on the validity of the Hilbert-Hankel transform were developed. The theory is

of particular importance because of its application to outgoing acoustic fields.
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3.4 The -Asymptotic Hilbert-Hankel Transform

In the previous section of this chapter, the Hilbert-Hankel transform was defined

and a number of its properties were developed. It was shown that if the causal portion

of a circularly symmetric signal, described by the bilateral inverse Hankel transform,

can be approximated by the Hilbert-Hankel transform, there are some important con-

sequences. These include an approximate real-part/imaginary-part sufficiency condi-

tion for the signal.

The Hilbert-Hankel transform is the unilateral version of the bilateral inverse

Hankel transform, and can be expressed as

p,(r) )("(g(k)) = 2 g(k,)[ Jo(kr) + jYo(kr)kdk (3.132)

The Hilbert-Hankel transform can be analytically evaluated by recognizing that

; L(g(k,)} = !Jo(g(k,)) + ¥jYo{g(k,)) (3.133)

and by using existing integral tables to compute the Jo and Y transforms[7. In

contrast with the complex Hankel transform, there does not exist an efficient numerical

algorithm for computing the Hilbert-Hankel transform. However, in this section we

will consider the asymptotic version of the Hilbert-Hankel transform. This transform

not only provides the basis for efficient computing an approximation to p,(r), but has

a number of interesting and important properties as well.

To develop the asymptotic transform, the Hankel function is expressed asymptot-

ically for large Ik,r as

Ho(1 )(k,r) ( 2 )/2-j(k,'-r/4) (3.134)

Substituting this relationship into equation (3.132) we define the resulting transform

as

p.(r) -- )(I{g(k,)} - g(k,)( 2 )1/2 (r-/4)dk,dA (3.135)

This transform will be referred to as the asymptotic Hilbert-Hankel transform.
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It is noted that since the asymptotic version of the Hankel function is valid for

r > 0, the Hilbert-Hankel transform and asymptotic Hilbert-Hankel transform are

related as

PwU(r) Par) rP..( 0 (3.136)

Additionally, if the Hilbert-Hankel transform approximates p(r) for r > 0, we have

that

p(r) - p,(r) r > 0 (3.137)

Combining the two relationships, yields the relatianship between the p(r) and the

asymptotic Hilbert-Hankel transform

p(r) p.(r) r > 0 (3.138)

The relationship described in equation (3.138) is the basis of the Fast-Field-Program

(FFP), commonly used in underwater acoustics for synthetic acoustic field generation.

The FFP was primarily developed as a tool for efficient computation of acoustic

fields[l]. Its efficiency stems from the fact that equation (3.135) can be written as

P"t(r)r'/2 = g(k)( 2 )1/2ei(,r-r/4)kdk (3.139)

The right-hand side of equation (3.139) is in the form of an inverse Fourier transform,

which can be rapidly computed using the inverse Fast-Fourier-Transform (FFT).

Essentially, the use of the FFP to generate the acoustic field p(r) is based on two

separate assumptions. The first assumption is that p(r) can be accurately synthesized

by the Hilbert-Hankel transform, for r > 0. The second assumption is that the

asymptotic version of this transform is also applicable, for values of r > 0. Recalling

that p(r) can be expressed exactly, for all values of r, via

p(r) = g(k)Jo(kr)kdk (3.140)

the FFP can be viewed as an algorithm for the approximate computation of the Han-

kel transform, for a special class of functions p(r). Since the development of the FFP,
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numerous alternate algorithms for efficient computation of the Hankel transform have

been developed. These include, for example, algorithms based on the relationship

between the two-dimensional Fourier transform and the Hankel transform. Such al-

gorithms are in principle exact, and do not require any asymptotic approximations.

Additionally, they do not require the validity of the approximation p(r) p,(r), r > 0,

which is an important first approximation in the FFP. In the following chapter, we

will present several examples of the comparison between an exact Hankel transform

algorithm and the FFP, in the context of synthetic acoustic field generation.

It is interesting to note that there exists another efficient algorithm for approximate

computation of p(r) which requires only a single approximation, rather than the pair

of approximations required in the FFP. This method requires that only the asymptotic

approximation be made, and is thus applicable to functions which do not satisfy the

condition

p(r) p(r) r> 0 (3.141)

The method can be developed by writing p(r) in terms of the bilateral inverse Hankel

transform as

p(r) g(k,)H )(k,Ljr)k,dk, (3.142)

and asymptotically expanding Hol)(klrl) as

Ho' (kIr ) k2 )l/2ei(ktrl_/4) (3.143)

Substituting this approximation into equation (3.142) and simplifying yields

p(r) r1 1/2 J ( )k/ 2 [coskr+ sink,irl dk, (3.144)

and therefore

p)/2 [ cos kr+sin kr d, r > (3.145)

sThe derivation can also be done by using the unilateral transorm in equation (3.140) and the

asymptotic expansion for Jo(k,r).
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The right-hand side of this expression is in the form of a unilateral Hartley transform

[15][161. The unilateral Hartley transform differs from the unilateral Fourier transform

and the unilateral inverse Fourier transform, because it does not contain the j term

preceding sin kr, as can be verified by examining equation (3.145). Therefore, defining

the bilateral Hartley transform as

CAS{f(r)} - f(r)[coskr + sinkrjdk, (3.146)

we see that

p(r) r/C. g(')k / u(A) (3.147)

for values of r > 0. The connection between the Hankel transform and the Hartley

transform may have practical applications in the context of synthetic field genera-

tion. This is particularly true given the recent development of efficient algorithms to

compute the Hartley transform [171][18]. Although we have chosen not to pursue this

further, the Hartley transform is intermediate to the exact Hankel transform and the

FFP, and may prove to be especially applicable to problems in which the unilateral

approximation p(r) p,(r) is not valid.

We have thus far emphasized the computational aspects of the relationships

p(r) p,(r) r > (3.148)

p.(r) pa.(r) r > 0 (3.149)

where

p..(r) = X.{g(k,)} = ! j g(k,)( ,)/2i (3.150)

In the remainder of this section, we will develop other important consequences of

equations (3.148) - (3.150). To do this, the quantity (k,) is defined as

(k,) = (2rlkl)/g(k,)e-j/4 (3.151)

Equations (3.148) - (3.150) can thus be written as

p(r)r/' ~ p,.(r)rl/2 r > 0 (3.152)
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where

p..(r)r/ = L j o (k,)eikdk, (3.153)

We note that the right-hand side of equation (3.153) is in the form of a unilateral

inverse Fourier transform. From discussion earlier, this implies that the real and

imaginary components of p,,(r)r/2 are related exactly by the Hilbert transform. Ad-

ditionally, since p(r)rl/2 p,,(r)r / 2 for r > 0, it is seen that the signal p(r)r/ 2

has the property of one-dimensional approximate analyticity. In other words, since

the signal p(r)rt /2 can be approximated by a unilateral version of its inverse Fourier

transform, the real and imaginary components of rt/ 2p(r) must be approximately re-

lated by the Hilbert transform. Thus, because of the special form of the asymptotic

expansion of H(1)(kr), it is possible to apply either the two-dimensional theory of

approximate analyticity, discussed in Section 3.3, to the signal p(r), or alternately,

the one-dimensional theory, discussed in Section 3.2, to the signal p(r)rl/2 . Mathe-

matically, the connection between the two-dimensional and one-dimensional theory

can be stated as

p(r) .:' {g(k)} r> (3.154)

r1/2p(r) ~ '- {O(W)} r > 0 (3.155)

where

(;) = (2rk,1Il)/ 2 g(k,)c-l/ (3.156)

The primary difference between the one and two dimensional theories occurs at small

values of r. In our applications, we have not found the difference to be particularly

significant at values of r greater than several acoustic wavelengths.

In later chapters of this thesis, we will explore other consequences of the theory

of one-dimensional analytic signals applied in the context of shallow water acoustics.

Specifically, in Chapter 4, we will demonstrate that a realistic field p(r), can be

synthesized using the relationship

'l/2p(r) 2ji-;' {Im[(k,)( ) (3.157)
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which follows from Statement 4 in Section 3.2. This method represents an important

extension to the hybrid synthetic data generation which will be discussed. Also, in

Chapter 6,.we will demonstrate a reconstruction algorithm which uses the FFT to

reconstruct a sampled version of one quadrature channel of an acoustic field, from a

sampled version of the alternate channel. The method will be applied to syntheti-

cally generated deep and shallow water acoustic fields, and to several experimentally

collected acoustic fields.

The relationship between p(r) and the one-dimensional Fourier transform has some

important consequences. In particular, the properties of the exact Hankel transform

are complicated and can often obscure much simpler behavior of p(r) and g(k,), es-

pecially at large values of r and k,. In considering equation (3.155) it is possible

to develop approximate properties of p(r) and g(k,) in terms of the simpler, one-

dimensional Fourier transform. Several of these properties can be exploited in both

the acquisition, and signal processing of acoustic field measurements. We will focus

on four of these properties in the remainder of this section.

The shift theorem for the Fourier transform states that a shift in one domain

implies a linear phase shift in the alternate domain. Recalling the definition of p,,(r)

as

p.u(r) = X-"{g(k,)} = r72Jr '{~(k,)} (3.158)(3.158)

the application of the shift theorem yields

pow(r + ro)= {( kr °} (3.159)

It is not always the case that the condition

p(r) p.,(r) r > (3.160)

implies the condition

p(r + to) p,,(r + ro) r > 0 (3.161)
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For example, if ro is large and negative, the latter condition is not valid, as can be

established by recognizing that p(r) is an even function, and that p.,(r) is approxi-

mately causaL However, for small values of positive rto, the condition is in equation

(3.161) is reasonable. An implication is that it is possible to approximately correct

for fixed range registration errors in the acquisition of p(r), by multiplying g(k,) by

a linear phase shift term. The correction technique may be important in a practical

sense due to the difficulty in obtaining acoustic field measurements at short ranges

in an ocean experiments. Of course, it is also possible to approximately compensate

for a fixed range registration error by shifting the field prior to computing the Hankel

traniform. However, in some cases, the precise value of ro may be unknown, and the

determination of its value may be more conveniently done in the wavenumber do-

main. Additionally, the acoustic field is typically acquired on a.non-uniform grid and

must be re-interpolated to a new grid prior to computing the Hankel transform. - By

exploiting the shift theorem, the re-interpolation of the field need not be performed

for each choice of ro. In Chapter 6, we will present a numerical example of the shift

theorem in.the context of extracting the reflection coefficient from a realistic acoustic

field with range offset.

The dual property for the shift theorem is the modulation theorem. Using equation

(3.158), the modulation theorem can be expressed as

p.,(r)e- = 1-2 -1 {(- kk,)u(k - k)} (3.162)

Under the condition that

p(t) P..(t) r o 0 (3.163)

we see that

p(r)-i', ~ r..~ j- ((k- k)u(k, - k,)} (3.164)

In Chapter 5, we will consider a number of applications of removing the linear phase

component kr from the phase of a shallow water acoustic field. Equation (3.164)

suggests that this effect can be interpreted in the k, domain as well. Additionally,

148



equation (3.164) suggests a method for interpolating a non-unifotinly sampled version

of p(r). Specifically, if the Green's function contains significant energy at a particular

wavenumber, or within a small wavenumber interval, the equation suggests that by

translating the Green's function in k,, it may be possible to adequately re-interpolate

the corresponding field p(r)c-ik,' using a simple interpolation method. The method

may be particularly applicable to the shallow water acoustic fields since the energy in

the Green's function is typically concentrated near the trapped poles. Further aspects

of this interpolation scheme will be discussed in Chapters 5 and 6.

The convolution property for the Fourier transform states that convolution in one

domain corresponds to multiplication in the alternate domain. The dual property is

the windowing property, which involves convolution in the alternate domain. These

two properties have also been studied in the context of the Hankel transform where

similar, but not identical, properties can be derived, based on using the asymptotic

expansion of Jo(kr). However, by using not only the asymptotic expansion but the

unilateral approximation implied by the validity of the Hilbert-Hankel transform as

well, the one-dimensional Fourier transform properties can be applied directly to p(r)

and g(k,).

The windowing property in the r domain implies that if

p (r) = (k,),u,(k)} (3.165)

then

p..(r)w(r) = 1 -{[g(k,)u(k,)] * W(k,)} (3.166)
2rr1/3

where

W(k) '{w(r)} (3.167)

In the special case that w(r) is the impulse train

w(r) = E 6(r - nAr) (3.168)
n=-Oa
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Figure 3.18: Typical function (k,) (a). Fourier transform of a sampled version of

p..(r) (b).

it can be shown that

W(k,) = , 6(k, + - ) (3.169)
= Ar &';'Ar

Substituting these results in equation 3.66), we find that

p..(r) , 6(r- nAr)= A 1u(k+ } (3. 170)1Ar/r) { (r;u(k + ) (3.170)

The left-hand side of this equation represents the sampled version of p,,(r), with

the corresponding sampling interval of Ar. The right-hand side of this expression con-

sists of the superposition of replicated versions of 4(k,)u(k,), with the corresponding

replication interval of 2r/Ar. To better illustrate this, consider Figure 3.18a where a

typical function is displayed. 9 In Figure 3.18b is shown the Fourier transform of the

sampled version of p,,(r). As indicated by the figure, it is possible to recover p.(r)

from its sampled version provided that the replications do not overlap, i.e. provided

that

> k,. (3.171)

9Note that (k,) is an even function since the Green's function (k,) is even.
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Therefore, the sampling interval must be chosen so that

tr < 2, (3.172)

In the case that the acoustic field p(r) can be approximated by

p(r) P..(r) r 0 (3.173)

an implication is that p(r) can be approximately recovered from its sampled version,

as long as the sampling interval satisfies the condition in equation (3.172).

If p(r) corresponds to an acoustic field in the ocean, a reasonable assumption is

that the corresponding Green's function is small for Ik,l > ko, where ko is the water

wavenumber. This statement is based on the fact that the field is evanescent for

wavenumbers larger than the water wavenumber. In the case that the source and

receiver are separated vertically, the contribution due to these wavenumbers must

be small. The effect will be described in further detail in the next chapter.. In this

context, the condition that g(k,) is small for k, > ko implies that k, = ko0, and thus

p(r) can be adequately represented by its sampled version provided that Ar < 2ir/ko.

Defining the water wavelength as

AO 2r (3.174)

it follows that p(r) must be sampled at the minimum rate of one complex sample

per water wavelength. This rate is a factor of two smaller than has been predicted

elsewhere[19], and is a consequence of the fact that the outgoing nature of the field

has been exploited. Essentially, there is an effective reduction in wavenumber extent

when the field is assumed to be outgoing. The result is important in a practical sense

because it potentially simplifies experimental constraints related to the acquisition of

ocean acoustic field measurements. In Chapter 6, we will present several examples

of this sampling result. In particular, we will show that a reasonable estimate of the

ocean bottom reflection coefficient can be obtained from a synthetic field, which has

been sampled at a rate of one complex sample per water wavelength.
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Finally, the convolution property applied in the r domain is considered. Writing

p.=(r / {(k)}

this property can be mathematically expressed as

P.(r) * t(r) = {(,)W()}

In the special case that W(k,) is the impulse train

W(,) = 6(k,-nak,)
n-X

equation (3.176) becomes

k, E P.(rn=-00
2wn+ 2rn
hk,

1 1
1/2 

= 1 1 (nAk,)ei " "
1/2 2ir ,,

(3.178)

The right-hand side of this expression is the basis for the FFP algorithm. Specifically,

if g(k,) is wavenumber limited to k, and Ak , is chosen such that

NAk, = k. (3.179)

then equation (3.178) becomes

,1 F p".(r + 2)
IM-M_,ak

1
= /2 2r

N-I

E j(nAk,)e" k

n=-O
(3.180)

If p.,(r) is evaluated at the set of discrete ranges r = mAr, this equation becomes

I o " 2 n
k; g2 p.,(m~r+ 0k1

Ll = ,_ 00
1 1 N-1

(mAr) 1/ 2 " (3.181)

If Ar is chosen to be related to Ak, as Ar = 2r/(N&k,), it follows that

1 eo 2rn 1 1 (n-l
t E P,,(m'"r + )= ( 2- : ~(,Ak,),i,..-/,

Z n=E-00 n=
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(k)6(k - nAk)}
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The right-hand side of this expression is in the form of an inverse discrete Fourier

transform, and can be implemented efficiently using the inverse FFT. Under the con..

dition that Ak, is chosen as sufficiently small, so that the replications of p,,(r) do not

overlap in r, the expression in (3.182) can be written as

p.(ma) ~ 1 ~ (n~/6~kCj~A/2rnm/Np..( ,.) AA (m(nk,)r)'/ 2 / (3.183)

The expression, in conjunction with the approximation

p(mAr) p,.(mAr) mAr > 0 (3.184)

is the computational algorithm in the FFP.

A key step in the preceding derivation is the assumption that the replications of

p,,(r) do not overlap. Thus, the sampling interval Ak, must be chosen as sufficiently

small so that there is no aliasing in the r domain. However, in typical shallow water

applications, it is quite difficult to sample 4(k,) at a rate sufficient to avoid aliasing,

because of the presence of trapped, or nearly trapped, poles in g(k,). For example,

consider the case of a single trapped mode in the acoustic field which corresponds to

a pole, ki on the real-k, axis of the top Riemann sheet of g(k,). Asymptotically, the

behavior of the corresponding mode is eiw,'r/rl/2 for r > O. Neglecting the effects

of the continuum portion of the field, the computation of the FFP yields a sampled

version of the quantity

1. eJr-,P 1
p(r) = [ei'i'(l + ei2/ + e'ij2i'r / + '..)1 = r/2 1- eii,,2/A ) (3.185)

Therefore, the FFP synthesizes the actual mode multiplied by a scale factor, which

can vary in magnitude from .5 to oo. If the sampling rate of g(k,) is chosen such that

IAk, = k,i, where I is an integer, the corresponding synthesized mode may be in error

by many orders of magnitude. The addition of attenuation into the problem reduces

the effect of the aliasing. In this case, the scale factor can no longer become infinite,

but can still be quite large when IAk, = Re(k,i]. Therefore, the convolution property

suggests that the use of the FFP in shallow water acoustic propagation applications

153



must be approached carefully. In the following chapter, we will present an alternate

hybrid method, which can incorporate a discrete version of the asymptotic Hilbert-

Hankel transform, but which is not subject to this severe aliasing effect.

To summarize, in this section we have discussed the asymptotic version of the

Hilbert-Hankel transform. A discrete implementation of this transform is widely used

in underwater acoustics as a means for computing synthetic acoustic fields accu-

rately and efficiently and is referred to the FFP. We pointed out that two separate

approximations are involved in the FFP. The first approximation is the condition

p(r) p,(r),r > 0, which was also discussed in the previous section, in the con-

text of the Hilbert-Hankel transform. The second approximation is the condition

p,(r) p,,(r), r O0 where p.,,(r) represents the asymptotic Hilbert-Hankel trans-

form. The Hartley transform was also discussed as a related transform which is inter-

mediate to the exact Hankel transform and the asymptotic Hilbert-Hankel transform.

In addition to forming the basis for an efficient computational algorithm, the validity

of the asymptotic Hilbert-Hankel transform was shown to have other important con-

sequences. Specifically, the transform relates the theory of one and two-dimensional

signals, which are approximately analytic, via the conditions

p(r) ~ > t{g(k)} r>0 (3.186)

rl/2p(r) ',-t{(k,)} r > 0 (3.187)

where the function j is defined in equation (3.151). The relationships indicate that it is

possible to demonstrate the two-dimensional theory using the simpler one-dimensional

unilateral inverse Fourier transform. Additionally, the relationship in equation (3.187)

is important because it implies an approximate Fourier transform relationship between

the Green's function and the acoustic field. Several consequences of the relationship

were discussed.
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3.5 Summary

In this chapter, we have reviewed the relationship between the analytic signal,

the real.part/imaginary-part sufficiency condition, and the unilateral transform. The

condition of exact analyticity, or exact real-part/imaginary-part sufficiency, is based

on the causality of the Fourier transform. In our work, we have found that it is

possible for a signal to be approximately analytic under other conditions. For example,

in this chapter we developed the property of approximate real-part/imaginary-part

sufficiency for the one-dimensional even signal, which has an even Fourier transform,

and the two-dimensional circularly symmetric signal, which has a circularly symmetric

Fourier transform.

In the one-dimensional context, discussed in Section 3.2, it was shown that in order

for an even signal to have the property of approximate analyticity, its causal portion

must be approximated by the unilateral version of the inverse Fourier transform. A

number of relationships, based on the consistency between the approximate unilateral

synthesis and the exact bilateral synthesis, were developed. A numerical example was

provided to illustrate these relationships.

In the two-dimensional context, discussed in Section 3.3, it was shown that in order

for a circularly symmetric signal to have the property of approximate analyticity, its

causal portion must be approximated by the unilateral version of Hankel transform,

referred to as the Hilbert-Hankel transform. A number of relationships, based on

the consistency between the approximate Hilbert-Hankel transform synthesis and the

exact bilateral inverse Hankel transform synthesis, were developed. The theory is of

particular importance because of its applicability to outgoing acoustic fields.

In the final section, we pointed out that there is an interesting connection between

the one and two-dimensional versions of the theory of approximate analyticity. To

develop the connection, we defined the asymptotic Hilbert-Hankel transform. The
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transform, which also forms the basis for an efficient computational algorithm, has

a number of interesting properties. The properties were used to derive the fact that

an outgoing acoustic field can be approximately represented in terms of its sam-

ples, spaced once per water wavelength. Additionally, the aliasing which occurs in

synthetically generating shallow water acoustic fields was discussed in terms of the

asymptotic Hilbert-Hankel transform. In the next chapter, we will present a method

for shallow water synthetic data generation which is not subject to the severe effects

of this aliasing.
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Chapter 4

Shallow Water Synthetic Acoustic

Field Generation

4.1 Introduction

In the previous two chapters, the acoustic field and its relationship to the Green's

function was discussed. In Chapter 2, the theory which relates the Green's function

and the acoustic field in terms of the Hankel transform was presented, and a number

of properties of the Green's function were developed. In Chapter 3, the relationship

between the Hankel transform and the Hilbert-Hankel transform was discussed. In

this chapter, we combine some of these ideas in order to develop a new technique for

shallow water synthetic acoustic field generation.

A technique for generating synthetic shallow water acoustic fields is important for

a number of reasons. First, it can be used to predict propagation loss in a shallow

water environment and can form an important tool for developing intuition about

the way sound propagates in this reverberant environment. For example, the tech-

nique can be used to predict the minimum range at which the propagation can be
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approximated by a trapped modal sum only. Secondly, a technique for synthetic data

generation can be used in the design of an actual experiment in which the acous-

tic pressure field is recorded. For example, use of the technique facilitates designing

an ocean acoustic experiment in which a particular mode is either not present or is

dominant at a specific receiver depth. Thirdly, a synthetic data generation technique

can be used in an forward modelling or analysis-by-synthesis method to obtain the

geoacoustic parameters using experimental measurements. In this approach, the input

parameters to the synthetic data generation method are adjusted so that the synthetic

data produced most closely matches the actual data recorded. Finally, the technique

can be used to verify some of the interesting theoretical properties of shallow water

acoustic fields. In the next chapter, we will use the technique to demonstrate that ex-

traction of the bottom reflection coefficient is highly sensitive to errors in the Green's

function, estimate under certain circumstances. In Chapter 6, we will use the method

to demonstrate that realistic shallow water acoustic fields can be reconstructed from

a single real or imaginary component.

The material in this chapter is organized as follows. In Section 4.2, a review of

the existing methods for the generation of synthetic shallow water acoustic fields is

given. Next, in Section 4.3, the theory for a new hybrid technique based on the

decomposition of the field and its associated Green's function is developed. Details

related to the numerical implementation of an algorithm based on this decomposition

are next given in Section 4.4. In Section 4.5, several extensions to the basic method

are given which are based on the use of the properties of the Green's function including

its eigenfunction expansion and the real-part/imaginary-part sufficiency condition. In

Section 4.6, the technique is related to three other techniques. Finally, in Section 4.7,

a review of the important points in the chapter is provided.
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4.2 Existing Approaches for Shallow Water Syn-

thetic Acoustic Field Generation

In this section, we will review the existing approaches for generating synthetic

acoustic fields in shallow water. It is possible to classify the existing approaches into

three categories as follows: 1) Residue Methods, 2) Multipath methods, 3) Hankel

transform based methods. We will exclude from the Discussion methods based on the

use of the parabolic equation. Although such methods, based on approximating the

original hyperbolic partial differential equation with a parabolic model, are important

because they can be extended to very complicated models including those which

involve range-dependence, they depart significantly from the model of the field as

an integral transform of a Green's function. As such, they will be excluded from

our discussion here and the reader is referred to a number of sources regarding these

methods [1] [2j. Although most other methods fit directly intp this categorization,

there are also several hybrid schemes which incorporate features of two or more of

the above categories. The new technique to be presented in the next section is an

example of one of these hybrid methods.

An excellent review of methods which perform the integration

p(r) = g(k,) J(kr)k, dk (4.1)

in the context of wave propagation problems is provided in the 1980 paper by DiNapoll

and Deavenport [3]. Their classification of existing approaches is very similar to that

suggested above with the exception that the third class has been changed to include

all Hankel transform based methods, as opposed to direct integration using the Fast-

Field-Program (FFP) [31 [41. The change in the last category has been made, in part,

to include several Hankel transform based methods which have appeared since 1980

[5] [61 [71.

We begin the review of existing approaches with residue methods. A common
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element in these techniques is the application of Cauchy's theorem to the integral in

equation (4.1). As discussed in Chapter 2, the integration contour can be extended

and closed in the upper half of the k,-plane. Applying Cauchy's theorem yields the

equivalent field representation of a sum, due to the pole contributions, plus a branch-

line integral, due to the presence of a branch point. Dependent on the particular

application required, the branch-line contribution, also referred to as the continuum,

may become subdominant to the pole sum and may be neglected, particularly at

large range offsets. The resulting approximation to the field is also referred to as the

normal-mode sum.

There are a number of computer programs in existence which compute the acoustic

field in a shallow water environment using the normal-mode sum. One such program

was published by Newman and Ingenito in 1972 [8]. In their approach, the field was

computed using the form

jN

p(r) uj(z)u(z), L (krjr)-iw (4.2)

As discussed later in this chapter, the functions u(z) are the eigenfunctions of the

homogeneous Green's function differential equation and the corresponding eigenvalues

are the locations of the top-sheet poles of the Green's function. Essentially, the

approach proposed by Newman and Ingenito and extended by Miller and Ingenito([9

was to solve the homogeneous version of the Green's function differential equation

using a finite difference scheme. The technique allowed for the source and receiver

to reside anywhere within a fluid layer with arbitrary velocity structure and constant

density. The media underlying the shallow water waveguide consisted of a fluid layer

with arbitrary velocity structure overlying a solid halfspace.

An improved version of this program, referred to as SNAP (Saclanten Normal

mode Acoustic Program), was published by Jensen and Ferla in 1979 [101. Although,

the finite difference solution technique was identical to the previous technique, some

improvements were made in program speed and size. Attenuation and shear effects
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were also incorporated via loss mechanisms by including a non-zero imaginary part in

the eigenvalues (poles) , kj, in the sum shown in equation (4.2). In addition, SNAP

simulated a range-dependent environment by dividing the full range into a number

of smaller segments each with different range-independent properties. SNAP also

provided a way to incorporate a rough waveguide surface into the normal-mode sum.

More recently, Baggeroer has introduced a modal solution by the solving the acous-

tic wave equation numerically 11. His approach is based on determining the eigen-

values and eigenfunctions using a state-variable technique. Additionally, a newer

version of SNAP has been introduced in 1985 which uses an improved algorithm for

determining the eigenfunctions and eigenvalues[12].

The advantage of normal-mode expansions is that they may be determined quickly

and accurately using finite difference algorithms or other approaches which exploit the

eigenfunction structure of equation (4.2). In addition, if the properties of the waveg-

uide vary slowly with range, the adiabatic approximation can be applied so that the

normal modes are both depth and range dependent. The result is an approximation

for the range dependent environment. The disadvantage of normal-mode expansions

is that they are only accurate in the far-field of the source. This is due to the fact

that the contribution of the branch-line integral has been neglected entirely. In appli-

cations where it is desired to compute the field at closer ranges, the continuum field

cannot be neglected. For example, in applications where synthetic data is produced

in order to study inversion techniques to obtain the bottom reflection coefficient, it is

important to include the continuum contribution.

A number of techniques have been proposed to include the continuum contribution

by adding this field to the normal-mode sum. One such technique was proposed by

Stickler in 1975 [131. In this technique, the continuum contribution was determined

by directly computing the branch-line integral for the EJP branch-cut definition. This

result was then added to a standard normal-mode expansion. The geoacoustic model
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assumed a /c-linear velocity profile and included compressional propagation only.

The closed form integral expression for the continuum contribution was determined

as

pe(r) = 2 | C (k)p(zo, k)p(z, k)H' (kr)kdk (4.3)

+ j C 2(k)p(zo, jk)p(z, jk)Ko(kr)kdk2po

where kB refers to the branch point corresponding to the wavenumberin the underly-

ing halfspace and where specific expressions I for the function Cl(k) and C2(k) were

given by Stickler [13]. Stickler provided several numerical examples which demon-

strated that the continuum contribution can be important at ranges out to many

times the waveguide thickness. It is noted that computation of the above integrals

may be extensive, as each integral must be evaluated for each range point desired.

Bucker later studied the contribution of the continuum portion of the total acoustic

field for the simpler case of a Pekeris waveguide 141. In his approach, the Pekeris

branch-cut was selected and an algorithm for calculating the corresponding branch-

cut integral was given. In addition, Bucker considered the trajectory in the k,-plane

that a specific pole follows as a function of frequency or waveguide thickness. The

algorithm also required a separate integration for each range point.

An alternate approach for including the continuum contribution in a residue

method was suggested by Tindle, et.al. in 1976 [15]. Their approach was to approxi-

mately evaluate the EJP branch-cut integral only in the vicinity of the peaks in the

integrand. The geoacoustic model considered was the Pekeris waveguide. By evaluat-

ing the integral approximately over a finite number of resonances, Tindle provided a

modal-like sum which approximated the continuum contribution. We have previously

remarked in Chapter 2 that this sum is actually an approximation to the residue sum

corresponding to the bottom sheet poles. A more detailed discussion concerning this

point will be provided in a later section of this chapter. In later papers, Williams[161

'It appears that an extra k term appears in the functions Cl(k) and C2 (k) in [13j.
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and Tindle [171 considered he treatment of virtual modes and normal modes which

are in the immediate vicinity of the branch point. They developed alternate tech-

niques for including the virtual modes in the case of non-symmetric resonances for

the Pekeris waveguide.

In 1980, Stickler and Ammicht proposed a technique which accounts for the con-

tinuum contribution in a more exact manner for the Pekeris waveguide model [18].

Their approach was based on representing the continuum portion of the field as an

integral in the variable of vertical wavenumber as opposed to horizontal wavenum-

ber. In this case, the integral contains only poles and no branch cut. The integrand

is modelled as a pole expansion based on the theory of analytic functions, and the

continuum field is approximated using a finite sum of terms. The approach was later

modified and extended to more general shallow water waveguides[(91.

In summary, the techniques which fit into the class of residue methods are based

on decomposing the acoustic field into the sum of two contributions - the normal-mode

sum and the continuum. In some methods, the continuum is neglected entirely. In

other methods, the continuum is modelled as a finite sum of virtual modes with various

mathematical forms. Finaly, it is possible to numerically perform the branch-line

integral to determine the continuum as is done in several methods. These approaches

have in common the fact that the Hankel transform is no longer applicable after

the application of Cauchy's theorem. In other words, although the original solution

consists of the Hankel transform of the Green's function, the application of Cauchy's

theorem yields a sum and a branch-line integral which is no longer in the form of a

Hankel transform.

The multipath expansion method is also used to evaluate integrals in the form of

equation (4.1). In this technique, the denominator of the Green's function is expanded

into a series. Each term in the series may be identified as a ray and thus higher order

terms represent the higher order multiples. The multipath expansion technique was
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implicitly used-in deriving the mathematical form of the Green's function in Chapter 2.

Apparently, the technique is not in widespread use for the determination of synthetic

acoustic fields in shallow water. It appears to be most suitable for generating the

near-field in shallow water, when only a few terms in the expansion are required.

The technique is more applicable to situations in which several rays are appropriate

for modelling the field and has been applied to the problem of range-dependent deep

water acoustic propagation [20].

The final class of synthetic data generation techniques to be reviewed consists of

Hankel transform based approaches. Apparently, the first use of a numerical Hankel

transform, in the context of synthetic field generation, was the Fast-Field-Program

(FFP) [3] [4) [211. In this approach, a fast numerical algorithm for computing the

Hankel transform was applied directly to the Green's function. The date is signifi-

cant in the fact that the direct integration used the fast Fourier transform which was

proposed some two years earlier by Cooley and Tukey[22]. The novelty of the FFP

approach was the use of an asymptotic expansion and the coupling of this expansion

with an algorithm for fast computation. The FFP has a number of advantages in-

cluding the fact that it computes the full-wave solution, i.e. all contributions to the

field are included as opposed to including normal-modes only in the residue methods

or the lower order multiples in the multipath expansion. In addition, the computer

implementation is extremely fast due to the underlying fast Fourier transform. Gen-

eration times as small as several seconds for approximately 104 range samples were

obtained by DiNapoli in 1971.

Since the introduction of the FFP in 1967, a number of field generation programs

based on this approach have.appeared. In 1971, DiNapoli used the FFP to generate

synthetic data for a single exponential layer and a two-layer geoacoustic model [21]. A

method for determining the acoustic field in the Arctic ocean based on the FFP was

developed by Kutschale in 1970[23]. Again, this approach used the FFP to perform

the direct integration of the Green's function. The Green's function was derived for
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the more general case of fuid-solid layers and was modified to account for the surface

ice structure.

In their 1980 paper, DiNapoli and Deavenport discuss the application of the FFP

to propagation in media with certain canonic velocity structures including linear,

l/c 2-linear, and exponential velocity profiles. In addition, several numerical examples

are discussed and a technique for inverting the pressure field to obtain the Green's

function is proposed. Reference is also made to the collapsed FFP, proposed by

DiNapoli in 1971 [241. In this technique, the sampling theorem for Fourier transforms

is applied in such a way that the computation of the FFP is reduced at the cost

of an increased sample spacing in the range domain. Essentially, the collapsed FFP

generates an undersampled version of the pressure field by aliasing in the wavenumber

domain.

The FFP remains a key component in synthetic acoustic field generation programs.

As an example, the general program SAFARI for computiig'fields source has recently

been developed by Schmidt and Jensen [7. The SAFARI program computes the

frequency-dependent Green's function for a layered fluid- solid media and has the

flexibility of incorporating source and receiver spatial arrays. The field generation

approach is based on computing the FFP of the Green's function.

In 1984, Thomson published a description of a computer technique based on the

work of Kutschale[61. This technique is designed to produce synthetic acoustic fields in

a shallow water environment and also uses the FFP to directly generate the transform

of the Green's function. The program also has the option of computing the field using a

residue method. The interesting aspect of this option is that it uses the FFP algorithm

to compute the continuum portion of the field. This is apparently the first use of the

FFP in a manner other than directly computing the Hankel transform of the Green's

function. The method is actually a hybrid method, as the residue method is used to

decompose the field and the FFP is used to compute the continuum. In principle,
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the method is similar to the new Hankel transform based method to be discussed in

the next section of this thesis. However, there are a number of important differences

which will be discussed in detail later. Essentially, the Kutschale-Thomson approach

is based on the mathematical formulation of Stickler[13] and references the equation

for the continuum contribution, which was presented earlier as equation (4.3). The

novelty of their approach however is that the continuum is approximated by the first

of these integrals only, and the FFP is used to evaluate this integral. The geoacoustic

model includes attenuation and shear in the normal-mode sum.. However, only the

compressional contribution to the continuum is included.

Another hybrid method for computing acoustic fields was proposed by Mook et.al.

in 1984 [5]. In this approach, the Fourier-Bessel series was used to compute the

Hankel transform of the deep water Green's function. Mook pointed out the difficulty

in performing the integration if the Green's function contains singularities near the

contour of integration. The singularity which presents the most difficulty in the

deep water case is the branch point at the water wavenumber. As also pointed out,

the deep water Green's function can become infinite in the case that the reflection

coefficient has a pole on the real-k, axis. This situation can occur if the underlying

media contains low-speed layers. A method for removing the branch-point singularity

and the poles in the reflection coefficient was suggested in [51, thereby easing the

numerical requirements of performing the Hankel transform. The method proposed

for determining the poles and associated residues involved the least-squares fit of a

partial-fraction expansion for the reflection coefficient. The approach is significant

in the fact that it is a Hankel transform based approach which accounts for inherent

numerical difficulties caused by singularities on or near the real-k, axis.

In a sense, the new technique for shallow water synthetic field generation is a Han-

kel transform based approach which is a combination and extension of the techniques

proposed by Kutschale-Thomson and Mook. As will be described in the next section,

the new technique also uses a transform to compute the continuum, as was done in
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the Kutschale-Thomson technique. Their technique is approximate however, while

the new technique is, in principle, exact. In addition, in the new method the quantity

to be transformed is not in the closed-form shown in equation (4.3), but rather is

related to the original Green's function, after the singularities have been removed. In

this way the new technique is similar to that of Mook, in that a portion of the field is

computed analytically, i.e. the modal portion, and the remaining portion is computed

numerically, i.e. the continuum. Further discussion regarding the relationship of the

new method to these methods will be presented in a later section of this chapter.
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4.3 Theory of the New Hybrid Method

In this section, we present a new hybrid approach for shallow water synthetic

field generation which decomposes the Green's function into two constituent parts.

The need for a hybrid approach is based on the difficulty of accurately computing

the numerical Hankel transform of the Green's function. This difficulty is due to the

presence of poles in of the Green's function which are located in the vicinity of the

Hankel transform integration contour. As pointed out in Chapter 3, the aliasing errors

associated with the undersampling of the Green's function in the regions of real-k,

near these poles may be quite severe. The basis of the current approach is to modify

the underlying transformation in such a way that the degradation due to aliasing is

substantially reduced.

In Chapter 2, we considered the decomposition of an acoustic field into the sum

of a modal field and a continuum field as

p(r) = PT(r) + Pc(r) (4.4)

As pointed out in the previous section of this chapter, this decomposition is also the

basis of the residue methods. The linearity of the Hankel transform suggests that a

similar decomposition exists for the corresponding Green's function. This fact forms

the basis of for new hybrid method for shallow water synthetic field synthesis. If the

decomposition into a trapped portion and a continuum portion is applied not to the

field, but rather to the Green's function, we obtain

g(k,) = gT(k,) + gc(k,) (4.5)

Here, g(k,) is the Green's function, gr(k,) is referred to as the modal portion of the

Green's function and gc(k,) is referred to as the continuum portion of the Green's

function. In addition g(k,), gT(k,) and gc(k,) are defined such that

g(k,) p(r) (4.6)
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gT(k,) -- PT(r)

gc(k,) - pc(r)

Note that in this representation, the continuum is represented exactly by the Hankel

transform of the continuum portion of the Green's function, gc(k,). This is to be

contrasted with other techniques which identify pc(r) as the result of a branch line

integral and not as the result of a Hankel transform. An advantage of representing

pc(r) in this way is that one of the numerous fast algorithms for efficient computation

of the Hankel transform can be applied.

The basis of the hybrid approach for shallow water synthetic field generation is to

compute analytically the Hankel transform of gr(k,) and to compute numerically the

Hankel transform of gc(k,). As will be discussed shortly, the pole singularities of g(k,)

near the real-k, axis are included in gr(k,) and not in gc(k,). Therefore, the sampling

requirements for the numerical Hankel transform are eased. Qualitatively, gc(k,)

is a smoother function than pr(k,) and thus requires fewer samples to adequately

represent it. Said another way, in the range domain, the continuum portion of the

field decays much more rapidly than the modal portion and thus, the corresponding

continuum portion of the Green's function can be sampled at a lower rate.

In order to perform the Green's function decomposition, the specific form for

gT(k,) must be determined. Using this form, the continuum portion of the Green's

function can be simply determined since

gc() = g(k,) - g(k,) (4.7)

The modal portion of the Green's function must be in the form of a residue sum since

pr(r) is a modal sum and PT(r) and gr(k,) are related by the Hankel transform. The

specific form for gr(k,) will now be determined.

Assuming the form of the Green's function decomposition discussed above, it is
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easily seen that

PT(r) + pc(r) igT(k) + gc(k,)JJo(krj)kdk, (4.8)

If gT(k,) is chosen to be an even function of k,, gc(k,) must also be an even function,

since, as derived in Chapter 2, g(k) must be an even function. If gr(k,) and gc(k,)

are even functions, the Bessel function can be replaced by a Hankel function 2 and

equation (4.8) becomes

PT(r) + PCe() = [tr() + gc(k)]H')(kr)kdk, (4.9)

where the contour of integration lies e above the negative real-k, axis and e below

the positive real-k, axis as discussed previously. Using Cauchy's theorem, equation

4.9, and the property that g(k,) is even, it can be shown that a term of the form

jiraik,iH(')(k,r) in pr(r) must be due to a term of the form

( 4- ) (4.10)(k,-k,, k- + k

in gr(k,). In this expression, a, is the residue of gr(k,) at the pole k, = k,i, i.e.

nm (k, - k,i)gr(k,) = a, (4.11)

Therefore, a modal sum of the form

pr(r) = jiraik,riHL)(k,,r) (4.12)
i=1

must be due to the modal portion of the Green's function

N 2aik,,
() (k - kl) (4.13)

To summarize, the relationship between the various quantities is summarized in the

following figure. Using this figure, the hybrid approach for generating p(r) can be

summarized in five steps: 1) determine gr(k,), 2) determine pT(r) using the analytic

2We will again assume in this chapter that all fields are evaluated for r > 0 and thus the Hankel

function Ho(l)(k,r) is chosen.
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p(r) = i7FL,. 1 akHi'((i·r) 4- pc(r)

g(k,) Z= ' E =-,k, + gc(k,)

Figure 4.1: Relationship between the modal and continuum portions of the field and

Green's function which forms the basis of the hybrid method.

relationship between gr(k,) and pr(r), 3) determine gc(k,) using gc(k,) = g(k,) -

gr(k), 4) determine pc(r) by numerically computing the Hankel transform of gc(k,),

5) determine p(r) using p(r) = PT(r) + pc(r).

The hybrid approach trades off the difficulty in numerically computing a Hankel

transform with the difficulty in determining the quantity g(k,). To determine the

values of the coefficients in gr(k,), gr(k,) must be related to g(k,) in a more direct

manner. This is necessary because we have at our disposal only g(k,), and thus

the coefficients a and k,, must be determined from g(k,). We now show that the

coefficients k,, are the poles of g(k,) and that the coefficients a are the residues of

g(k,) at the corresponding pole locations. Essentially, the proof shows that g(k,),

which is not a rational function in k,, can be decomposed into the sum of a rational

function which contains the top-sheet poles of g(k,) plus an irrational function which

has no poles. This type of decomposition is sometimes referred to as a Mittag-Leffier

expansion and can be thought of as a generalization of the partial fraction expansion

for a rational function 25].

The proof is based on the use of Cauchy's theorem. To proceed, consider the top

Riemann sheet of the complex-k. plane depicted in Figure 4.2. In this figure are shown

the locations of the singularities of g(k,), the selected EJP branch cuts and a number

of integration contours labelled C1 - C 12. We have indicated only a single symmetric
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r-plane

Figure 4.2: Top Riemann sheet of complex-k, plane showing poles, branch-cuts, and

various integration contours C1 - C12 . The function g(k,) is analytic within the region

prescribed by these contours.
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pole in this diagram although multiple poles might also exist. In the interior of the

region of the k, plane prescribed by these contours, g(k,) is an analytic function and

thus Cauchy's integral theorem is applicable, i.e.

g(k) ') dK, (4.14)

where C denotes the sum of the integration contours C: through C 12. This contour

integration is now simplified. Frst, consider positioning contours C 4, C, CIo and

C12 at a large kl which approaches infinity. The integration along these contours

becomes zero because g(k,)l approaches zero as k,l approaches infinity. The latter

behavior can be proved by choosing an arbitrary square root definition for ko and

evaluating the expression for g(k,) given in Chapter 2. Also, the integration along the

contours C, and C 3 cancels, as does the integration along the contours C7 and C9.

The integration around contour C2 can be written as

I g(,) 1
I |g (t) dk, = Residue(g(k,)lI,}k, (4.15)

2,i k - k, hi - i
where it is assumed that the pole is' located at position. k,i within the contour C 2.

Defining Residue{g(k,)L=,, } as as a, it is apparent that

2 f | g( k' ) dk, = a (4.16)
- k, -k

Similarly, it is apparent that

I | k: , dkkk, + ki (4.17)

where the fact that g(k,) is an even function has been used in determining the sign

of this residue. Using these facts, we have for the case of a single symmetric pole on

the real-k, axis of the top Riemann sheet that

g(k,) = 2_Ij e dk, 2a k,m + I + g(k, d- k (4.18)
2rJlk- k ' k 2-k, 2rj Jc.+c,,k.-k,

Similarly, if N poles were present on the positive real-k, axis, the form for the decom-

position of g(k,) would be

(4.19)
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Note that equation (4.19) is in the form of

g(k,) = gT(k,) + gc(k ) (4.20)

Furthermore, we note that k,j and a, correspond to the poles and residues of g(k,).

Additionally, the poles have been incorporated within gT(k,) and thus gc(k,) is finite

at the pole locations k,i. Although equation (4.19) also provides an integral expression

for gc(k,), this expression is not used in the hybrid approach. The reason is that it

is simpler to numerically compute gc(k,) using gc(k,) = g(k,) - gr(k,). Alternately,

there exists another method for computing gc(k,) without directly estimating the

poles and residues. This method is based on the real-part/imaginary-part sufficiency

condition of g(k,) and is discussed in a later section of this chapter.

To summarize, the theory of the new hybrid method for generating synthetic

acoustic fields in shallow water has been discussed. The approach is based on decom-

posing the Green's function into the sum of a modal component and a continuum

component. The modal component, gr(k,), has the form

Pr(t) 2= _ ci _ kji (4.21)
£= r

where k,i is the location of a pole of the Green's function and ai is the corresponding

residue. The continuum portion of the Green's function, gc(k,), can be expressed as

an integral or alternately as

gc(Ak,) = g(k,) - g(k,) (4.22)

An analytic expression for the Hankel transform of gr(k,) can be simply derived as
N

pT(r) = jr E aikiH() (k,) (4.23)

The continuum portion of the field can be obtained by computing a numerical Hankel

transform of gc(k,). Because the decomposition includes the singular behavior due to

the poles in g(k,), the sampling requirements for computing the numerical transform

of gc(k,) are eased. The total field is constructed by adding the analytically computed

modal field to the numerically computed continuum field.
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4.4 Implementation of the Hybrid Method

In the previous section, the theory of the hybrid method for synthetic shallow

water field generation was discussed. The method proposed is exact in that it does

not rely on any approximations or asymptotic expressions. Rather, the method is

based only on the linearity property of the Hankel transform. In practice however,

there are a number of issues which cause. this technique to depart from being exact.

For example, the poles and residues cannot be determined exactly, nor can an exact

numerical Hankel transform of gc(k,) be computed. In this section, we consider

several of the issues related to the numerical implementation of the hybrid method

based on the Green's function decomposition.

We begin by examining the procedure for determining gr(k,). Previously, it was

shown that the coefficients in the expression for gr(k,) are determined by the poles

and residues of the Green's function. The philosophy which has been assumed in .the

numerical procedure for determining these poles and residues is to exploit the a priori

information about the Green's function. For example, the complete mathematical

expression for g(k,) corresponding to an arbitrary isovelocity layered bottom is known

as discussed in Chapter 2. In fact, g(k,) depends on the specific geoacoustic properties

of the underlying bottom only through the reflection coefficient RB(k,). This a priori

knowledge can be exploited in determining the poles and residues. We first show how

this fact aids in the determination of the pole locations.

The approach chosen for determining the pole locations of g(k,) is based on using

a numerical technique for locating the complex zeros of an analytic function. There

are several well-known techniques for determining these zeros. The technique we have

chosen is based on the IMSL standard computer function ZANLYT1261. For the case

at hand, we can determine the pole locations of g(k,) by searching for the zeros of the

denominator of this function. The denominator of g(k,), when set to zero, is referred
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to as the characteristic equation, as shown below

1 + RB(ck,)ej 2 k'oh = 0 (4.24)

Thus, a possible method for determining the pole locations is to use the root-finding

technique to determine the solutions of this equation. Unfortunately, the denomina-

tor of g(k,), i.e. the left-hand side of equation (4.24), is not an analytic function.

Specifically, there are branch points located at both the water wavenumber and the

wavenumber of the underlying halfspace. The non-analyticity of' this function in the

complex-k, plane appears not only at the branch points but also along the two branch

cuts -emanating from these branch points. Note that the presence of the additional

branch cut emanating from the water wavenumber is due to the fact that only the

denominator of the Green's function is being considered as opposed to the complete

Green's function expression. As discussed in Chapter 2, there is no branch-cut associ-

ated with the water wavenumberin the complete Green's function expression because

g(k,) is an even function of ko. Additionally, the denominator of g(k,) may be non-

analytic at isolated points corresponding to the poles of RB(k,). Thus, there is a

basic incompatibility between the numerical technique of searching for the zeros of an

analytic function and the case at hand - the function of interest is not analytic.

In particular, if the branch cut emanating from the water wavenumber is chosen

as an EJP-type cut, the root finding technique is forced to search for zeros in the

immediate vicinity of this branch cut, i.e. in a region where the function is not

analytic. Although this cut can be repositioned by assuming a different choice of

the square root definition, numerical experiments have shown that the root finder

is more reliable if the cut can be eliminated entirely. This can be accomplished if

the zeros of l/g(k,) are determined instead of the zeros of the denominator of g(k,).

In addition, the singularities due to the poles in the reflection coefficient are also

eliminated using the expression l/g(k,). Thus, by exploiting a priori knowledge of

the Green's function, the numerical technique for determining the pole locations has

been made more reliable. In particular, by searching for the zeros of 1/g(k,) as
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opposed to the zeros of the denominator of g(k,), the presence of the branch cut and

the singular behavior due to poles in the reflection coefficient has been eliminated.

The root finder must still contend with the cut emanating from the branch point

due to the underlying halfspace and point singularities corresponding to the poles of

1/g(k).

In practice, the root finder requires an initial guess for the location of each pole. In

the situation that there are only several poles on or near the real-k, axis present, this

initial guess can be made by examining a plot of Ig(k,)l versus real-k,. Essentially, the

a priori knowledge regarding the location of the peaks in this function can be used

to initialise the root finder. This procedure may also be automated. In the situation

that more than several poles are present, this initialization procedure becomes more

difficult. In this case, the root finder tends to not detect one or more of the roots.

A similar effect may occur if a root is in the immediate vicinity of the branch point.

An alternate approach for determining the pole locations in these more complicated

cases is discussed in the next section.

We now show that a priori knowledge about the Green's function can be exploited

in a technique for determining the residues. In particular, although the residue a, for

a simple pole in g(k,) is defined as

d .= lim~ ~(k. - k,,)g(k,) (4.25)

we have found that a numerical scheme based on this equation is unstable. A least-

squares approach also yields residue estimates which are not accurate enough to re-

move the effects of a pole in g(k,) and tends to degrade significantly if more than

a single pole is present. Instead, the a priori form of the Green's function can be

incorporated within a numerical scheme for determining the residues. In effect, this

scheme performs a portion of the residue computation analytically and a portion of

the computation numerically. Specifically, if g(k,) is defined as

() N(k,) (4.26)
D(k180)
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then the residue at the pole location ki can be shown to be

t (i= O D,)'1J =lk,, (4.27)

A portion of the operation aD(k,)/ak, can be performed analytically using the known

form of the Green's function. For example, for the case of the source and receiver in the

top layer, with a surface reflection coefficient of -1, the Green's function expression

in equation (2.34) can be used to determine the residue at the pole location k,i.

The result is

= 2in koZ /, 1 + Reo(h-,,) (4.28)
kh- be·~ L° IL A ;# .oi t=*, i (4.28)k 1.O aR-eiUko * - j2hr. Raei2k .oI

Note that the result is an expression for the residue in terms of the reflection coefficient

and its derivative at k, = k,i. These two quantities can be numerically evaluated at the

pole location and substituted into equation (4.28) to determine the residue. Numer-

ical experiments have shown that this technique for estimating the residue based on

exploiting the form of the Green's function is more accurate than alternate techniques

such as a least-squares fit. The limitation of the technique appears to be the numeri-

cal determination of the pole location and the reflection coefficient derivative. In the

next section, an alternate approach for determining the pole location is presented. A

by-product of this alternate approach is another method for determining the residue

which does not require the computation of the reflection coefficient derivative.

Although the numerical techniques just discussed aid in the accurate determination

of the poles and residues, there is still some numerical error which occurs. In effect,

in determining gc(k,), we have attempted to remove the effects of a pole by placing

a zero in the complex-k, plane at the same location. If there is any error whatsoever

in determining the position of the pole, a pole-zero pair will exist rather than a

complete cancellation. However, the error in cancellation will be locally concentrated

near the pole location. It seems that this error is compensated for exactly in the

decomposition approach, since gc(k,) has been computed as gc(k,) = g(k,) - gT(k,).

In other words, if slight errors in determining the coefficients of g(k,) have been
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made, then the associated negative error will also appear in gc(k,). If the Hankel

transforms of gc(k,) and gr(k,) are computed and added, any errors should cancel.

The problem with this argument however, is that the exact Hankel transform of gc(k,)

cannot be computed numerically. In fact, the slight error in estimating a particular

pole location and residue may be responsible for a sharp spike in gc(k,) which occurs

in the immediate vicinity of the pole location. The numerical Hankel transform of

this function is subject to aliasing in a similar manner as was the original Hankel

transform of the Green's function.

In order to remove the spike in gc(k,) in the neighborhood of the pole, a local

smoothing operator is applied to gc(k,) at values of real-k, near the pole. This op-

erator averages N sample points of gc(k,) around the real value of the pole location.

We have typically chosen N = for situations in which several thousand samples of

gc(k,) are computed over a k, range of 0 to twice the water wavenumber. In effect,

by applying this smoothing operator, the following statements are being made. The

modal portion of the acoustic field is slightly in error due to inaccuracies in estimat-

ing the poles and residues. This error cannot be compensated for by computing the

numerical Hankel transform of gc(k,) because of the aliasing which occurs. There-

fore, we accept the fact that the modal field may be slightly in error and apply the

smoothing operator to improve the estimate of the continuum portion of the field.

As a specific numerical example of this procedure, we consider its application to

the geoacoustic model summarized in Table 4.1. The Green's function for this model

has a single trapped pole on the top Riemann sheet for the EJP branch cut and, in

addition, has a pole located on the bottom sheet which is close to the real-k, axis.

The Green's function for this model was computed and its magnitude and phase are

shown in Figure 4.3. The numerical root finding technique was used to determine

the location of the top sheet pole at k,, = 0.5623757 and the associated residue was

determined as a, = 0.1558157 using equation (4.28). The continuum portion of the

Green's function, gc(k,), was computed by removing the pole and 2048 samples of
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zo x

////= 6096///

zo = 6.096 m

z = 7.03579 m

f = 140.056 Hz

h = 13.8684 m

co = 1500 m/sec

Po = 1.0 g/cm3

cl = 1800 m/sec

Pt = 1.8 g/cm3

Table 4.1: Pekeris Model Geoacoustic Parameters
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Figure 4.3: Magnitude and phase of the Green's function, g(k,), corresponding to the

geoacoustic model in Table 4.1

184

2g

m

oW

1

*0 0.2 0.4

IV.acoA"
-W

O-

-

to

I

AA



the resultant magnitude and phase are shown in Figure 4.4. Note the presence of f.'

spike in the magnitude of gc(k) at the value of k, = k,, caused by the slight error

in estimating the pole and residue. In this particular case, the spike is quite small

attesting to the accuracy in estimating the pole position and residue. The smoothing

operator, with N = 5, was applied to gc(k,) and the resultant magnitude and phase

of gc(k,) are shown in Figure 4.5. The effect of applying the smoothing operator is

to eliminate the spike in gc(k,) as can be verified by examining Figure 4.5.

In more complicated models which have multiple poles on the top Riemann sheet,

the smoothing is sometimes less effective. This is due to the fact that accurate es-

timation of the pole parameters is more difficult and also due to the fact that the

poles may be clustered. The proposed technique thus has a limitation in this respect.

However, to this point we have considered only geoacoustic models which have zero

attenuation. The result of including even small amounts of attenuation is to move the

poles off the real-k, axis and into the first quadrant of the complex-k, plane. In this

situation, when the continuum portion of the Green's function is evaluated at values

of k, along the real axis, no spikes are observed and the smoothing operator may be

eliminated entirely. In this case, gc(k,) is evaluated at values of k, sufficiently far

away from the pole-zero pair so that the cancellation is effective.

Several numerical issues related to the computation of the Hankel transform of

gc(k,) are now considered. The first is related to the finite extent of gc(k,). All

Hankel transform techniques have in common the fact that a maximum finite limit of

integration must be chosen. The implication is that the integrand is exactly wavenum-

ber limited to this maximum value. We first examine this assumption for the total

Green's function and not gc(k,). Using the expression for g(k,) given in Chapter 2,

it can be shown that g(k,) behaves as
ejko(,X-zI)

g(k,) ko (4.29)

for large k,. Note that if z zt, then this function decays at an exponential rate for k,

greater than the water wavenumber since k,o is imaginary. However, in the situation
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Figure 4.4: Magnitude and phase of the continuum portion of the Green's function,

gc(k,), corresponding to the geoacoustic model in Table 4.1. No smoothing has been

applied and the error in pole, residue determination is evident as a spike in the

magnitude at k, = 0.56.
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Figure 4.5: Magnitude and phase of the continuum.portion of the Green's function,

gc(k,), after smoothing, corresponding to the geoacoustic model in Table 4.1.
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that Z1 - Zg is small or zero, this rate may also be small or zero. In fact for the case

that z = zt, the magnitude of the Green's function behaves as 1/k, for large k,. To

illustrate this effect, two different configurations of source and receiver depths within

the waveguide summarized in Table 4.1 were considered. In Figure 4.6a is shown the

log-magnitude of g(k,) for z. = 12.8684 m and z = 1.0 m and in Figure 4.6b is shown

the log-magnitude of g(k,) for z, = z = 7.03579 m. Both are plotted for real values

of k, extending well past the water wavenumber of 0.58666. Note that the Green's

function magnitude decays quite rapidly in the first case and it can be considered as

a wavenumber limited function. The exponential decay of the magnitude for values of

k, higher than the water wavenumber is due to the large value of z - zj in the model.

In the second case however, the Green's function magnitude is seen to decay at the

slow rate of 1/k,, as predicted in equation (4.29). The numerical example points out

that it may not always be appropriate to consider g(k,) as a wavenumber limited

function.

Although the above effect has been considered for the total Green's function, we

have also observed a similar effect for the continuum portion of the Green's func-

tion. In other words, gc(k,) may decay quite slowly for k, > ko. However the

numerical transform still requires a maximum wavenumber to which the integration

is performed. To reduce the effect of abruptly terminating the integration at some

maximum wavenumber, a Hamming window is applied to gc(k,) starting at the wa-

ter wavenumber and extending to the maximum wavenumber chosen. Although the

appropriate maximum wavenumber may depend on z,- zt, numerical experiments

have shown that choosing a maximum wavenumber of between 1 and 2 times the

water wavenumberand applying the Hamming window in this region, yields adequate

results.

Once gc(k,) is considered to be a wavenumberlimited function, there are a num-

ber of applicable techniques for computing the Hankel transform in order to obtain

pc(r). A survey of these techniques may be found in Mook [27]. Two different
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Figure 4.6: Magnitude of g(k,) on a logarithmic scale for two different source/receiver

configurations for the geoacoustic model summarized in Table 4.1. In the top figure,

z = 12.8684 m and zt = 1.0 m, and in the bottom figure z = z = 7.03579 m.
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techniques for computing the Hankel transform of gc(k,) have been used in the au-

merical implementation of the hybrid method. The first technique is the Abel/Fourier

transform approach [281. This approach is based on the projection-slice theorem for

two-dimensional Fourier transforms [291. The projection operation for the circularly

symmetric function is the Abel transform. Although several algorithms exist [30] [31]

[32] for computing the Abel transform, we have chosen to use the technique proposed

by Hansen [32] because of its accuracy and speed. This algorithm is based on the use

of a state equation model to compute the Abel transform integral. The algorithm can

be modified to operate on a function which has been sampled on any grid, however we

have selected a linear grid to facilitate performing the discrete Fourier transform of

the output sequence of the Abel transform. The second algorithm used for computing

the Hankel transform is the asymptotic Hilbert-Hankel transform, discussed in Chap-

ter 3. This algorithm was selected because it forms the basis for several numerical

experiments concerning real-part/imaginary-part sufficiency and the reconstruction

of the field from its real or imaginary part. Numerical examples related to the use of

both of these transforms will be presented in a later section of this chapter, and in

the following two chapters.

To summarize, in this section, we have discussed several detailed issues related to

the numerical implementation of the hybrid method based on the decomposition of

the Green's function. In particular, we have discussed a technique for determining

the poles and residues which exploits the known form of the Green's function. By

exploiting this form, a procedure has been developed for estimating the poles and

residues when one or several poles are present on the top Riemann sheet. Although

the technique is also applicable when more poles are present, there is a difficulty in

initializing the root finder. An alternate approach which circumvents this difficulty

will be presented in the next section. Also, the effect of errors obtained in determin-

ing the pole locations and residues was discussed. For small errors, the continuum

portion of the Green's function can be corrected by locally smoothing over horizontal

wavenumbers in the vicinity of the real part of the pole location. The smoothing
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operation is not required in the case that a typical value of attenuation is included in

the geoacoustic model. Issues related to the choice of the maximum wavenumber to

which the Hankel transform is performed were also considered. Finally, the selection

of Hankel transform techniques used to compute the continuum portion of the field

was discussed.
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4.5 Extensions

In this section, two extensions to the hybrid method for shallow water syn-

thetic field generation are presented. The first extension is an alternate technique for

computing the poles and residues of the Green's function. This technique exploits

additional information about the Green's function to facilitate the pole and residue

determination. The second extension is an alternate technique for computing the con-

tinuum portion of the field. As discussed earlier, the continuum portion of the field

can be computed using any one of several numerical Hankel transform routines applied

to gC(k,). In this extension however, the Hilbert-Hankel transform is required for the

computation of the continuum portion of the field. As will be discussed, this approach

directly exploits the real-part/imaginary-part sufficiency condition as applied to the

continuum portion of the Green's function.

4.5.1 Alternate Approach.for Pole and Residue Determina-

tion

In this subsection, we discuss an alternate approach for determining the poles

and residues of g(k,). There are several ways of explaining the alternate approach, de-

pending on whether the method is considered in the range domain or in the wavenum-

ber domain. Perhaps the simplest explanation is to consider it as a reversal of the

first two steps in the original method. Recall that in the original method, the first

step is to determine gr(k,) and the second step is to determine PT(r) using the ana-

lytic relationship between gT(k,) and PT(r). The function gr(k,) is also required for

the computation of gc(k,), since gc(k,) = g(k,) - r(k,). In the alternate approach,

PT(r) is first determined and the analytic relationship between pT(r) and gT(k,) is

used to determine gr(k,). The method exploits the fact that there are several efficient

computer programs in existence which compute PT(r) - these are the normal mode
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programs, several of which were discussed in Section 4.2.

To emphasize the difference between the two methods, a block diagram of the orig-

inal method and a block diagram of the extension to the method are shown in Figures

4.7a and 4.7b respectively. As can be seen from the figure, the difference between

the two methods is the manner in which gr(k,) is determined. In the first method,

gr(k,) is constructed from the values of the pole locations and residues determined

using the algorithm which locates the zeros of 1/g(k,). In the second method, gT(k,)

is determined using a normal-mode computer code and the algebraic relationship be-

tween PT(r) and gr(k,). The most interesting aspect of the alternate approach is that

the poles and residues are not computed by using a numerical zero-finding algorithm.

Rather, an alternate procedure based on the eigenfunction expansion of pr(r) is used.

The advantage of this extension to the hybrid approach is that a much larger

number of poles can be accommodated. Recall from the discussion earlier that a

disadvantage of the original approach is the difficulty in determining the location

of the poles when more than several poles are present. This difficulty is due to

establishing the proper initial values for the root-finding algorithm. In the extension

to the technique, this initialization is not required because the normal mode technique

determines the pole locations in an entirely different manner.

The alternate technique exploits additional a priori knowledge about g(k,). Namely,

it exploits the fact that g(k,) is a Green's function, and as such, should satisfy the

properties of a Green's function, which follow from the theory of ordinary differen-

tial equations. To develop this further, and to justify the improvement in the method

based on exploiting a priori knowledge, we will now develop gr(k,) in an eigenfunction

expansion. Although, the properties and theory of Green's functions in terms of their

eigenfunction expansions is presented in numerous places [331 [341 , the connection

between this theory and gr(k,) in the hybrid method has apparently not been made.

Therefore, a brief derivation of the expansion of g(k,) in terms of eigenfunctions is
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Figure 4.7: The top figure represents a block diagram of the algorithm for determining

p(r) by first determining the poles and residues to form gr(k,). The bottom figure

represents a block diagram of the extension to this method which is based on using

normal-mode techniques to determine PT(r).
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included here for compieteness.

Recall from Chapter 2 that the Green's function for the acoustic propagation

model is the solution to the ordinary differential equation

(' + k2 - k)g(k) = -26(- zo) (.30)

where the source and receiver reside within the top layer. This equation results from

applying a Hankel transform to the wave equation which describes the field within

a layer. In the present situation, we wish to determine the solution at all depths

for purposes of establishing eigenfunction orthogonality conditions. In this case, the

governing partial differential equation must incorporate the effects of velocity and

density changes from layer to layer. The appropriate equation is

a -( p(; , ,0)
() p-'(z) p(r Z + k 2(z)p(r; z, zo) -4r6(r - ro) (4.31)

where p(z) is the density as a function of depth. By applying the Hankel transform

to both sides of this expression, the ordinary differential equation which results is

d dg(k,; 2,0)fi1) d _P(- dg(,;z) + (k 2 (z) - k,)g(k,;z, Zo) = -26(z- o20) (4.32)

where g(k,; z, o2) - g(k,), p(r; z, zo) a p(r) and g(k,) and p(r) form a Hankel transform

pair. To simplify the development which follows, we ignore the -2 term on the right-

hand side of this equation and require that the final solution be multiplied by this

factor. Thus, we consider the equation,

p(z) d p(z) () + (k2() - k2)g(k,) = 6(Z- 20) (4.33)dz dz4

which can be also be written as

(L - A)g(A; z, o) = (z - o) (4.34)

where L p(z) p-I(z), + k 2 (z), - k 2 and g(A; z, zo) 9(k,; , zo). It is straight-

forward to show that the operator L is self-adjoint under the orthogonality criteria

< ~qS(z), .(z) >-l p(I ) n(z) m(z)dz (4.35)
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Using an argument similar to the Mittag-Leffler expansion discussed earlier, Cauchy's
theorem can be used to develop an expression for g(A; z, so) as

g(A; z, zo) = f g(A';zzo)A (4.36)

and thus

; ),, ) d' A (4.37)s A .- A 2rj l -
Here, the first term corresponds to the pole contributions in the A plane and the
second term corresponds to the branch-line integral. The numerator in the first term
is the expression for the residue at the pole An and is a function of both the source

and receiver depths. By using this expansion for g(A; z, so), multiplying both sides of
equation (4.34) by A - A,, and taking the limit, we have that

lim ( - .)(L - )g = lim 6( - o) (4.38)A-Am AAM

lim (A - A,.)(L- )[- B (z, zo) + 1=0 (4.39)A-Am ,, An -A 2ij &d
and thus

(L - A,)R,.(z, o) = 0 (4.40)

From this equation, it can be seen that R,,,(z, 2) is an eigenfunction of the op-
erator L with the corresponding eigenvalue A,,. Therefore, if #,(z) is a normalized

eigenfunction which satisfies

(L - An).n() = 0 (4.41)

then (z, zo) = cf,,(zo),(z) where the dependence on zo is included in fn,,(zo) and c
is included for normalization purposes.

By using the fact that L is a self-adjoint operator, and considering L,o as the
operator L with a change of variables from z to zo, it can be shown that fn(zo) =

,,(Zo)/P(zo) where (zo) is an eigenfunction of the operator L,o with eigenvalue An,.

Incorporating this into the expression for R,(z, ) we have that

B, (z, zo) = c (ZO)On(Z) (4.42)
P(Zo)
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It is straightforward to determine that c = 1 using the definition for orthogonaiity

and thus the complete expression for g(A; z, zo) becomes

9g; z, ZO) - Z A) + gc(A; z, zo) (4.43)

where the second term is the branch-line integral and ,,(z) i3 the solution of the

eigenvalue equation

(L - A,),(z) = 0 (4.44)

and n,(ZO) = ,,(z),=,o. This is the eigenfunction expansion for g(A;z,zo) in terms

of the variable A. To relate it to the problem at hand, we return to the k, domain.

Making the substitution A = k2 and multiplying by the factor -2, we find that

g(k,;z, t) = E 2 #n (zo)#,,(z) g9c(k,; z, zo) (4.45)
p(zo) k k, +

The first term in equation (4.45) is the basis of the normal-mode approach for

generating PT(r). Specifically, by taking the Hankel transform of this expression and

retaining the contribution due to the sum, we have that

PT(r) = O. j)(zo)#i(Z)H1(')(kr) (4.46)

The values of k,;, #;(z), and #j(zo) can be determined by numerically solving the

eigenvalue equation (4.44) using a finite difference scheme. In other words, a trial

solution for A,, is made and the corresponding eigenfunction is determined. If the

boundary conditions are satisfied, the solution has been determined, otherwise the

trial value of A,, is modified.

For the case at hand, we recognize that equation (4.45) is in the form of g(k,) =

gr(k,) + gc(k,). Previously, we showed that

'T(k): = Ek2 _ k2.gTS)k r 2a- kkj (4.47)

where k,i is a pole of g(k,) and a, is the residue. Using the eigenfunction expansion,

we see that
2 Oi(ZO)Oi(Z)

r(k)= p(Ao ) 2L ,()+( (4.48)
197 p(zo - k
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Thus, an alternate approach for determining the poles is to solve the eigenvalue equa-

tion and use k. = A!/2. Furthermore, the alternate approach for determining the

residue is to use the expression

aQ=;(ZO)Oi(Z) (4.49)
p(zo)k,

We note that different a priori knowledge about the Green's function has been

exploited in the two approaches. In the original approach, the closed-form solution

for g(k,) was used in order to determine the residue in terms of the reflection coefficient

and its derivative at the pole. In the alternate approach, the knowledge used was that

g(k,) satisfies an equation for a Green's function and, as such, can be expressed in an

eigenfunction expansion. Note that the alternate approach also applies to the case in

which the source and receiver are not necessarily located within the top layer, i.e. to

the extended Green's function.

In practice, we have found that using a normal mode program to determine the

roots and residues in this way works quite well. The SNAP normal mode program[10

was chosen for convenience. An interpolation routine was also added to SNAP in

order to evaluate ij(z) and #i(zo) for values of z, zo which do not lie on the finite

difference grid.

As an example of the procedure, the Green's function for the geoacoustic model

summarized in Table 4.2 was computed and the magnitude and phase of this function

are plotted in Figure 4.8. Note that the source and receiver are not in the top

layer and thus the extended Green's function equation developed in Chapter 2 was

used. It is impossible to identify either the number of peaks or their approximate

positions by examining the plot of the magnitude of g(k,) in Figure 4.8. Thus, the

initialization of the root-finder is difficult. Alternately, the model was used as the

input to the SNAP normal-mode program and the number of trapped poles was

determined to be 14. The pole positions were determined by SNAP by solving for

the eigenvalues of the homogeneous Green's function equation, and the residues were
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1500 m/sec, 1.0 g/cm3

1550 m/sec, 1.0 g/cm3

1560 m/sec, 1.0 g/cm3

/Xx/////// /' ~x/4/1650 m/sec,' .g/cm~'

1800 m/sec, 1.8 g/cm3 \
\\\\\\\ \\\ \\\\N\

Im

21.8684 m

100 m

'4

-4

Table 4.2: Geoacoustic Model oi a Non-Isovelocity Water Column Overlying a Thick

Layer Overlying a Halfspace
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zo = 6.096 m

z = 7.03579 m
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Figure 4.8: Magnitude and phase of the Green's function,g(k,), corresponding to the

geoacoustic model in Table 4.2.
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determined using equation (4.49). The mode amplitudes, mi, defined as mi = raik,i,

were also computed and a list of the pole positions and the mode amplitudes for the

geoacoustic model can be found in Table 4.3. gT(k,) and gc(k,) were computed using

these values, and the resultant gc(k,) magnitude and phase are displayed in Figure

4.9. Here, no smoothing operator has been applied and the effects of imperfect pole-

zero cancellation are evident by the presence of several spikes in the neighborhood

of the pole locations. Figure 4.10 shows the magnitude and phase of gc(k,) after

applying the smoothing operator in the neighborhood of the real parts of the poles

with N = 5.

The presence of the spikes prior to smoothing and the residual error after smooth-

ing in the vicinity of k, = .86 can be attributed to errors in the pole and residue

estimation. One source of error is that SNAP linearly interpolates between layers to

determine the actual velocity at any given depth while the Green's function is com-

puted based on isovelocity layers. The effect can be compensated for by incorporating

thin intermediate layers within the geoacoustic model input to SNAP however this

compensation is only approximate. A potentially more severe error is incurred in the

interpolation procedure required in determining #j(z) and #j(zo) at values of z, zo not

on the finite difference grid. A linear interpolator was applied, however it is recog-

nized that a more sophisticated scheme is required. Additionally, the finite difference

scheme only provides an approximate solution to the underlying eigenvalue equation.

It is also possible to use the results of SNAP to provide the initialization values to

the root-finding technique. For example, consider the dominant pole listed in Table

4.3, i.e. the pole with the largest mode amplitude, which is located at k,i = 0.8597293

with ,rak,j = 0.2140388. The root-finder could be initialized to this value of k,i and

the residue could be computed using the numerical expression involving the reflection

coefficient and its derivative. Presumably, the use of these values in the expression for

gT(k,) would improve the estimate of gc(k,) although this has not been fully explored.

For reference, in Figure 4.11 is shown the magnitude and phase of the smoothed gc(k,)

201



0.8804902 9.4117895c - 02

0.8597293 2.1403880e - 01

0.8382334 5.7814509e - 04

0.8366570 2.5564961e - 03

0.8340870 7.1196225e - 03

0.8306701 1.8042102e - 02

0.8267667 3.8345765e - 02

0.8225527 4.0777378c - 02

0.8172472 2.1565886e - 02

0.8105006 1.0324701e - 02

0.8024934 5.7498589e - 03

0.7933905 3.6924945e - 03

0.7834035 2.4684239 - 03

0.7730384 1.0335498e - 03

Table 4.3: Summary of pole locations k,j and mode amplitudes m; = Iraik,, for the

geoacoustic model in Table 4.2.
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Figure 4.9: Magnitude and phase of the continuum portion of the Green's function,

gc(k,), corresponding to the geoacoustic model in Table 4.2. No smoothing has been

applied and the errors in pole and residue estimation are visible as sharp spikes for

values of k, > kv = 0.7688.
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Figure 4.10: Magnitude and phase of the continuum portion of the Green's function,

gc(k,), after smoothing, corresponding to the geoacoustic model in Table 4.2. A slight

residual error remains at k, 0.86 due to errors in estimating the parameters of the

dominant pole located at k, = 0.8597293.
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Figure 4.11: Magnitude and phase of the continuum portion of the Green's function,

gc(k,), after smoothing, corresponding to the geoacoustic model in Table 4.2. Only

13 of the 14 poles present were removed and the dominant pole at k, = 0.8597293 was

not removed. The preceding figure essentially shows the error in removing the effects

of the dominant pole present here.
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which is obtained by removing 13 of the poles and leaving the dominant pole. In effect,

Figure 4.10 shows the error in removing the single pole present in Figure 4.11.

To summarise, an alternate approach for computing the poles and residues of

g(k,) required in the hybrid method has been presented. The approach exploits the

eigenfunction representation of gr(k,). The advantage of the approach is that a larger

number of poles can be accommodated and that existing normal-mode computer

routines can be used to compute the poles and residues. In addition, the alternate

approach can be used as an initialization step for more accurate schemes.
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4.5.2 Computation of pc(r) Using Real-Part/Imaginary-Part

Sufficiency

In the hybrid approach, the continuum portion of the field, pc(r), is computed

as the Hankel transform of gc(k,). One of the difficulties in this approach is obtain-

ing the quantity gc(k,). As pointed out previously, gc(k,) can be obtained using

gc(k,) = g(k,) - gT(k,) and thus the difficulty beccnes obtaining gr(k,). Several

methods for obtaining gr(k,) based on exploiting a priori knowledge of the Green's

function were previously discussed. In this subsection, a completely different ap-

proach for generating pc(r) is presented. The technique is based on exploiting the

real-part/imaginary-part sufficiency condition for g(k,) which was discussed in Chap-

ter 3 . In fact, this technique completely bypasses the step of determining gT(k,)

and no pole or residue estimation is required. The technique is best thought of as an

alternate method for computing pc(r). Note that, in the hybrid scheme, gT(k,) is still

required in order to determine the modal portion of the field, PT(r). The.-technique

to be discussed essentially decouples the problems of estimating PT(r) and pc(r).

One of the merits of this approach is that it provides a check on the original hybrid

method. Establishing the validity of gc(k,) or pc(r) without using this technique

is quite difficult. This stems from the fact that evaluating gc(k,) without using

the expression gc(k,) = g(k,) - gT(k,) requires that a branch line integral must be

performed for each value of k,, as can be seen from equation (4.19). The alternate

technique generates pc(r) without explicitly computing gc(k,) and thus provides an

independent way in which to verify the result of computing the Hankel transform of

gc(k,). In addition, the technique exploits the real-part/imaginary-part sufficiency

property in the Green's function domain as opposed to the pressure field domain. The

most obvious application of the real-part/imaginary-part sufficiency condition is in

the acquisition and processing of a single channel of acoustic field data. However, the

sSpecifically, Statement 6 for the unilateral inverse Fourier transform and Statement 6 for the

Hilbert-Hankel transform is utilized.
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proposed technique suggests that the real-part/imaginary-part sufficiency condition

in the other domain may be of practical significance as well.

To begin the discussion, we first review two important properties on which the

alternate technique for computing pc(r) is based. The first property is that gT(k,)

must be a purely real function for real-k,. This can be simply derived by referring to

the eigenfunction representation for gr(k,), given in the previous subsection, and by

recognizing that the eigenvalues and eigenfunctions are purely real. This implies that

both a and k,j are purely real and that

(4.50)
gT(k,) =-- k k ( )

must be purely real for real values of k,. An implication of this property is that,

although extracting gc(k,) from g(k,) is a difficult problem and depends on estimating

gr(k,), extracting Im(gc(k,)} only is much simpler. In fact,

Im({gc(k,)} = Img(k,)} (4.51)

for real-k, as can be easily determined using the equation gc(k) = g(k,) - gr(k,) and

the fact that gr(k,) is purely real for real-k,.

As a numerical example of this property, consider the geoacoustic model described

in Table 4.1. The magnitude and phase of g(k,) corresponding to this model were

previously shown in Figure 4.3 and the magnitude and phase of gc(k,) were pre-

viously shown in Figure 4.5. The function gc(k,), in the latter figure, was ob-

tained by estimating the position of the single pole and its residue and computing

gc(k,) = g(k,) - gr(k,). The real and imaginary parts of the functions g(k,) and

gc(k,) are now shown in Figures 4.12 and 4.13. The plots of the imaginary portions

of these functions confirm the property stated in equation (4.51) and thus Im{gc(k,))

can be obtained from g(k,) in a straightforward manner. Note also that Im{gc(k,))

is of finite extent to the wavenumberof the underlying halfspace, kNv = 0.4888 rad/m.

This follows from the property proved in Chapter 2 that Im{g(k,)} = 0 for real-k,

greater than kN and from equation (4.51).
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Figure 4.12: Real and imaginary parts of the Green's function, g(k,), for the geoa-

coustic model of Table 4.1
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Figure 4.13: Real and imaginary parts of the continuum portion of the Green's func-

tion, gc(k,), for the geoacoustic model of Table 4.1.
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The second property required is that gc(k,) and pc(r) can be related via the

Hilbert-Hankel transform. This fact follows since gc(k,) and pc(r) are related by a

Hankel transform and since gc(k,) has no singularities in quadrant II of the complex-k,

plane. Alternately, recalling that the Hilbert-Hankel transform applies to fields which

radiate outward, we recognize that pc(r) must be such a field since p(r) = pr(r)+pc(r)

and both p(r) and PT(r) are outgoing fields. Using the properties of the Hilbert-Hankel

transform discussed in Chapter 3, it is apparent that the real-part/imaginary-part

sufficiency conditions must apply to gc(k,) and pc(r). In particular, it is possible to

synthesize pc(r) from the imaginary part of gc(k,) using pc(r) 2jM ;'(Im[gc(k,))}.
It is'also possible to utilize the asymptotic Hilbert-Hankel transform to perform this

synthesis approximately.

The alternate technique for generating pc(r) from g(k,) without explicitly esti-

mating gr(k,) is summarized in Figure 4.14. As can be seen, the technique consists of

computing the asymptotic Hilbert-Hankel transform of 2jIm(g(k,)). The procedure

is straightforward in comparison with the original hybrid method, in that no pole or

residue estimates are required. The disadvantage is that an approximation has been

introduced by using the Hilbert-Hankel transform or its asymptotic version. Addi-

tionally, the technique applies to only the restricted class of lossless, compressional

geoacoustic models since the equivalence of the imaginary part of g(k,) with the imag-

inary part of gc(k,) is valid only for the lossless case. However, a modification to this

technique can be made which extends it to include attenuation, as will be discussed.

Two numerical examples of the technique for generating pc(r) are now presented.

In the first example, the geoacoustic model summarized in Table 4.1 was used. A

numerical Hankel transform algorithm based on the Abel/Fourier transform was ap-

plied to the smoothed version of gc(k,) for this model. The continuum portion of the

Green's function gc(k,) was windowed to include values only up to k, 1.0 and 2048

points of gc(k,) were used as input to the Hankel transform. The magnitude of the

resultant field as a function of range out to 1500 m is shown in Figure 4.15. A discrete
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Figure 4.14: Block diagram of alternate technique for determining pc(r) based on the

real-part/imaginary-part sufficiency condition of gc(k,).
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Figure 4.15: Magnitude of the continuum portion of the ield for the geoacoustic

model in Table 4.1 generated by computing the Hankel transform of gc(k,) based on

the Abel/Fourier method.
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version of the asymptotic Hilbert-Hankel transform was also applied to the function

Im{g(k,)} displayed in Figure 4.12b. The resultant continuum field magnitude is

displayed in Figure 4.16.

In comparing the continuum field magnitudes in Figures 4.15 and 4.16, we see

that although there are slight differences, the agreement is quite close. For reference

purposes, we also include a plot of the magnitude of p(r) in Figure 4.17, obtained

by adding the analytically-computed modal field pT(r) and the numerically generated

field pc(r). The oscillation in the magnitude of the total field in the first 500 m is due

to the interference between the continuum portion of the field and the single trapped

mode. This interference would not have been synthesized in a normal-mode method

which incorporated the single mode only.

In Figure 4.18 is shown the magnitude of the total field, obtained by applying the

asymptotic Hilbert-Hankel transform directly to g(k,), i.e. without using the hybrid

method. Although the field magnitude in this figure is smoothly varying, it is evident

that severe aliasing is present. The magnitude of the aliased field at far ranges in

Figure 4.18 is approximately 10 times the magnitude of the correct field, generated

using the hybrid method, in Figure 4.17. For the case of a single trapped mode,

we have previously derived in Chapter 3 that the aliasing which results in the far-

field consists of approximately a gain factor times the actual field. The gain factor

was derived as 1/(1 - eik,'2V/Ak'), where k, is pole location and Ak, is the sample

spacing of the Green's function. Using this formula, the magnitude of the gain factor

is determined as 10.728 which is consistent with the actual aliasing observed.

In the second example, the geoacoustic model in Table 4.2 was used. The poles

and residues of this model were determined using the normal-mode approach and

the smoothed version of the corresponding gc(k,) was previously shown in Figure

4.10. A numerical Hankel transform algorithm based on the Abel/Fourier method

was applied to the smoothed version of gc(k,) for this model. The continuum portion
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Figure 4.16: Magnitude of the continuum portion of the field for the geoacoustic

model in Table 4.1 generated by computing the asymptotic Hilbert-Hankel transform

of 2jIm(g.
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Figure 4.17: Magnitude of the total .field for the geoacoustic model in Table 4.1

generated by adding pc(r) to PT(r). Pc(r) was computed as the Hankel transform of

gc(k,) using the Abel/Fourier method.
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Figure 4.18: Magnitude of the total field for the geoacoustic model in Tabie 4.1 gen-

erated by applying the asymptotic Hilbert-Hankel transform directly to the Green's

function without using the hybrid method. The field is severely aliased as can be seen

by comparing it with the field in the preceding figure.
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of the Green's function was windowed to include values only up to k, = 1.0 and

2048 points of gc(k,) were used as input to the Hankel transform. The magnitude

of the resultant field as a function of range out to 1500 m is shown in Figure 4.19.

The asymptotic Hilbert-Hankel transform was also applied to Im{g(k,)} and the

resultant continuum field magnitude is displayed in Figure 4.20. Again, although

there are small differences between the curves shown in Figures 4.19 and 4.20, the

agreement is quite close. In fact, it is difficult to conclude which field is correct and

which field is in error as different sources of error contribute in both approaches. The

close agreement between the two curves confirms the validity of the two independent

approaches. For reference purposes, we have also included a plot of the magnitude of

p(r) in Figure 4.21, obtained by adding the analytically-computed modal field PT(r)

and the numerically generated field pc(r). The complexity of the field is due to the

large number of resonances present within the Green's function, as can be seen from

Figure 4.8. The rapid oscillation in the field out to ranges of about 500 m is due to the

interference between the continuum'portion of the field and the trapped mode portion

and would not have been synthesized with a normal-mode technique. In Figure 4.22

a plot of the magnitude of the total field, obtained by applying the Hankel transform

directly to g(k,), i.e. without using the hybrid method, is shown. The severe aliasing

in the field computed without the use of the hybrid method is evident, as the two

fields are substantially different.

On re-examining the alternate approach for computing pc(r) an apparent paradox

becomes evident. The paradox can be phrased as follows: If both gc(k,) and g(k,)

have imaginary-part sufficiency, and Im{g(k,)} = Im{gc(k,)}, then pc(r) must equal

p(r). However, pc(r) and p(r) cannot be equal unless PT(r), and thus gT(k,), is zero.

If there are any poles present in g(k,), gT(k,) cannot be zero and thus pc(r) must not

equal p(r). We now resolve this apparent paradox and in doing so, provide the basis

for extending this technique to geoacoustic models which include attenuation.

The basis of the paradox is that although strictly speaking, Im{gc(k,)} = Im{g(k,)}
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Figure 4.19: Magnitude of the continuum portion of the field for the geoacoustic

model in Table 4.2 generated by computing the Hankel transform of gc(k,) based on

the Abel/Fourier method.
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Figure 4.20: Magnitude of the continuum portion of the field for the geoacoustic

model in Table 4.2 generated by computing the asymptotic Hilbert-Hankel transform

of 2jIm(gJ.
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Figure 4.21: Magnitude of the total field for the geoacoustic model in Table 4.2

generated by adding pc(r) to PT(r). pc(r) was computed as the Hankel transform of

gc(k,) using the Abel/Fourier method.
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Figure 4.22: Magnitude of the total field for the geoacoustic model in Table 4.2

generated by applying the Hankel transform directly to the Green's function without

using the hybrid method. The feld is severely aliased as can be seen by comparing it

with the field in the preceding figure.
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along the real-k, axis, this result is not true for a contour displaced by e below the

axis. In particular, this equality condition is not true in the immediate vicinity of

poles which are located on the real-k, axis. The presence of these poles directly on the

axis is of no concern in the original hybrid method because they are removed in the

determination of gc(k,). However, their presence is of concern if the Hankel transform

of g(k,) is computed or if the Hilbert-Hankel transform of Im{g(k,)} is computed. In

particular, in previous discussions we have considered the position of the integration

contour as displaced e below the real-k, axis in order to avoid these pole singularities.

If gr(k,) is evaluated along the displaced contour, it is no longer a purely real func-

tion. The implication, using gc(k,) = g(k,) - gr(k,), is that Im{gc(k,)} is not equal

to Im{g(k,)} along this contour.

This effect is now illustrated using a numerical example. The real and imaginary

parts of g(k,) as a function of real-k, for the geoacoustic model in Table 4.1 have

previously been shown in Figure 4.12. The function g(k,) was -re-evaluated along a

contour parallel to the real-k, axis but displaced below it by e = 1.0 * 10- e. The real

and imaginary parts of g(k,), evaluated along this contour, are plotted in Figure 4.23.

Note that the real and imaginary parts are nearly identical to those in Figure 4.12

with the exception of the presence of the spike near the pole located at k,i = 0.5623757

in the imaginary component of g(k,) in Figure 4.23. The Hilbert-Hankel transform

of the imaginary component in Figure 4.12b yields pc(r) while the Hilbert-Hankel of

the imaginary component in Figure 4.23b yields p(r). A numerical implementation of

the latter transform would be difficult, of course, because of the sampling and aliasing

effects previously discussed. Intuitively however, this result makes sense as the spike

located at k, = k,i in Im{g(k,)} contributes the term rjak,Ho(l)(k, r) to the trapped

portion of the field via the Hilbert-Hankel transform while the remaining portion of

Im{g(k,)) contributes to the continuum portion of the field.

Thus, the apparent paradox is resolved as follows. The function Im{g(k,)} is equal

to Im{gc(k,)} for real-k, if a lossless, compressional geoacoustic model is assumed.
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Figure 4.23: Real and imaginary parts of the Green's function corresponding o the
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Furthermore, pc(r) can be generated from Im{gc(k,)} by computation of its Hilbert-

Hankel transform. However, p(r) cannot be computed from m{g(k,)} evaluated

along the real-k, axis because the contour of integration must be slightly displaced in

order to avoid the poles.

The above argument addressed the conceptual question of whether Pc(r) or p(r)

is generated when the Hilbert-Hankel transform of Im{g(k,)} is computed. The issue

involved was the presence of the poles directly on the real-k, axis. A more practical

question arises if attenuation is included in the geoacoustic model. Here, we are no

longer concerned with displacing the contour to avoid the poles and branch-point, as

these are located slightly off the real-k, axis in quadrant I of the complex-k, plane.

The question is whether or not the technique for generating Pc(r) based on imaginary-

part sufficiency is still applicable. It can be shown that when attenuation is included

both the pole locations and residues become complex and thus gr(k,) is no longer a

real function for real-k,. Therefore, we cannot argue that Im(gc(k,)} = Im(g(k,)}.

Strictly speaking, the alternate approach for generating pc(r) is no longer applicable.

However, a modification to this approach can be made which yields acceptable pc(r)

fields when realistic values of attenuation are considered.

The modification is based on the observation that Im{gr(k,)} O for real-k,

everywhere except in the immediate vicinity of the real part of the pole location. In

fact, it can be shown that if the pole is located at a position k,i = a + jeO and the

residue is ai = b + jet, then Im(g(k,)} behaves as

Imn{g(k,)} - El (k, - a) + cob (4.52)
(k, - a)(4.

for real-k, not in the vicinity of a. Because of the fact that eo and are small

quantities for realistic values of attenuation in the model, it is noted that Im{g(k,)}

is very small for real values of k, not equal to a. In other words, for realistic amounts

of attenuation, although gr(k,) is not purely real, its imaginary part is non-zero only

in a small wavenumber region near the location of the pole. Note that a similar

statement cannot be made about the real part of gT(k,) - if it could, then the original
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technique for removing the poles from g(k,) could have been considerably simplified.

In particular, the effect of a pole in the real part of gr(k,) extends over a much wider

interval along the real-k, axis.

As a numerical example of this, the Green's function corresponding to the geoa-

coustic model in Table 4.1 with attenuation in the underlying halfspace was computed.

The attenuation factor, i.e. the imaginary part of the wavenumber within the under-

lying halfspace, was chosen as O.015dB/m. The real and imaginary parts of the

resultant Green's function, (k,), are plotted in Figtre 4.24. The pole position was

determined, using the root-finding technique described earlier, as k- = 0.5623747 +

j9.0235437 * 10-6 and the residue was determined as 0.1558222 - j4.913016 * 10 - 4 .

The function g(k,) was then constructed and gc(k,) was computed. The real and

imaginary parts of gc(k,) are plotted in Figure 4.25. By examining the imaginary

parts of g(k,) and gc(k,) in Figures 4.24b and 4.25b respectively, we see that they are

nearly identical except in the immediate vicinity of the real part of the pole location.

This is due to the fact that Im{g(k,)} is non-zero only in this region. This suggests

that a way in which to obtain Im{gc(k,)} from Im{g(k,)} is to apply a rectangular

window to Im{g(k,)}. As can be seen from Figures 4.24b and 4.25b, the effect of a

low-wavenumberwindow applied to Im{g(k,)} is to eliminate the spike near the pole

and preserve the behavior for lower values of wavenumber. It is apparent that this

technique cannot be applied to the real parts of gc(k,) and g(k,), as can be seen from

these figures. As pointed out previously, in the lossless case, Im{g(k,)} is wavenumber

limited to k, = kN where kN is the wavenumber in the underlying halfspace. In the

case that attenuation is included, this is only an approximation, as can be seen by ex-

amining Im(g(k,)} in Figure 4.24b. However, this value of wavenumber does suggest

the appropriate value at which to window Im{g(k,)} to determine Im{gc(k,)}.

The modification to the algorithm for generating pc(r) in the case that realistic

attenuation is included thus consists of first windowing Im{g(k,)) at k, = kN to ob-

tain Im{gc(k,)}, and then computing the Hilbert-Hankel transform of 2jIm(gc(k,)}.
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Figure 4.24: Real and imaginary parts of the Green's function corresponding to

the geoacoustic model in Table 4.1 with attenuation in the underlying halfspace of

0.015 dB/m
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Figure 4.25: Real and imaginary parts of the continuum portion of the Green's func-

tion corresponding to the geoacoustic model in Table 4.1 with attenuation in the

underlying halfspace of 0.015 dB/m
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As a numerical exampie of chis technique. pc(r) was rst determined by computing

the Hankel transform of gc(k,), shown in Figure 4.25. The magnitude of the resultant

pc(r) is shown in Figure 4.26. Next, pc(r) was determined by computing the asymp-

totic Hilbert-Hankel transform of a windowed version of Im{g(k)} and the resultant

magnitude is shown in Figure 4.27. Although there are differences between the two

curves, their similarity suggests that the proposed approach has some merit. The dip

in the magnitude of the field produced using both approaches is apparently related

to a cancellation between the lateral wave and the virtual mode when the geoacous-

tic model includes attenuation. For reference, the continuum field magnitude, for

the model with attenuation in Figure 4.26 may be compared with the continuum field

magnitude, for the model without attenuation, in Figure 4.15. Note that the field mag-

nitude in Figure 4.26, at a range of 1500 m, is down by 1500m*0.015dB/m = 22.5dB.

Thus, the hybrid technique confirms that the far-field portion of the continuum, i.e.

the lateral wave, decays at a rate determined by the attenuation factor within the

underlying halfspace.

To summarize, an alternate method for generating pc(r) has been proposed. The

method is based on exploiting the imaginary-part sufficiency condition of gc(k,). In

the lossless case, gr(k,) is a purely real function and thus Im{gc(k,)} can be deter-

mined directly from Im{g(k,)}. The continuum portion of the field pc(r) can be gen-

erated using the Hilbert-Hankel transform, or asymptotic Hilbert-Hankel transform,

of Im{gc(k,)}. In the case that attenuation is included in the model, Im{gc(k,)}

cannot be determined in this way. However, Im{gc(k,)} is approximately wavenum-

ber limited to the real-part of the branch point, corresponding to the velocity in the

underlying halfspace. In effect, the pole contribution to Im{g(k,)} can be removed by

simply windowing the function. The Hilbert-Hankel transform can then be applied

to this function to determine pc(r). Thus, the alternate approach is based on both

the imaginary-part sufficiency condition and the fact that the effects of a pole can be

removed from the imaginary part of the Green's function without resorting to the full

pole/residue estimation procedure.
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Figure 4.26: Magnitude of the continuum portion of the field for the geoacoustic model

in Table 4.1 with attenuation in the underlying halfspace of 0.015 dB/,n. The field

was generated by computing the Hankel transform of gc(k,,) using the Abei/Fourier

method.
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Figure 4.27: Magnitude of the continuum portion of the field for the geoacoustic model

in Table 4.1 with attenuation in the underlying halfspace of 0.015 dB/m. The field

was generated by computing the asymptotic Hilbert-Hankel transform of a windowed

version of 2jIm(g(k,)j .
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4.6 Relationship Between the Hybrid Method and

Existing Methods

In this section, we discuss the relationship between the hybrid method for syn-

thetic shallow water acoustic field generation and several other existing methods. The

purpose of the discussion is to clarify some of the advantages and disadvantages of the

hybrid approach and to highlight the differences between it and related techniques.

We will consider three other existing techniques- the hybrid method of Kutschale and

Thomson[61, the hybrid method for deep water acoustic field generation proposed by

Mook [51 [27j and the uniform asymptotic method of Stickler and Ammicht 1181 [19].

4.6.1 Relationship to Kutschale-Thomson Method

In this subsection, we consider the hybrid method of Kutschale and Thomson.

Recall from Section 4.1 that this is a residue method in which the continuum portion

of the field is computed using an FFP. Essentially, the FFP is used to approximately

compute the branch-line integral. In the hybrid approach discussed in this chapter, the

Hilbert-Hankel transform of gc(k,) is computed. In order to develop the relationship

between the two techniques, we must first directly relate the branch-line integral and

the Hankel transform of gc(k,). Previously, it was argued indirectly that both of these

integrations must generate pc(r). A more direct relationship will now be established.

Recall that in the residue methods, Cauchy's theorem is applied to the Hankel

transform integral

p(r) = L g(k)HL (k r)kdk (4.53)

The result is a sum due to the poles enclosed within the integration contour plus a

contour integral around the branch-line. The branch-line integral yields the continuum
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portion of the field and thus

pc(r) /, g(k)Hol)(kr)kdk, (4.54)

The decomposition of g(k,), discussed in section 4.3, can be substituted into this

expression to yield

pcr) f= 2 [g(k,) + gc(k,)jH(L (kr)kdk, (4.55)

and thus

pc(r) = 2 A g H(k)(')(k'r)k'dk + 2 gc(k+)I()(kr)kdk' (4.56)

The first integral in the preceding expression is equal to zero as will now be argued.

Previously, it was shown that gr(k,) consists of a residue sum which contains only

poles. In other words, there are no branch points in gr(k,). The implication is that

gr(k,) must be continuous in the portion of the k,-plane which includes the chosen

branch-cuts of g(k,). Thus, since the branch-line contour in equation (4.55) traverses

down one side of the cut and up the other side, and gr(k,) is continuous across the

cut, the first integral in equation (4.56) must be zero.

The expression for the continuum portion of the field thus becomes

pc(r) = j L gc(k)H(') (kr)kdk, (4.57)

This is similar to the Hankel transform expression for pc(r) presented in section 4.3,

but the limits of integration are along the branch-line and not from k, = -oo to oo.

However, since gc(k,) contains no poles, the integral around the branch line can be

deformed, using Cauchy's theorem, as shown in Figure 4.28. Therefore,

pc(r) = f gc(k,)Hol)(k,,r)kdk, (4.58)

Note that this expression is identical to the expression used in the hybrid approach. In

other words, the preceding integral prescribes pc(r) as the Hankel transform of gc(k,).
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Figure 4.28: Complex k, plane showing the deformation of the branch-line contour to

its position along the real axis. The + and - portions of the k, plane are also shown.

The equivalence of the branch-line integral and the Hankel transform of gc(k,) is thus

summarized in the equivalence of the following expressions

pc(r) = lB g(k, ) Ho)(kr)k,dk

= i ,D g(k,)Hol) (k,r)k,dk, (4.59)
= ff. gc(k,)H" (k,r)k,dk,

Note that the integration contour associated with the integral in equation (4.55)

follows along both sides of the EJP branch-cut as shown in Figure 4.28. If we use the

notation + to denote evaluation along one side of the cut and - to denote evaluation

along the other side of the cut, an equivalent expression for the branch-line integral

of equation (4.56) becomes

pc(r) = I [g+(k,) - g(k,) Ho' (k, r)kdk, (4.60)

where g+(k,) denotes (k,) evaluated slightly below or to the left of the cut and

g_(k,) denotes g(k,) evaluated slightly above or to the right of the cut as shown in

Figure 4.27. The integration contour corresponding to BL+ starts at joo to the left

of the imaginary-k, axis, proceeds parallel to this axis, then turns and proceeds just
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below the real-k, axis and continues to the branch point k.- Using the definition

gA(k,) = g+(k,) g_(k,), and splitting the integral along BL into the sum of two

contour intEgials, 'we have that

kfdN 1 0o
P C(r) 1 k gA(k,)l') (kr)k, dk, + ga(k,)HO'(.'c,r)kk,d (4.61)

In the method proposed by Kutschale and Thomson, pc(r) is evaluated by neglect-

ing the second integral in equation (4.61) and by using the FFP to evaluate the first

integral. By examining equation (4.61), and neglecting the second term, it becomes

apparent that their approach can be interpreted as the computation of the Hilbert-

Hankel transform of gA(k,). Kutschale and Thomson use a closed-form expression for

g(k,) obtained from Stickler [13j. In order to further relate their approach with the

hybrid method discussed earlier, it is necessary to relate g(k,) with g(k,) and gc(k,).

This relationship is easily described using the property developed in Chapter 2 that

g(k;) = g(k,) for the lossless, compressional geoacoustic model and the assumption

of the EJP branch-cut. In particular, since g+(k,) = g(k, -je) and g_(k,) = g(k, +je)

for real-k, , then

ga(k,) = g+(k,) - g_-(k,) = g+(k,) - g =(k,) = 2jIm{g+(k,)} (4.62)

Taking the limit as e -- 0, we have that

g4 (k,) = 2jm{g(k,)} (4.63)

The approach of Kutschale and Thomson is actually equivalent to the technique for

generating pc(r) using the imaginary-part sufficiency condition of g(k,) discussed in

the previous subsection. In the Kutschale and Thomson approach, the EJP branch-

line integral is evaluated approximately by integrating along the real-k, axis only.

The integration is implemented using an FFP. We have just shown that an alternate

interpretation of this technique can be given using the imaginary-part sufficiency

condition of gc(k,) and g(k,) and the Hilbert-Hankel transform.
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The method of Kutschale and Thomson applies only to the lossiess, compressional

geoacoustic model. In the previous subsection, we presented a method for extend-

ing the technique based on imaginary-part sufficiency of gc(k,) to models in which

attenuation is present. No such extension is provided in the Kutschale-Thomson

method. Furthermore, recall that the method based on imaginary-part sufficiency

was actually an extension to the original hybrid method based on the decomposition

g(k,) = gr(k,) + gc(k,). This decomposition also applies to models which include

attenuation and shear where it is recognized that the Hankel transform of gc(k,)

is equal to the sum of two branch-line integrals corresponding to the compressional

contribution and the shear contribution.
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4.6.2 Relationship to Mook Method

In this subsection, we relate the hybrid method based on the decomposition

g(k,) = gT(k,) + gc(k,) with the hybrid numerical/analytic technique proposed by

Mook [271 [5]. As pointed out previously, the two techniques actually address sig-

nificantly different problems, as the new hybrid technique based on decomposing the

Green's function has been applied to the shallow water problem, while the technique

proposed by Mook was applied to the deep water problem. The common element

of the two approaches is that both remove the effects of singularities from an inte-

grand prior to the computation of its numerical transform. However, the integrand is

different in the two cases, as is the method of singularity removal.

To briefly review the deep water problem, we first consider the plane-wave expan-

sion for the field due to a point source which is located within an isovelocity halfspace

which overlies a horizontally stratified media. The expression for the field, assuming

that the receiver also lies within the halfspace, can be shown to be

X jejala-81 4eik(z+sao)
p(r) = /[ ltk + ' R'A(k,)Jo(k, r)kdk, (4.64)

This expression is in the form of a Hankel transform of the total deep water Green's

function, g(k,), where

g(k,) =+ - RB(k,)l (4.65)
ks k,

The notation here is identical to the notation presented in Chapter 2 with the excep

tion that the z-axis is assumed to point upwards, with z = 0 located at the boundary

between the isovelocity halfspace and the underlying media. Recall that in the shal-

low water case, the z-axis was chosen to point downward, with z = 0 located at the

surface of the waveguide. The difference between the choice of the two coordinate

systems arises mainly from the way in which the source and receiver positions, zo

and z, are measured in deep and shallow water propagation experiments - z and zo

are typically measured as heights off the bottom in a deep water experiment and as

depths from the surface in a shallow water experiment.
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The integral in equation (4.64), which describes the total deep water field, can be

split into the sum of a direct field and a reflected field as

p(r) = pD(r) + pR(r) (4.66)

where

PD(r) -= Jo(k, r)k,dk, (4.67)

and

pR(r) Jo k+ RB(k,)Jo(k,r)k,dk, (4.68)

The corresponding deep water Green's function can also be split into the sum of a

direct component and a reflected component as

9(k,) = gD(k,) + gR(k,) (4.69)

where

9D(k,) - (4.70)

and

gR(k,)= RB(k,) (4.71)

Note that gD(k) and pD(r) form a Hankel transform pair as do gR(k,) and PR(r). The

first term on the right-hand side of equation (4.66) represents the direct propagation

from the source to the receiver. The corresponding integral has the known analytic

form eihoRo/Ro, where ko is the total wavenumberof the isovelocity halfspace and Ro =

(2 +(Z-Zo)2)1/ 2. The second term on the right-hand side of equation (4.66) represents

the portion of the field which undergoes the single reflection off the boundary between

the halfspace and the underlying media. Note that equation (4.68) expresses the

reflected field as a plane-wave superposition and that each term in this superposition is

weighted by the reflection coefficient evaluated at the proper horizontal wavenumber.

The decomposition of the field into the sum of a direct component plus a reflected

component makes most sense in the context of deep water propagation. Although the

shallow water field could also be decomposed into a direct portion plus a reflected
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portion, there appears to be no advantage to representing the field in this way. This

is due to the fact that the non-direct portion of the shallow water field actually

consists of multiple reflections from both the bottom and surface of the waveguide

as opposed to the single reflection in the deep water case. In neither case can the

direct and reflected field be measured independently. However, the reflected field has

a more intuitive interpretation in the deep water case. In addition, in the deep water

problem, it is the reflected field alone which is most directly related to the bottom

reflection coefficient.

In the hybrid approach of Mook, a method for determining the reflected field

using equation (4.68) is proposed. Although this equation is in the form of a Han-

kel transform, a direct numerical implementation of the transform is not appropriate

due to sampling requirements. Essentially, a high sampling rate is required due to

the presence of the singularities in the integrand of equation (4.68) on, or near, the

real-k, axis, The singularities which cause the most difficulty are the poles of Rs(k,)

which are located on the real-k, axis and the branch-point at k, = ko. The difficulty

associated with sampling near k, = ko is associated not with the fact that ko is a

branch point, but rather with the fact that the integrand becomes infinite at k, =ko

since k, is zero here. The difficulty in performing the Hankel transform integral in

equation (4.68) can be interpreted in the range domain as well, in that the reflected

field decays at the slow rate of 1/r. In order to avoid aliasing in the synthetic genera-

tion of this reflected field, it is necessary to sample at a high rate in the corresponding

wavenumber domain.

To reduce aliasing artifacts associated with the generation of the reflected field,

a technique for removing the singularity at k, = ko was proposed [271[5]. In the

wavenumber domain, a component is subtracted from the integrand so that the re-

maining portion is well-behaved in the neighborhood of k, = k. The component

subtracted is also chosen such that its Hankel transform has a known analytic form.

Thus, the reflected field is determined by computing the numerical Hankel transform
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of the modified kernel and adding the analytic portion associated with the singularity

removed. There are two ways to interpret this technique. The first way is to consider

it as a modelling of the kernel of the Hankel transform in the vicinity of the singularity

at k, = ko. The alternate way is to consider it as a modelling of the reflected field

at large r. Essentially, the difficulty in computing the transform is based on the fact

that reflected field decays at the slow rate of 1/r. The analytic portion of the integral

can be chosen to match the form of the reflected field at large range such that the

difference between the two falls off at a substantially faster rate. In the case at hand,

the reflected field can be modelled as RB(ko)eJhOR '/RI where R1 = (r2 + (z + zo)2)1/2.

This. suggests that the appropriate term to be removed from the kernel of the Hankel

transform is jeJ/i(s+I)R(ko)/k,. This is precisely the term which Mook removes

from the kernel of the Hankel transform integral.

The presence of low-speed layers within the underlying media can also give rise

to infinities. in the reflection coefficient at isolated values of k, = k,,. The reflection

coefficient can be modelled as a residue over a pole near these points and Mook showed

that removing terms of the form a,/(k2 - k,2) from R(k,) tends to reduce the effects

of these infinities[S]. The method proposed for determining k,, was to find the zeros of

1/RB(k,). The method proposed for determining a, was to perform a least-squares fit

using a, = RB(k,)(k 2- k,) in the neighborhood of the pole at k, = k,i. With analogy

to the singularity removal at k, = ko, ai/(k2 - k2,) can be removed from Rs(k,) and

the numerical transform of the result can be computed. The integral

Go jai*l dik(o t Jo(ktr)k dk A(4.72)'
(k, - k,) k,

can also be evaluated analytically and this result can be added to the numerical

transform to yield the desired reflected field.

The underlying problems of deep water and shallow water synthetic acoustic field

generation are somewhat different. For example, by examining the form of the deep

water Green's function shown in equation (4.65) and the form of the shallow water

Green's function presented in Chapter 2, it is easily shown that an additional branch
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point at the water wavenumber is present in the deep water case. Note also, that the

term 1 - Rs(k)RB(k)ei2 kha, which contributes poles in the shallow water case, is not

present in the deep water case. This term is responsible for guided wave propagation

in shallow water due to constructive interference between the surface and bottom

reflections. It does not contribute poles in the deep water Green's function since

there is no surface reflection. Additionally, if there are low-speed layers within the

bottom the reflection coefficient, RB(k,), may also have poles. In the deep water

case, these poles in RB(k,) also contribute as poles in g(k,), signifying the fact that-

guided propagation within the low-speed layer can occur for certain specific values

of hQrisontal wavenumber. This guiding occurs because of constructive interference

between the reflections at the top and bottom of the low-speed layer. However, in the

shallow water case, poles in Rg(k,) do not contribute as poles in g(k,). In fact, it can

be shown that g(k,) remains finite at the pole locations of RB(k,) and has the form

g(k,) - 2sink,z (.r
________ a (4.73)

for the case of the source and receiver in the top layer. Physically, although the

constructive interference between low-speed layer interfaces remains, there exist ad-

ditional field components which have reflected off the surface of the waveguide which

cancel this interference. The net result is that there is no guided propagation and

thus the shallow water Green's function remains finite at these values of wavenumber.

Despite these differences, there are also a number of similarities between the deep

and shallow water propagation problems. In fact, we now show that the deep water

Green's function is actually a special case of the shallow water Green's function.

To see this, consider the form for the field in an isovelocity waveguide overlying a

horizontally stratified bottom which is

p(r) = g(k)Jo(kr)kdk, (4.74)

The form for g(k,) as presented in Chapter 2 is

g(k,) - j(eik',s + Rsgejka)(eiu's, + RBei.( 2Ah-,))
k,(l - RsRBCjei2h)
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Previously, we have considered the surface of the waveguide as a water/air interface so

that the surface reflection coefficient, Rs is -1. To transition from the shallow water

field to the deep water field, we consider the latter as the field which exists within a

waveguide which has no surface, i.e. Rs = O. The implication in the deep water case

is that there is no reflection at the surface of this waveguide and that any incident

energy continues to propagate upward. Furthermore, it is convenient to redefine the

z-coordinate axis as measured up from the bottom of the waveguide. Thus, is

replaced by h - zr and zr is replaced by h- z,. Substituting these values into equation

(4.75) yields

g(k,) = [ k'.('-'') + RB(k,)e'.(('+hu) (4.76)

Using the facts that z f - zt = iz- ol and z + zi = z + sz it is apparent that

g(ck,) [ei.,-ol + RB(k)eik('+'o) (4.77)

Note that this Green's function, which was obtained by setting Rs(k,) = 0 in the

general shallow water Gieen's function expression and changing the orientation of the

z-axis, is identical to the deep water Green's function presented earlier in equation

(4.65).

The fact that the deep water Green's function can be obtained in this way has

also been pointed out in [51. However, this connection between the shallow water

Green's function and the deep water Green's function has some important and useful

consequences. Specifically, many of the properties developed for the more general

shallow water Green's function must also be applicable to this special case, in which

Rs =0.

For example, the properties that g(k,) = g(-k,) and 9(k,) = g'(k,) developed in

Chapter 2 also apply to the deep water Green's function. Recall that the property

g(k;) = g*(k,) was also used to derive another property related to the finite extent of

the imaginary part of the Green's function. The finite extent property also applies to

the deep water case as can be verified by following the argument given in Chapter 2,
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but with one important exception. The presence of the additional branch-cut, due to

the ambiguity in the specification of the sign of the vertical wavenumber in the water,

implies that the function Im{g(k,)} is wavenumberlimited at k, = maz(ko, kN) where

ko is the water wavenumber and kN is the wavenumber in the underlying halfspace.

This result is distinctly different from the shallow water result that Im{g(k,)} is

wavenumber limited at k, = k. Since kN is typically less than ko, the implication

is that, while the finite extent property still applies, it does not constitute a useful

method for determining a geoacoustic parameter since presumably the water velocity

is known.

Other useful properties of g(k,) also apply to the deep water Green's function

including the real-part/imaginary part sufficiency condition for g(k,), and the decom-

position of g(k,) into gr(k,) + gc(k,), which formed the basis of the hybrid method for

shallow water synthetic acoustic field generation. If this decomposition is applied to

the deep water Green's function, it can be shown that the Hankel transform of gc(k,)

is actually the sum of the two branch-line integrals corresponding to the branch-points

located at k, = ko and k, = kN. In fact, unless there is a low-speed layer present

within the bottom , gT(k,) is zero. The implication is that under the condition that

there are no poles present, g(k,) = gc(k,) and thus the integration contour along the

real-k, axis can be deformed to wrap around the branch-cuts. Therefore, in the case

that there are no poles present, the Hankel transform of g(k,) is identical to the sum

of the two branch-line integrals.

Note that the decomposition of g(k,) into gr(k,) + gc(k,) is substantially different

than the decomposition of g(k,) into its direct and reflected parts as done in equation

(4.69). In fact, there are some interesting consequences of applying the decomposition

g(k,) = gr(k,) + 9c(k,) to the deep water problem. For example, consider the case

in which there are no low-speed layers and thus no poles present. The decomposition

becomes g(k,) = gc(k,) and the hybrid method for shallow water synthetic data

generation can be directly applied. The acoustic field, in this case, consists of the
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numerical transform of gc(k,). Therefore, since gc(J) = g(k,), application of the

hybrid method to the deep water problem in which no poles are present trivially

becomes computing the numerical Hankel transform of the total Green's function. The

major difference between the method proposed by Mook and the method proposed

here is that apparently no singularity removal at k, = ko is performed in the latter

case. However, in considering the difference between the two methods, we see that,

in fact, the singularity is actually removed in the second technique as well. This is

due to the fact that the numerical Hankel transform of the total Green's function is

computed as opposed to the transform of the reflected portion of the Green's function

alone, as was considered by Mook. The sampling requirements for computing the

numerical Hankel transform of the total Green's function are reduced due to the fact

that the total field decays as l/r2, as opposed to a l/r reflected field decay. In fact,

in the lossless case, the two methods remove the singularity in essentially the same

manner as will now be shown.

In removing the singularity at k, = ko from the reflected Green's function, Mook

exploits the fact that the numerical computation of the field pR(r)- Rs (k)e°koR/R 1 is

better behaved than the computation of pi(r) alone. In the lossless case, RB(ko) = -1

and thus the portion of the field which is numerically computed is pR(r)+eCioR' /RI. In

the hybrid approach based on gr(k,) + gc(k,), the numerical field which is computed

is the total field, which is pR(r) + eikoRo/Ro. At large ranges, the fields computed

numerically are nearly identical since R1 = (r +(z+zo)2)'/ 2 (r2 +(z-z) 2)1/2 = RO.

Issues associated with the generation of deep water synthetic acoustic pressure fields

based on numerically generating the total field as opposed to numerically generating

the reflected field have not been studied and merit further investigation. A numerical

example which demonstrates the computation of the total field is now provided.

The realistic deep water geoacoustic model in Table 4.4 was considered. The

reflection coefficient for the ocean bottom, consisting of 52 isovelocity layers overlying

a halfspace, was generated. The reflected field was generated by removing the 1/k,
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VELOCITY (m/s)
1450 1500 1550 ,, 2200

Table 4.4: Deep water geoacoustic model.
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singularity as described in ([5!, and computing the Hankel transform based on the

Abel/Fourier method. The total field was then constructed by adding the direct

field, the analytic contribution of the singularity removed, and the numerical result

of the Hankel transform. The magnitude of the corresponding total field is shown as

a function of range r in Figure 4.29.

Alternately, the reflection coefficient was used in the expression for the total

Green's function of equation (4.65). Although the resulting total Green's function

could have been used as the input to a Hankel transform based on the Abel/Fourier

method, we chose to use the asymptotic Hilbert-Hankel transform instead. The mag-

nitude of the total field which resulted from the computation of the transform of the

total Green's function is shown as a function of range in Figure 4.30. The similarity

between the two fields in Figures 4.29 and 4.30, computed by substantially different

methods, is apparent. They differ primarily in the near-field and this is most prob-

ably due to the fact that the asymptotic Hilbert-Hankel transform was used instead

of the Hankel transform. Nevertheless, the two fields are remarkably close. This

result shows the validity of generating the total field via a numerical transform as

opposed to removing a singularity from the reflected portion of the Green's func-

tion, numerical generating the remaining portion of the reflected field, and adding the

analytically-computed contribution of the singularity plus the direct field.

To conclude the example, an additional field magnitude is shown in Figure 4.31.

This field was determined by computing the asymptotic Hilbert-Hankel transform of

2jIm{g(k,)} for the geoacoustic model in Table 4.4. The similarity between this field

and the fields in Figures 4.29 and 4.30 is apparent. This result confirms the fact that

the real-part/imaginary-part sufficiency condition, previously discussed in the context

of shallow water, applies to the deep water Green's function as well.

We can also consider the application of the hybrid method based on g(k,) =

gT(k,) + gc(k,) to the deep water case when there are low-speed layers present. The

246



0.1

0 500 1000 1500, 2000

r (meters)

4

Figure 4.29: .Magnitude of the total deep water field corresponding to the geoacoustic

model in Table 4.4. The field was determined by numerically computing the reflected

field and adding the analytically computed direct field.
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Figure 4.30: Magnitude of the total deep water fieid corresponding to the geoa-

coustic model in Table 4.4. The fieid was determined by computing the asymptotic

Hilbert-Hankel transform of the total Green's function.
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Figure 4.31: Magnitude of the total deep water field corresponding to the geoacous-

tic model in Table 4.4. The field was determined by computing the asymptotic

Hilbert-Hankel transform of 2jImfg(k,)]. The result demonstrates the property of

real-part/imaginary-part sufficiency for the deep water Green's function.
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presence of these layers implies that gT(r,) may be non-zero. The relationship between

this decomposition and the technique suggested by Mook[271 for removing poles from

the reflection coefficient is now addressed. Initially, we assume that only a single pole

at k, = k,, is present in Rs(k,) and thus in 9(k,). The expression for g(k,) thus

becomes

gT(k ) k2i (4.78)

where, as discussed previously,

a = im [(k, - k)g(k,)] (4.79)

By writing g(k,) as the sum of its direct plus reflected components, i.e. g(k,) =

gD(k,) + gR(k,), it is straightforward to show that the expression for a becomes,

a = lim [(k, - k)gR(k,)] (4.80)

Introducing the expression for gR(k,) into this equation yields

a = lim [(k, - ki)R(k,) 4.81)
k.

so that
j ek.,(s+,o)

a=i) lim [(k, - k,)Rs(k,)] (4.82)
k,i k,-k,

where k , i denotes the quantity k, evaluated at the pole location k, = k,i. If the

quantity b is defined as

bi -- limU [(k, - k,,)RB(k,)] (4.83)

then ai and bi are related as
j jeii(z+o)

a, = (' )b; (4.84)

and the expression for gr(k,) becomes

gT(k,) - 2 jbik, (5+30) 1 ) (4.85)k,, k - .

Using the definition of g(k,) in terms of g(k,) and thus in terms of gD(k,) + gR(k,),

we have that

2jbki (4.86)gc(k,) = go(k) + gR(k,) - k,, (s+so)(k - (4.86)
];2 _ t2)
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In the hybrid method based on gr(kp)+gc(k,) the numerical transform of gc(,!) s

computed and added to pT(r), where pT(r) = jrajkjHjo') (kir). Using the relationship

between a, and b; in equation (4.84) and equation (4.82) for a;, the term PT(r) becomes

pT(r) = - b'ti(x+'°))(l H r) (4.87)

As pointed out previously, the inclusion of the first term in equation (4.86) for gc(k,)

effectively removes the singularity at k, = k. The third term in equation (4.86) ac-

counts for the pole singularity present. If the second term and third in equation (4.86)

are grouped together, the process can be thought of as removing a pole singularity

from gR(k,) to form a new quantity gi(k,). Thus, in the hybrid method based on

gr(k,) + gc(k,) poles are removed from gR(k,) via

gR(k,) = gR(k,) - 2jb iki,(+o)( ) (4.88)

The method for removing poles due to low-speed layers, proposed by Mook in [271,

can be shown to be

R,(k,) = gR(k,) - 2jbikC(S+bo)( k,) (4.89)

Note that by comparing equations (4.88) and (4.89), it can be seen that the two

techniques for pole removal differ due to the fact that k, is a function of k, whi'. k,i

is not.

The corresponding analytic quantity which is added in Mook's method, written in

the notation here, is

Jo 2kjbi¢g.,x+so)( 1 )Jo(kr)kdk, (4.90)k, k' - k2

Although this integral can be evaluated by using a partial differential equation method

[51, it is also possible to evaluate this integral in an alternate manner using the con-

volution property of the Fourier transform, and the Fourier transform relationship

[35j

- f(iHkR =)a ((k - k)l/ 2 r eiksdk (4.91)tj )Ho' 2 (491
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where R = (r 2 + (z + z0)2)1/2. The result is

f 2ibik, i b 
- A.j (+M,( + kO)( )Jo(k r)kdk,

jb k,, rbkJ kR2O
- (5k+(e- )l' l *X+ b.Ho') (kjr) (4.92)

k~; i k,j
where *, denotes convolution with respect to z.

The above expression, which is the analytically computed part of the reflected field

in Mook's method, is to be contrasted with PT(r) in equation (4.87) which is the ana-

lytic portion of the total field obtained from the hybrid method using gr(k,)+ gc (k,).

They differ in that the quantity in equation (4.92) is the sum of pT(r) plus a convolu-

tion term. The advantage of Mook's decomposition is that both the numerically and

analytically computed fields remain finite at r = 0 if z + zo Z 0. This is not the case in

the hybrid method based on gr(k,) + gc(k,). Because p(r) must be finite at zero, and

PT(r) has a logarithmic singularity at r = 0, the numerically computed field, pc(r)

must also be infinite at r = 0 in order to cancel the behavior of pT(ir) at this point.-

The inability of the numerical technique to synthesize pc(r) at r = 0 is an apparent

disadvantage of the new hybrid method based on gr(k,) + gc(k,) for synthesizing a

deep water field. It is noted however, that in equation (4.92), an additional convolu-

tion integral must be evaluated. There is apparently no closed-form solution for this

integration and a potential disadvantage is that this convolution must be determined

numerically for each value of desired r.

Another disadvantage of removing the pole in the manner shown in equation (4.89)

is the re-introduction of the singularity due to the presence of the 1/k, term. In other

words, in removing the effects of a pole, the singularity at k, = ko, which was pre-

viously removed in Mook's technique by subtracting the term jeika('+'o)RB(ko)/k,

from g(k,), is re-introduced. Because of the presence of this singularity, an aliased

field may be generated when a numerical Hankel transform is applied to g'R(k,). Po-

tentially, the aliasing could be reduced by first removing the pole from gR(k,) using

equation (4.89) and then removing the singularity at k, = ko by a modified method.
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Therefore, an advantage of Mook's method for singularity removal is that a pole

contributes a uniform finite contribution to the field as r approaches zero. The field

remains finite at the cost of evaluating an additional integral numerically. The method

for extracting the singularity at k, = k requires modification in order to avoid alias.

ing in the numerical transform. The hybrid approach based on gT(k,) + gc(k,) for

generating the deep water field when low-speed layers are present does not require

the evaluation of this extra integral but is potentially less accurate in the determi-

nation of the extreme near-field. On the other hand, the hybrid technique based on

Tr(k,) + gC(k,) can be applied to both deep and shallow water field generation. The

method proposed by Mook applies only to the case of deep water. This is empha-

sized by the fact that Mook's method removes poles from the reflection coefficient. In

deep water, poles of the reflection coefficient are also poles of the Green's function.

However, this is not the case in shallow water. The hybrid method removes poles

from the Green's function in both casem. A technique which removes poles from the

shallow water Green's function in such a way that the numerically computed quantity

remains finite at r = 0 has apparently not been developed and remains as a topic for

further investigation.

To summarize, we have considered the relationship between the hybrid method

based on the decomposition gr(k,) + gc(k.) and the method proposed by Mook for

computing synthetic acoustic pressure fields in deep water. In considering the re-

lationship, we have pointed out that the deep water Green's function is actually a

special case of the shallow water Green's function. The implication is that many

of the useful properties discussed earlier in this thesis also apply in the deep water

case. One such property is the decomposition of the deep water Green's function as

gr(k,) + gc(kr). In applying this decomposition to the deep water case, it was pointed

out that the technique for removing the singularity at k, = ko in generating the re-

flected field[5J is accomplished by applying the hybrid method based on gr(k,)+gc(k,)

to the total Green's function. A numerical example for a realistic geoacoustic model

confirmed the similarity of the two techniques and also demonstrated the applicability
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real-part/imaginary-part sufficiency condition to the deep water Green's function. Ir_

addition, it was shown that if there are low-speed layers present, the two techniques

are actually remove the effects of the corresponding poles differently. Mook's method

has an apparent advantage in that the field generated numerically is finite for very

small ranges and an apparent disadvantage in that an additional integration is re-

quired and that special care must be taken to avoid aliasing in the result. Mook's

method applies only to the deep water case, while the hybrid method presented in

this chapter applies to both the shallow and deep water cases.

Perhaps the most interesting aspect of the relationship between the two approaches

is the fact that the deep water Green's function is actually a special case of the shal-

low water Green's function. An implication is that since the Hilbert-Hankel trans-

form can be applied to the shallow water Green's function, it also applies to the

deep water Green's function. Therefore, the useful properties of the Hilbert-Hankel

transform and the asymptotic Hilbert-Hankel transform can also be applied to deep

water problems. Some of the interesting consequences of these properties, including

a real-part/imaginary-part sufficiency condition for deep water fields, will be further

considered in Chapter 6 of this thesis.
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4.6.3 Relationship to Stickler-Ammicht Method

In the final portion of this section, the hybrid approach based on gr(k,) + gc(k,)

is related to the uniform asymptotic method of Stickler and Ammicht[181[191. Their

method is again a residue method in which the acoustic field within the waveguide is

determined as the sum of the modal portion plus the continuum portion. The basis of

their approach is to compute the continuum portion of the field by summing individual

contributions. Each term in the sum represents the complete contribution due to a

top or bottom sheet pole. The approach is uniform in that it is valid as any particular

pole, moves from the top sheet, through the branch point, to the bottom sheet. The

technique is asymptotic in range due to the fact that each individual contribution is

expressed as an integral which has no closed form solution and which is evaluated

asymptotically. Although there are actually a infinite number of pole contributions,

Stickler and Ammicht retain only the most important poles and thereby describe the

continuum field by a finite number of contributions. Originally, their method was

applied to the lossless Pekeris waveguide only. However, in later work the same idea

was applied to the more general case which involved a lossless, layered model having

a l/c2-linear profile.

In order to relate their approach with the hybrid method discussed earlier in

this chapter, we first review the basis of their method. As discussed previously, the

continuum portion of the field is determined by the branch-line integral. If the branch-

line is chosen to be the EJP cut, we have previously shown, in equation (4.62), that

the expression for the continuum is

Pc(r) = '- g,(k,)Ho(l(k,r)k,dk, (4.93)

where g(k,) [g+(k,) - g_(k,)l is the difference of the Green's function across the

cut and where the contour BL+ is along one side of the cut. This equation also forms

the basis for the relationship between Kutschale and Thomson method and the hybrid

method using imaginary part sufficiency discussed in first part of this section. It also
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represents the point at which Stickler and Ammicht's method departs.

In their approach, the integral in equation (4.93) is mapped to the k,N domain,

where k,N represents the vertical wavenumber in the underlying halfspace. The inte-

gral for the continuum thus becomes

pc(r) = 2 | gA&(kvN)Ho(')((k - k 2 )'/ 2r)k'xdkxN (4.94)

where kN is the wavenumber in the underlying halfspace. As pointed out by Stick-

ler and Ammicht, the advantage of considering the integration in the k,Nv plane is

that the function g,(k,N)/k,N becomes a function which contains only poles and not

branch points. For example, we have previously presented the example of the Pekeris

waveguide continuum, where N = 1, using this formulation in Chapter 2. The form

of the g(kSN)/klv was shown to be

ga(kl) 4jm sin k,0 zo sin k,(z

k, k2om2 cos2 koh + kh sin 2 k oh

We note that the function is even in both the variables k,o and k, and thus contains

no branch points.

In Stickler and Ammicht's technique, the function g(k,N)/k,N is expanded in

a partial fraction expansion in the variable k,N. The poles in this expansion, k,N,,

are locations in the k,N-plane which correspond to the pole locations in the k,-plane

through the mapping k, = (k - k,N)/ 2 . Poles on both Riemann sheets of the k,-

plane are mapped in this manner. Using this approach, Ammicht and Stickler write

the form for pc(r) as

PC(=) o E k, k2 Hl ((k, - k 2)1/ 2 r)k2 dkN (4.96)icSN - k..)I i
where c is a parameter which is related algebraically to the residue at the pole in the

k,Nv-plane. Stickler and Ammicht also developed asymptotic expressions for integrals

of the form

J(r, kN) = / k; N -)(( (k- 2))dkrN (4.97)
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and in this way, compute the continuum contribution as

pc(r) = E ciJ(r, k,N,) (4.98)

Therefore, their method consists of determining the poles and residues in the k,N-

plane and evaluating the expression in equation (4.98). Perhaps the most interesting

aspect of their approach is that it can be considered as a modelling technique for pc(r).

In fact, Stickler and Ammicht point out that pc(r) is wll-approximated by considering

only those poles which lie within a radial region of the k,N-plane of k,NI < kr. The

corresponding statement in the k,-plane is that pc(r) can be modelled by including

the effects of poles on both sheets which lie within the neighborhood of the branch-

point at k, = kN. In typical cases, there may be only several significant poles and in

this case, the continuum is approximately expressed as

Pc(r) = E cJ(r, kN) (4.99)

where N is a small integer and represents.the number of significant poles;

This approach for computing the continuum differs significantly from the hybrid

method in which pc(r) is determined by computing the numerical Hankel transform

of gc(k,). In the hybrid method, no modelling of gc(k,) or pc(r) is involved. Thus,

pc(r) is not computed as the sum of a small number of finite terms but rather as the

output of a numerical transform.

It is also possible to apply the concept of modelling pc(r) using the framework

of the hybrid decomposition based on g(k,) = gr(k,) + gc(k,). In this case, gc(k,)

is modelled as the sum of a finite terms. However, there are significant differences

between the two modelling approaches in that the hybrid method has difficulty in

treating poles in the immediate neighborhood of the branch-point. To describe this

further and to relate it to the method of Stickler and Ammicht, we now discuss how

the modelling approach can be applied to the hybrid method.
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Recall from discussions earlier that, assuming the selection of the EJP branch-

cut, gr(k,) consists of a partial fraction expansion which includes all of the poles on

the top sheet. The remaining portion of the Green's function, gc(k,), contains no

top sheet poles. However there are resonances within gc(k,) which are due to the

proximity of poles on the bottom sheet to the real-k, axis. As discussed in Chapter

2, the branch-cut can be re-defined such that it exposes additional poles on the top

Riemann sheet. Since the new function gc(k,) now contains poles on the top Riemann

sheet, it can be decomposed into the sum of two components in an analogous manner

as was done for the original Green's function. Thus, gc(k,) can be written as

gc(k,) = gc,(k,) + gc,(k,) (4.100)

where

gc,(k) k2 - k, (4.101)

and where

gc,(k,)= gic(k) - gc,(k) (4.102)

The value of M here is dependent on the number of poles which reside on the top

sheet, which in turn is dependent on the definition of the new branch-cut. Note

that both the poles and residues of gc, (k,) are complex-valued. Their values can be

determined exactly in the manner discussed earlier for determining the trapped poles

and residues. Namely, a root-finding technique can be used to determine the pole

locations and the residues can be determined using the analytic expression in terms

of the reflection coefficient and its derivative at the poles. The Hankel transform of

gc(k,) now becomes

Pc(r) = Pc () + Pc,(r) (4.103)

and Pc, (r) can be written in terms the poles and residues as

M

Pc, (r) = rj akjHOl} (k,,r) (4.104)

As discussed in Chapter 2, this portion of the field decays exponentially in range due

to the fact that k,, has a positive imaginary part. This expression is the virtual mode
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contribution to the total field. It differs from the virtual mode method of Tindle in

that no approximations have been made here. Furthermore, it applies to the more

general layered model as opposed to the Pekeris model considered by Tindle.

As a numerical example of this technique, we consider the geoacoustic model

summarized in Table 4.5. The Green's function for this model was computed and-its

magnitude and phase are shown in Figure 4.32. From this figure it can be seen that two

trapped poles are present. The positions of these poles and their corresponding modal

amplitudes, mi = rak, , were determined using the root-finder and the expression

for a, in terms the reflection coefficient and its derivative at each pole location, and

are listed in Table 4.6. The continuum portion of the Green's function gc(k,) was

computed and its magnitude and phase are shown in Figure 4.33. The continuum

portion of the field, Pc(r) was computed by performing a numerical Hankel transform

of gc(k,) and the magnitude of the result is shown in Figure 4.34. Note from Figures

4.32 and 4.33 that, although the trapped mode resonances have been removed, there

still remain three significant resonances within gc(k,), which are due to the off-axis

poles which reside on the bottom Riemann sheet. If the branch-cut is twisted in

such a way that these poles are exposed, they can be removed from gc(k,) using the

decomposition gc(k,) = gc,(k,) + gc,(k,). The root-finder was used to determine

the location of the poles and the analytic expression for the residues in terms of the

reflection coefficient and its derivative at the pole locations was used to determine the

associated residues. The pole locations and modal amplitudes, mi, are listed in Table

4.6. The magnitude and phase of the function gc,(k,) is shown in Figure 4.35. It is

noted that the three resonances in gc(k,) have been removed using this technique. In

addition the numerical Hankel transform of gc,(k,) was computed and the magnitude

of the resultant field, 'pc,(r) is shown in Figure 4.36. In Figure 4.37 is shown the

magnitude of the field which results from the addition of pc,(r), computed using

equation (4.104), and pc,(r) computed by performing a numerical Hankel transform

of gc,(k,). It is noted that the fields in Figures 4.34 and 4.37 are identical i.e. pc(r)

in Figure 4.34 is identical to pc, (r) + Pc, (r) in Figure 4.37. This result is a numerical
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1500 m/sec, 1.0 g/cm3

/650 m/n,/ / / m // 

.1800 m/sec, 1.8 g/cm3

z = 7.5 m a

f l 140.056 A 

Table 4.5: Geoacoustic model consisting of an isovelocity water column overlying a

thin layer overlying a halfspace.
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Figure 4.32: Magnitude and phase of the Green's function, g(k,), corresponding to

the geoacoustic model in Table 4.5.
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Table 4.6: Summary of pole locations and mode amplitudes, mi = iraik,i, for the

geoacoustic model in Table 4.5. The last three poles are on the bottom Riemann

sheet when the EJP cut is selected.
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kri 0.5759144 2.9533481e - 10

ml - 1.7048060e - 07 5.5761382 - 02

k,2 0.5406027 8.3109626e - 09

m 2 -9.1754220e - 07 0.1467160

ks 0.4798682 5.8425809e - 03

m s 2.7451498 - 02 0.1365754

k,4 0.3472330 3.4899876 - 02

m 4 -5.8755945 - 02 -0.1084604

ks5 0.1101135. 0.2067913

m5 -2.5215799e- 02 -0.2813639
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Figure 4.33: Magnitude and phase of the continuum portion of the Green's function,

gc(k,), corresponding to the geacoustic model in Table 4.5.
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0 500 1000 1500

r (meters)

Figure 4.34: Magnitude of the continuum portion of the field, pc(r), for the geoacous-

tic model in Table 4.5 generated by computing the Hankel transform of gc(k,).
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Figure 4.35: Magnitude and phase of the function gc,(k,) for the model in Table 4.5

obtained by removing the three off-axis poles from gc(k,).
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Figure 4.36: Magnitude of the field p 1,(r) obtained by computing the Hilbert-Hankel

transform of gc, (k,) for the geoacoustic model in Tabie 4.5. This field represents the

contribution to the continuum portion oi the deld other than the contribution due to

three virtual modes.
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Figure 4.37: Magnitude of the continuum portion of the field, pc(r), obtained by

adding fields pc, (r) and pc,(r). The result is identical to the continuum portion of

the field computed as the Hankel transform of gc(k,).
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verification of Cauchy's theorem and of the decomposition gc(k,) = gc, (k,) + gc,(k,).

In effect, the continuum portion has been modelled as the sum of the three off-axis

pole contributions. As further evidence of this, the magnitude of the virtual mode field

Pc, (r) is shown in Figure 4.38. The similarity of the field pc(r) in Figure 4.34 and the

field Pc, (r) in Figure 4.38 is representative of the approximation of the virtual mode

field to the actual continuum field. The virtual mode sum does not approximate

the continuum at far ranges, as can be seen from in comparing these two figures,

however, the trapped mode contributions dominate the total field at these far ranges.

For reference, the magnitude of the total field obtained using the hybrid method,

is shown in Figure 4.39. Therefore, by twisting the branch-cut so that additional

bottom sheet poles are exposed on the top sheet, gc(k,) can be modelled, using the

decomposition gc(k,) = gc,(k,) + gc,(k,), as gc,(k,).

We note that, although gc, (k,) can be considered as a model for gc(k,), there are

some differences as evidenced by the fact that gc, (k,) is, in general, non-sero. In effect,

gc,(k,) represents the modelling error in representing gc(k,) as the sum of a finite
number of off-axis pole contributions. As can be seen from the plot of the magnitude

of gc,(k,) in Figure 4.35, a broad resonance exists near k, = 0 and a sharp peak exists

near k, = 0.6. The broad resonance is due to the remaining bottom sheet poles which

have not been included in the model gc, (k,). Numerical experiments have shown that

this resonance can be substantially reduced by including additional pole contributions

in the virtual mode sum. The effect of excluding these contributions from the model is

exactly analogous to the method of Stickler and Ammicht of retaining only the finite

number of significant poles. However, the peak near k, = 0.6 cannot be removed

in this way. In fact, it can be verified that this peak is not located at a position

related to the pole positions, but rather is located at the branch-point, i.e. at the

halfspace wavenumber. The contribution of this peak to the field is referred to as the

branch-point contribution.
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Figure 4.38: Magnitude of the field Pc, (r) obtained using the analytic formula for the

contribution of the three off-axis poles. This field represents the contribution of the

three virtual modes to the continuum portion of the field.
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Figure 4.39: Magnitude of the total field for the geoacoustic model in Table 4.5

generated by adding PT(r) to pc(r). pc(r) was computed using the asymptotic

Hilbert-Hankel transform of gc(k,).
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The physical interpretation of this branch-point contribution is that it yields the

lateral wave contribution to the field. This wave propagates along the interface be-

tween the halfspace and the overlying layer at the halfspace phase velocity. Its contri-

bution to the field can be seen by examining the magnitude of pc,(r) in Figure 4.36.

The interference pattern in the near-field is caused by the interference between the

remaining virtual modes and the lateral wave. The remaining virtual modes decay

at a very rapid rate because the associated poles have large positive imaginary parts.

As range increases, and the virtual modes have decayed, the field which remains is

the lateral wave.

The significant lateral wave contribution is due to the fact. that one or more poles

are present in the vicinity of the branch-point. Numerical experiments have shown

that if the geoacoustic model is changed such that the nearest pole moves farther away

from the branch-point, then the branch-point contribution is diminished. This effect

is noted for both top and bottom sheet poles, assuming the EJP-cut, although it is

more pronounced for the bottom sheet poles. In fact, as the model is changed so that

a bottom sheet pole approaches the branch-point, and proceeds on to the top sheet,

the branch-point contribution increases and decreases in a corresponding manner.

The implication of this in the hybrid model, is that although the decomposition

is mathematically correct, the presence of a pole in the immediate vicinity of the

branch-point not only contributes as a pole to gr(k,) but also contributes a significant

contribution to gc(k,) near the branch-point. Although the exact Hankel transform

of gc(k,) yields pc(r), a numerical implementation of the transform may be subject

to sampling and aliasing errors due to the behavior of gc(k,) near the branch-point.

This effect is a potential limitation of the new hybrid technique which does not occur

in Stickler and Ammicht's method. We note that in the preceding numerical example,

the off-axis pole at 0.47986982 + j5.8425809 * 10- 3 is located quite close to the branch-

point at 0.488888, and the hybrid technique does not produce an aliased result. In

situations when a pole is much closer to the branch-point, the hybrid method may

produce aliased results.
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In the approach of Stickler and Ammicht, the effect of a pole in g(k,) is modelled

exactly. This applies to all poles including those in the vicinity of the branch-point.

This suggests that Stickler and Ammicht's approach might be incorporated within the

framework of the hybrid method based on the decomposition g(k) = gr(k,) + gc(k,)

in order to improve the performance of the hybrid method when a pole lies in the

immediate vicinity of the branch-point. In other words, their approach potentially

might be used to model g(kZ) differently by modifying the form of gr(k,) particularly

for those poles in the immediate vicinity of the branch-point. In order to investigate

this possibility, we remapped the integral in equation (4.96) back to k,-plane as

Pc(r) B= E k kN 2H(kor)kdk, (4.105)

We note that poles in this sum must also appear in complex conjugate pairs as opposed

to the sum for gc, (k,) in equation (4.101) which contains only the exposed off-axis

poles in quadrant I. In order to further relate this expression to the pole model

for gc,(k,), it was necessary to relate the coefficient c in Stickler and Ammicht's

expansion to the residue at the pole in the k,-plane. The algebraic details of this are

not included here, however, the resulting expression for pc(r) was determined to be

pc(r) = E E; 2ajk,,k2 H(')(kr)kdk, (4.106)
Jc(r) - k, (k - k,)

It is noted that the kernel of this expression is identical to the form proposed by

Kurkjian for modelling the effects of a pole near a branch-point in a borehole acoustics

context 361. Kurkjian hypothesized this form from the properties of g(k,) when a pole

is in the vicinity of the branch-point. It is interesting to note that an identical form is

obtained by mapping Stickler and Ammicht's expansion, based on the Mittag-Leffier

theorem to the k,-plane.

In order to relate the form for pc(r) in equation (4.106) with the hybrid technique,

equation (4.93) is used. The implication is that

[g+(k,) g- .(k,)] = k ~(2a4k, k,N
(,) = [()- g,(k- k,,,(k2 - k 2 ) (4.107)

~ kl~i~k3-krs
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for values of k, along the branch-cut. Using the properties developed in Chapter 2 that

g(k ) = g'(k,) and g(k,) = g(-k,), it can be shown that the quantity [g+(k,)- g_-(k,)

is 2jm{g(k,)} for values of k, along the EJP branch-cut. The implication is that

2aikik,N2jIm{g(k,)} = (4.108)

along the branch-cut. In order to further relate Stickler and Ammicht's approach to

the modelling of gc(k,), we use the fact proved earlier that Im{g(k)} = Im{gc(k,)}

for real values of k,. Thus,

2jIm(gc(k)) = (=. o2)2jIm{c()} Ek,Mi(kl - k2,) (4.109)

for real values of k, along the branch-cut.

There are several important observations concerning (4.109) which are now made.

First, it is apparent that although Stickler and Ammicht's technique has been mapped

to the k,-plane, it suggests a technique for modelling only the imaginary part of gc(k,).

Nothing is implied about modelling of the real part. This was to be expected as their

modelling technique consists of expanding the difference of the Green's function across

the cut in a partial fraction expansion. As previously pointed out, the difference is

across the EJP-cut is the imaginary part of gc(k,). Secondly, the model is only

applicable to the imaginary part of gc(k,) for real values of k, less than the branch-

point. It implies nothing about modelling the behavior of gc(k,) for values of k,

greater than this value.

In effect, this result points out that the method for modelling the contribution

of a pole proposed by Stickler and Ammicht is not directly applicable to the hybrid

method based on gT(k,) + gc(k,). The primary reason is that their form applies to

modelling Im{gc(k,)} only while we are concerned with modelling both the real and

imaginary parts of gc(k,). Potentially, some combination of the two methods which

exploits the imaginary-part sufficiency condition of gc(!,) might be applicable. For

example, a pole could be removed from Im{gc(k,)} using equation (4.109). The

Hilbert-Hankel transform of the imaginary part of the remaining portion could be
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computed and added to the analytic contribution computed using equation (4.97).

The result, added to the expression for p(r), would comprise the total field.

To summarise, we have discussed the relationship between the hybrid approach

and the method proposed by Stickler and Ammicht. The latter method is uniform

with respect to poles near the branch-point while the former is not. In particular, a

weakness of the hybrid approach is that it cannot effectively deal with the poles which

are in the immediate vicinity of the branch-point. It was pointed out that removal

of these poles may leave a substantial contribution within gc(k,) at the branch-point.

Sampling and aliasing artifacts may result from the numerical computation of the

transform of this function. The hybrid method can be also be considered within the

framework of modelling gc(k,). The behavior of gc(k,) at the branch-point when a

pole is nearby suggests that a better model than 2aik,i/(k,2 - k,) might exist. The

possibility of mapping the model proposed by Stickler and Ammicht to the k,-plane

was discussed. The resulting model became 2akikikN/[kNi(kC - k,2)l for Im{gc(k,)}.

Thus, their method provides the basis for modelling only the imaginary part of gc(k,).

An alternate method which exploits the advantages of both approaches may exist. In

particular, a specific algorithm which incorporates the model of Stickler and Ammicht

along with the property of imaginary-part sufficiency was proposed.
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4.7 Summary

In this chapter, we have discussed a hybrid method for the synthetic generation

of shallow water acoustic fields. To provide background, we first presented a review

of existing methods. The theory of the new method was then developed in terms

of decomposing the Green's function into a modal portion and a continuum portion.

In this method, the modal contribution to the field is computed analytically and the

continuum contribution is computed by applying a numerical Hankel transform to

the continuum portion of the Green's function. Although the method is theoretically

straightforward, several implementation aspects were discussed. Numerical examples

of synthetic acoustic fields in both isovelocity and non-isovelocity waveguides were

presented. Two important extensions to the method were next discussed. In the

first extension, we pointed out that the modal portion of the Green's function can

be determined by using existing normal-mode echniques. In the second extension,

we combined the finite extent property of the imaginary part of the Green's function,

with the real-part sufficiency property of the Hilbert-Hankel transform, to develop

an alternate method for computing the continuum portion of the field. This method

does not explicitly require the determination of the poles and residues of the Green's

function. The method was also considered in the case that realistic attenuation is

present in the geoacoustic model. In the final section of the chapter, we related the

hybrid method to three existing methods for synthetic data generation. In making

this comparison, we provided additional numerical examples of the hybrid method

and suggested that it may be useful in deep water applications as well.
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Chapter 5

Shallow Water Acoustic Field

Inversion

5.1 Introduction

In this chapter, the problem of inverting shallow water acoustic fields is discussed.

In the inversion problem, irformation about the waveguide and the underlying ocean

bottom is extracted from measurements of the complex-valued acoustic pressure field

collected as a function of range. The general inverse problem of extracting the com-

plete geoacoustic model from measurements of the pressure field due to a harmonic

point source is a difficult and as-of-yet unsolved problem. Some idea of the complexity

of the problem can be obtained by considering the complexity of the related forward

problem, discussed in Chapter 4 of this thesis. As discussed in that chapter, the field

is related to the Green's function by the Hankel transform, the Green's function is in

turn algebraically related to the reflection coefficient, and the reflection coefficient is

related to the geoacoustic parameters within each layer. The theoretical difficulty lies

within the final step of obtaining the model from the reflection coefficient, although

there are also experimental difficulties associated with the other steps.
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There have been a number of approaches proposed to solve this general problem

(11 [2] 31 (14. In one approach, the model is obtained using an analysis-by-synthesis

or forward modelling procedure. In this procedure, a computer model is used to

synthetically generate a field which is then compared with an experimentally measured

field. The geoacoustic parameters which form the input to the computer model are

varied in such a way as to most closely match the synthetic and experimental fields.

An essential element in the forward modelling approach is the computer model

which generates a synthetic shallow water acoustic field in an accurate and compu-

tationally efficient manner. We point out that the hybrid method discussed in the

previous chapter is a good candidate in such an application. This method not only

provides an accurate synthetic field using a fast algorithm but has an important in-

trinsic property as well - it is directly related to alternate and simpler methods for

synthetic data generation. In particular, the field synthesized in the hybrid method is

the sum of the field produced by a simpler method, such as a normal-mode technique,

plus the more complicated continuum portion which effectively requires a branch-line

integral computation. In some forward modelling situations, only the modal portion,

and not the complete acoustic field, is required. By using the hybrid method to pro-

duce the continuum field only, it is possible to determine whether or not this portion

is important in the forward modelling procedure over a specific range interval, and

thus whether or not a simpler method is appropriate.

Forward modelling in underwater acoustics problems is still something of an art

because of the complex ways in which the geoacoustic parameters influence the syn-

thetically generated field. Although it is possible, in theory, to automate the forward

modelling process, the criteria for evaluating the closeness of the match may be quite

difficult to determine and quantify. For these reasons, we have chosen not to make

forward modelling using the hybrid method a major thrust of our research. Instead,

in the second section of this chapter, we will focus on the related question of what to

forward model. In particular, in conventional forward modelling schemes, it is usually
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the magnitude of the acoustic field which is matched as opposed to other quantities

such as the quadrature components of the field or the phase. The primary reason for

this is that the magnitude tends to vary at a much slower rate as a function of range

than other quantities. Typically, the phase is not considered in the forward modelling

procedure and is often not plotted due to its rapidly varying nature. However, in

our work, we have found that the phase of the acoustic field contains important in-

formation about the propagation of an acoustic field within a waveguide. Because of

its importance, we will discuss the role of a quantity which is directly related to the

phase, referred to as residual phase, in forward modelling methods. In addition, we

will discuss several other applications of the residual phase.

An alternate approach for solving the inverse problem is to perform the steps

described for synthesizing the field in reverse. The complexity of performing this pro-

cedure is apparent. Not only are there important and difficult signal processing issues

involved, such as the amount of data required and optimal methods for processing this

data, but more fundamental issues are involved as well. For example, the uniqueness

and sensitivity of several steps in the inversion procedure are not well understood.

Nevertheless, several developments in recent years including improvements in the ex-

perimental procedure for acquiring the data and theoretical advances in relating the

reflection coefficient to the properties of the underlying media are indicative of the

feasibility of this approach.

Because of the difficulty in solving the inversion problem in this way, the problem

is typically partitioned into two separate sub-problems - 1) determination of the re-

flection coefficient given the measurements of the acoustic field in shallow water, 2)

determination of the geoacoustic properties given the reflection coefficient. There are

a number of advantages to partioning the problem in this way. The solution of the

first sub-problem essentially removes any geometry features of the shallow water ex-

periment. The solution of the second sub-problem is also common to other disciplines

in which the properties of some medium are to be determined from measurements
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of the complex amplitude of the scattered fieid. Thus, one advantage is that t-

oretical strides made toward solving the second, more general sub-problem can be

incorporated and exploited in the context of this particular inversion problem.

Another advantage of this partitioning is that important and fundamental infor-

mation about the nature of the propagation within the waveguide can be derived from

the solution of the first sub-problem alone. For example, a reasonable assumption is

that accurate determination of the reflection coefficient implies accurate determina-

tion of the shallow water Green's function. The Green's function contains information

relating to the preferred modes of propagation, indicated by the presence of poles or

pealks in its amplitude. If the Green's function is accurately determined, these features

can be extracted and interpreted. Extracting information directly from the Green's

function about the geoacoustic model represents the basis for a series of less ambi-

tious but potentially more robust inversion methods. Here only certain geoacoustic

parameters are extracted or else a model-based method is used. As one example of

this, we have shown in Chapter 2 that the velocity in the underlying halfspace can

be determined directly from the imaginary part of the Green's function using the

finite extent property, i.e. without specifically relying on the solution of the second

sub-problem. As another example, it has been shown that the eigenvalues, i.e. p-aks

in the Green's function, can be used in a model-based perturbative inverse procedure

to determine the velocity profile [5].

Thus, the partioning of the inversion problem into a sequence of these two steps

is advantageous for several reasons. In Section 5.3 of this chapter, we will address

several of the theoretical issues related to the first sub-problem, that is, determin-

ing the reflection coefficient from measurements of the shallow water acoustic field.

We will show that there are some fundamental differences involving the sensitivity of

extracting the reflection coefficient from shallow water field measurements, as com-

pared with extracting the reflection coefficient from measurements in the deep-water,

non-reverberant environment. Additionally, we will suggest an experimental means
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by which the points of highest sensitivity, i.e. points at which the largest errors in the

inverted reflection coefficient are expected, can be placed in regions which are not of

interest.

In Section 5.4 of this chapter, we will demonstrate the feasibility and limitations of

obtaining the reflection coefficient from a shallow water acoustic field using synthetic.

data. In this approach, accurately produced synthetic data is used as the input

'to the inversion technique in which the reflection coefficient is extracted. Although

demonstrating that the reflection coefficient can be obtained from a synthetically

produced shallow water acoustic field has been considered elsewhere [31, only limited

success has been achieved. In particular, it has beea previously difficult to isolate

those effects which are due to approximations in the synthetic data generation method

from effects associated solely with the inversion procedure. By taking advantage of

the hybrid method discussed in the preceding chapter, it is possible to better isolate

these two effects. To demonstrate the utility of studying the inversion of synthetic

data, we will present implications of the. theoretical sensitivity results, discussed in.

Section 5.3, using numerical examples of synthetic data.
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5.2 The Residual Phase of a Shallow Water Acous-

tic Field

In shallow water forward modelling methods, it is usually the magnitude of the

acoustic field which is modelled as opposed to other quantities, such as the quadrature

components of the complex-valued field, or the phase. Typically, the magnitude varies

as a function of range at a much slower rate than these other quantities. Even though

a great deal of information regarding the propagation of the field and the underly-

ing geoacoustic parameters may be contained within these other quantities , their

rapidly varying nature may obscure this information. One method for utilizing both

magnitude and phase information is to first determine the Green's function, and to

then apply forward modelling methods in the horizontal wavenumber domain. Since

determination of the Green's function requires knowledge of both the magnitude and

the phase, more information is utilized in this forward modelling procedure than in a

forward modelling procedure.based on matching the field magnitude only [6]. In this

section, we define the residual phase of a shallow water acoustic field. Because of its

slowly varying nature and its direct relationship to the phase of the field, the resid-

ual phase can be used, along with the magnitude of the field, in alternate methods

for forward modelling directly in the range domain. These methods do not require

the computation of a Hankel transform and thus have several advantages over the

Green's function method. In addition to forming a quantity useful for forward mod-

elling based inversion, the residual phase has several other important applications, as

will be discussed in this section.

As an example of a shallow water acoustic field, consider the field for the Pekeris

geoacoustic model previously presented in Table 4.1. The hybrid method for synthetic

'The interpretation of the quadrature components will not be specifically addressed in this section.

However, in the next chapter we will show that sufficient information is contained within the quadrature

components such that one component can be reconstructed from the other.
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field generation was used and the magnitude and phase of the corresponding field are

shown in Figure 5.1. From this figure, it can be seen that while the magnitude is

a slowly varying function of range, the phase is not. The real and imaginary parts

of this field are shown in Figure 5.2. Again, both of these quantities are rapidly

varying functions of range. Interpretation of the acoustic field phase or quadrature

components, when displayed in this way, is difficult.

A similar effect was noted by Mook in the study of deep water acoustic fields [71.

However, Mook pointed out the important fact that although the phase of the deep

water field varied rapidly as a function of range from the source, its variation about a

known trend was much less rapid. In particular, if the form of a deep water reflected

pressure field, for a particular source and receiver depth, is

p) = M(r)eiJ() -(5.1)

where M(r) represents the field magnitude and 9(r) represents the field phase, Mook

defined a quantity referred to as the residual phase e(r), as

e(r) = 9(r) - k.R (5.2)

where R = (r2 + (z - zo)2)1/2 and ko is the water wavenumber.

The residual phase e(r) formed an essential component in a method for unwrapping

the phase of a deep water field [71 [8]. The method is based on a technique of adding

multiples of 2r to the principal value of a phase function, computed using an inverse

tangent routine, until the discontinuities induced by the modulo 2r operation are

removed [91 [101. Such an algorithm relies on the detection of a discontinuity by

computing the difference of the phases of two adjacent samples. Whenever the phase

difference exceeds a threshold, a discontinuity has occurred. The procedure yields

the unwrapped phase whenever the sampling is fine enough so that the difference

between adjacent samples of the unwrapped phase is less than the threshold. Mook's

contribution was to apply this phase unwrapping scheme not to 9(r) directly, but

rather to the quantity 9(r) - koR. Essentially, in his method the phase function e(r)
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Figure 5.1: Magnitude and phase of the Pekeris model shallow water field.
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is unwrapped by detecting discontinuities in its principal value. After the unwrapped

phase function e(r) is determined, the unwrapped phase function (r) is computed by

adding koR to (r). In Mook's application, the unwrapped phase function was used

in an interpolation method for obtaining a deep water acoustic field on an alternate

grid more suitable for processing. In related work, plots of the deep water residual

phase were presented and interpreted I[8. The deep water residual phase was found to

useful in other applications including a technique for compensating for source-height

variation [81.

The utility of the deep water residual phase function led us to investigate a similar

quantity for shallow water acoustic fields. In our work, we found that a useful shallow

water phase function is given by

(i)-P{O(r) - kr) (5.3)

where the operator P{} denotes principal value over the interval (-r, i]r. To distin-

guish between the phase function (r) and the phase function e(r) defined for the

deep water field, we will henceforth refer to +(r) as the residual phase, and e(r) as the

unwrapped deep water residual phase. Although there are some similarities between

the residual phase +(r) and the unwrapped deep water residual phase e(r), there are

also essential differences, which are now discussed.

First, +(r) is defined in terms of horizontal range r, rather than in terms of slant

range R = (r2 + (z - z)2). In deep water, the dependence of @(r) on slant range can be

justified using a specular phase or geometric argument. Essentially, when the field is

comprised of a single path from the source to the receiver, the phase is determined by

the path length multiplied by the wavenumberof the medium. In shallow water, there

are an infinite number of paths from the source to the receiver, corresponding to the

reverberation within the shallow water waveguide, and a simpler specular argument

does not apply. Because of the trapping effect within the waveguide, it is more

meaningful to interpret the field in terms of a modal sum, where the phase of each

mode is determined by the product of its horizontal wavenumber with the horizontal
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range r. The difference between R and r is not particularly significant at large ranges

in shallow water however. Secondly, the residual phase +(r) is defined in terms of

an arbitrary wavenumber k,, rather than in terms of the water wavenumber ko. The

choice of an alternate wavenumber is again related to the fact that a trapping effect

can occur at a wavenumber which differs from the water wavenumber. Thus, the

choice of the term ker indicates that although the phase of the shallow water field has

a strong linear dependence, the linear phase term is not koR, but rather the model-

dependent term kr. Finally, the phase function (r) is an unambiguously defined,

principal valued quantity. In contrast, there is some ambiguity in the definition of e(r),

in that it is defined in terms of the unwrapped phase 9(r). The precise definition of an

unwrapped phase function is difficult, although statements regarding its relationship

to an integrated phase derivative with initial condition can be made 9]. Alternately,

the residual phase function +(r) does not require phase unwrapping in its definition.

This statement can be justified using the following identity

+(r) P(r)- k.0} = P{P{((r)) - kor} (5.4)

which indicates that the residual phase +(r) can be determined from the principal

value of the phase of the acoustic field.

There exists a simple computational algorithm for computing O(r) given the real

and imaginary components of the shallow water acoustic field and k,. The algorithm

consists of computing +(r) via

+(r) = tan' ({Im[pd(r)j/Re[pd(r)l} (5.5)

where pd(r) is the demodulated version of p(r), i.e.

pd(r) p(r)[cos kor - j sin korl (5.6)

In addition to its computational simplicity, the definition of the residual phase O(r) as

a principal valued function has other advantages, including reduced dynamic range of

the phase plot, and insensitivity to errors in the phase unwrapping. If an unwrapped
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version of +(r) is required, one of a number of existing methods for phase unwrapping

can be applied.

One use of the unwrapped deep water residual phase was in an interpolation al-

gorithm for obtaining the field on a particular grid from its measurements obtained

an alternate grid. We point out that it is also possible to use the wrapped residual

phase +(r) in a shallow water interpolation algorithm, which consists of 1) determin-

ing the residual phase using equation (5.5), 2) deriving the corresponding quadrature

components by multiplying the magnitude of the field times the cosine of the residual

phase, and the magnitude of the field times the sine of the residual phase 3) inter-

polating the quadrature components using a method such as linear interpolation, 4)

multiplying the resultant complex-valued quantity by eik*' . This interpolation scheme

is essentially bandlimited interpolation and is expected to work well only when the

field is adequately sampled initially - that is, the field must be sampled at roughly

Ihe appropriate average rate prior to its interpolation to an alternate grid. This in-

terpolation algorithm is currently being studied and we will present an example of its

application to an experimental shallow water acoustic field in the next chapter.

As an example of the use of residual phase in shallow water forward modelling, the

magnitude and residual phase of the field previously shown in Figure 5.1 are shown in

Figure 5.3. The water wavenumber k0 was chosen as the value of k, for this example.

As can be seen, the residual phase #(r) is a more slowly varying quantity than the

original phase P{6(r)}, shown in Figure 5.1. It can also be seen that the residual

phase still contains a linear phase component, as indicated by its periodic wrapping

as a function of range. This implies that by selecting a different value of k, the trend

can be removed. An appropriate choice can be determined by computing the averaged

phase derivative of the phase function displayed in Figure 5.3.

There are numerous methods for computing this averaged phase derivative. For

example, it can be estimated manually by observing that the phase function rolls by
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Figure 5.3: Magnitude and residual phase of the Pekeris model shallow water field
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-2r over the range interval from 420 to 680 m in the figure. Thus, an alternate choice

for k which effectively removes he remaining linear component is ko - 2r/(680 -

420) .5623. Alternately, the determination of an averaged phase derivative can

be automated. For example, if the residual phase function computed using k =

kco.is unwrapped, an averaged phase derivative can be obtained by averaging the

difference in phase between adjacent samples. Unfortunately, this method may again

be sensitive to phase unwrapping errors. An alternate technique which also determines

the phase derivative without phase unwrapping is described in [9j [10]. The method

computes the phase derivative of a function by multiplying its Fourier transform by

an appropriate factor and computing the inverse Fourier transform. We have applied

the technique to this example, and have computed by averaged phase derivative by

combining the phase derivative at each range sample, over the range interval of 500 m

to 1500 m. The averaged phase derivative was determined as -. 0242 rad/m, thereby

implying that an appropriate choice of k, is ko - .0242 X .5624. In our work, we have

not investigated the tradeoffs between various automated methods for estimating k.

In particular, since experimental acoustic fields are usually obtained on non-uniform

grids, the automated algorithms must account for this. An investigation of these

algorithms and their performance when applied to synthetic and experimental shallow

water fields is suggested as :ature work. In the remainder of this section, k will be

selected manually, or from a priori knowledge about the shallow water waveguide

model.

In Figure 5.4, the magnitude and residual phase of the field, computed using

k = 0.5623, is shown. We note that the residual phase is again slowly varying, and

that no unwrapping was required to determine it. The behavior of the phase of the ,4

field at large values of r is particularly simple for this example - a constant value. The

simple behavior of the residual phase for the field, which corresponds to a non-trivial

geoacoustic model, is actually not surprising. As discussed in Chapter 4, the total

shallow water field can be considered as the sum of a modal portion plus a continuum

portion. In this example, only a single mode is present, and at large values of range it
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Figure 5.4: Magnitude and residual phase of the Pekeris model shallow water field

assuming k is chosen as 0.5623.

294

t..

-L

t

........................................................... ............. ...........z... .............. ........ . ... ............. . ....

.. .............................................................................................. ..................... ... ..................... . ............................ ...

I

n r /\ ,, 
I I · · I J ~ 

1,.

.



dominates over the continuum portion. Therefore, the fieid at large r is approximately

p(r) PT(r) = jraikHO(l'(kjr) (5.7)

from equation (4.12) of Chapter 4. Next, using the asymptotic form of the Hankel

function, valid at these ranges, it is easily seen that

p(r) j(2,)112aA, jkjr-';/4 (5.8)

so that

p(r) ccr/4 i (.)

where c is a real constant. Therefore, in the far-field, the residual phase consists of

+(r) = P(r/4 + k,,r- kr (5.10)

and if k, is chosen to be exactly k,, the residual phase is simply r/4. In this example,

the value of k,, is 0.5623757, nearly identical. to the value which we have chosen to

compute the residual phase. The value xr/4 is consistent with the value of the residual

phase displayed in Figure 5.4 at large ranges. Essentially, we have determined the

eigenvalue for the trapped mode in this model by systematically selecting the param-

eter k, so that the residual phase approached a constant value at large ranges. The

modal eigenvalue was determined without resorting to more sophisticated methods,

such as computation of the Hankel transform.

Additionally, the residual phase in the near-field indicates the presence of an inter-

ference pattern with a cycle distance d of approximately 78 m. An implication is that

there may be an additional virtual mode present with a wavenumber which has the

real part determined by k - 2ir/d = .4817. This value is consistent with the theoret-

ical value of the virtual mode at 0.481675 + j7.980302 * 10-3, as discussed in Chapter

4. We point out that the calculation of cycle distance is typically performed using

the magnitude function only. By considering the behavior of the residual phase how-

ever, we were able to not only confirm the cycle distance observed in the magnitude
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but to closely approximate the real parts of the corresponding horizontal wavenum-

bers as well The procedure indicates that information normally available only in the

wavenumberdecomposition, i.e. the positions of several peaks in the Green's function,

can be extracted from range domain signals as well.

The preceding example implies that generalizing the definition of residual phase

from a function which is related to the water wavenumber ko, to a function which

is related to the horizontal wavenumberof the dominant mode present may be quite

useful in shallow water forward modelling. As a more realistic example of the method

of using residual phase in this context, we consider the magnitude and phase of an

experimental 50 Hz acoustic field collected in September 1985 in the Gulf of Mexico

[1]. The magnitude and phase of this field as a function of range to 1500 m are

shown in Figure 5.5. By manually adjusting the value of k,, we have determined that

an appropriate value for determining the residual phase for this case is 0.1974. The

magnitude and the residual phase 2 , corresponding to this choice of k,, are shown

in Figure 5.6. The residual phase is quite fiat for this example and exhibits no linear

trend. The implication is that there is a dominant mode which contributes to the

field over these ranges which has the horizontal wavenumber equal to k,.

The relatively constant value of the residual phase in this figure is of importance

for another reason as well. In particular, the value of the fiat residual phase at large

ranges can be used in a method for determining the phase of the complex gain of

the acoustic source/receiver pair. This complex gain is required in the subsequent

processing for extracting the reflection coefficient. The phase portion of this complex

gain is sometimes referred to as the source phase because its total effect can be

included by assuming that only the source has a phase offset. In contrast with the

deep water case, there is no existing method for determining the source phase in the

shallow water case. We propose that the residual phase determination provides a way

2 We have added jr to the residual phase curve shown here in order to avoid plotting artifacts near

-r.
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Figure 5.5: Magnitude and phase of the 50 Hz field from a shallow water experiment

conducted in the Gulf of Mexico in September 1985.
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Figure 5.6: Magnitude and residual phase of the 50 Hz field from a shallow water

experiment conducted in the Gulf of Mexico in September 1985. k was chosen as
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in which the source phase can be extracted directly from the acoustic measurements.

In other words, the residuai phase provides a convenient way in which to separate

information about the medium and the measurement procedure.

In particular, if the acoustic source is assumed to have the complex gain Geho,

where G and Pt are fixed constants, then the form of the far-field when a dominant

mode is present is

p(r) s GGs k!2 (5.11)
r/2

Using the definition of residual phase, it is easily seen that

+(r) = P{i/ + Ir/4 + kr - kr) (5.12)

If k is chosen to match k,i, then the source phase can be determined from the

residual phase +(r), assuming that no wrapping is involved as 0b = +(r) - r/4. In

general, a number of values of +(r) can be averaged to improve the stability of the

estimate. The computation of the parameter G cannot be determined using this

procedure. However, G is typically easier to determine using other methods, and

remains fixed from experiment to experiment.

As the above example points out, the residual phase can provide important in-

formation related to propagation of acoustic fields in a waveguide. In particu!-r, in

the case that the field is dominated by a single component, the residual phase mea-

surement is particularly valuable. In the previous examples, the dominant component

consisted of the trapped mode. However, in a more general setting, the residual phase

can provide information related to the dominant component which may vary as a func-

tion of range. Typically, this type of information is obtained from the magnitude of

the field. For example, the asymptotic behavior of the magnitude may provide infor-

mation about the propagation. However, we point out that the residual phase is also

rich in information about propagation within the waveguide.

As a further example of this, we examine the continuum portion of the field for the

model in Table 4.1. The magnitude and phase of this field are shown in Figure 5.7.
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Features of the continuum portion of the field were previously discussed in Chapter

4. In particular, by varying different choices of parameters in the forward modelling

process, we demonstrated that the field at far ranges consists of the lateral wave, and

that the change in the behavior of the magnitude which occurs at r = 750 m is due to

the lateral wave becoming dominant with respect to the virtual mode. The behavior

is even more apparent when the residual phase of this field is examined. In Figure

5.8 is shown the magnitude and residual phase using the k = 0.4888, which is the

wavenumber in the underlying halfspace. The fact that the residual phase stabilizes

to a constant value at ranges past 750 m indicates that a dominant component of

the continuum field, which has a horizontal wavenumberof 0.4888, is present at these

ranges. Therefore, the residual phase confirms that the continuum field is dominated

by the lateral wave here. In addition, the differing residual phase behavior at smaller

values of r indicates that there are other dominant contributions at these ranges. The

approximate value of the linear slope of the phase in the first several hundred meters

is consistent with the value of the real part of the virtual mode wavenumber for this

geoacoustic model. Therefore, by examining the residual phase of the continuum, it

can be concluded that the virtual mode dominates the lateral wave in the near field

but at ranges greater than 750 m, the lateral wave becomes dominant. The example

points out that the residual phase can be an important tool for understanding the

theory of propagation within a waveguide.

In the situation where there are many modes present, the appropriate choice for

k# may be more difficult. In some cases, there may be a particular mode which is

dominant as indicated by a relatively large modal amplitude mi, as defined in Chapter

4. For example, in the geoacoustic model in Table 4.2, there are 14 trapped modes

present, although the mode at ki = 0.8597293 has a modal amplitude which is several

times larger than any other mode. In Figure 5.9 is shown the magnitude and phase of

the total field for this model and in Figure 5.10 is shown the magnitude and residual

phase using k, = 0.8597293. The smooth variation in the residual phase can be seen

for this choice of k,. In the more general case, an appropriate choice for k could
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consist of a weighted average of the modal eigenvaiues, where the weights are the

modal amplitudes.

The residual phase may form a key element in characterizing acoustic propagation

in more complicated range varying media as well. As an example of this, the mag-

nitude and residual phase for the 140 Hz experimental shallow field collected in the

Nantucket Sound in May 1984 [61 are shown in Figure 5.11. The value of k, used to

determine the residual phase was chosen as 0.575. Several features are apparent from

the examination of the residual phase for this example. First, although the residual

phase is somewhat noisy, it exhibits no linear trend at ranges past 500 m for at least

700 m. This indicates that there is probably only a single mode present with a hori-

zontal wavenumberof 0.575, accurate to at least three decimal places. In particular, if

the wavenumber were in error by 0.001, an additional 0.001 rad/m * 700 m = 0.7 rad

phase roll in the residual phase would occur over the range of 500 to 1200 m. No such

behavior is observed however. The behavior of the residual phase in the near-field

is partially obscured by the wrapping which occurs, and a display of the unwrapped

residual phase might be more meaningful here. However, it is noted that a linear

trend in the residual phase of approximately 4 /250 = 0.016 rad/m occurs within

the near field and that the trend abruptly terminates at a range of 500 m. This be-

havior in the residual phase indicates that the dominant horizontal wavenumber has

changed from 0.559 to 0.575 at the range cf 500 m. The exact reason for this change

is not clear. However, an interesting speculation is that it is due to a variation with

respect to range of the experimental geoacoustic model. In particular, the depth of

the waveguide varied as a function of range in this experiment. The abrupt change

in the residual phase could be attributed to a variation in the horizontal wavenumber

of the dominant mode, caused by the change in waveguide thickness. We have not

been able to precisely correlate the behavior of the phase with actual measurements

of the waveguide thickness, obtained from an echosounding instrument. Neverthe-

lcss, a conjecture is that the change in the behavior of the residual phase is due to a

range-dependent variation in the geoacoustic model. The example points out that the
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Figure 5.11: Magnitude and residual phase of the 140 Hz feld from a shallow water

experiment conducted in Nantucket Sound in May 1984. k, was chosen as 0.575.
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interpretation of the residual phase in range-dependent problems might be extremely

interesting, and it is felt that this topic represents an area for further research.

Thus far, the residual phase has been defined in terms of the fixed parameter k,

which is chosen to match the wavenumberof the dominant component of the field. It

is also possible to allow the parameter k, to vary as a function of the position within

the waveguide. Mathematically, the more general expression for residual phase can

be expressed as

+(r) = P({(r, z) - k,(r, z)r} (5.13)

This generalization may provide the basis for improving forward modelling procedures

involving more complicated range dependent models. For example, in the approach

proposed by Bordley [121, forward modelling is performed by iteration of a paraxial

method. Essentially, the acoustic wave equation is solved by guessing a value used to

split the field into outgoing plus incoming components, applying a paraxial approxi-

mation, and determining a new split value from the apparent horizontal wavenumber

of the resulting field. One of the problems with the technique is that the determination

of the apparent horizontal wavenumberis difficult, as it requires that the derivative of

the logarithm of the field be determined. Thus, since the logarithm is a multi-valued

function, the phase of the field must be unwrapped prior to the computation of the

derivative. The unwrapping of the rapidly varying phase has proven to be quite dif-

ficult in this context. Alternate techniques, such as computing the derivative of the

field and dividing by the field, have other disadvantages, as pointed out by Bordley.

The introduction of residual phase into this method may yield alternate algorithms

which improve the performance of Bordley's method. For example, one approach

might consist of determining the residual phase within an iteration using k(r,z),

unwrapping the residual phase prior to the computation of the derivative and then

re-adding the term k,(r,z). Presumably, the residual phase is easier to unwrap as

compared with the total phase, if k,(r, z) is properly chosen. However, it is possible

to relate k(r, z), used to determine the residual phase with the apparent horizontal
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wavenumber. The implication is that within the iteration scheme k,(r,z) could be

determined based on the apparent horizontal wavenumber in the past iteration.

In summary, we have defined the residual phase of a shallow water acoustic field

and have discussed several applications. The residual phase was defined such that

phase unwrapping is.not required in its computation. Additionally, the residual phase

was based on removing the product of a horizontal wavenumber and the horizontal

range, as opposed to the product of the water wavenumber and the slant range. The

definition is particularly important in shallow water propagation in which a particular

dominant mode is present. Several synthetic and experimental examples confirmed

that the residual phase can be important for establishing the wavenumber of the

dominant mode, and also for determining the acoustic source phase. It was pointed

out that the residual phase can be used for determining the dominant wavenumber

component in a range dependent medium. There appear to be important applications

for the residual phase when the wavenumber used to compute it is assumed to be

spatially-varying. In this case, the residual phase may provide the basis for improving

methods for forward modelling and inversion of range dependent acoustic fields.
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5.3 Reflection Coefficient Sensitivity

In the previous section, we pointed out that the residual phase forms an ad-

ditional quantity to the magnitude which is useful in forward modelling inversion

methods. In another class of inversion methods, the inversion is based on computing

the Hankel transform of the acoustic field to obtain the Green's function, extracting

the reflection coefficient from the Green's function, and determining the geoacoustic

model from the reflection coefficient. In this section, we will first review this tech-

nique and then point out that there is a fundamental instability which exists, in some

circumstances, in the step of extracting the reflection coefficient from the Green's

function. The points of instability, or infinite sensitivity, are then related to the in-

variant zeros of the Green's function and its imaginary part. These invariant zeros

are due to the cancellation which can occur between various upgoing and downgoing

components within the shallow water wave-uide.

The technique for obtaining the reflection coefficient of the ocean bottom from

measurements of the shallow water acoustic field is based on the fact that the Hankel

transform is its own inverse Since the acoustic pressure field is related to the shallow

water Green's function via a Hankel transform, determining the Hankel transform

of the field yields the Green's function. In an experimental context, the field mea-

surements are not available out to an infinite range and in addition, are subject to

a number of degradations including ranging uncertainty, non-uniform sampling and

additive noise. Therefore, in computing the Hankel transform of these measurements,

it is an estimate, rather than the Green's function itself which is obtained.

From the estimate of the Green's function it is possible to determine an estimate

of the reflection coefficient. For example, in the case of an isovelocity waveguide with

a pressure-release surface (Rs = -1), the relationship between the Green's function
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and the reflection coefficient was shown to be

2 sin ktz, (i z + Rs(k,)eik (2 )) (.14)
g(k,) = (5.14)

k, (1 + R(iC)eihA)

This expression can be algebraically inverted to yield an expression for the reflection

coefficient in terms of the Green's function as follows

2 sin k,:zeill,, - g(k,)k,
) ek, eijhg(k,) - 2sin k,zeij2-',) (.15)

In the case that only an estimate of g(k,) is available, the reflection coefficient, which

is derived using this expression, is also an estimate.

In going from the expression for g(k,) in terms of RB(k,) to the expression for

Rs(k,) in terms of g(k,) only simple algebra was required. However, the transition

from g(k,) to RB(k,) actually represents the more fundamental operation of derever-

berating the acoustic field 13j. In other words, by computing the Hankel transform

of the field p(r) within the waveguide and inverting algebraically to obtain Re(k,),

the result is identical to that which would have been obtained had the surface not

been present. Phrased in terms of a filtering operation, a dereverberated field can

be obtained by determining the wavenumber decomposition of the field within the

waveguide (performing the Hankel transform), applying an inverse filter (determining

RB(k) from g(k,)), reapplying a new filter (multiplying by a new phase factor which

corresponds to propagation from the source to the receiver) and resynthesizing the

field (performing the Hankel transform).

The dereverberation of the field in this way also applies to more complicated, non-

isovelocity waveguides. In particular, we have previously derived expressions which

relate the extended Green's function to the reflection coefficient between the layer

in which z, resides and the underlying media. This reflection coefficient is in turn

related to the ocean bottom reflection coefficient, i.e. the reflection coefficient at the

water/sediment interface, via the reflectivity series, as described in Chapter 2. The

use of the extended Green's function and the reflectivity series in this context is men-

tioned not only as a means for justifying that the dereverberation can be applied to
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more complicated models, but also as the basis for a practical method for extracting

the reflection coefficient which avoids the unwieldy algebra required for the determi-

nation of Rs(k,) in these cases. In the discussions which follow, we will tend to focus

on the simpler isovelocity waveguide which has a pressure-release surface, with the

implication that many of the results apply to more complicated waveguide models as

well.

Although the relationship in equation (5.15) is mathematically exact, there may

be values, or regions, of real-k, at which the inversion is ill-conditioned. By ill-

conditioned, we mean that a slight change in g(k,) may yield a large change in the

reflection coefficient. In other words, at these values, RB(k,) may be highly sensitive

to changes in g(k,). In order to study this effect further, it is convenient to define a

measure of the sensitivity, S(k,) referred to as the sensitivity function as follows

Sk ag(k,) (5.16)

From this definition, it is apparent that if the sensitivity function, S(k,) is large,

then a small change in g(k,) is responsible for a large change in Re(k,). Thus, when

the sensitivity function is large, Rs(k,) is most sensitive to errors which occur in esti-

mating g(k,). Computing the partial derivative of RB(k,) for the isovelocity waveguide

case, and expressing the result not as a function of g(k,) but rather as a function of

RB(k,), it can be shown that

k, ( l +i2kshRB(k))2 2k h (5.17)

4 sin k,zt sin k,z,(

for values of real-k, including evanescent values where k, > ko and ko is the water

wavenumber.

The numerator of the sensitivity function is related to the characteristic equation

for the waveguide. As discussed previously, the zeros of the characteristic equation

determine the poles of the Green's function, which in turn determine the modes of

propagation. The sensitivity function thus has zeros at the values of k, corresponding
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to the trapped modes. The etermination of the reflection coefficient is particularly

insensitive to errors in g(k,) at these values of k,. This fact is not surprising as g(k,)

is quite large in regions near the poles and one could expect a unit change in g(k,)

to have a small effect in the determination of Rg(k,) here. Similarly, at real values

of k, corresponding to the virtual modes, i.e. off-axis poles, the sensitivity function

will have local minima and thus we expect to obtain a less sensitive estimate of the

reflection coefficient at these values of k,. If the source or receiver is located in a

null of a trapped mode then both the numerator and denominator of, the sensitivity

function are zero. A straightforward application of L'Hopital's rule shows that the

sensitivity is zero in this case as well. Additionally, it can be seen that the numerator

and denominator of the sensitivity function become zero when k, is identically zero,

i.e when k, = ko. Application of L'Hopital's rule to this case also indicates that

S(k,) = O. However, this result depends on the fact that, for real ko,

RB(k,)l,=o = -1 (5.18)

fo' any underlying bottom, a interesting fact which can be proved using the properties

of the reflectivity series discussed earlier. The implication is that the sensitivity is

zero due to the fact that the reflection coefficient is known a priori to be -1, at

this value of k,. However, i there are any slight deviations in the underlying model

which cause the reflection coefficient to depart from this value, for example a very

slight roughness at the interface, the sensitivity function becomes infinite at k, = ko.

This value represents an interesting special case of the theory which we are about to

present.

Note also, that for values of k, greater than the water wavenumber, the sensitivity

function does not depend strongly on Rs(k,), and for k, > k0, the sensitivity function

approaches

S(k,) = (5.19)

where 7 = +(k2 - k2) 1/ 2 . From this expression, it can be seen that for z0 and zi near

the bottom of the waveguide, the sensitivity function increases slowly as a function
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of k, for k, > ko. However, as z and z become smaller, i.e. the source and receiver

are located at shallower depths, the sensitivity function increases at an exponential

rate for k, > ko . The implication is that determination of the reflection coefficient

becomes increasingly more sensitive as the source and receiver are moved away from

the bottom, for values of k, > k.

Such an effect has also been noted for the deep water case. That is, as the source

and receiver heights, zo and z, become larger in a deep water experiment, accurate

determination of the reflection coefficient at values of k, > ko becomes more difficult.

This result can also be predicted by computing the sensitivity function for the deep

water case, which can be shown to be

S(k,) = Ik,e-i'.('+'o) ! (5.20)

for values of real-k, including evanescent values where k, > k. We note that for

values of k, > ko, the deep water and shallow water sensitivity functions are identical

due to the fact that the vertical wavenumber is purely imaginary - the surface has no

effect due to the exponential decay of the field in the vertical direction. However, for

values of k, < k the deep water sensitivity function is considerably simpler than the

shallow water sensitivity function as can be seen by comparing equations (5.20) and

(5.17). In particular, the sensitivity function for the deep water case is a smoothly

varying function of k, which decreases from ko to zero as k, varies from zero to ko.

The deep water sensitivity function does not exhibit the interesting behavior of the

shallow water sensitivity function and it will not be further considered in this section.

We will refer to equation (5.17) as the definition of the sensitivity function henceforth.

As can be seen from equation (5.17), the sensitivity function may become infinite

at values of real-k, which are solutions 3 to either

sin kzr = 0 (5.21)
3Strictly speaking, this is true only for the non-trivial solutions, i.e, for k, # ko. However, as

discussed earlier, the point k, = ko is a special case at which the sensitivity function is zero in theory,

but actually infinite in practice, if any deviation in the assumed model is allowed.
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sin kz = 0 (5.22)

It is noted that these value are independent of the reflection coefficient and thus

independent of the media underlying the waveguide - they depend only on the depths

of the source and receiver and the water wavenumber.

In fact, by examining the form of the Green's function in equation (5.14), the fact

that one of these equations appears becomes obvious. At values of k, which satisfy

the equation sin k,zt = 0, the sensitivity becomes infinite and the Green's function

becomes identically zero. Essentially, at these values, g(k,) contains no information, at

least in its zeroth derivative, regarding the reflection coefficient - the Green's function

becomes zero independent of the value of Rs(k,). A key point here is that the infinite

sensitivity occurs not because the Green's function becomes zero, but rather because

it becomes zero independent of Rs(k,). As will be pointed out later, there may exist

other zeros of g(k,) at which the sensitivity does not exhibit this behavior. In addition,

points of infinite sensitivity predicted by the equation sin k,, = 0 do not correspond

to zeros of g(k,).

It is also possible to relate the other equation, i.e. equation (5.22) for points

of infinite sensitivity to the Green's function. To do this, the Green's function in

equation (5.14) is written in terms of its real and imaginary parts. Performing the

required algebra, we find that

2sin k z, [(1 + a 2) cos k z, + 2acos(G + k.(2h - z)) (5.23)
gR(k)R{(k,) = (1 + 2a cos(6 + 2kh) + a2)

2 sin k,zt sin kz,(l - a2)
gt(k,) -Imn{g(k,)} k,(1 + 2a cos(9 + 2k,h) +a 2 ) (5.24)

for real values of k, less than ko where a = a(k,) = Ra(k,) and = (k,) =

arg{RB(k,)}. From equation (5.24) for the imaginary part of g(k,), it can be seen

that g(k,) becomes zero at the points of infinite sensitivity described by the equation

sin k,z, = 0. Furthermore, from equation (5.23), the real part of g(k,) is i2 sin k,zi/k,

at these values. This fact follows since cos k:z- = 1 when sin k,%z = 0 and from the
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use of trigonometric identities applied to the numerator of equation (5.23). The infi-

nite sensitivity results because g(k,) contains no information about R 8 (k,) at values

of k, which are solutions to sin k,z, = 0 - the imaginary part of g(k,) is identically

zero and the real part is 42 sin k,z/k,, a quantity independent of Rs(k,).

Thus far, we have shown that points of infinite sensitivity imply that either g(k,)

is zero or else its imaginary part g(k,) alone is sero. We will refer to these zeros as

invariant zeros because they do not depend on the reflection coefficient and are thus

invariant with respect to the media underlying the waveguide. We will distinguish

between the two types of zeros, although it is recognized that the imaginary part of

g(k,) is zero in either case. In fact, the presence of invariant zeros of g(k,) and gi(k,)

has not been previously pointed out in the literature. The existence of these zeros

which do not depend on the properties of the underlying media is quite interesting

because the Green's function itself is highly dependent on the underlying media. The

fact that g(k,) and g(k,) are known a priori to be zero at hese locations may represent

an important piece of information in an inversion scheme. Because of the potential

importance of exploiting the positions of these points, and because of the important

connection between the invariant seros and the points of infinite sensitivity, several

statements concerning the zeros and invariant zeros of g(k,) and g9r() are now made.

The terminology of pre-critical and post-critical will refer respectively to real val-

ues of k, < Re{kN} and real values of k, > Re{kN} where kN is the wavenumber

of the underlying halfspace. We will assume that ko is purely real, i.e. that there is

no attenuation in the water column, and that Re{kN} < k, as is typically the case.

Additionally, only real zeros will be considered. We will distinguish a zero of g,(kt)

as a particular value of k, at which the imaginary part of g(k,) is zero and the real

part is non-zero.

Statement 1 All pre-critical zeros of g(k,) must be invariant and must satisfy the

equation sin kz, = 0.
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Statement 2 Post-critical zeros of g(k,) may or may not be invariant. If invariant,

they must satisfy sin k,z = 0.

Statement S Any zero thich occurs in the region Re{k,} > ke cannot be invariant.

Statement 4 All pre-critical zeros of gt(k,) must be invariant and must satisfy sin ksz,

0.

Statement S There are no isolated post-critical zeros of gt(k,) if kr is purely real.

The proof of these statements is straightforward. Statement 1 follows directly

from equation (5.14) and also from the fact that the reflection coefficient magnitude,

a must be less than unity for pre-critical values of k,. The latter fact follows from the

properties of the reflectivity series, discussed in Chapter 2. Statement 2 follows from

equation (5.14) and the fact that additional zeros of. g(k,) can occur in this region

since a may be unity. Statement 3 follows from the fact that sin k,z, cannot be zero for

purely imaginary k,. Statement 4 follows directly from equation (5.24) and the fact

that a must be less than unity at pre-critical values of k,. Statement 5 follows from

the fact that gt(k,) = 0 for all real values of k, > keN, a fact proved in Chapter 2, and

equation (5.24). We will next present several statements which relate the invariant

zeros of g(k,) and g(k,) to points of infinite sensitivity.

Statement 6 All pre-critical zeros of g(k,) or gt(k,) mut be points of infinite sen-

sitivity. In addition, all pre-critical points of infinite sensitivity must occur at zeros

of g(k,) or gz(k,). In both cases, these points are invariant.

Statement 7 All post-critical points of infinite sensitivity, ezcept those due to poles

in RB(k,), must satisfy either sin k,zl = 0 or sin k,z, = O. If sin k,zl = 0 is satisfied,

the point is an invariant zero of g(k,).
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Statement 8 All post-critical solutions of either sin k,z, = 0 or sink,z, = 0 are

points of infinite sensitivity unless 1 + RB(k,)e4i uh = 0 is tisfied. If the latter

equation is satisfied, the corresponding value of k, is a point of zero sensitivity.

The proof of these statements is straightforward. Statement 6 follows from equa-

tion (5.17) and from Statements 1 and 4. Statement 7 follows from equation (5.17)

and from Statement 2. Statement 8 follows from equation (5.17), Statement 2, and

L'Hopital's rule. The second statement in statement 8 occurs when either the source

or receiver is positioned exactly in the null of a perfectly trapped mode.

A numerical example demonstrating some of the statements related to the invari-

ant zeros and the associated peaks in the sensitivity function is now provided. The

geoacoustic model is identical to the model previously considered in Chapter 4, Table

4.1. The magnitude and phase of the Green's function corresponding to this model are

shown in Figure 5.12. The water wavenumberin this example is ko = 0.5866652, and

the wavenumber in the underlying halfbpace is kN kl = 0.488888. By examining

these curves, we can see that an invariant zero of g(k,) is present at k, 0.28. The

location of this zero is evident because the magnitude function becomes zero here, and

further this zero must be invariant (Statement 1). It can be verified that this zero sat-

isfies the equation sin k,z, = 0, and that its exact value is 0.28033. Additionally, there

exists an invariant zero of g(k,) at k, m 0.375. The location of this zero is evident

because of the behavior of the phase at this point. Since the phase is either ±ir or

zero, the imaginary part of g(k,) must be sero. This zero of 91(k,) must be invariant

(Statement 4). It can be verified that this zero satisfies the equation sink,z, = 0,

and that its exact value is 0.38052. Note that the phase function also crosses zero at

A. = 0.48888. However, this point is related only to the halfspace velocity since gz(k,)

must be zero for k, greater than 0.48888. Therefore, this point is not an invariant zero

(Statement 5) and thus not a point of infinite sensitivity (Statement 6). Additionally,

we note that another zero of g(k,) is present at k, X 0.51. This zero may or may not

be invariant (Statement 2). It turns out in this case, that it is not because it does not
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Figure 5.12: Magnitude and phase of the Pekeris model Green's function.
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satisfy the equation required for an invariant zero of g(k,), sin k:Z = 0 (Statement

2). In fact the position of this zero depends strongly on the phase of the reflection

coefficient.

For reference, a plot of the sensitivity function for this model is included in Figure

5.13. Note from this figure that there are two points of infinite sensitivity which

correspond exactly to the two invariant zero positions (Statement 6). In addition, the

presence of a local minimum at the virtual mode location is noted, as is the point of

zero sensitivity at the trapped pole location. For values of k, greater than the water

wavenumber, i.e. in the evanescent region, the sensitivity function increases at an

exponential rate as a function of k,, as predicted by equation (5.19).

The geoacoustic model summarized in Table 5.1 was next considered. Note that

this model differs significantly from the model just considered - the depth of the

water column has increased, and the properties of the underlying media have changed

from a lossless isovelocity halfspace, to a layer with velocity gradient and attenuation

overlying a halfspace with attenuation. As can be seen from the plot of the magnitude

and phase of the corresponding Green's function in Figure 5.14, two additional modes

have appeared in this model due to the increased thickness of the waveguide and

presence of an additional layer. Nevertheless, the zero of g(k,) (indicated by the zero

in the amplitude function) and the zero in g1 (k,) (indicated by the phase behavior)

remain in identical locations as in the previous model, confirming their invariant

nature. Note that the zero present at k, X 0.51 in the first model is not present

in the same position in the second model, in support of the conclusion that this

zero is not invariant. For reference, a plot of the sensitivity function for the model

in Table 5.1 is shown in Figure 5.15. The correspondence between the nulls in the

sensitivity function and the positions of the peaks in the magnitude of the Green's

function is apparent. Note that the sensitivity function for the second model grows

at a substantially faster rate than that of the first model. This is due to the fact that

although the source and receiver depths have not been altered, their relative distance
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Figure 5.13: Sensitivity function for the Pekeris model Green's function.
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zo = 6.096 m

z = 7.03579 m

f = 140.056 Hz

Table 5.1: Geoacoustic modei for a realistic shallow water case.
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Figure 5.14: Magnitude and phase of the Green's function for the geoacoustic model

described in Table 5.1.
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Figure 5.15: Sensitivity function for the geoacoustic model described in Table 5.1.
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from the bottom has increased, due to the increased thickness of the waveguide.

Also, note that although the sensitivity function is substantially different than the

previously displayed sensitivity function, both exhibit infinite sensitivity at the same

values of k,, because of the invariant nature of these points.

In the preceding discussion, the sensitivity function was related to the Green's

function primarily as a means for simplifying the determination of the peaks in sensi-

tivity. The discussion implied that the sensitivity of inverting the Green's function to

obtain the reflection coefficient can be discerned from a plot of the Green's function

itself. 4 The peaks in sensitivity occur at invariant zero locations and minima occur

at pole locations - either trapped or virtual. However, the connection between the

sensitivity function and the Green's function also provides a basis for a more physical

explanation for these invariant zeros and associated infinite peaks in sensitivity. This

explanation is now provided.

In Chapter 2, it was pointed out that one of the ways in which to derive the Green's

function is based on a plane wave decomposition of the source into an upgoing and

a downgoing plane wave at each value of horizontal wavenumber. It was shown that

the acoustic field at the receiver, when decomposed into a plane wave representation,

consists of the infinite sum of four types of plane wave components - those downgoing

at the source and downgoing at the receiver (dd), those upgoing at the source and

downgoing at the receiver (ud), those downgoing at the source and upgoing at the

receiver (du), and those upgoing at the source and upgoing at the receiver (uu). In

Figure 5.16 several of the infinite number of plane waves which arrive at the receiver

are symbolically illustrated within the waveguide. The type of component has been

labelled in the figure as uu, ud, du, or dd and in addition, has been subscripted to

indicate the additional number of interactions it has had with both the surface and
4There is actually one case when this is not strictly true. If k is purely real, any post-critical

points of infinite sensitivity are not easily seen in the behavior of the Green's function. Here the real

part of g(k,) is non-zero and the imaginary part is zero due to the fact that k, > kN.
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Figure 5.16: Symbolic diagram of multiple components within a waveguide.
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bottom. For example, the plane wave component abelled ud, in this figure is upgoing

at the source, downgoing at the receiver and has had one additional reflection from

both the surface and bottom of the waveguide as compared with component udo.

We have arbitrarily placed the source at a shallower depth than the receiver in this

example, although this choice is of no significance from reciprocity - the alternate

choice simply reverses the direction of all arrowheads in this figure. Note that the

angles at which the various plane wave components interact with the surface and

bottom are only symbolic - in fact, all components shown plus the remaining higher

order multiples not shown correspond to a single value of k,, i.e. a single angle of

incidence, in the plane wave expansion of the field. The components in this diagram

represent plane waves and not eigenrays.

Using the diagram shown in Figure 5.17, it is possible to show that various plane

wave components can interfere with each other under certain conditions. For example,

consider the components ddo udo duo and uuO. It is possible for dd and udo to

cancel and for duo and u to cancel. Note that the component udo undergoes an

additional phase rotation of ei2.', in propagating from z to z as compared with

component ddo, excluding any other phase change due to its interaction with the

surface. Therefore, excluding surface interaction, these two components will arrive

perfectly in phase at z, if the phase factor ei2.', is unity. However, the surface

reflection coefficient is actually -1 and therefore if the phase factor is unity, the

two components will actually arrive at z, perfectly out of phase. In other words,

if the condition k,z, = nr is met, where n is any positive non-zero integer, the

components ddo and ud will cancel exactly. By examining Figure 5.17, it can be

seen that if this condition is satisfied, components duo and uuo will cancel also. Note

that this cancellation will occur even though duo and uue have undergone a reflection

at the bottom of the waveguide. In general, the amplitude and phase of these two

components will be modified after interaction with the bottom. The important point

however, is that both interact exactly once with the bottom, and are thus modified

identically . In other words, these two components undergo a cancellation which
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327

cancel

\w

dd z

udz

du2

UU2

r-*,- Nll�

nl ii i ii



is invariant with respect to the properties of the bottom. In fact, it can be easily

shown that higher order components will cancel in an similar fashion, if the condition

k, zl = nr is satisfied. This cancellation will occur even though the higher order

multiples experience a larger number of bottom interactions. It is apparent that the

condition k,zl = nr is equivalent to the condition sin k,zl = 0, which is the equation

for an invariant zero of g(k,). The Green's function is identically zero for values

of k, which satisfy sinksz = 0 because of the cancellation which occurs between

components in the plane wave expansion. The corresponding sensitivity in inverting

for RB(k,) also becomes infinite at these values because there is no information about

the bottom present due to cancellation between components dd and ud, and between

components dui and uu, for all i > 0.

We have previously seen that infinite sensitivity can also occur at other values

of k, which satisfy the equation sin k, = 0. These values are also determined by

a second type of interference which can occur within the waveguide. In this case,

cancellation occurs between a lower order multiple and the next higher multiple, as

depicted symbolically in Figure 5.18. Note that all components which cancel interact

with the bottom an identical number of times. The cancellation is again invariant

with respect to bottom properties as well as to waveguide thickness. Furthermore, it is

apparent from Figure 5.18 that under the condition that sin k,z, = 0, all components

will cancel in pairs eept for components ddo and udo. There are no remaining

components to which these two can be paired and they do not cancel each other.

Therefore, we expect that the Green's function will be non-zero at these values of k,

and that it will be comprised only of the sum of these two components, as follows

-,-g(kJ) · ',+2) = sin k,zr (5.25)
g( k,

since ei*a, = t1 at these values of k,. Note that g(k,) is purely real, and that this is

precisely the result which was presented earlier when the real and imaginary parts of

g(k,) were determined under the condition that sin k,z, = 0.

The relationship between the invariant zeros of g(k,) and g(k,) and the points of
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infinite sensitivity can be thus be physically interpreted as a cancellation which occurs

due to the presence of the surface of the waveguide. In the deep water problem when

there is no surface present, no such effect occurs as can be confirmed by examining

the sensitivity function in equation (5.20) or from physical considerations.

A practical implication of the preceding results concerning invariant zeros and

points of infinite sensitivity is the definition of an invariant critical depth e,. If

either the source or receiver is positioned within the waveguide at depths deeper than

the invariant critical depth, at least one point of infinite sensitivity is guaranteed to

occur in the determination of the reflection coefficient for non-evanescent values of

k,, i.e. for k, < ko. The expression for the invariant critical depth for an isovelocity

waveguide can be determined, using equations (5.21) and (5.22), as

= (5.26)

where kC is the water wavenumber. The invariant critical depth is independent of the

waveguide thickness and it scales inversely with frequency, i.e. at lower frequencies,

the source and receiver can be placed closer to the bottom without incurring a point

of infinite sensitivity. It is pointed out that the selection of the depths at which

to place the source and receiver in an actual experiment involves tradeoffs among

a number of factors including nulls in the modal amplitude functions, excitation of

shear waves in the bottom, determination of the evanescent portion of the reflection

coefficient, and surface scattering. The determination of optimal depths which must

include all of these factors has not been fully studied and represents an important

area for further study in the context of shallow water acoustic inversion. The critical

depth definition is interesting however, in that it suggests that the inversion problem

becomes inherently better conditioned as instruments are moved farther away from

the media to be imaged - at least until both are shallower than the critical depth.

Many of these results can be generalized to non-isovelocity waveguides. The loca-

tion of the points of infinite sensitivity which occur in obtaining the bottom reflection

coefficient can be determined from physical considerations, without resorting to the
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algebra required for determination of the invariant zeros of the extended Green's fuw c-

tion, or the invariant zeros of the imaginary part of the extended Green's function.

In Figure 5.19 is depicted a non-isovelocity waveguide with the source and receiver

located in different layers. Components ddo and udo must cancel in order to have the

first type of interference discussed earlier and components duo and ddl must cancel

in order to have the second type of interference. It is apparent from this figure that

the equations which describe the conditions for cancellation are
1-I J-l

sinI k,ih. + k,,(z - hj) = 0 (5.27)
i=o i=O

and
E-I K-I

sin[ E kih, + k,,(z, - ) = o (5.28)

where k,i is the vertical wavenumber in layer i, hi is the thickness of layer i, z is

located in layer J and z is located in layer K. From arguments presented earlier,

we may also conclude that these equations precisely describe the locations of points

of infinite sensitivity - no information about the reflection coefficient is contained

within g(k,) at the corresponding values of k,. Because of the cancellation of plane

wave components at these values, the extended Green's function must also have an

invariant zero, or invariant zero of its imaginary part, at these same values of k,. The

zeros of the extended Green's function are invariant with respect to the prope, ies

of the media underlying zt. The zeros of the imaginary part of the Green's function

are invariant with respect to the properties of the media underlying zo. The invariant

critical depth for the non-isovelocity waveguide is given by the solution to
3-I J-1

sin[ E kih + kj(Z. - E hi)l = 0 (5.29)
i=O i=O

where z, is within layer J. Numerical experiments, including the prediction of the

locations of zeros of the extended Green's function using equations (5.27) and (5.28)

and the confirmation of their invariant nature, have provided further support for these

conclusions. The extension of these results to the cases including waveguides with high

speed layers and to continuously varying waveguides represents an interesting area for

further research.
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In this section we have developed the sensitivity function in order to understand

how errors in estimating the Green's function affect the extracted reflection coeffi-

cient. The sensitivity function was shown to have a number of interesting theoretical

properties which are related to the poles and zeros of the Green's function. Although

the sensitivity function can be similarly derived for the deep water case, the resultant

function is smoothly varying and the interesting behavior caused by the presence of

the surface is not seen. One of the most interesting properties of the sensitivity func-

tion is that it possesses points of infinite sensitivity at wavenumber locations which

do not depend on the medium being investigated, i.e. on the ocean bottom. Rather,

these points are invariant with respect to the media underlying the waveguide and are

determined primarily by the configuration of the experiment. These positions of infi-

nite' sensitivity are connected in an interesting way to the zeros of the Green's function

and the zeros of its imaginary part only. We presented a number of statements re-

garding these zeros and their invariant nature, as well as their connection with points

of infinite sensitivity. Additionally, a physical explanation relating cancellation within

the waveguide to the invariant zeros and points of infinite sensitivity was provided.

Finally, some of the results presented were extended to the non-isovelocity waveguide.
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5.4 Inversion of Synthetic Data

In this section, we consider the application of the inversion scheme to obtain

the reflection coefficient from synthetically generated shallow water acoustic fields.

Although the inversion method is actually based on using experimentally collected

data as input, there are a number of important reasons to consider, at least initially,

the use of synthetic data as input. First, and perhaps foremost, the use of synthetic

data provides a means for verifying that the inversion technique produces a valid

result. Additionally, the use of synthetic data provides a means for studying how

various parameters can affect the quality of the inversion, Understanding the variation

caused by a particular parameter can impact the design of an actual ocean experiment

and may also facilitate interpretation of inversion results. In the prior section of this

chapter we presented a number of theoretical results concerning the sensitivity of

extracting the reflection coefficient from shallow water field measurements. In this

section, we will use the inversion of synthetic data to numerically demonstrate the

consequences of sensitivity and the invariant critical depth.

Developing a numerical simulation which produces a synthetic shallow water acous-

tic field and inverts to obtain an accurate estimate of the bottom reflection coefficient

is actually a very difficult task. In order to justify this, let us provide a list of the

some of the considerations and difficulties involved. First, a means for generating a

high quality synthetic shallow water acoustic field must be developed. Without such

a scheme, it is difficult to separate degradations which are the result of inaccuracies in

the synthetic data production from degradations which are incurred in the inversion

process itself. We have found that various approximate techniques, including those

which synthesize the field as a sum of trapped modes alone or as a sum of trapped

plus virtual modes, do not produce synthetic data of sufficient accuracy to produce a

good reflection coefficient estimate. Accurate computation of the continuum portion

of the total field is quite important in the context of obtaining an accurate reflection
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coefficient.

As pointed out in earlier chapters, the acoustic field can be mathematically ex-

pressed as the Hankel transform of the Green's function. However, unless special care

is taken, a numerical Hankel transform when applied to typical shallow water Green's

functions produces fields which are degraded due to aliasing. In contrast with the

problem of deep water synthetic field generation, the shallow water Green's function

nearly always contains pole singularities which must be estimated and removed as one

means of eliminating the degradation due to aliasing.

Although the Hankel transform can be computed accurately using the Fourier-

Bessel series under certain circumstances, this method is computationally quite slow

and may be prohibitively so for some applications. Alternately, other methods in-

cluding the Abel/Fourier approach or the FFP are much faster, but can introduce

other errors. For example, the FFP does Dot produce accurate results for small val-

ues of range because several underlying assumptions are violated. This may be quite

acceptable in producing fields which are accurate everywhere except in the near-field,

but may be unacceptable in a numerical simulation in which the inverted reflection

coefficient is to be determined. For example, in shallow water applications where the

source and receiver are close to the bottom, the range at which the specular reflection

becomes critical may be quite small, typically only a few wavelengths. Therefore, in

these cases, accurate synthetic data in the near-field may be required for accurate de-

termination of the reflection coefficient, especially at pre-critical values of kc,. The use

of the FFP in the synthesis method may not be desirable in these situations. Addi-

tionally, the hybrid method, by its very nature, may not produce data of sufficiently

high quality near r = 0 as pointed out in the previous chapter. For example, the

trapped mode contribution is actually infinitely large at r = 0 and must cancel the

continuum portion precisely so that a finite field results. Also, an asymptotic expres-

sion for the modal contributions to the total field may not be sufficiently accurate,

particularly at small ranges.
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Another difficulty which occurs in a simulation which demonstrates inversion of

synthetic data is assuring that the inversion technique does not undo an error incurred

in the synthesis technique. For example, under some circumstances, it is possible to

synthesize an aliased field, which when inverted, yields a good estimate of the Green's

function. The numerical simulation should be constructed to avoid this cancellation

of errors.

Additionally, there are tradeoffs to be made in the selection of the technique for

computing the Hankel transform of the acoustic field to obtain the Green's function.

The Fourier-Bessel series can again be used although it is computationally quite slow.

Additionally, the input field data is required on a non-uniform grid which is related

to the seros of a Bessel function. Thus, the data must either be produced on such

a grid, or else interpolated to this grid. There are several issues associated with the

interpolation of shallow water fields which are not encountered in the interpolation of

deep water fields. Also, although the Abel/Fourier method for performing the Han-

kel transform was found to be successful in synthesizing the field from the Green's

function, it appears to work poorly in the context of inverting the field to obtain the

Green's function. Although the precise reasons for this are not completely under-

stood, the problem appears to be related to the rapid variation of the field versus

the less-rapid variation of the Green's function. In particular, we have found that

the Abel/Fourier method works well when applied to the field, only when the field is

highly oversampled. Presumably, the problem is with the state equation method[141

for determining the Abel transform when the input data is rapidly varying. Alternate

Abel transform algorithms have other disadvantages. For example, techniques based

on convolution on a square-root grid tend to concentrate the sampling away from the

origin as opposed to near the origin where the field may be most rapidly varying.

Despite these difficulties, it is possible to construct a valid numerical simulation

which inverts a synthetically generated shallow water acoustic field to obtain the

bottom reflection coefficient. We have used this simulation to study the effects various
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parameters have on the quality of the inverted reflection coefficient. In the remainder

of this section, we will focus only on effects of differing source and receiver depths

and their relationship to the invariant critical depth, defined in the prior section. In

order to do this, several numerical examples of the simulation will be presented and

issues such as algorithm selection will be simultaneously considered.

To begin the discussion, we consider the geoacoustic model previously presented

in Table 4.1. Note that in this model, both the source and receiver exceed the in-

variant critical depth of r/ko = 5.355 m and thus there will be at least two points

of infinite sensitivity which will occur in obtaining the bottom reflection coefficient.

The magnitude and phase of the corresponding Green's function, plotted to a max-

imum value of k, = 0.6 are shown in Figure 5.20. In the example to be discussed,

we have chosen to examine the inversion only for values of k, less than the water

wavenumber, ko = 0.58666, and all wavenumber related functions will be displayed to

approximately thla maximum value of k,.

1024 samples of the Green's function, windowed to a maximum value of k, =

1.0 were used as input to the hybrid method for synthetic field generation. The

Abel/Fourier method for computing the Hankel transform was selected and the resul-

tant continuum and total fields were computed to a maximum range of 3217 m at a

range interval of 3.14 m. The magnitudes of these fields as a function of range were

previously shown in Figures 4.15 and 4.17 of Chapter 4. In producing the continuum

portion of the field, we have also chosen to remove the virtual pole and to re-add

its contribution analytically to the field. This was done as a means of assuring that

the inverse process does not undo any degradation incurred in the synthesis, process.

In other words, the two dominant con'ributions to the field were actually generated

based on analytic expressions for their modal forms, although the inversion technique

is completely numerical and does not use these analytic expressions. It is stressed

that the remaining portion of the field must be included in order to assure that an

accurate reflection coefficient estimate results from the inversion.
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Figure 5.20: Magnitude and phase of the Pekeris model Green's function.
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A projection-based Hankel transform algorithm which differs from the Abel/Fourier

method was selected as the means for obtaining the Green's function estimate from

the synthetic acoustic field. As pointed out previously, we encountered difficulty

in applying the Abel/Fourier method to the rapidly varying acoustic field. Severe

degradation was noted in the resulting Green's function, which was presumably due

to errors in the numerical Abel transform when it was applied to the rapidly varying

field. Instead, we chose to use the dual algorithm for computing the Hankel transform

which consists of first performing an inverse Fourier transform and then performing

an inverse Abel transform. The application of the inverse Fourier transform tends to

reduce much of the rapid variation in the data prior to the application of the inverse

Abel transform. The method will be referred to as the Fourier-'/Abel - ' method and

it is the dual algorithm in the following sense.

Projection algorithms for computing the Hankel transform are based on the projection-

slice theorem for two-dimensional functions. Because of the symmetry of the forward

and inverse Fourier transforms, the projection-slice theorem can be applied in either

direction. The implication is that a slice in the frequency (wavenumber) domain can

be obtained in two ways, 1) by first computing the projection of the two-dimensional

function and then computing its one-dimensional Fourier transform or 2) by first

computing a one-dimensional inverse Fourier transform and then computing its back-

projection. In the case that the underlying functions are circularly symmetry, the

projection operation becomes an Abel transform and the backprojection operation

becomes an inverse Abel transform [151. By relating the Hankel transform to the

two-dimensional Fourier transform of a circularly symmetric function, it becomes ap-

parent that the Abel/Fourier and Fourier'/Abel- l techniques are dual methods for

computation of the Hankel transform.

Furthermore, as pointed out by Bracewell, the forward and inverse Abel transforms

have the similar forms

A(y) = 2j _( d (5.30)
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and

f) (y2 2)1/2 dy (5.31)

where f(z) represents the original function, fA(y) represents its Abel transform, and

fA(y) represents the derivative of fA(y) with respect to y. The fact that a derivative is

present, and the similar forms of the forward and inverse transforms is not surprising,

from the following line of reasoning. If f(z) and fA(y) are expressed on square-

root grids, i.e. F(X) = f(z2) and FA(y2) = f,(y), then FA(z) consists of a scale

factor times the half-order integral of F(z). In other words, their Laplace transforms

are related via the factor 1/s1/2. Thus, to compute the inverse of FA(z), we must

compute its half-order derivative. This may be performed, in turn, by first computing

its derivative and then computing its half-order integral. Therefore, the inverse Abel

transform can be performed by use of the derivative and Abel transform operations.

The additional factor z which appears in equation (5.30) but not in (5.31) is due to

the relationship between derivatives on uniform versus square-root grids.

It is noted that the dual algorithm for computing the Hankel transform, based on

the Fourier-'/Abel - l method, is actually comprised of the same building blocks used

in the Abel/Fourier method. That is, an FFT is used to compute the inverse Fourier

transform and the state-equation method is used to compute the Abel transform of the

function -fA,(y)/2,ry in order to derive the required inverse Abel transform. We have

used a first-order difference technique to approximate the derivative, although it is

recognized that other methods may yield better performance, including multiplication

by r prior to computing the inverse Fourier transform. In fact, the selection of the

algorithm which approximates the derivative is a key issue in other applications which

involve a backprojection operation, including medical CT and NMR tomography. An

exhaustive evaluation of the performance of the dual algorithm for computing the

Hankel transform has not been performed, although the performance of the state-

equation approach for computation of the Inverse Abel transform has been discussed

elsewhere. Instead, we have chosen this algorithm as one possible way to compute the
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Hankel transform of the rapidly varying acoustic field in a computationally efficient

manner.

The magnitude and phase of the inverted Green's function, obtained by applying

the Fourier-'/Abel- l method to the synthetic acoustic field to a range of 3217 m is

shown in Figure 5.21. In comparing the inverted Green's function in Figure 5.21 with

the true Green's function shown in Figure 5.20, it can be seen that their magnitudes

match quite well However, the agreement in phase behavior is less striking. We

point out however, that the interpretation of the phase of a function, particularly as

a means for comparing it with another function must be done carefully. For example,

if the principal value of the phase is defined over the interval -r to r, a function

which has the complex value Atei-' might be quite similar to a function which has

the value Aei+', yet their phase functions would look quite different. Additionally,

if the amplitude of a complex function is very small, slight errors in either the real

or imaginary parts can cause large variations, in phase. To demonstrate this further,

the real and imaginary parts of the true Green's function are shown in Figure 5.22,

and the real and imaginary parts of the inverted Green's function are shown in Figure

5.23. The two functions may appear to be more similar to each other using this

method of display, as compared with the previously shown magnitude/phase format.

The example points out that the interpretation of the phase differences between two

Green's functions must be done carefully.

To continue with the simulation example, the reflection coefficient was extracted

from the inverted Green's function using equation (5.15) and the resultant magnitude

and phase are shown in Figure 5.24. For reference, plots of the magnitude and phase

of the theoretical reflection coefficient for this model are shown in Figure 5.25. As

can be seen by comparing the two figures, there are striking differences between the

two functions. In particular, one might infer that the critical k, for this model is at

k, = 0.28 by examining the inverted reflection coefficient magnitude, when in fact the

actual critical k, is 0.48888. Additionally, the dip in the inverted reflection coefficient
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Figure 5.21: Magnitude and phase of the inverted Pekeris model Green's function.

This function was obtained by computing the Hankel transform of the total shallow

water field.
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Figure .22: Real and imaginary components of the Pekeris model Green's function.
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function. This function was obtained by computing the Hankel transform of the total

shallow water field.
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Figure 5.24: Magnitude and phase of the inverted reflection coefficient. This function

was obtained by computing the Hankel transform of the total shallow water field to

determine the Green's function and then extracting the reflection coefficient.
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magnitude at k, = 0.4 to 0.5 suggests that some complicated layered structure may

be present in the bottom, when in fact the model is a Pekeris model, i.e. the bottom

is a simple isovelocity halfspace. It is further noted that the functions agree quite

well for values of k, which exceed the theoretical critical value of k, and which do not

exceed the water wavenumber at k, = 0.58688.

A possible conjecture about the cause of the difference between the theoretical

reflection coefficient and the inverted reflection coefficient is that it is due to the win-

dowing implicit in computing the Hankel transform of a finite portion of the synthetic

field. In fact, the hybrid method for synthetic data generation provided a convenient

means for testing this hypothesis. To investigate this, the following numerical simu-

lation was performed. The hybrid method was used to produce only the continuum

portion of the field. The virtual mode contribution was again computed by using

its analytic form so that errors incurred in the synthesis of the continuum were not

undone in its inversion. The continuum portion of the field was inverted by.using

the Fourier-1/Abel -I method in order to estimate the function gc(k,) and the re-

sultant magnitude and phase functions are shown in Figure 5.26. For reference, the

magnitude and phase of the theoretical gc(k,) function for this model are shown in

Figure 5.27. It is noted that, in performing this simulation, the effects of the win-

dowing in range have been drastically reduced. In other words, because the trapped

mode portion of the field was not included and because the continuum portion of the

field has decayed significantly over the aperture of 3217 m, the effects of windowing

should be quite small The difference between the theoretical gc(k,) and inverted

gc(k,) functions is most probably due to the use of the asymptotic expression for the

virtual mode contribution as well other slight numerical errors in the simulation. To

derive the inverted reflection coefficient for this case in which the windowing effects

have been minimized, the theoretical gT(k,) function was added to the inverted gc(k,)

function prior to the use of equation (5.15). The magnitude and phase of the resulting

reflection coefficient are shown in Figure 5.28.
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Figure 5.28: Magnitude and phase of the inverted reflection coefficient. This function

was obtained by computing the Hankel transform of the continuum portion of the field,

adding the theoretical trapped portion of the Green's function and then extracting

the reflection coefficient.
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There are several points to be made concerning the redection coefficient derived

in this way. First, in comparing it with the theoretical reflection coefficient and the

reflection obtained from inverting the total field, it is apparent that some improve-

ment in the estimate has occurred at values of k, near the trapped mode locations.

This result is not surprising, as in the second method of inversion the trapped mode

contribution is included exactly and thus any degradations due to the windowing of

the trapped portion of the field are reduced. However, the most striking feature of

the reflection coefficient- obtained by inverting only the continuum and adding gT(k,)

analytically is that still exhibits incorrect behavior at values of k, from 0.25 to 0.4. In

particular, the reflection coefficient still indicates an incorrect critical k, even though

the effects of windowing have been drastically reduced. Apparently, the incorrect be-

havior of the reflection coefficient in this region cannot be attributed to a windowing

effect.

The poor behavior of the reflection coefficient can be attributed to the fundamen-

tal sensitivity of the inversion process in this interval. As pointed out previously, since

both the source and receiver are located below the critical depth, there must be at

least two points of infinite sensitivity for values of k, less than the water wavenum-

ber. It can be shown that there are exactly two points of infinite sensitivity for this

particular source/receiver configuration. These points, determined by the solution of

the equations sin kszt = 0 and sin k,z, = 0, are at k, = 0.2803 and k, = 0.3805. The

complete sensitivity function for this case is shown in Figure 5.29 and it is noted that

the two peaks are located at precisely these values of I,.

In comparing the sensitivity function with the inverted reflection coefficient func-

tions, it can be seen that the reflection coefficients differ from their true values in

the regions of k, at which the sensitivity is large. For example, in the region where

the inverted reflection coefficients exceed unity, near k, = 0.3, it can be seen that the

inversion is roughly 50 times more sensitive to any error in g(k,) versus the sensitivity

at low values of k,. Thus, we hypothesize that the errors in the reflection coefficient
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Figure 5.29: Sensitivity function for the Pekeris geoacoustic model.
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estimation are due to the large magnification of small errors which have occurred in

the process of generating a synthetic field and then inverting it. The small errors in

the simulation have occurred for reasons we have discussed earlier including use of the

asymptotic forms of the trapped and virtual modes, windowing of the continuum and

performance of the Hankel transform algorithms. We point out that, although this

effect has been discussed in the context of inverting synthetic data, the magnification

of error can also be anticipated in the inversion of actual experimental fields.

As a further example of this effect, the simulation was re-run for the identical

geoacoustic model except that the source and receiver were raised slightly within

the waveguide, so that their positions did not exceed the invariant critical depth

of 5.355 m. In particular, both were raised by 2.0 m so that zo = 4.096 m and

z = 5.03579 m. The magnitude and phase of the theoretical Green's function for the

displaced case are shown in Figure 5.30. By examining the magnitude and phase, it is

seen that no invariant zeros of g(k,) or g(k,) are present, as expected. The theoretical

sensitivity function for the case of the displaced source and receiver, shown in Figure

5.31, also confirms that there are no points of infinite sensitivity. In fact, by examining

this curve, we see that it is nearly flat over the entire range of k, from zero to the

water wavenumber, excluding the dips near the virtual and trapped mode locations

at which the sensitivity is predictably smaller, i.e. an even better reflection coefficient

estimate is to be expected here. The magnitude and residual phase of the field for

the case of the displaced source and receiver is shown in Figure 5.32. Note that it

does not appear to be significantly different than the field obtained for the previous

model as shown in Figure 4.17 except for perhaps slight changes in the positions of

the nulls and peaks in the near-field. In Figure 5.33 is shown the.magnitude and

phase of the inverted Green's function for the displaced source/receiver obtained by

computing the Hankel transform of the total field using the Fourier-L/Abel - I method.

In Figure 5.34 is shown the magnitude and phase of the inverted reflection coefficient.

From this figure it is apparent that a much improved reflection coefficient estimate

has been obtained with respect to the reflection coefficient obtained for the original
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source/receiver configuration. In particular, the reflection coefficient no longer exceeds

unity at an incorrect value of k, and its behavior in the region k, = 0.25 to 0.4 is

much closer to the behavior of the theoretical reflection coefficient here. The numerical

simulation has confirmed that an improvement in the reflection coefficient estimate

can be obtained by simply changing the positions of the source and receiver so that

the critical depth is not exceeded, i.e. in order to avoid the presence of invariant zeros.

In fact, the quality of the reflection coefficient obtained in the numerical simu-

lation, even for the case of the displaced source and receiver which do not exceed

the critical depth, is a bit disappointing. It represents the net effect of all numerical

errors in the simulation as well as the errors which occur from processing only a fi-

nite portion of the total field. It is our conjecture that the primary source of error

is in the use of the asymptotic expressions for the virtual and trapped modes. To

investigate this further, the simulations were rn again except that the virtual mode

was not extracted and added analytically to the field. Rather, it was included as part

of gc(k,) and was incorporated within the field by computing the Hankel transform

of the Green's function with just the single trapped pole removed. The total field

was computed by adding the trapped mode contribution to the continuum. The cor-

responding inverted reflection coefficient is shown in Figure 5.35 for the case of the

source and receiver deeper than the critical depth. Although this reflection coefficient

is slightly different than that shown in Figure 5.24, it still indicates poor behavior in

the region of high sensitivity. Finally, the simulation was run in an identical manner

except that the source and receiver were located at depths which did not exceed the

critical depth. The corresponding inverted reflection coefficient magnitude and phase

are shown in Figure 5.36. Its agreement with the theoretical reflection coefficient,

shown in Figure 5.25 is apparent. The two curves again confirm the improvement in

the reflection coefficient estimate which results from designing the experiment so that

the invariant critical depth is not exceeded.

In summary, we have discussed a numerical simulation method for inverting syn-
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Figure 5.35: Magnitude and phase of the inverted refection coefficient for the case in

which both the source and receiver exceeded the invariant critical depth. The method

used to generate the synthetic data included the virtual mode within gc(k,).
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Figure 5.36: Magnitude and phase of the inverted reflection coefficient for the case of

the displaced source and receiver. The method used to generate the synthetic data

included the virtual mode within gc(k,).
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thetic acoustic shallow water fields to obtain an estimate of the bottom reflection

coefficient. There are a number of difficulties involved in constructing a simulation

of this type, including separating the degradations incurred in the synthesis process

versus the inversion process, and cancellation of errors. A particular method for con-

structing a valid simulation which avoids many of these difficulties was presented. An

example of the simulation was given as a demonstration of the improvement in the re-

flection coefficient that can be obtained if the invariant critical depth is not exceeded.

The simulation indicated that the primary source of degradation is not the window-

ing effect, as had been previously suspected, but rather the inherent fundamental

sensitivity of the inversion if invariant zeros are present.
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5.5 Summary

In this chapter, we have discussed a number of aspects related to the inversion

of shallow water acoustic fields. We pointed out that this problem is difficult and is

currently not completely solved. Nevertheless, it is felt that the ideas and methods

presented in this chapter represent fundamental and important strides towards the

solution.

In particular, we asserted that the hybrid method, discussed in Chapter 4, may

form a key element in a forward modelling, or analysis-by-synthesis approach. The

hybrid method has a number of advantages including speed, accuracy, and a direct

relationship between alternate and simpler methods. However, we chose not to make

the solution of the inverse problem by forward modelling a major thrust of our re-

search. Rather, we chose to examine other aspects of the shallow water acoustic

inversion problem.

Specifically, in the second section of this chapter, we discussed a related question

of what to forward model. We proposed that the residual phase of the shallow wa-

ter acoustic field contains valuable information which can be used both in forward

modelling methods and in other applications as well. In order to demonstrate this,

we determined the residual phase for a number of different fields, both synthetic and

experimental. We demonstrated that the residual phase, in some cases, can be used

to accurately determine the wavenumber of a dominant mode. In fact, we found the

results of the computation and interpretation of residual phase to be competitive with

other methods for extracting information about the waveguide, including the Hankel

transform. It is felt that a combination of several of these techniques may represent

the best way in which to solve the general inverse problem. Other applications of

the residual phase were discussed, including determination of the source phase, which

is required in the method for extracting the reflection coefficient, interpretation and

correlation with range-varying parameters, and potential utility in methods for syn-
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thetically generating fields in range-variant environments.

In the third section of this chapter, we reviewed the theory of extracting the

reflection coefficient from measurements in a reverberant waveguide. We pointed out

that the theory of the extended Green's function and reflectivity series, discussed

earlier in this thesis, may be applied to the more general problem of extracting the

reflection from measurements in a non-isovelocity waveguide. Rather than focus on

the more complex cases, we chose instead to define and investigate the sensitivity

function. This function is a quantitative measure of how ill-conditioned or sensitive

the inversion is to errors in the Green's function. A number of theoretical properties

of the sensitivity function were derived and its close relationship with the Green's

function was developed. Perhaps the most interesting property is that points of infinite

sensitivity correspond to invariant zeros of the Green's function or its imaginary part

only. The connection was also made via the statement of a number of theorems.

One important practical implication of these results is the definition of the invari-

ant critical depth. This parameter suggests a guideline for conducting an acoustic

experiment in which the reflection coefficient is to be extracted from measurements

in shallow water. In particular, we showed that if the source and receiver exceed the

invariant critical depth, i.e. are located too close to the medium being probed, at

least one point of infinite sensitivity is guaranteed in the inversion. Conversely, if

neither instrument exceeds the critical depth, no points of infinite sensitivity can be

incurred, at least for pre-critical values of horizontal wavenumber.

As a means for further justifying these results, we presented a physical explanation

in terms of the cancellation of upgoing and downgoing plane-wave components within

the waveguide. The physical argument might also prove to be useful in extending these

results to other applications, including non-isovelocity waveguides. Several results

involving invariant zeros and points of infinite sensitivity were extended to these cases

and the need for further study was suggested.
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Finally, in the fourth section of the chapter, we considered the inversion of syn-

thetic shallow water acoustic fields. In doing so, we provided the motivation for

solving the experimental inversion problem in terms of studying the synthetic inver-

sion problem. A number of issues involving algorithms, sampling grids, and apertures

were discussed. We proposed a particular method for inverting synthetic data, which

effectively separates the degradations in the synthesis process itself from effects in-

curred in the inversion process. The method was used to demonstrate the implications

of the sensitivity function theory and the invariant critical depth.
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Chapter 6

Reconstruction of a

Complex-Valued Acoustic Field

From its Real or Imaginary Part

6.1 Introduction

In this chapter, we discuss the reconstruction of a complex-valued acoustic field

from its real or imaginary part. The reconstruction method is based on the ap-

proximate real-part/imaginary-part sufficiency condition for outgoing acoustic fields

discussed in Chapter 3. An intuitive explanation for this condition is obtained by

exploiting the similarity between a complex-valued outwardly propagating field and

a complex-valued signal which has a one-sided Fourier transform. The implication

is that only one component of the field or signal is required and that the alternate

component can be reconstructed. There exist several methods for performing the

reconstruction and issues related to the reconstruction of sampled fields, required

sampling rate, and algorithm selection will be discussed in this chapter. Additionally,

because the underlying assumption on which the real-part/imaginary-part sufficiency
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condition is based is only an approximation, i.e. that the Hilbert-Hankel transform

can be used to approximately synthesize the acoustic field, characterizing the quality

of the approximation, particularly in the context of a reconstruction scheme, is quite

important. In order to do this, we will present a number of examples of the recon-

struction method applied to various acoustic fields which vary in complexity from

simple free-space fields to actual experimental fields which have interacted with the

surface and bottom of a shallow ocean.

In this section, we will provide some motivation for developing an algorithm for

reconstructing one component from the alternate quadrature component. We will

also address the question of how measurements of a complex-valued field are obtained

in the first place, when in a strictly practical sense, the pressure field due to a point

source must certainly be a real-valued quantity. The relationship between quadrature

demodulation, sampling, the real-part/imaginary-part sufficiency condition, and the

reconstruction method will be discussed.

In acoustical signal processing, the three-dimensional wave equation is used as the

model which describes the propagation of sound. Thus, the equation for the acoustic

sound pressure field p(r, t) within a layer is

a 2 a 2 as 1 a 2p(r,t)
2 2 2 1)p(rt) = s(r,t) (6.1)

47Z2 + 3;7 387)P rl (r) at2

where the quantity s(r,t) on the right-hand of this equation is a general complex-

valued source field. The solution of the partial differential equation is linear with

respect to the source s(r, t). In other words, doubling the source strength will cause

a doubling of the pressure field p(r, t) and the pressure field due to the coherent sum

of the sources must consist of the coherent sum of the pressure fields due to each

individual source. In previous chapters of this thesis, we have chosen the specific

form of the source field as

s(r, t) = ejwi6(r) (6.2)

It may be shown in a straightforward manner that e-i' represents a temporal eigen-
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function of the wave equation. That is, if the source on the right-hand side of the

wave equation is harmonic in time, the pressure field on the left-hand side must also

be harmonic with the same functional form. Therefore, the pressure field pl(r, t) due

to the harmonic point source s(r, t) must be of the form

pi (r, t) = p(r)C-i., (6.3)

If these forms for s(r,t) and p(r,t) are substituted into the wave equation, the

Helmholtz equation results. Additionally, it is the complex-valued quantity p(r) which

is of fundamental importance in the context of inversion, i.e. it is p(r) which is directly

related to g(k,) and the bottom reflection coefficient RB(k,).

In practice, a realistic acoustic source cannot have the complex-valued form shown

in equation (6.2), but rather must be of the general real-valued form

32(r, t) = A cos(wt + 9)6(r) (6.4)

where A and are arbitrary constants. Note that even though the source is real-

valued, the linearity of the wave equation can be exploited to determine the complex-

valued pressure p(r). In particular, we see that if the realistic source is re-written

as

s 2(r, t) = 2(c-i(w.+) + '"'"+°)6(r) (6.5)2

then

32(rt) = ( ) + (6.6)

From linearity, the pressure response, p2(r, t) to the realistic source must therefore

have the form

P2(r, t) = ( -i'p (r, t) + Sp;(r, t) ) (6.7)

so that

P2(r, t) = A Re(p(r)c-i("'+)} (6.8)

Note that the total response to the real-valued source is also real-valued and that the

desired quantity, p(r) is complex-valued.
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There are several methods by which p(r) can be extracted from p2(r,t). F'

example, if p2(r, t) is available at a given range for all time, the one-dimensional tem-

poral Fourier transform can be applied and evaluated at the frequency w to obtain

Ap(r)e- ih/2. The complex number p(r) is easily extracted from this quantity, assum-

ing that the complex source gain Ae-ig is known. The transform can be computed

using the discrete Fourier transform if a temporally sampled version of P2(r, t) is avail-

able. This method is usually not practical however, due to the large sampling rate

which is required - the bandwidth of the signal is 2w, where w is'the frequency of the

harmonic acoustic source.

A more typical method employed is quadrature demodulation [1] [2] [3j. In this

method, p2(r, t) at each range point is multiplied by coswt and integrated over time

to yield ARe{p(r)e-i"}. Similarly, p2(r, t) is multiplied by sin wt and integrated over

time to yield AIm{p(r)e-i). The two quantities can be combined and divided by

the complex source gain to yield p(r). Alternately, the quantity Ac'-Sp(r) can be

directly processed and the source gain can be eliminated later. In practice, quadrature

demodulation is implemented in analog circuitry. The multiplication operation is

performed using a mixer and the integration operation is approximated using a low-

pass filter.

For example, a block diagram of the data acquisition harware, used in acquiring

the experimental acoustic fields presented in this thesis, is shown in Figure 6.1. As can

be seen from the figure, the quadrature demodulation is performed to obtain range

samples of p(r), which are then digitized and stored. Of critical importance in this

data acquisition technique is that the separate cos wt and sin wt oscillators in the mixer

remain in perfect synchrony. Additionally, if there are any differences in the gain or

phase through the two channels, the quadrature demodulation result will be imperfect

and thus the samples of p(r) will be corrupted. Furthermore, the hardware which

performs the operations shown in this block diagram is typically moored underwater.

Maintenance of the conditions of perfect synchrony and identical gains through the
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Figure 6.1: Block diagram of data acquisition hardware.
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two channels may be difficult to achieve, particularly in the harsh environment in

which the hardware is located.

In this chapter, we will discuss a reconstruction algorithm for obtaining real (or

imaginary) samples of p(r) from imaginary (or real) samples of p(r). There are sev-

eral practical advantages of a software reconstruction method in which one of these

channels is recovered from samples of the alternate channel. In particular, a large

portion of the data acquisition hardware shown in Figure 6.1 can be eliminated and

digital storage requirements can be reduced. Additionally, the requirements of perfect

synchrony and identical channel gains are no longer of necessity. It is still essential to

establish the complex gain through the single channel which remains, if the inversion

to obtain the reflection coefficient is to be performed, but we point out that the re-

construction method does not depend on this knowledge. Additionally, as discussed

earlier, it may be possible to determine the phase portion of this complex gain directly

from the residual phase of the field, or reconstructed field.

An essential point to be made here is the distinction between the sampling rate

in range and the real-part/imaginary-part sufficiency condition for p(r). In general,

it is not possible to double the sampling rate of some arbitrary complex-valued func-

tion of range, and eliminate one of the sampled channels, without loss of information.

In fact, if the real and imaginary components of the function p(r) are independent

of each other, it is not possible to reconstruct the real (or imaginary) component

of p(r) from a sampled version of the imaginary (or real) component even if the

sampling rate is infinite. The fact that p(r) has a real-part/imaginary-part suffi-

ciency condition is not related to the sampling rate but rather is a consequence of

the applicability of the Hilbert-Hankel transform. However, there is a consequence of

the real-part/imaginary-part sufficiency condition which is related to sampling. As

pointed out in Chapter 3, if both the real and imaginary components are sampled,

the real-part/imaginary-part sufficiency implies that the sampling rate can be reduced

by a factor of two, as compared with the conventional sampling rate of two complex
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samples per water wavelength.

The algorithm for reconstruction is now discussed. In Chapter 3 we showed that

an outgoing acoustic field can be approximated as

p(r) p..ir) r (6.9)

where p.(r) is the asymptotic Hilbert-Hankel transform of the Green's function g(k),

i.e.

.. () also showed =(r) and thus p() are approimately causal if the field is

We also showed that pu(r) and thus p.a(r) are approximately causal if the field is

approximated by the Hilbert-Hankel transform, and thus

P(r)r/2u(r) g(k,')(2r)1/2e'-(,-/4 dk, (6.11)

which implies that Re[p(r)u(r)rl/21 and Im[p(r)u(r)r/2 ] form an approximate Hilbert

transform pair. When sampled versions ofthese signals are involved, there exist

several methods for determining the Hilbert transform [41 [51. In the method we chose,

a sampled version of Re[p(r)u(r)rl/2 + jIm[p(r)u(r)r/2] is obtained by computing the

FFT of Re[p(r)u(r)r/2] (or jIm[p(r)u(r)r/21), multiplying by 2u(k,), and computing

the inverse FFT. An investigation of alternate methods for computing the Hilbert

transform has not been done in the context of acoustic field reconstruction, however

we point out that a discrete Hilbert transform based on an optimal FIR filter [61 [7]

may have application to this problem.

In the remaining sections of this chapter, we will apply this reconstruction al-

gorithm to a number of deep and shallow water acoustic fields. A large number of

examples will be presented for several reasons. First, the fact that some underlying

assumptions are involved suggests that the reconstruction algorithm might perform

well in certain cases but not in others. In fact, we have not found this to be the case

and a variety of examples has been chosen as a demonstration. Second, several exam-

ple fields which have known analytic expressions have been selected so that the issue
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of synthetic generation, particularly with regard to use of the Hankel transform or

Hilbert-Hankel transform, is completely decoupled from the reconstruction method.

The- examples chosen are also indicative of the fact that the reconstruction method

is applicable to both deep and shallow water coherent processing applications, in

which information about the ocean bottom is to be determined from a single sampled

channel. Finally, the reconstruction method will be applied to several experimental

acoustic fields in order to demonstrate that it can be applied not only in theory, but

in practice as well.
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6.2 Reconstruction of Simple Acoustic Fields

We begin this discussion by considering the simplest possible acoustic field -

the field in free space due a point time-harmonic source. We will further choose the

source and receiver for this example to be of nearly identical heights with respect to an

arbitrary reference plane as shown in Figure 6.2. The heights were chosen as nearly

identical as opposed to exactly identical to avoid the issues related to the singular

behavior of the pressure field at zero range in the latter case. We point out that,

ironically, this simplest field yields the poorest results in the context of reconstruction

of one channel from the alternate channel. The reason for this, related to the required

sampling rate for this field, will be explained shortly. The parameters chosen for this

example are also indicated in Figure 6.2. This field can be expressed in closed-form

as

p(r) (6.12)

where ko is the water wavenumber and where R = (r2 + (z - Zo)2)1/ 2 . Using this

expression, we have plotted the corresponding field magnitude and residual phase,

using k, = ko in Figure 6.3. The simplicity of the field, when displayed in this

manner, is apparent. The magnitude decays as 1/r since R r for r > Iz - zoi, as

can be verified by examining the magnitude at r = 1000 m where the field magnitude

is 0.001. The residual phase, #(r) quickly approaches the constant value of zero since

+(r) = P{arg({p(r)} - kr} = P{kR - kr} ~ 0 (6.13)

for r > 1z - zol. The rapidly varying real and imaginary components for this field are

displayed in Figure 6.4. In the reconstruction scheme, one of these components must

be obtained from the other.

Previously, it was suggested that in order to adequately sample an acoustic field,

two complex samples per water wavelength 1 were required [31 [81 Apparently, it seems

'The water wavelength Ao is defined as 2r/ko, where ko is the water wavenumber.
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Figure 6.3: Magnitude and residual phase of free-space feld.
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Figure 6.4: Real and imaginary components of the free-space ield.
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that there must be some loss of information or reduction in the number of degrees

of freedom when the real or imaginary parts of these samples are discarded and then

reconstructed. In fact, no information is lost, but we will postpone a discussion of

why this is the case until later. Thus, we will choose the sampling rate for this

example as four complex samples per water wavelength. For the selected parameters

this corresponds to sampling the acoustic field once every 1.7 m. We again point

out that in general, complex sampling cannot be replaced by simply doubling the

sampling rate of a single channel.

To perform the reconstruction, the real part of the field shown in Figure 6.4

was set to zero and 1024 samples of the imaginary part were retained. Thus, the

imaginary component, sampled every 1.7 m from r = 0 to r = 1745 m, was used in the

reconstruction algorithm. In using an aperture of this size, the effects of windowing

may be quite substantial in the context in inverting the field to extract a Green's

function. An exhaustive study of how windowing and the number of samples affects

the reconstruction has not been performed. However, we have found that typical

apertures of this size yield good reconstruction results and the performance of the

algorithm does not appear to be highly sensitive to the choice of these parameters.

The results of the reconstruction algorithm are shown in Figure 6.5. The top curve

shows the true real part of the field and the bottom curve shows the reconstructed real

part. The rapidly varying nature of the components in this figure makes it difficult to

assess the quality the reconstruction. Apparently, some other display or related mea;

surement must be determined. We have chosen two other methods which are perhaps

more indicative of the algorithm's performance. The first method is to recompute the

field magnitude and residual phase using the reconstructed channel and the original

alternate channel. By comparing the magnitude and residual phase after reconstruc-

tion with the original magnitude and residual phase, it is possible to qualitatively

assess the performance of the reconstruction technique. Unfortunately, although the

display of magnitude and residual phase is quite meaningful, the reconstructed channel
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and the true alternate channel are mixed together in this representation. Alternately,

we have chosen to display the magnitude of the difference between the reconstructed

channel and its true version. We will refer to this measurement as the error signal

and it will typically be plotted along with the magnitude of the true field, both as a

function of range, as an indication of its relative importance.

The magnitude and residual phase of the reconstructed field are shown in Figure

6.6. These curves are to be compared with the true magnitude and residual phase

previously displayed in Figure 6.3. As can be seen, the reconstructed field magnitude

decays at the correct /r rate and the residual phase is nearly fiat. There is some

ringing in the residual phase however and the overall quality of this reconstruction is

certainly not perfect. Ironically, as pointed out previously, although this field has the

simplest form the quality of its reconstruction is the worst of any example we have

found.

In this example, the field has not been adequately sampled due to the fact that

z Zo. As pointed out in Chapter 4, it may not always be appropriate to consider

the Green's function as wavenumber limited at the water wavenumber particularly

when z zo. As an example of this, the magnitude and phase of the theoretical

Green's function for this field are displayed in Figure 6.7. The peak in the magnitude

function, which occurs at k, = ko where k,o = 0, is finite only because of plotting arti-

facts. From the figure, it is apparent that the wavenumberdecomposition for this field

contains components at values significantly higher than the water wavenumber. For

example, at twice the water wavenumber there are components present with ampli-

tudes greater than ten-percent of the amplitudes of the low-wavenumbercomponents.

2 The implication is that in order to adequately represent this field, the sampling rate

should be much larger than two complex samples per water wavelength. The quality
2 Although the Green's function is slowly decaying, its imaginary part is zero for values of k, greater

than the water wavenumber, ko. This is an example of the property discussed in Chapter 4 related to

the finite-extent of the imaginary part of the total deep water Green's function.
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Figure 6.6: Magnitude and residual phase of the reconstructed free-space field.
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of the reconstruction of this field is perhaps more an indication of the fact that the

field was undersampled initially than any other effect.

The error signal for the reconstruction in this example is shown as the bottom

curve in Figure 6.8 along with the magnitude of the true field shown as the top curve.

The error curve indicates that the reconstruction error is at least one to two orders

of magnitude below the intensity of the field at all ranges except the near-field. We

will consider the behavior in the near-field in more detail in later examples in which

the field has been adequately sampled initially. This example has been included to

show that even if this simple field is undersampled, the reconstructed results do not

exhibit significant degradation.

In the next example, the geoacoustic model is identical to the one just considered

except that the source and receiver have been vertically displaced, as is shown in

Figure 6.9. The field is still a free-space field which can be synthetically generated

using its closed-form expression. However, the assumption that the corresponding

Green's function is wavenumber limited is much more realistic in this case due to the

displaced source and receiver as can be concluded by examining the magnitude of the

theoretical Green's function, shown in Figure 6.10. Therefore, a sampling rate of two

complex samples or four real samples is certainly adequate in this case and we will

note a significant improvement in the quality of the reconstruction for this example.

In Figure 6.11 is shown the true magnitude and residual phase of this field. The

rapid variation of the residual phase, particularly in the near-field, indicates that a

different choice of k,, used to compute the residual phase, might have been more

effective in displaying a slowly varying quantity directly related to the phase of the

field. Nevertheless, we will retain the definition of residual phase provided earlier for

consistency among the examples to be discussed. In Figure 6.12, the rapidly varying

real and imaginary parts of this field are shown. In a reconstruction scheme, one

of these components must be determined from the other. In further examples, we
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Figure 6.9: Geoacoustic model for a free-space field with source and receiver of dis-

placed heights with respect to a reference plane.
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Figure 6.11: Magnitude and residual phase of the free-space field with displaced source

and receiver.
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will suppress the display of these components as they present very little additional

information except that the quantities involved are rapidly varying. Similarly, the

display of the true signal versus its reconstruction will be suppressed. In Figure 6.13 is

shown the magnitude and residual phase of the reconstructed field. The reconstruction

was performed by using 1024 samples of the imaginary part of the field spaced at

an interval of 1.7 m. As can be seen by comparing Figure 6.13 with Figure 6.11,

the quality of the reconstruction is quite good except for the behavior in the near-

field. As additional evidence of this, the error signal and the true field magnitude

are displayed in Figure 6.14. As can be seen, the error signal falls more than an

order of magnitude below the intensity of the field in the first 25 m 4A0. The

error drops rapidly to at least three orders of magnitude below the true intensity at

the remaining ranges. In order to more clearly show the degradation in the near-

field, we have included expanded plots of the true magnitude and residual phase and

the reconstructed magnitude and residual phase in Figure 6.15 and 6.16 respectively.

The figures again show the high quality of reconstruction at ranges greater than

about 25 m and also indicate significance of the degradation in the near-field.

The degradation in the reconstructed near-field can be attributed to two effects.

First, the assumption that the acoustic field can be synthesized using the Hilbert-

Hankel transform, i.e. using positive wavenumbers only, is not strictly valid at very

short ranges. Second, the asymptotic expressions, obtained from the asymptotic

Hilbert-Hankel transform, which are used in the reconstruction method are not valid

at short ranges. In the examples which follow, we will see that the reconstruction

method consistently yields some degradation in the near-field. In many coherent

processing applications, this degradation may not be significant but we point out

that it is a limitation of the theory and method for reconstruction which we have

proposed.

In the previous two examples, the acoustic fields were generated by using their

known analytic forms and the quality of the reconstruction was assessed. In more re-
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true field magnitude (top curve) of the free-space field with displaced source and
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Figure 6.15: Expanded versions of the near-field magnitude and residual phase for

the free-space field with displaced source and receiver.
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alistic acoustic propagation situations, there are boundaries which are present which

complicate the behavior of the field. In most cases involving boundaries, closed-form

expressions for the field are not available and a numerical method must be introduced

in order to generate the synthetic field. However, if the boundary is particularly sim-

ple, a closed-form expression can be obtained. For example, if the boundary consists

of a pressure-release surface, the field can be simply described and its correspond-

ing behavior is referred to as the Lloyd mirror effect [91. We will consider this field

as the next reconstruction example. The example was chosen to indicated that the

reconstruction algorithm applies to non-free-space fields. Additionally, the method

for synthetically generating this field is completely decoupled from the reconstruction

technique.

The geoacoustic model for the Lloyd mirror field is described in Figure 6.17. The

corresponding field can be written in closed-form as

p(r) = eoR (6.14)Ro Rl

where Ro = (r2 + ( - 0)2)1/2 and = ( + ( + o)2)1/2 . The field can be inter-

preted as the sum of a direct field plus a reflected field which has interacted with the

pressure-release boundary, which has a reflection coefficient of -1. The magnitude

and residual phase of this field, where the residual phase has been computed using

ke, = ko, are shown in Figure 6.18. The nulls and peaks in the field are characteristic

of the constructive and destructive interference between the direct and reflected fields

for this model The reconstructed magnitude and residual phase are next shown in

Figure 6.19 and their similarity with the true magnitude and residual phase shown

in the preceding figure is apparent. Additionally, the first 250 m of the true and

reconstructed magnitude/residual phase curves are shown in Figures 6.20 and 6.21

respectively.

The quality of the reconstruction, even in the near-field, can be seen from these

figures.
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Figure 6.17: Geoacoustic model for the Lloyd mirror feid corresponding to the sum

of a direct field plus a field which has interacted with a pressure-release bottom.
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Figure 6.18: Magnitude and residual phase of the Lloyd mirror field.
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Figure 6.19: Magnitude and residual phase of the reconstructed Lloyd mirror field.
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Figure 6.20: Expanded versions of the near-field magnitude and residual phase for

the Lloyd mirror field.
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Figure 6.21: Expanded versions of the reconstructed near-field magnitude and residual

phase for the Lloyd mirror field.
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In the previous examples, we have chosen to sample at a rate of four reai samples

per water wavelength and then reconstruct the alternate channel. In fact, the sampling

rate can be reduced so that the field can be reconstructed from slightly more than two

real samples per water wavelength. Initially, it seems that some loss of information

must occur here. That is, if the field is adequately represented by two complex

samples per water wavelength, then apparently there must be some loss if the real (or

imaginary) parts of these two samples are discarded or not collected. However, there

is no loss of information as is now explained.

As discussed in Chapter 3, if the Green's function corresponding to a particular

field is wavenumber limited to the water wavenumber, actually only one complex

sample or two real samples per water wavelength are required to adequately represent

the field. This stems from the fact that the field is outgoing and therefore, only

positive wavenumbers are required for its synthesis. Essentially, the one-sided nature

of the wavenumber decomposition makes the acoustic field a special case of more

general complex-valued functions which are synthesized using a Hankel transform.

The implication is that the sampling rate of the field may be reduced by a factor of

two due to the one-sided nature of its wavenumber decomposition. In practice, we

have found that the minimum sampling rate should be slightly larger than this to

accommodate cases when the Green's function is not precisely wavenumber limited.

As an example of this, we will examine the reconstruction of the real part of the

Lloyd mirror field which has been sampled at an average rate which is ten percent

higher than the minimum rate of one complex sample per water wavelength - i.e.

the imaginary part of the field was sampled at a rate of 22 samples per 10 A0. The

magnitude and residual phase of the reconstructed field are shown in Figure 6.22.

The reconstruction is quite good as can be seen by comparing this figure with the

true magnitude and residual phase in Figure 6.18. Additionally, the error signal for

the reconstruction is shown, along with the true field magnitude, in Figure 6.23.

One additional point is to be made here. The reconstruction technique should
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Figure 6.22: Magnitude and residual phase of the reconstructed Lloyd mirror field.

The imaginary component was sampled at an average rate of 2.2 samples per water

wavelength and the real part was reconstructed.
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Figure 6.23: Error in the reconstruction of the real component (bottom curve) ob-

tained from 2.2 samples of the imaginary component per water wavelength, and true

field magnitude (top curve) of the Lloyd mirror field.
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not be thought of a method for obtaining only the magnitude of the eid from a

single component. To emphasize this, we have always shown accompanying residual

phase curves in the examination of the reconstruction technique. It may be possible

to obtain a reasonable estimate of the magnitude only from a single channel by an

envelope detection scheme, where it is assumed that the phase of the field varies at

a much larger rate than the magnitude. As an example of this, we have plotted the

absolute value of the real part of the Lloyd mirror field in Figure 6.24. The dashed

line in the figure indicates the true magnitude of the field. The similrxity of the

envelope of the rapidly varying signal and the true magnitude suggests that a simpler

scheme, such as averaging the absolute value of a component,i.e. performing an

envelope detection, may produce a reasonable estimate of the magnitude only. In the

reconstruction scheme we are proposing however, not only is an accurate estimate of

the. magnitude obtained but an accurate estimate of the phase is obtained as well. The

reconstruction technique is thus applicable in coherent processing chemes in which

both the magnitude and phase are required but in which only one of tie corresponding

quadrature channels is collected.
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Figure 6.24: Absolute value of the real part of the Lloyd mirror eld. Dashed line

depicts theoretical magnitude of the field.
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6.3 Reconstruction of Deep Water Acoustic Fields

In the previous section, fields which have known analytic forms have been used

to demonstrate the reconstruction method. It is of interest to assess the quality of

the reconstruction algorithm under more realistic circumstances which include, for

example, fields which interact with a layered ocean bottom. However, convenient

closed-form expressions for these fields do not exist and a technique for synthetic

data generation must be used. The synthetic data generation method we have chosen

consists of computing the Hankel transform of the reflected portion of the Green's

function using the Abel/Fourier method and adding the direct field using its closed-

form expression. The method is identical to the method proposed by Mook 21 [81,

and is described in detail in Chapter 4. Although we have previously pointed out that

it is also possible to directly determine the field by computing the Hankel transform

of the total Green's function, the alternate approach has been chosen as means for

decoupling the synthesis and reconstruction procedures. Specifically, it is the reflected

field only which is synthesized using the Hankel transform algorithm while it is the

total field which is used in the reconstruction.

As the first example of a realistic deep water field, we will consider the geoacoustic

model previously given in Table 4.4 .The parameters for this model were determined

using a forward modelling procedure for experimentally collected data. As such, the

model, which includes attenuation in the underlying media, is considered as realistic

and will serve as the basis for demonstrating the reconstruction method when the

acoustic field has interacted with a layered ocean bottom. The corresponding total

field magnitude for this example has been previously displayed in Chapter 4. Alternate

approaches for its generation based on the real-part/imaginary-part sufficiency in

the k, domain were discussed there as well. Here, we wish to consider the real-

part/imaginary-part sufficiency condition in the range. domain and as a consequence

of the condition, show that the field can be reconstructed from only one component.
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The magnitude and the residual phase of the field, computed using k, = .9215,

are shown in Figure 6.25. To demonstrate the reconstruction, 1024 samples of the

imaginary part of the field, sampled at a rate of 3.14 m, corresponding to a rate of

approximately four samples per water wavelength were retained and the real part of

the field was set to zero. In Figure 6.26 is shown the magnitude and residual phase

of the reconstructed field. These quantities are apparently quite similar to the true

magnitude and residual phase displayed in the previous figure. Additionally, the er-

ror signal in the reconstruction is displayed in Figure 6.27 along with the true field

magnitude for reference. The error signal is approximately two orders of magnitude

below the field intensity for ranges greater than about 25 m. The expanded versions

of the near-field magnitude and residual phase for the true and reconstructed fields

are shown for additional reference in Figure 6.28 and 6.29. Additionally, the same

experiment was repeated except that the real part of the field was retained and the

imaginary part was reconstructed. The magnitude and residual phase of the corre-

sponding field are shown in Figure 6.30. Their similarity with the true field magnitude

and residual phase, shown in Figure 6.25, is apparent. This last example demonstrates

that there is no preferred component to be used in the reconstruction procedure, i.e.

the real part can be reconstructed from the imaginary part or the imaginary part can

be reconstructed from the real part. In the examples which follow in this chapter, we

will typically set the real component of the field to zero and reconstruct it from the

sampled imaginary component.

Of importance in coherent deep water signal processing is the extraction of the

Green's function and the bottom reflection coefficient. There are at least two methods

by which these quantities can be obtained given that only a single component of the

data is available. In the first method, the total field is reconstructed and then forms

the input to a numerical Hankel transform algorithm in order to obtain the Green's

function. The bottom reflection coefficient can be extracted algebraically from the

Green's function. In the second method, the properties of unilateral transforms,

developed in Chapter 3, are exploited to obtain an approximation to the Green's
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Figure 6.25: Magnitude and residual phase of realistic deep water field.
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Figure 6.26: Magnitude and residual phase of reconstructed realistic deep water field.
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Figure 6.27: Error in the reconstruction of the real component (bottom curve) and

true feld magnitude (top curve) for the realistic deep water aeld.
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Figure 6.28: Expanded versions of the near-field magnitude and residual phase for

the realistic deep water field.
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Figure 6.29: Expanded versions of the near-field magnitude and residual phase for

the reconstructed realistic deep water eld.
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Figure 6.30: Magnitude and residual phase of the reconstructed realistic deep water

field. The imaginary part was reconstructed from the real part.
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function directly from a single component of the field.

For example, in Chapter 3, we showed that if

rl/2p(r) _ r/2p,.(r) r> (6.15)

where

r/2p,s(r) = Y,! '{(k)} (6.16)

and

(lk,) = (2rIA,)'/ 2 g(k)c- i /4 (6.17)

then

(k,) 2T1.rl/2 ReCfp(r)J} (6.18)

(k,) ~ 2j {(r/ 2 Im[p(r)j} (6.19)

Thus, in the second method, (k,) is estimated by computing a unilateral Fourier

transform of the single component, multiplied by r1/2 and the Green's function is

extracted from j(k,). While we are not proposing that the unilateral Fourier transform

by adopted as a general method for obtaining the Green's function, we will present a

numerical example which demonstrates the feasibility of the approach. The example

illustrates that a reasonable estimate of the Green's function and reflection coefficient

can be obtained from a single channel of a realistic, synthetically-generated, deep

water field.

To demonstrate this, the total 52-layer field was synthesized using the technique

described earlier. 1024 complex samples of the total field were produced at a range

interval of 3.14 m, corresponding to a rate of approximately four complex samples per

water wavenumber. The real part of this field was then set to zero, and the imaginary

part, after being scaled by 2jr'/ 2 formed the input to a 1024 point unilateral Fourier

transform. The magnitude and phase of the resultant Green's function are displayed

in Figure 6.31. For comparison purposes, the magnitude and phase of the theoretical

total Green's function for this example are shown in Figure 6.32. The comparison
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between the two Green's functions is quite good and it is apparent that they differ

primarily at low values of k,. The degradation here is primarily due to the fact that

p(r) P,(r) (6.20)

is based on two assumptions which are not strictly valid at small ranges.

Additionally, the reflection coefficient was extracted from the Green's function

obtained by processing only the single component, and its magnitude and phase are

displayed in Figure 6.33. For reference, the magnitude and phase of the theoretical

reflection coefficient for this example are shown in Figure 6.34. The comparison

between the two reflection coefficient functions is quite good except at small values

of k, despite the fact that only a single component of the field was used as the basis

for this coherent signal processing inversion. In addition, we point out that some of

the degradation in the extracted reflection coefficient may be due to the windowing

effects, as described by Mook [21, which have been caused by processing a fairly

small aperture of data, i.e, 1024 x 3.14 m = 3217 m., The example points out that

reasonable estimates of the Green's function and reflection coefficient can be obtained

by appropriately processing only one sampled component of the total realistic deep

water acoustic field. It is stressed that appropriate processing does not consist of

performing the Hankel transform of the single component - this method will produce

an estimate of the real or imaginary part of the Green's function only.

Although it is not our intention here to suggest that the unilateral Fourier trans-

form be used as a substitute for the Hankel transform in inversion methods [101, we

point out that its properties may have other important applications in the process-

ing of deep water acoustic fields. As one example of this, we consider the use of

the shift theorem, discussed in Chapter 3, as a means for compensating for a fixed

range registration error. In this numerical example, we will simulate the effect of

incorrectly establishing the position of the origin, i.e. r = 0, in a deep water data

collection experiment. Thus, instead of processing the deep water field starting at

r = 0, the shifted version of the field p(r + ro) will be processed. In Chapter 3, it
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was pointed out that the effect can be partially compensated for by multiplying the

Green's function of the shifted field by the linear phase factor e - i k' ro. In the numerical

example, we have processed 1024 points of the total 52-layer deep water field which

has been shifted by approximately 9.42 m (three range samples). The first 9.42 m of

the field was discarded. The field was then multiplied by r/2 and its unilateral Fourier

transform was computed. 3 The reflection coefficient of the uncompensated Green's

function was extracted and its magnitude and phase are displayed in Figure 6.35. In

comparing the magnitude and phase of this estimate of the reflection coefficient with

the theoretical reflection coefficient shown in the preceding figure, we see that the

extracted reflection coefficient shows significant degradation. If the shift theorem is

applied, and the same Green's function is multiplied by the linear phase factor, the

reflection coefficient can again be extracted. The reflection coefficient which results

from this sequence of processing steps is displayed in Figure 6.36. The improvement

in the result is apparent as can be seen by comparing this figure with the previous

two figures. The degradation at low values of k, is primarily due to the fact that

the first 9.42 m of data have been discarded in the processing which was performed

and is also be due to the error in approximating p(r) with p,,(r) at small ranges. A

method based on the above technique might also be applied to experimental data in

order to partially compensate for a fixed range registration error and is suggested as

a direction for further investigation. It is our conjecture that the shift theorem might

also form the basis of a method for the compensation of source height variation.

As another example of the use of the unilateral Fourier transform, the processing

of the total 52-layer deep water field which has been sampled at a lower rate will

be considered. In particular, by appropriately processing the synthetic deep water

acoustic field which has been sampled at the approximate rate of one complex sample

per water wavelength, we will show that it is possible to obtain reasonable estimates of

both the Green's function and the reflection coefficient. As pointed out previously, this
3The determination of the Green's function using the unilateral Fourier transform was done for

convenience. A more exact method could have also been used.
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sampling rate should be adequate to completely represent the field if the assumption

that the field can be synthesized using positive wavenumbers only is valid. The

implication is that if the field is adequately represented, it should be possible to

extract the corresponding Green's function and reflection coefficient. A method for

accomplishing this is now described.

In the numerical example, 512 points of the complex-valued 52-layer total synthetic

deep water field were multiplied by r,/ 2 and were processed using the unilateral Fourier

transform. The field was sampled every 6.28 m which is a rate slightly larger than

one sample per water wavelength. The rate was chosen as slightly higher partly to

accommodate the effects of the pole in the reflection coefficient and Green's function

at a value of k, higher than the water wavenumber. In Figure 6.37 is shown the

magnitude and phase of the Green's function obtained by processing the field sampled

at this rate. It is quite similar to the theoretical Green's function, shown in Figure

6.32, except at low values of k, where several assumptions are not valid. The exact

reason for the presence of the spike at k, 0.1 is not known. A conjecture is that

it is related to aliasing, due to the pole in the reflection coefficient at a value of k,

greater than the water wavenumber. It may also be due to some inaccuracy in the

method for synthetic data generation chosen. In particular, the effects of this pole

were not removed in the technique used to generate this field, discussed earlier. The

magnitude and phase of the corresponding reflection coefficient extracted from this

Green's function are next shown in Figure 6.38. The spike is again evident as is the

poor quality of the reflection coefficient at small values of k,. Nevertheless, the quality

of the reflection coefficient obtained by processing a realistic synthetic deep water field

which has been sampled at approximately one (complex) sample per wavelength is

quite good as can be seen by comparing Figure 6.38 with the theoretical reflection

coefficient in Figure 6.34.

To briefly summarize, we have demonstrated that a realistic deep water acoustic

field can be reconstructed from samples of only one of the quadrature components.
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Although the relationship between the technique used for synthetic data generation

and the technique used for reconstruction is certainly an issue, we have described

a technique which effectively decouples the two. The reconstruction results indicate

that the error in the reconstructed signal is small except in the first several wave-

lengths. Additionally, it was pointed out that, at least for this realistic example, the

real-part/imaginary-part sufficiency condition leads to the development of coherent

processing techniques which can be performed using only a single channel of the data.

In particular, it was shown that only a single channel is required in order to obtain

reasonable estimates of both the Green's function and the ocean bottom reflection

coefficient. Finally, it was shown that the unilateral Fourier transform can be used as

the basis for processing an acoustic field which has been sampled at a rate of approx-

imately one complex sample per wavelength, i.e. at half the rate as was previously

predicted. It is our conjecture that the properties of the unilateral Fourier transform

and asymptotic Hilbert-Hankel transform may have other important applications in

the context of modifying current methods and developing new methods for the signal

processing of deep water acoustic fields.
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6.4 Reconstruction of Shallow Water Acoustic Fields

In previous sections of this chapter, we have examined the reconstruction of free-

space acoustic fields and acoustic fields which have interacted with a single boundary

only. In the case of acoustic propagation in shallow water, it is of interest to con-

sider the effects of adding another boundary, i.e. the top of the waveguide, on the

reconstruction. We point out that although there are reverberant field components

within the waveguide which travel upwards and downwards due to the reflection at

the bottom and top of the waveguide, each component is still outgoing in range r.

Thus, it is expected that the condition of real-part/imaginary-part sufficiency is still

valid and that the reconstruction method can be applied. Two numerical examples

of the reconstruction of a shallow water acoustic field from a single channel will be

discussed in this section. The first example consists of a simple Pekeris waveguide

model. The second example consists of a more realistic waveguide model which was

obtained from the forward modelling of an experimental shallow water field.

The Pekeris model was chosen as an example of a simple shallow water field to

which the reconstruction algorithm can be applied. In fact, the field is not so simple,

and as pointed out in Chapter 3, an accurate numerical method is required in order

to generate this field. Perhaps a simpler model consisting of a waveguide overlying a

hard bottom could have been considered. Although a closed-form expression for the

field in this type of model exists, it requires the computation of an infinite number of

terms corresponding to the evanescent modes. In practice, the hard bottom shallow

water field is approximated by retaining only a finite number of these contributions.

Although we have not previously made this point, the hybrid method for synthetic

field generation, discussed in Chapter 4, can be applied in this case as well. However,

the hard bottom model is quite unrealistic of shallow water propagation and we will

select the Pekeris model as our first shallow water example. As pointed out previously,

the field produce by the hybrid method may be slightly in error at very short ranges.
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In comparing the results of the reconstructed field with the initial synthetic field, it is

therefore apparent that there may be errors in both at these ranges. However, we will

show that the reconstruction method produces a close approximation to the synthetic

field produced using the hybrid method.

The Pekeris model selected is identical to the one previously considered in Chapter

4 and is summarized in Table 4.1. The synthetic field was generated by computing

the Hankel transform of gc(k,) using the Abel/Fourier method and adding PT(r) cor-

responding to the single mode for this model. The magnitude and residual phase,

computed using k, = 0.5623757, are shown in Figure 6.39. Although these quantities

are smoothly varying, the associated real and imaginary components of the field are

again rapidly varying as can be seen from their display in Figure 6.40. In the recon-

struction method, one of the components in Figure 6.40 is to be determined from the

other.

To demonstrate the reconstruction method, 1024 samples of the imaginary part of

the field, sampled at a range interval of 3.14 m, were retained and the real part was

set to zero. The real part was then reconstructed and the magnitude and residual

phase of the reconstructed field are shown in Figure 6.41. In comparing this field with

the true field shown in the preceding figure, it can be seen that the reconstruction

is quite good, except in the near-field. As further evidence of this, the error signal

in the reconstruction is plotted in Figure 6.42 along with the true magnitude of the

field. In the next two figures, Figure 6.43 and 6.44, the true field magnitude/residual

phase and the reconstructed field magnitude/residual phase are shown expanded in

the first 250 m. The significance of the degradation in the near-field due to the

reconstruction is apparent in comparing these figures. The example points out that

a high-quality reconstruction can be obtained everywhere except in the near-field

assuming the Pekeris model for shallow water propagation.

4This rate corresponds to approximately 3.4 samples per water wavelength.
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Figure 6.39: Magnitude and residual phase of the Pekeris model shallow water field.
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Figure 6.40: Real and imaginary components of the Pekeris model shallow water field.
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Figure 6.41: Magnitude and residual phase of the reconstructed Pekeris model shallow

water field.
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Figure 6.42: Error in the reconstruction of the real component (bottom curve) and

true field magnitude (top curve) for the Pekeris model shallow water ield.
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Figure 6.43: Expanded versions of the near-field magnitude and residual phase for

the Pekeris model shallow water field.

434

-
-M

g

0.001

0.0001

2

a

-.

-

0

iI..... ... . ....... ............................ ... ........... ........... ..... .. .... ... ...... ... .....................

r

. . ........... . .. .. ...... ... .............. .... ....... . ...... ........... . ....... ....................................... . .................. .............

- 4

I

........................................................ .................. ......... .............................



0.1

0.01

0.001

0.0001

4

2

0

-4

0

0

100 200

200100

250

250

r (meters)

Figure 6.44: Expanded versions of the near-field magnitude and residual phase for.

the reconstructed Pekeris model shallow water field.
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As a more realistic example, the geoacoustic model in Table 6.1 will next be

considered. This geoacoustic model was obtained by the forward modelling of an ex-

perimental acoustic field [111, measured in Nantucket Sound, Mass. in May 1984, and

includes realistic attenuation in the underlying ocean bottom. The hybrid method for

synthetic data generation was used to produced the synthetic field for this geoacoustic

model In Chapter 4, we pointed out that care must be taken to avoid aliasing in the

synthetic generation of shallow water fields if the Hankel transform is applied directly

to the total Green's function. This aliasing can occur not only for simple Pekeris

models, but also for more complicated models which consist of a layered bottom

with realistic attenuation. Furthermore, the aliased field may appear to be smoothly

varying therefore not giving any apparent indication that aliasing has occurred.

To demonstrate this, we have computed the acoustic field for the realistic shallow

water geoacoustic model which includes attenuation by using the hybrid method and

by using the direct method. In both cases, 1024 samples over a wavenumber interval

ofk, = 0.0 to 1.0 were used although-the hybrid method used samples of gc(k,) while

the direct method used samples of g(k,). For reference, the magnitude and phase

of g(k,) and the magnitude and phase of gc(k,) are displayed in Figures 6.45 and

6.46 respectively. The magnitude and residual phase of the field computed using

the hybrid method are shown as dashed curves in Figure 6.47 and the magnitude and

residual phase of the field computed using the direct method are shown as solid curves

in this figure. For the particular sampling of the Green's function chosen, the real-part

of the dominant pole, located at k, = 0.5688832 for this example, lies nearly halfway

between two consecutive samples. The differences between the magnitude curves, and

the differences between the residual phase curves, can be attributed to the aliasing
5 This realistic shallow water Green's function, corresponding to a layered bottom with attenuation,

nicely displays the property of the finite extent of the imaginary pan of the Green's function. In

particular, the value at which the phase is approximately either r or 0 is = 0.50878 which

corresponds to the total wavenumber in the underlying halfspace. In addition, the presence of two

invariant zeros is noted.
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13.9 m p 1.0 g/cm3
1500 m/s 1530m/s WA TER

LI NEAR BOTTOM
15 \ GRADI ENT = 14s 1

5mp = 1.7g/cm 3

a = 0.1 dB/X
V 

I

1740 m/s /i p = 1.7g/cm3

a 0.1 dB/X

Table 6.1: Geoacoustic model for the realistic shallow water case.
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Figure 6.45: Magnitude and phase of the Green's function for the realistic shallow

model summarized in Table 6.1.
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Figure 6.46: Magnitude and phase of the continuum portion of the Green's function

for the realistic shallow water model.
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Figure 6.47: Magnitude and residual phase of the realistic shallow water field. The

solid curves represent the field which was computed directly, without removal of the

poles. The dashed curves represent the field computed using the hybrid method.
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in the range domain, which has occurred in the use of the direct method. As further

evidence of this, the sampling of the Green's function was changed very slightly so

that 1024 samples were taken over a wavenumber interval of k, = 0.0 to 1.0- ,

where e = 7.952 * 10- 4. The exact value of e was computed such that the real part

of the dominant pole lies exactly on a sampling point. The magnitude and residual

phase of the field computed using the hybrid method are shown as dashed curves in

Figure 6.48, and the magnitude and residual phase of the field computed using the

direct method are shown as solid curves in this figure. In comparing this figure with

the previous figure, we note that the hybrid method has produced identical fields for

the two choices of sampling. However, in comparing the solid curves, it is seen that

significant changes have occurred in the fields produced using the direct method, even

though the sampling rate was changed very slightly, i.e. less than 0.01%.

The example demonstrates that if the direct method is chosen, care must be taken

to avoid aliasing in the synthetic data generation of realistic shallow water fields even

if attenuation is present in the model. The effects of aliasing may be of particular

importance in forward modelling applications in which the model is determined based

on the approximate matching of the peaks and nulls in the field and their relative

significance. In particular, an incorrect model may result due to the fact that aliasing

is present in the forward modelling procedure if the direct method is used. In addition,

the above example suggests a method for determining how severe the aliasing is, if

a direct method is used. In particular, by fixing the number of samples and varying

the maximum wavenumber over a range of half a sample, it is possible to assess the

significance of the aliasing present. This method may be of importance for applications

in which it is impractical to use a more exact method for synthetic data generation

and a bound on the quality of the data produced is desired.

To continue with the discussion of the reconstruction of a realistic shallow water

acoustic field, we consider the magnitude and residual phase of the field produced

using the hybrid method shown in Figure 6.49. This field was produced assuming the
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Figure 6.48: Magnitude and residual phase of the realistic shallow water field. The

solid curves represent the field which was computed directly without removal of the

poies. The dashed curves represent the field computed using the hybrid method. The

maximum wavenumlerin the integration was changed by e compared with the results

in the preceding figure.
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Figure 6.49: Magnitude and residual phase of the realistic shallow water field with

raised receiver.
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geoacoustic model in Table 6.1 except that the receiver was raised from its position

described in this table to a depth of 3.174 m. To derive the synthetic field, 1024

samples of gc(k,) over a wavenumber interval of k, = 0.0 to 1.0 were used and the

Hankel transform was computed using the Abel/Fourier method. We note that the

residual phase wraps at a range of approximately 40 m while no such behavior was

observed in the residual phase of the field for the receiver at the lower depth, as can

be concluded by examining the dashed residual phase curve in Figure 6.47. We will

return to the significance of this shortly. The real pat of the synthetic field displayed

in Figure 6.49 was set to zero and 1024 samples of the imaginary part, sampled

at a- rate of 3.14 m, were used as the input to the reconstruction algorithm. The

magnitude and residual phase of the reconstructed field are displayed in Figure 6.50

and. by comparing these quantities with those in the preceding figure, it is apparent

that the reconstruction is quite good. As further evidence of this, the error signal

for the reconstruction is displayed in Figure 6.51 along with the magnitude of the

true field. This example indicates that reasonable reconstructions of synthetic fields

within a realistic waveguide can be obtained from a single channel only.

As a more graphic example of the reconstruction method, we have generated the

acoustic field as a function of range and depth for the geoacoustic model in Table

6.1. To do this, the source position was fixed and the receiver depth was varied incre-

mentally from just below the surface to just above the bottom. The hybrid method

was used to generate a separate field for each receiver depth, and 128 such fields were

produced. The locations and residues of the two poles present were estimated and

removed in order to generate gc(k,) for each receiver depth. The field previously

shown in Figure 6.49 comprises one of these fields, and the field previously shown

in dashed in Figure 6.47 comprises another. The magnitude and residual phase for

the two-dimensional field are shown in Figure 6.52 to a range of 400 m as intensity

modulated functions of position - white corresponds to the maximum intensity in the

magnitude display. The black vertical line in the residual phase at a range of approx-

imately 40 m can be seen. This line corresponds to the wrap in the residual phase
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Figure 6.51: Error in the reconstruction of the real component (bottom curve) and

true magnitude (top curve) for the realistic shallow water field with raised receiver.
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Figure 6.52: Magnitude (left) and residual phase (right) of the realistic field as a

function of both range and depth. The waveguide thickness is 13.9 m and the first

400 m of range data are displayed.
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which we have previously pointed out in Figure 6.49. Note that no wrap occurs for

the deeper positions of the receiver within the waveguide and this is also confirmed by

examining the residual phase in Figure 6.47. To demonstrate the reconstruction, the

real part of the entire field was set to zero and then reconstructed using the imaginary

part as a function of range for each particular receiver depth. No attempt to exploit

the similarity of fields in depth was made in the reconstruction process, i.e. the field

was reconstructed on a row-by-row basis. In comparing the true two-dimensional field

with the reconstructed field, shown in Figure 6.53, their similarity is evident. In par-

ticular, the vertical line corresponding to the wrap in the residual phase is preserved

as are many other features in both the residual phase and magnitude. The differences

between the true and reconstructed fields occur primarily in the very-near field, a fact

which we have consistently observed before.
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Figure 6.53: Magnitude (left) and residual phase (right) for the reconstructed realistic

field as a function of both range and depth. The waveguide thickness is 13.9 m and

the first 400 m of range data are displayed.



6.5 Reconstruction of Experimental Acoustic Fields

In previous sections, we have examined the reconstruction of synthetically gener-

ated complex-valued fields from a single component. Of particular interest however, is

the application of the reconstruction technique to acoustic fields which have been col-

lected experimentally. In this section, we will consider several of the issues related to

the reconstruction of these fields and examples of the reconstruction method applied

to two shallow water experiments will be presented.

There are a number of factors which can cause experimentally collected fields to

differ from the synthetic fields previously discussed. Theoretically, the reconstruction

algorithm is based on the real-part/imaginary-part sufficiency condition which applies

to outgoing fields. In an ocean environment, the effects of velocity changes within the

water column, as well as violations of both the horizontal stratification and radial

symmetry, may yield acoustic fields which are not completely outgoing. Additionally,

in shallow water, the effects of a non-perfect surface may yield scattered acoustic

components which are not outgoing. It is to be expected therefore, that there are the-

oretical reasons which can account for errors in the reconstruction of experimentally

collected fields.

In addition, there are several practical aspects related to the collection and range

registration of experimental fields which can also affect the quality of the reconstruc-

tion. In particular, experimental acoustic fields are typically not acquired on the

uniform range grid which we have assumed for the synthetic cases previously dis-

cussed. The exact spacing in range is dependent on a number of factors including the

drift rate. As an example of the non-uniformity of a typical sampling grid, a plot of

the range versus the sample number is shown in Figure 6.54 for a shallow water acous-

tic experiment conducted in Nantucket Sound in May 1984[111. The curve indicates a

global change in the sampling rate which occurred at a range of approximately 600 m

due to a change in the drift rate during the experiment. The corresponding field for

450



1500r
i

0 200 400 600 800 1000

Sampie number

I

Figure 6.54: Range registration versus sample number for a shallow water 140 Hz

acoustic experiment conducted in Nantucket sound.

451

1000

4 5

d 500

f)

_ _

w



this 140 Hz acoustic experiment has been previously presented in Chapter 5, Figure

5.11, and will also form the basis for the first reconstruction example here. On a

local level, the sampling rate in range may be non-uniform due to variations in source

height and offset due to ocean surface effects. For example, an expanded version of

the preceding registration function within the first 100 m, is shown in Figure 6.55.

The deviation of the curve from linear is indicative of the variation in the sampling

rate on a wavelength scale - the acoustic wavelength in the water for this 140 Hz

example is 10.71 m. Additionally, the problem of establishing the exact range which

corresponds to a particular sample is difficult in an experiment of this sort. Typically,

several ranging methods are simultaneously employed and the results are combined to

yield an estimate of the range. Errors in this estimate may also impact the quality of

a field which is reconstructed from only a single component. Thus, it is apparent that

for both theoretical and practical reasons related to the acquisition of experimental

fields, there may be degradation in the quality of the reconstruction of experimental

fields as compared with the quality previously demonstrated on synthetic fields.

To reduce the effects caused by non-uniform sampling, we will first re-sample the

complex-valued field to a uniform grid. The re-sampling algorithm is based on the

interpolation technique discussed in Chapter 5. This technique is based on the use

of the residual phase and thus requires both the real and imaginary parts of the

non-uniformly sampled field. After re-sampling to a uniform grid, one component

of the complex-valued field is set to zero and then reconstructed from the alternate

component. Because of the fact that both components of the experimental data were

originally recorded, it is also possible to compare the reconstructed component with

the re-sampled original, and thereby obtain an error signal. This method however is

not a true test of the reconstruction of the original experimental field from a single

component - both components are used in the interpolation scheme to obtain uni-

formly spaced samples prior to the elimination and reconstruction of one component.

As an example of this procedure, consider the magnitude and unwrapped residual
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phase for the May 1984 experimental field, shown in Figure 6.56. The value of k,

chosen to determine the residual phase was 0.575. For reference, the real and imag-

inary components of the original experimental field are displayed in Figure 6.57 and

their rapidly varying nature is evident. The real and imaginary parts of the field

with residual phase only, i.e. the quadrature components of the demodulated field,

are displayed in Figure 6.58. The quadrature components in this figure were linearly

interpolated to a uniform grid and the field was then re-modulated using ke = 0.575.

The process, discussed previously in Chapter 5, can be thought of as bandlimited

interpolation for a non-uniformly sampled complex signal. It is stressed that both the

real-and imaginary parts of the original, non-uniformly sampled field are required in

this procedure.

The magnitude and unwrapped residual phase of the re-sampled signal are dis-

played in Figure 6.59. There are only very slight differences between the re-sampled

field and the original field as can be concluded by examination of Figures 6.59 and

6.56. In the original field, there were 896 samples collected over an aperture of 1320 m

corresponding to an average rate of 7.3 samples per water wavelength. The interpo-

lated field consists of 1024 uniformly spaced samples over the 1320 m aperture. To

demonstrate the reconstruction, the real part of this signal was set to zero ana then

reconstructed from the imaginary part. The magnitude and unwrapped residual phase

of the reconstructed field are shown in Figure 6.60. The similarity of the reconstructed

field with the original and re-sampled fields is evident. In particular, the behavior of

the unwrapped residual phase is preserved, as are the peaks and nulls in the magni-

tude of the field. If the curves are examined in further detail, it can be seen that the

some of the finer details differ. These slight differences occur not only at near ranges,

as was the case for reconstructed synthetic fields, but at far ranges as well. These dif-

ferences are also evident from examination of the error signal for this example, shown

in Figure 6.61, along with the magnitude of the experimental field. We attribute these

differences to aspects mentioned previously which may cause experimental fields to

depart from synthetic fields with regard to the real-part/imaginary-part sufficiency
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property.

Nevertheless, the reconstructed field is quite similar to the original field. In fact,

the agreement between the curves suggests that this method might also be used as

a measure of the quality of the experimental data collected. In this approach, both

components are recorded and re-sampled to a uniform grid. One component is then

set to zero and reconstructed from the alternate component. A similar procedure can

also be performed using the alternate component. Presumably, if the reconstructed

and original fields differ substantially, there is an implication that effects such as errors

in range registration, surface scattering and media inhomogeneity cannot be treated

as negligible. Such a procedure may also provide important information about the

scattering properties of the media as a function of position. In numerical experiments,

we have seen a correlation in the quality of the reconstruction with the accuracy of the

ranging method established independently. Thus, in this context, the reconstruction

method is used not as a means for eliminating hardware in the data acquisition system,

but rather as an important consistency check on the quality of the sampled complex-

valued acoustic field.

In the preceding reconstruction, we have not demonstrated that the experimen-

tal field can be reconstructed from a single component since both components were

required in the interpolation method for obtaining uniformly-spaced samples. In the

case that only a single component is collected, it is not possible to use an interpo-

lation method which is based on the use of the residual phase. The field must now

be reconstructed from a single component which has been sampled on a non-uniform

grid. There are two classes of methods for the reconstruction of a field given these

constraints. In the first class, the single component is interpolated to a uniform grid

using some scheme, and the imaginary part is then reconstructed. Iterative methods

in which the results of the previous reconstruction are used to re-interpolate the field

also fall within this class. In the second class, the imaginary part is directly recon-

structed from the non-uniformly sampled real part. In our work, we have explored
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only the simplest method in the first class. In this method, the single non-uniformly

sampled channel is linearly interpolated to a uniform grid and the reconstruction is

then performed. More sophisticated interpolation methods are also applicable but

have not been explored in this context. It is apparent that the linear interpolation

is adequate only in the case that the field is oversampled, and this method is not

expected to work well in cases in which the average sampling rate approaches the

minimum rate of two real samples per wavelength. In situations when the experi-

mental average sampling rate exceeds the theoretical minimum rate by a factor of

four or more, we have found that the method based on linear interpolation yields

reconstruction results which are quite good.

To demonstrate this, the real part of the experimental field displayed in Figure 6.57

was zeroed and the imaginary part was linearly interpolated to a uniform grid. The

magnitude and unwrapped residual phase of the field which was reconstructed from

the linearly interpolated single channel are displayed in Figure 6.62. In comparing

these quantities with the original field in Figure 6.59, we see that the reconstruction is

quite good. Additionally, the degradation which was introduced in the reconstruction

by performing the linear interpolation can be seen in comparing this figure with Figure

6.60. In particular, we see that the reconstruction appears most degraded at large

ranges. Here, the error in the linear interpolation is most severe due to the reduced

sampling rate caused by the increase in drift rate as depicted in Figure 6.54. The local

sampling rate at these ranges is approximately 3.6 samples per water wavelength and

the corresponding increase in the degradation of the reconstructed field is noted.

As the final example, we will demonstrate the reconstruction using a single channel

of a 50 Hz shallow water experimental acoustic field collected in the Gulf of Mexico in

September, 1985. The magnitude and unwrapped residual phase, using k = 0.1974

for this example are displayed in Figure 6,63. The real part of the field was set to zero

and the imaginary part was linearly interpolated to a uniform grid. This particular

field was highly oversampled due to the slow drift rate of the experiment - approx-

462



500 1000 1500

it, L APn.g Av/ W ' 1. 'N \et no I.................... - --- ----.--.----------------<---- -Gus-- - -- * *H- --**I e- --- -o-- -*v.v 

500 1000 1500

r (meters)

Figure 6.62: Magnitude and unwrapped residual phase of the reconstructed 140 Hz

experimental shallow water field. The real channel was discarded as the first step

in the processing and then reconstructed from the linearly interpolated imaginary

channel.
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Figure 6.63: Magnitude and unwrapped residual phase of the 50Hz field from a

shallow water acoustic experiment conducted in the Gulf of Mexico in September

1985.
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imately 11 samples per water wavelength were recorded. The real part of the field

was reconstructed and the corresponding magnitude and unwrapped residual phase

are shown in Figure 6.64. The similarity of the reconstructed field and original field,

shown in Figure 6.63 is apparent, again confirming the validity of the reconstruction

method applied to experimental shallow water acoustic fields.
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Figure 6.64: Magnitude and unwrapped residual phase of the reconstructed OHz

field from a shallow water acoustic experiment conducted in the Gulf of Mexico in

September 1985.
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6.6 Summary

In this chapter, we have discussed the application of a reconstruction method

which is based on the real-part/imaginary-part sufficiency condition for acoustic fields.

In the reconstruction method a single sampled channel is retained and samples of the

alternate channel are reconstructed. In order to separate the effects of synthetic data

generation from the reconstruction procedure, we first considered several examples of

acoustic fields which have closed-form expressions. Next, an example of a realistic deep

water field was considered. This field, obtained from forward modelling an experimen-

tally collected deep water field, was reconstructed and examined. Additionally, it was

shown that it is possible to obtain reasonable estimates of the Green's function and

reflection coefficient by processing only a single channel of this realistic field. Other

related applications of the unilateral Fourier transform were suggested, including pro-

cessing a field which has been sampled at a rate approaching one complex sample per

wavelength, and compensating for incorrectly range-registered fields. Next, we con-

sidered two examples of the reconstruction applied to shallow water acoustic fields.

The first example consisted of a Pekeris model and the second example consisted of

a realistic shallow water model obtained by forward modelling an experimentally :ol-

lected field. It was pointed out that it is important to consider the effects of aliasing

when a direct method for synthetic shallow water data generation is applied, even

for the case of a layered model with realistic attenuation. Finally, the reconstruction

of two experimentally collected shallow water fields was discussed. A distinction was

made between the algorithm for obtaining this field on a uniformly-sampled grid and

the algorithm for reconstruction. A simple method for reconstructing an experimental

acoustic field from a non-uniformly sampled single channel was demonstrated.
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Chapter 7

Summary

7.1 Contributions

In the first portion of Chapter 2, a unified treatment of poles, branch-cuts,

and Riemann sheets associated with the Green's function for shallow water acoustic

propagation was presented. For the Pekeris waveguide, this led to exact expressions for

both trapped and virtual mode contributions. In considering the more general layered

waveguide, the method of Green's function migration was developed which formed the

basis for computational algorithms used throughout the thesis. This method also led

to the development of several important properties including a finite-extent property

for the imaginary part of the Green's function. This property can be exploited to

determine the velocity in the underlying halfspace from knowledge of the Green's

function.

In Chapter 3, we developed the theory for one and two-dimensional unilateral

transforms. In one dimension, it was shown that if the causal portion of an even

signal can be approximately synthesized by the unilateral inverse Fourier transform,

there are important consequences. Specifically, such a signal possesses an approx-
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imate real-part/imaginary-part sufficiency condition, as does its Fourier transform.

Additionally, the approximation was shown to imply an inverse relationship between

the unilateral inverse Fourier transform and the unilateral Fourier transform, as well

as other relationships between the cosine and sine transforms of the real and imag-

inary components of the signal, and its Fourier transform. In extending the theory

to two dimensions, we developed a bilateral version of the Hankel transform and a

unilateral version referred to as the Hilbert-Hankel transform. It was shown that if

the causal portion of a circularly symmetric signal can be approximately synthesized

by the Hilbert-Hankel transform there are important consequences. Specifically, such

a signal possesses an approximate real-part/imaginary-part sufficiency condition as

does its Hankel transform. Additionally, the approximation implies an inverse rela-

tionship between the Hilbert-Hankel transform and the complex Hankel transform,

as well as other relationships between the Jo, Y, and Ho transforms of the real and

imaginary components of the signal and its Hankel transform. As was pointed out, the

unilateral synthesis in two dimensions is particularly applicable to harmonic acoustic

fields which are outwardly propagating. An asymptotic version of the Hilbert-Hankel

transform was discussed and related to the unilateral inverse Fourier transform, the

Fast-Field-Program, and the Hartley transform. In addition, several properties of the

asymptotic Hilbert-Hankel transform were exploited to show that an outgoing acous-

tic field can be approximately represented in terms of its samples spaced once per

water wavelength. In the ocean acoustics context, this rate is a factor of two smaller

than has been previously stated. If the field is sampled at the conventional rate of

at least two complex samples per water wavelength, there is redundant information,

and the asymptotic Hilbert-Hankel transform provides the basis for an efficient re-

construction algorithm for obtaining samples of one quadrature component from the

alternate component.

In Chapter 4, we presented a new hybrid method for computing synthetic shal-

low water acoustic fields. The effects of aliasing due to the presence of poles in the

Green's function are substantially reduced in the new method. The technique, which
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computes the trapped and continuum portions of the acoustic field separately, has

several advantages including accuracy and computational efficiency. Although the

acoustic field is conventionally decomposed into a trapped and continuum portion,

the method exploits the fact that the related Green's function can be decomposed in

an analogous manner. In extending the hybrid method, we pointed out that existing

normal mode codes, which compute only the trapped portion of the acoustic field, can

be used to determine the trapped portion of the Green's function. It was shown that

it is also possible to generate the continuum portion of the field without explicitly

determining the poles and residues, by using the finite extent property of the imagi-

nary part Green's function, developed in Chapter 2, and the real-part/imaginary-part

sufficiency condition, developed in Chapter 3. In relating the new technique with an

existing hybrid deep water technique, it was pointed out that the new method can

be used for synthetic deep water field synthesis as well. In this application, the Han-

kel transform of the total deep water Green's function is determined, as opposed to

the Hankel transform of only the reflected portion. Additionally, using a nurmerical

example, we showed that the Hilbert-Hankel transform can also be applied to deep

water acoustic fields.

In Chapter 5, we defined the residual phase function for a shallow water acous-

tic field and demonstrated its importance in several applications. In particular, it

was shown that the residual phase is a complementary quantity to the shallow wa-

ter acoustic field magnitude and that it is useful in forward modelling applications.

The residual phase can also be used to determine the phase of the acoustic source,

which is required in the extraction of the ocean bottom reflection coefficient. It was

also pointed out that the residual phase is useful for determining range-dependent

waveguide properties. In the second portion of the chapter, the sensitivity function

for reflection coefficient determination from shallow water acoustic field measurements

was defined. This function relates errors in the extracted reflection coefficient to errors

in the Green's function estimate. We pointed out that under certain circumstances,

the sensitivity function can become infinite at specific horizontal wavenumbers. The
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result suggests that the reflection coefficient extracted from shallow water measure-

ments cannot be accurately determined at these wavenumbers and in surrounding

wavenumber regions. The points of infinite sensitivity were related to invariant ze-

ros of the Green's function and its imaginary part. These points are invariant with

respect to the geoacoustic properties of the media underlying the waveguide, and de-

pend only on the depths of the acoustic source and receiver from the ocean surface,

and on the water wavenumber. The theory led to the definition of the invariant crit-

ical depth. If either the source or receiver is positioned below the invariant critical

depth, at least point of infinite sensitivity is guaranteed to occur for non-evanescent

values of horizontal wavenumber. Conversely, if both instruments are shallower than

the critical depth, there can be no points of infinite sensitivity. The sensitivity effect

was related to two kinds of cancellation which can occur between the upgoing and

downgoing plane wave components of the field within the waveguide. The invariant

critical depth, points of infinite sensitivity, and invariant zeros of the Green's func-

tion were also discussed using a numerical example which involved the inversion of

synthetically produced shallow water data.

In Chapter 6, a reconstruction algorithm for obtaining the real (or imaginary)

component of an acoustic field from the imaginary (or real) component was applied

to synthetic and experimental fields. Two means of assessing the quality of the re-

construction were discussed. High quality reconstruction results were obtained in all

of the examples, including the two experimentally collected acoustic fields. It was

shown that a reasonable approximation to the ocean bottom reflection coefficient can

be obtained, using synthetic deep water data, from samples of the field collected at a

rate of one sample per water wavelength.
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7.2 Future Research

In this section, we suggest future work, directions and applications based on the

results presented in this thesis.

In Chapter 2, the reflection coefficient migration technique and Green's function

migration technique were used to develop various properties of the reflection coefficient

and Green's function. The theory was developed for fuid layered media, however the

idea can be extended to the more general elastic layered case as well. I the proposed

reflection coefficient migration approach, four reflection coefficients are required at

each layer interface in order to represent all of the possible conversions which can

occurll. Thus, four reflection coefficient migration equations must be developed in

order to migrate these reflection coefficients across a layer. The method could form

the basis of a computational algorithm and in addition, could be used to develop

properties of the reflection coefficient in an analogous manner as was done in Chapter

2. Similarly, the Green's function and the extended Green's function expressions

could be developed for the elastic layered media case. These equations could be used

to investigate properties of the Green's function including the finite extent property.

In Chapter 3, we developed the theory of one and two-dimensional unilateral trans-

forms. Our interest was primarily in the application of the two-dimensional theory

to wave propagation problems. However, the general nature of the theory suggests

that it may be applicable to other problems as well. In particular, an investigation

of one-dimensional applications is suggested. Also, the development of the general

multi-dimensional theory incorporating different symmetry conditions is suggested.

This includes, for example, two-dimensional even signals which can be approximated

by the unilateral inverse two-dimensional Fourier transform. In addition, we devel-

oped the theory for an approximate real-part/imaginary-part sufficiency condition. It

is also possible to develop the analogous theory for an approximate magnitude/phase

sufficiency condition by applying the complex logarithm to the Fourier transform(21.
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Essentially, in one dimension there exists a duality between the even signal and the

even cepstrum, and between the approximate real-part/imaginary-part sufficiency

condition and the approximate magnitude/phase sufficiency condition. The duality

suggests that there exists an approximate Hilbert transform relationship between the

magnitude and phase for a special class of mixed-phase signals. The relationship be-

tween the unilateral transform and cepstrum may have some important consequences

in applications which include reconstruction of a signal from its magnitude only, phase

unwrapping, and general homomorphic signal processing. An investigation of these

applications is suggested as further work.

As an additional application, we suggest that the definition of the unilateral inverse

transform be extended to include some portion of the negative frequencies, as well

as all of the positive frequencies. The extended definition of the transform could be

applied to signals which cannot be exactly synthesized in terms of positive frequencies

only, but which can be approximated by including an additional small portion of the

negative frequencies. The concept may be particularly applicable to CT and NMR

tomography problems where the data is obtained directly in the frequency domain

and there is a cost associated with collecting additional data.

In Chapter 4, we developed a hybrid method for synthesizing a shallow water

acoustic field. Although the technique was developed for the fluid case only, it is also

possible to develop a similar technique for the elastic case in which shear is supported

in the underlying ocean bottom. In this case, the Green's function is still decomposed

into the sum of a modal and a continuum portion, however the poles and residues

of the modal portion are more difficult to determine. One means for implementing

the decomposition algorithm might be based on applying a root finding algorithm

to the elastic Green's function which is computed using the global matrix method of

SAFARI[3J. The investigation of the hybrid method in this more general context is

suggested as future work.
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As an additional extension of the ideas presented in both Chapters 4 and 5 of

this thesis, we suggest that a dual hybrid method for shallow water acoustic inversion

be developed. The hybrid inversion method could consist of determining the modal

and continuum portions of the field, PTr(r) and pc(r), separately. The advantage is

that if P(r) can be determined accurately, it can be inverted analytically to obtain

gr(k,). The remaining portion of the field, pc(r) can be inverted numerically to obtain

gc(k,). Inverting the field in this way may eliminate some of the windowing problems

associated with computing the numerical transform of the total field. The method is

the dual method for the synthesis procedure discussed in Chapter 4 - both trade off

the difficulty in determining one quantity with the difficulty of accurately computing

the numerical transform of another quantity. The hybrid synthesis method was sim-

plified by recognizing that the poles and residues of gr(k,) and g(k,) are identical.

The dual inversion method can be simplified by recognizing that p(r) and p(r) are

nearly identical for large r. As was discussed in Chapter 2, it is possible to write a

parametric description for PT(r) based on a modal sum. Thus, if the parameters can

be determined using only the far-field data, they suffice to describe PT(r) at all ranges.

The determination of the parameters may be simplified by exploiting the asymptotic

form of the modal sum and its relationship to a sum of complex exponentials.

In Chapter 5, we suggested that the residual phase of a shallow water acoustic field

is useful in several applications including forward modelling and extraction of range

dependent waveguide features. The detailed investigation of these applications is

suggested as future research. In this chapter, we also developed the theory of invariant

zeros of the Green's function and the relationship of invariant zeros to points of infinite

sensitivity. We pointed out that by changing the experimental configuration, it is

possible to eliminate the points of infinite sensitivity. On the other hand, exploiting

the presence of invariant zeros may be prove to useful. For example, observing an

invariant zero in the Green's function obtained from experimental data provides a

confirmation of the integrity of the data. Incorporating the location of invariant

zeros as a priori knowledge in an inversion scheme might also be useful. In addition,
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the investigation of invariant zeros in other waveguide problems, such as the borehole

problem, is suggested as future work. This investigation could lead to certain preferred

experimental configurations such as an off-axis hydrophone array for acoustic probing

within a borehole.

In Chapter 6, we presented numerical examples of the reconstruction of acoustic

fields. The quality of the reconstruction obtained even from experimentally collected

fields suggests that the real-part/imaginary-part sufficiency condition for an outgo-

ing field is quite robust. In fact, if both components of an experimental field are

recorded, the reconstruction method can provide the basis for assessing the quality

and integrity of the data collected. The technique may also form the basis for mea-

suring the scattering properties of an inhomogeneous medium in which the field has

both an incoming and an outgoing component. In addition, although we have explored

outgoing acoustic fields only, the real-part/imaginary-part sufficiency condition may

apply to other outgoing. fields. The investigation and application of this property

in other areas including seismics, optics and electromagnetics is suggested as future

research.
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