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Abstract

Chaotic systems have received much attention in the mathematics and physics communities
in the last two decades; and they are receiving increasing attention in various engineering
disciplines as well. Experimental evidence suggests that these systems may be useful models
for a wide variety of physical phenomena, including turbulence, vibrations of buckled elastic
structures, and behavior of certain feedback control devices.

This thesis deals with both the analysis and synthesis of chaotic maps and time-sampled
chaotic flows, with a focus on the problems and issues that arise with noise-corrupted orbit
segments generated by these maps and flows. Both dissipative and nondissipative systems
are considered, with both types of systems considered in the context of analysis and the
latter type also considered ir the context of synthesis. With respect to dissipative systems,
three probabilistic state estimation algorithms are introduced and applied to three problem
scenarios, with the scenarios distinguished by the anount of a priori knowledge of the
dynamics of the nnderlying chaotic system.

Cramer-Rao, Barankin, and Weiss-Weinstein upper bounds on state estimator perfor-
mance are derived and both experimentally and qualitatively analyzed. The analysis reveals
that intrinsic properties of chaotic systems—positive Lyapunov exponents and boundedness
of attractors—have a fundamental influence on achievable state estimator performance with
these systems.

With respect to nondissipative systems, the thesis considers a class of piecewise linear
maps of the unit interval, members of which give rise to finite-state, homogeneous Markov
chains. The thesis establishes ergodic and other properties of these maps and explores the
use of these maps as generators of signals for practical applications. A close relation is
established between noise-corrupted orbit segments generated by the maps and outputs of
hidden Markov models, and this relation is exploited in practical, optimal and suboptimal
algorithms for detection, parameter estimation, and state estimation with the maps.

Thesis Supervisor: Alan V. Oppenheim
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Chapter 1

Introduction

Chaotic systems have received much attention in the mathematics and physics communities
in the last two decades; and they are receiving increasing attention in various engineering
disciplines as well. Experimental evidence suggests that these systems may be useful models
for a wide variety of physical phenomena, including turbulence, vibrations of buckled elastic
structures, and behavior of certain feedback control devices. Traditionally, researchers Lave
focused on possible causes of, or transitions to chaos, universal properties shared by chaotic
systems, and various topological and ergodic properties of chaotic systems. As such, the
emphasis has been on the analysis of chaotic systems and real-world systems suspected of
exhibiting chaos. There has been little attention given to the synthesis of chaotic signals
and systems for practical engineering applications such as in communication systems. In
part for this reason, useful engineering applications of chaotic systems have yet to appear.

This thesis considers both the analysis and synthesis of chaotic signals and systems.
The unifying theme of this thesis is additive ncise and the problems and issues involved in
dealing with chaotic signals embedded in additive noise. With respect to analysis, the thesis
focuses on estimating the state of discrete-time, chaotic systems based on noise-corrupted
observations of the state.

The problem of noise-corrupted chaotic signals arises in many applications as does the
need for effective state estimation algorithms. For example, often when measurements are
taken of a physical phenomenon suspected of being chaotic, the measuring device introduces
error in the recorded signal, with the error well-modeled as additive white noise. Alterna-

tively, the actual underlying physical phenomenon may be immersed in a noisy environment,
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as might be the case if one seeks to intercept a low-power, chaotic signal, possitly used for
secure communication, that has been transmittcd over a noisy channel. In both cases,
one seeks to separate the chaotic signal from the noise and often to estimate the state of
the underlying chaotic system from the noise-corrupted observations of the transformed
state. The thesis considers three problem scenarios involving noise-corrupted observations
of chaos, with the scenarios distinguished by the level of a priori knowledge of the dynamics
of the underlying chaotic system. State estimation algorithms are introduced for each of the
scenarios, and the performance of the algorithms evaluated using Monte Carlo simulations.

When attempting to design and refine estimators for nonlinear estimation problems, one
often has no way of knowing if mediocre performance of an estimator is due to the estimator
or to a fundamental aspect of the prublem itself. As such, it is often useful and desirable
to know the best performance achievable by any estimator for a given nonlinear estimation
problem, or equivalently to have upper bounds on achievable state estimatof performance.
Consequently, state estimator performance bounds are derived and analyzed in the thesis.
The analysis reveals that intrinsic properties of chaotic systems—positive Lyapunov ex-
ponents and boundedness of attractors—have a fundamental influence on achievable state
estimator perforinance with these systems.

With respect to synthesis, the thesis introduces and analyzes a class of chaotic building
blocks having potential, practical value. The basic elements of this class are piecewise linear
maps of the unit interval which satisfy certain constraints. These simple maps are shown to
exhibit a rich set of properties, which among other things allows computationally efficient,
optimal and suboptimal detection as well as maximum-likelihood state estimation with the
maps.

The thesis is organized as follows. Chapters 2 and 3 respectively provide background
material on chaos and the general state estimation problems considered in this thesis. Specif-
ically. Chapter 2 discusses a number of topological and ergodic properties often associated
with chaos, the relations among these properties, as well as the concept of dissipative
chaos. Chapter 3 begins by defining the state estimation sceiaiios of interest in this the-
sis and continues by briefly reviewing the fundamentals of probabilistic state estimation
with an emphasis on the two probabilistic, state estimation approaches focused on the
thesis: Maximum-Likelihood (ML) and Minimum-Mean-Squared-Error (MMSE). Next, the

optimal MMSE state estimator for linear, dynamical systems—the Kalman filter—is dis-
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cussed as well as the practical difficulties in performing optimal MMSE state estimation
with nonlinear, dynamical systems. Finally, the chapter provides a summary of previous
state estimation research involving nonlinear dynamical systems, in general, followed by a
more focused summary of previous state estimation research involving deterministic, chaotic
systems.

Chapter 4 introduces state estimation algorithms for discrete-time chaotic systems and
time-sampled, continuous-time chaotic systems and provides performance results obtained
via Monte Carlo simulations with several chaotic systems. State estimation algorithms are
introduced for three problem scenarios—known system dynamics, unknown system dynam-
ics and availability of a noise-free reference orbit, unknown system dynamics and nonavail-
ability of a noise-free reference orbit. In particular, the extended Kalman filter is shown
to yield mediocre performance results, but a new variation of this filter is shown to be a
potentially effective state estimator for chaotic systems, even when the system dynamics are
unknown. A global, approximate MMSE state estimator is also introduced and is shown to
be a potentially effective state estimator with input SNRs as small as 0 dB. The estimator
exploits intrinsic properties of the steady-state behavior of dissipative, chaotic systems, in
particular topological transitivity and ergodicity.

Chapter 5 derives performance bounds for a general class of state estimators and in-
terprets these bounds in the context of chaos. The Cramer-Rao bound for estimators of
nonrandom state vectors of deterministic chaotic systems is derived and shown to exhibit
behavior similar to that of the corresponding bound for unstable, linear systems. In par-
ticular, for dissipative, chaotic diffeomorphisms the bound exhibits a nonzero asymptotic
limit when there are noisy observations of the state for only past or only future times. Lim-
itations of the Cramer-Rao bound are discussed, and a specialized form of a general class
of performance bounds, the Barankin bounds, is shown to overcome these limitations. The
Cramer-Rao and Weiss-Weinstein bounds for estimators of random state vectors are also
briefly considered and shown to be of little value for use with chaotic systems.

In contrast to Chapters 4 and 5 which focus on the analysis of chaotic systems and signals
produced by these systems, Chapters 6 and 7 focus on the synthesis of chaotic systems. In
particular, Chapter 6 introduces a class of piecewise linear maps of the unit interval which
give rise to finite state Markov chains. New and previously reported properties of these

maps are discussed, and a close relation established between the ergodic properties of these
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maps and the Markov chains they give rise to. In addition, these maps are shown to be
potentially useful building blocks for maps with arbitrary, invariant probability deusity
functions and for higher-dimensional maps which also give rise to Markov chains. Chapter
7 derives computationally efficient optimal and suboptimal detectors for a subset of these
maps and briefly discusses the potential value of these maps and associated detectors for
secure communication. The chapter concludes by introducing optimal and suboptimal ML
state estimators for use with these maps.

Finally, Chapter 8 provides concluding remarks. The chapter begins by summarizing
the highlights of the thesis as well its major contributions to the research community. The
chapter then discusses potentially fruitful topics for future research, which build on the

results presented in the thesis.
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Chapter 2

Overview of Chaos

2.1 Introduction

This chapter establishes a foundation for the state estimation algorithms introduced in
Chapter 4 and the performance bounds derived in Chapter 5, by providing a brief intro-
duction to chaos. We discuss a number of properties, both topological and ergodic, often
associated with chaos and explain such concepts as invariant measures, attractors, Lya-
punov exponents, topological transitivity, and sensitive dependence on initial conditions.
We omit discussion of several concepts relevant to chaos but not relevant to this thesis, in-
cluding dimensions and entropies of attractors. These topics are discussed at varying levels
of detail in a number of references on nonlinear dynamical systems, (e.g., [60, 69]).

The discussion of topological and ergodic properties in Section 2.3 is rather formal
and abstract, and it uses a number of theoretical concepts from mathematical analysis
and topology. Although many of the terms introduced. in the section are used throughout
the thesis, a thorough understanding of the theory underlying these terms is not needed
in order to understand the information on state estimation algorithms and performance

bounds provided in Chapters 4 and 5.

2.2 Notational Conventions

We adopt the following notational conventions in this thesis. Plain lowercase and uppercase
letters such as £ and f denote scalars and scalar-valued functions, whereas bold lowercase

and uppercase letters such as  and f denote vectors and vector-valued functions. Except
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when confusion might result, functions and arguments of functions are denoted in the text
simply by the symbol representing the function or argument. For example, for the scalar
equation y = f(z), we say that = is the argument of the function f and y is the value of f
evaluated at z, or equivalently the image of = under f.

The character R denotes the real line and R™ denotes Euclidean n-space. Unless stated
otherwise, all vectors have real-valued components and the domain and range of each func-
tion are subsets of R™ and R™, respectively, for positive integers m and n. The time index
for a time series of scalars or vectors is given in parentheses, so for example z(n) denotes
the element of the time series {z(¢)} at time n. Given two functions g and h, g o h de-
notes the composition of g with h, so that (g o h)(z) = g(h(z)). Similarly, the shorthand
notation f*(z) = (fo...o f)(z) denotes the composition of f with itself n times, and by

n times
definition fO(z) = z. We let f~! denote the inverse or inverse image of f, and f~", the

n-fold composition of f~1. For a scalar-valued, differentiable function f, f/(z) denotes the
derivative of f evaluated at z, and more generally f(")(z) denotes the nt*.derivative of f
evaluated at z. Similarly, for vector-valued, differentiable functions f with vector-valued
arguments, D{f(x)} denotes the derivative of f with respect to «, and if the derivative
is not taken with respect to the innermost argument, we use a subscript on D to denote
the differentiation variable. For example, D{f(g(x))} denotes the derivative of f o g taken
with respect to & whereas Dy(z){f(g(x))} denotes the derivative of f taken with respect
to g(x).

We let log(z) denote the natural logarithm of z and log,o(z) denote the logarithm to
the base 10 of z. Except when there might be confusion, we use a shorthand notation for
probability density functions (PDFs). Specifically, p(z) and p(y) respectively denote the
PDFs px(z) and py(y) (evaluated at their arguments), and p(y|z) denotes py|x(y|z), the
PDF of y conditioned on the random variable z. In addition, we use the shorthand notation
J fdu to represent the Lebesgue integral of the function f with respect to the measure .

The focus in this thesis is on discrete-time, deterministic, dynamical systems, also known
as detcrministic maps, and time-sampled, continuous-time, deterministic, dynamical sys-
tems, alsp known as deterministic flows. By a deterministic map, we mean an evolution
equation specified by a function f : M — M mapping some space M to itself, which gives
rise to a time series {z(z)} satisfying the relation z(n + 1) = f(a(n)) = f"(x(0)) and if
f is invertible the relation (0) = f~"(x(n)). The last two equalities emphasize the fact
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that for a deterministic system, the value of the time series at any time uniquely determines
the value at all future times and at all past times as well if the system is invertible. We
refer to f as a map, the time series {z(i)} as an orbit, and x(n) as either the state of f
at time n or the orbit point at time n. To maintain an absolute time reference, we reserve
the designation initial state or initial condition for x(0), the state at time 0, even if our
interest is with @(n) for times n < 0. We also define an N -point orbit segment to be a set
of N consecutive points from an orbit, and the orbit generated by x(0) to be the unique
one-sided orbit {z(7)}$2, for noninvertible maps and the unique two-sided orbit {z(7)}{2,,
for invertible maps associated with a specific point x(0) at time 0. An orbit O is periodic
with period = if for each & € O, (f")'(z) = =« for all nonnegative integers ¢ and some
positive integer n. Note that a periodic orbit has only a ﬁni.tt\a number of unique points.
We refer to points on periodic orbits as periodic points. An orbit point z is asymptotically
periodic if there exists a positive integer N such that the point i (z) is periodic.

By a deterministic flow, we mean an evolution equation specified by a function F :

M — M mapping some space M to itself, which gives rise to continuous-time waveforms

z(t), t € R which satisfy the differential equation

dx .
= ='(t) = F(=()). (2.1)

In this thesis we are primarily interested in the maps which flows give rise to by sampling
x(t) every T seconds. That is, the resulting time series {y(i)}, where y(n) = z(nT), is an

orbit of the deterministic map fr defined as
(n+1)T
2((n+ 1)T) = f(z(nT)) = =(nT) + / P, (2.2)

Note that in contrast to arbitrary maps which may or may not be invertible, the maps

which time-sampled flows give rise to are always invertible if F' is continous.

2.3 The Distinguishing Properties of Chaos

Deterministic chaotic systems, referred to simply as chaotic systems in the thesis, are nonlin-
ear, deterministic, dynamical systems, either discrete-time or continuous-time, which satisfy

a certain set of properties; but, there is no universal agreement as to what these properties
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should be. As a result, there is no single definition of deterministic: chaos, but instead
several, closely related definitions. In this section we discuss topological and ergodic prop-
erties often associated with or required for deterministic chaos, discuss the relation an.ong
these properties, and cite those properties either satisfied by or believed to be satisfied by
the systems considered in this thesis. We only discuss properties relevant to discrete-time
and time-sampled continuous-time systems. Topological properties are discussed first, since

they are conceptually easier to understand than ergodic properties.

2.3.1 Topological Properties

To discuss the topological properties of chaos, one must first specify a topology [62] on the
space M on which the system is defined. For the unit-interval maps considered in Chapters
6 and 7, M is the unit interval and the topology on M is the subspace topology for the
metric topology on R". In other words, a basis element for the topology is simply the
intersection of an open ball in R™ with M. For the dissipative maps considered in Chapters
4 and 5, M and its associated topology are not as easily defined, since of interest is the
steady-state dynamics of such systems and these dynamics typically evolve onto attractors
which are not simple subsets of R". In the discussion that follows, we implicitly assume
that an appropriately defined metric gives rise to the underlying topology.

The three topological properties often required of a dynamical system for it to be con-
sidered chaotic are sensitive dependence on initial conditions, topological transitivity, and
a dense set of periodic orbits [20]. We briefly consider each in turn.

Most definitions of chaos require that there be sensitive dependence on initial conditions,

a formal definition of which is the following [20]:

Sensitive Dependence on Initial Conditions: A discrete-time system or map f: M —
M has sensitive dependence on initial conditions if there exists a constant § > 0 such that
for any & € M and any neighborhood U of «, there exists a y € U and an integer n > 0
such that | f*(x) - f*(y)| > é.

In other words, for there to be sensitive dependence on initial conditions, there must be
a positive constant é, such that for any point  in M and any arbitrarily small open ball
containing x, one can always find another point y in that ball such that the distance between

corresponding points on the orbits generaied by @ and y eventually exceeds §. Intuitively,
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this means that there is a local separation or divergence of the two orbits. However, the
conditions of the definition are still satisfied even if these orbits converge after time n.
Also, the definition does not require that the orbits generated by all points in a given
neighborhood of x diverge from that generated by ®. In fact, for many chaotic systems
such as the dissipative systems considered in Chapter 4, one can generally find points in
each neighborhood of & for which the orbits generated by these points converge to the one
generated by x.

An unstable, linear system exhibits sensitive dependence on initial conditions, but such
a system is not considered chaotic. As such, additional topological properties are generally
required of a system for it to be considered chaotic. One such property, not shared by linear
systems unless the space M consists only of the origin, is topological transitivity, which can

be defined as follows [20):

Topological Transitivity: A map f: M — M is topologically transitive if for any pair
of open sets U,V C M, there exists a positive integer k such that F5UYNV # O where 0

is the empty set.

A less abstract definition, applicable when f is continuous and M is compact, is the following

(87):

Topological Transitivity: A continuous transformation f : M — M is topologically
transitive if there is some @ € M for which the orbit generated by z, Og(z) = { 5 =)k > 0},
is dense in M. That is, for any y € M and any open set U containing y, there exists a

positive integer k such that f*(z) € U.

Intuitively, this latter definition simply means that the orbit generated by @ comes arbitrar-
ily close to every point in M. (More precisely, the above definitions are those for one-sided
topological transitivity as opposed to two-sided topological transitivity, a concept applicable
only to invertible systems).

One consequence of topological transitivity is that it prevents M from being decom-
posable. That is, if f is topologically transitive on M, then one can’t divide M into two
disjoint subsets M; and M, such that f(M;) C M; and f(M2) C M;. As suggested by this
indecomposability constraint and discussed in the next section, ergodicity and topological
transitivity are closely related. In addition, if f is topologically transitive on M, one can

show that if one point has a dense orbit then almost all points in M have dcnse orbits [87].
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In Chapter 4 we exploit this property of chaotic systems to derive simple, yet potentially
effective state estimation algorithms.

A third topological property sometimes required of a system for it to be considered
chaotic is that there be a dense set of periodic points. Although many if not all of the
systems considered in this thesis have this property, it is not a property which we either
exploit or emphasize. We do not consider it in the context of state estimation in Chapters

4 and 5 and only briefly consider in the context of signal synthesis in Chapters 6 and 7.

2.3.2 Ergodic Properties

Whereas a discussion of the topological properties associated with chaos requires that a
topology be first defined, a discussion of the ergodic properties associated with chaos requires
that a measure space (X, 3, ) be defined, where X is a set, 3 is a o-algebra of subsets of
X, and p is a measure on 8. We only consider probability spaces in this thesis, which are
those spaces satisfying p(X) = 1. One example of a probability space used extensively
in Chapters 6 and 7 consists of X being the unit interval, 8 being the Borel o-algebra
(which by definition is the smallest o-algebra containing all open subintervals of the unit
interval), and g being Lebesgue measure (the unique measure for which the measure of any
subinterval is simply the length of the subinterval). In contrast, for the dissipative maps
considered in Chapters 4 and 5, the underlying probability space is rather nebulous, as the
steady-state system dynamics occur on a complicated (fractal) attractor, which is singular
with respect to Lebesgue measure.

A transformation or map f : X — X (i.e., a mapping from X to itself) is measurable
if £~1(B) € B for every B € 3, where f~! denotes the inverse image of f. A measurable
transformation is nonsingular if p(f~*(B)) = 0 for every B € f such that u(B) = 0.
A nonsingular, measurable transformation is measure-preserving if u(f~!(B)) = p(B) for
every B € 4. If in addition to being measure-preserving; the map has the property that
the only sets B in 8 for which f~!(B) = B have measure zero or one, then f is ergodic
(with respect to the measure z2). In other words, an ergodic map is one for which the only
invariant sets are those that contain either all the probability or none of it.

For probability spaces, one consequence of ergodicity is that ensemble averages and
infinite time averages correspond, in the sense that the following relation holds for all

functions g € LY(p) (where L!(1) denotes the set of all absolutely integrable, real-valued
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functions on (X, 8, )):
n—-1
lim =Y g(£i(2)) = [ g du (2.3)

n—oo
n 1=0

for almost all z. This relation suggests that ergodicity and topological transitivity are
related, and indeed this is the case. As shown in [34], if f is ergodic on the measure space
(X, B, 1) and there exists a topology on X with countable basis such that every open set
has nonzero measure, then f is topologically transitive with respect to this topology. Thus,
ergodicity implies topological transitivity under these conditions. However, an ergodic
system need not have sensitive dependence on initial conditions, and thus not all ergodic
systems are chaotic.

For the problems considered in this thesis, the map f : M — M is given and we seek
a o-algebra § on M and a probability measure p on § such that f is measure-preserving
and more importantly ergodic. The measure of interest in Chapters 4 and 5 is the unique,
ergodic, so-called physical measure [21] which is defined in the following, limiting sense.

Consider the noise-driven system
2(n+1) = f(z(n)) + ew(n). (24)

Under certain conditions this system has a unique invariant measure p., when {w(?)} is a
white-noise sequence and ¢ is a small positive constant. The physical measure is given by
lime— oo He-

The value of an ergodic measure for f arises from the fact that if such a measure p exists,
then by the Multiplicative Ergodic Theorem of Oseledec [21], the following limit exists for

¢, p-almost everywhere (i.e., for all = except on a set of y-measure zero):

Ax = lim {D{f"@)} DUF @™, (25)

and the eigenvalues of Ag are p-almost everywhere constant. The logarithms of these
eigenvalues are known as the Lyapunov ezponents of f with respect to the measure p. In
addition, for p-almost all x € RN , if Ay > A2 > --- > Ay denote the ordered Lyapunov

exponents not repeated by multiplicity, and E} denotes the subspace of RV associated with
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all eigenvalues with logarithms that are less than or equal to );, then the following holds:

.1
Jm Llog|D{fm (@)} ull = (26)
for each unit vector u € E} \ Ei*!, where || - || denotes the Euclidean norm and E}\ Ei*!

denotes the set formed by taking E: and removing the subspace Eit!.

For a linear, time-invariant, deterministic system f with no zero-valued eigenvalues for
the matrix representation of f, the Lyapunov exponents are the logarithms of the magni-
tudes of the eigenvalues. For these systems, the multiplicative ergodic theorem implies that
the 1/(2n) roots of the singular values of f™ converge to the magnitudes of the eigenvalues
of f, and the subspace spanned by the singular vectors corresponding to the m smallest
singular values of f" converges to the subspace spanned by the m smallest eigenvalues of
f,form=1,--- N.

The relation given by (26) suggests that if u € EL\ Eit! is a unit vector and y = x +6u

where § is a small positive constant, then

IF* (=) = F (Wl = | D{f"(=)} bul| ~ & exp(nAi). (2.7)

If the approximation were accurate, an implication would be that f has sensitive depen-.
dence on initial conditions if the largest Lyapunov exponent A, is positive. However, this
approximation, frequently cited in the literature, is often a poor approximation unless the
magnitude of § is infinitesimally small, and it is thus a poor approximation for practical
purposes. As such, it is unclear if the existence of a positive Lyapunov exponent implies
that there is sensitive dependence on initial conditions, although at least experimentally
this appears to be the case. In addition, since Lyapunov exponents are defined only for er-
godic systems, a system with a positive Lyapunov exponent is topologically transitive (with
respect to a reasonable topology, e.g., one for which each nonempty open set has nonzero
measure).

With most, if not all, definitions of chaos which include ergodic considerations, a funda-
mental criterion for a system to be considered chaotic is that there be a a positive Lyapunov
exponent defined on a nontrivial measure space. The dissipative systems considered in
Chapter 4 and 5 satisfy this condition as do a subset of the systems considered in Chapters

6 and 7. Implicitly or explicitly inherent in all these definitions are topological considera-
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tions as well, since the definition of Lyapunov exponents assumes the existence of a metric
and thus a metric topology on the underlying measure space. As such, whereas one can
define chaos solely in terms of topological properties as is done in [20], implicit or explicit
in any definition of chaos involving ergodic considerations are topological considerations as

well.

2.3.3 Dissipative Chaos

The next two chapters deal with dissipative diffeomorphisms that are either chaotic or
suspected of being chaotic. These are perhaps the most interesting and representative of
real-world phenomena, yet least understood of all chaotic systems. In particular, the focus
is on maps or time-sampled flows, f : § — S, where f is invertible with both f and
f~! having continuous derivatives and where S, the state space or phase space, is a simply
connected (open) subset of RN for some N. A dissipative map is nonrigorously defined as
one which contracts volumes in state space, in contrast to a conservative system which is
one that preserves state-space volumes [21].

We briefly discuss dissipative, chaotic maps and their properties in this section. Whereas
these maps and their properties remain poorly understand and a rigorous discussion of these
properties requires use of mathematical concepts beyond the scope of this thesis, only a
brief, nonrigorous discussion is provided here with the reader cautioned that some of the
information, much of which was extracted from [21, 33], remains the subject of debate
ainong theoreticians.

One interesting property of dissipative, chaotic systems is that although they are de-
terministic and contract volumes, their dynamics are nontrivial. In particular, they often
give rise to complicated attractors known as strange attractors. Intuitively, an attractor
is a bounded region of phase space, where the points on the orbits generated by initial
conditions in some attracting set accumulate as n grows large, where an attracting set can

be formally defined as follows:

Attracting Set: An attracting set A with fundamental neighborhood U is a compact set
(in phase space) which is invariant, i.e., f(A) = A and for which every open set V containing

A satisfies f*(U) C V for n large enough.

In other words, an attracting set A is one for which orbits generated by points inside A
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remain in A for all time, and for which orbits generated by points in a certain open set
containing A either eventually enter and remain in A or converge to A.

A slightly more rigorous definition of an attractor is an attracting set which contains
a dense orbit, thereby implying that the system f which gives rise to the attractor is
topologically transitive when restricted to this attracting set [33, p. 36]. A strange attractor
can be nonrigorously defined as an attractor for which there is sensitive dependence on initial
conditions, with a more rigorous definition being an attractor which contains a transversal
homoclinic orbit [33]. An explanation of a transversal homoclinic orbit is beyond the scope of
this thesis; its relevance to this discussion is that its existence leads to orbits with nontrivial
behavior, with typical orbits often giving rise to complicated, fractal patterns.

The relevance of attractors and strange attractors to this thesis is threefold. First, given
an attractor, one can find an open set in R for which the orbit of almost every point in this
set converges to the attractor. Second, if there is sensitive dependence on initial conditions
(or a transversal homoclinic orbit), the dynamics of typical or.bits .generated by points on
or near the attractor are nontrivial. Third, the steady-state behavior of orbits generated
by different points on or near the attractor is similar.

Often a strange attractor has zero volume in the driginal state space and so-called fractal
dimension [21]. A discussion of dimensions of strahge attractors is beyond the scope of this
thesis. However, as shown in Chapter 4, because of the similar stea.‘dy-‘sta.te behavior of
orbits generated by points on the attractor and because these orbits boccupy a small region
of state space, one can derive simple, potentially effective state estimation algorithms for
these systems, which do not require full knowledge of the underlying system dynamics.

As noted earlier, a common ergodic criterion for chaos is- tha.t tilere be a pdsitive L.ya-
punov exponent. However, dissipativeness of .a system f generally requires that the Jacobian
of f or f" for some intcger n have absolute value less than one. As a (nonobvious) con-
sequence of the multiplicative ergodic theorem and these constraints, a dissipative, chaotic
system must have at least one negative Lyapunov exponent, and the sum of the Lyapunov
exponents must be negative. Therefore, the state vector dimension must be at least two
for a dissipative, chaotic map. Similarly, one can show that a chaotic flow always has a
zero-valued Lyapunov exponent which corresponds to motion in the flow direction [21].
Therefore, for a chaotic flow or a map arising from time-sampling the flow, the state vector

dimension must be at least three. These conditions on the diménsions of the state vectors
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for dissipative, chaotic maps and flows makes analysis of and algorithm development (e.g.,
state estimation algorithms) for these systems difficult, since one cannot simply develop
algorithms for one-dimensional systems and then adapt the results to higher dimensions.
One practical problem that arises in computer simulation of an invertible, dissipative,
chaotic map is that the inverse system is generallv unstable and the orbits generated by
most points rapidly tend to infinity. This follows from the fact that since the system is
dissipative and thus contracts volumes, the inverse system expands volumes. Because of
this, it is difficult to obtain accurate backward orbit segments for points even for those points
near the attractor, where a backward orbit segment for a point is an orbit segment for which

the point is the final condition.

2.4 Examples of Dissipative, Chaotic Maps and Flows

A number of dissipative maps and flows, which either satisfy or are believed to satisfy
fundamental topological and ergodic properties associated with chaos, have been discovered
and reported over the last three decades, perhaps the most noteworthy having been Lorenz’s
seminal discovery of the chaotic flow that bears his name. In this section we discuss the three
dissipative systems, two maps and one flow, used for the experimental results presented in
Chapters 4 and 5. The three systems are representative of dissipative, chaotic systems, in
general, and are perhaps the systems most frequently used in the study of dissipative chaos.
The two dissipative maps used in this thesis are the Henon and Ikeda maps. As with most
dissipative systems suspected of being chaotic, the properties of these maps are only partially
understood. Both maps are dissipative diffeomorphisims with state vector dimension of two,
the minimum dimension for a dissipative, chaotic map. The state or system equations

z(n + 1) = f(x(n)) for the two maps, expressed componentwise are the following:

Henon Map
zi(n+1) = 1-14z%n)+ zs(n) (2.8)
zo(n+1) = .3z1(n) (2.9)
Ikeda Map
z1(n+1) = 14 .9[z1(n) cos a(n) — x2(n) sin a(n)) (2.10)
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z2(n+1) = .9[z1(n)sin a(n) + z2(n) cos a(n)] (2.11)
6

o) = AT T )

(2.12)

where z(n) = [z1(n), z2(n)]T. Other choices for the constants in the above equations have
also been used; but, the properties of the resulting maps differ at least slightly from those of
the above maps. If the state vector x(n) is treated as a scalar, complex quantity with real

and imaginary parts ,(n) and x;(n) respectively, so that (n) = «,.(n) + j x;(n) (where

j% = —1), then the Ikeda map can be succinctly expressed as follows:
z(n+1)=1+ 9:1:(n)exp{j[4—#]} (2.13)
' T L le(n))? '

where [|2(n)]| = #(n) + 2¥(n).
Figures 2-1 and 2-2 depict a typical orbit segment for each of the two maps, with a
point near the attractor used as the initial condition for each segment. Note that the time

ordering of the orbit points in each orbit segment is not discernible from the figures. The
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Figure 2-1: Orbit Segment for the Henon Map

orbit segment for each map traces out the complicated attractor associated with that map.
Because of the ergodic nature of the maps, orbit segments generated by most other initial
conditions near the attractor trace out the same patterns.

The chaotic flow used in this thesis is the Lorenz flow, perhaps the most widely inves-
tigated of all chaotic systems. The state dimension for this flow is three, the minimum

dimension for a dissipative, chaotic flow. The state or system equations d_‘fu(‘). = F(=(t))
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Figure 2-2: Orbit Segment for the Ikeda Map

for the flow, expressed componentwise, are given by

U O RE0) (2.14)
220 . 98a,(1) - 2alt) - ;1 (1) ms(t) (2.15)
Lol - 3z + m(®) =), (2.16)

where z(t) = [xl(t),zg(i),z3(t)]T. Figure 2-3 depicts a typical trajectory projected onto

the (z,,z3) plane for the Lorenz flow. The trajectory shown in the figure and the Lorenz

Figure 2-3: Projection of Lorenz Trajectory onto (z1,z3) Plane

trajectories used throughout the thesis were obtained by numerically integrating the state
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equation using the fourth-order Runge Kutta method with a step size of .005.
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Chapter 3

State Estimation Fundamentals

3.1 Introduction

In this chapter we establish a foundation for the estimation problems, algorithms, and per-
formance bounds presented in Chapters 4 and 5. The chapter begins by introducing the
state estimation scenario of interest in this thesis and then briefly reviews the two probabilis-
tic estimation techniques—Maximum-Likelihood (ML) and Minimum-Mean-Squared-Error
(MMSE)—which underlie the state estimation algorithms discussed in Chapter 4. The chap-
ter continues by briefly discussing the Kalman filter, the optimal, MMSE state estimator
for linear, state estimation problems. Next, the chapter provides a historical summary of
nonlinear, state estimation research in general and concludes with a more focused summary

of state estimation research involving chaotic systems.

3.2 State Estimation Scenario

Of the three general, nonlinear, state estimation scenarios traditionally considered in the
estimation and control literature, two are relevant to this thesis. The first, referred to as the
DTS/DTO scenario in the thesis, consists of discrete-time state and observa' on equations

with commonly used but not the most general forms of the equations given by the following:

Discrete-Time System, Discrete-Time Observation (DTS/DTO)

z(n+1) = fu(2(n))+ gn(x(n))w(n) (3.1)
y(n) = ha(z(n))+ o(n). (3.2)
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In the first equation, the state equation, z(n) is the N'-dimensional state vector we seek to
estimate; f, and g,, are nonlinear, possibly time-varying functions of the state which are
usually required to satisfy certain smoothness constraints; and w(n), the driving noise, is
an N-dimensional, zero-mean, Gaussian, white-noise process. In the second equation, the
obscrvation equation, y(n) is the P-dimensional observation vector used for estimating x(n);
h, is a nonlinear, possibly time-varying function of the state which is usually required to
satisfy certain smoothness constraints; and v(n), the observation noise, is a P-dimensional,
zero-mean, Gaussian, white-noise process. Generally, w(n) and v(n) are assumed to be
uncorrelated with each other and with the initial condition x(0).

The second scenario, referred to as the CTS/DTO scenario in the thesis, consists of a
continuous-time state equation and a discrete-time observation equation with commonly

used, but not the most general, forms of the equations given by the following:

Continuous-Time System, Discrete-Time Observation (CTS/DTO)

de(t) = Fy(a(t))dt+ Gy(z(t))dW(1) (3.3)
y(n) = ha(z(nT)) + v(n). (3.4)

For this scenario, the state equation is a stochastic differential equation [42, 54] in which =(t)
is the A-dimensional state vector we seek to estimate; F; and G, are nonlinear, possibly
time-varying functions of the state which are required to satisfy a set of both smoothness and
growth-rate constraints; and W (t) is an N -dimensional standard Brownian motion. The
observation equation for this scenario has the same interpretation as for the DTS/DTO
scenario.

Whereas the focus of this thesis is on chaos, only restricted forms of the DTS/DTO
and CTS/DTO scenarios are of interest. In particular, we require the functions f,, Fy, g,,,
G; and h, in (3.1-3.4) to be time-invariant and thus expressible as f, F, g, G and h. In
addition, we require f in (3.1) to be a chaotic map and F in (3.3) to be a chaotic flow;
and in Chapters 4 and 5 we further require that f and F be dissipative diffeomorphisms.
Finally, whereas our interest is in deterministic systems and the properties exhibited by
a class of these systems, we consider the restricted form of the state equations in which

driving noise is absent. With these restrictions, the equations for the DTS/DTO model
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reduce to the following:

z(n+1) = f(z(n)) (3.5)
h(z(n)) + v(n) (3.6)

y(n)

and the equations for the CTS/DTO scenario reduce to the following:

LUNE 0 (3.7)
y(n) = h(=(nT))+v(n) (3.8)

where f is a dissipative, chaotic diffeomorphism and F is a dissipative, chaotic flow.

The omission of driving noise in (3.5) and (3.7) renders these state equations fundamen-
tally different from the more general equations (3.1) and (3.3) respectively, from which they
came. In particular, the stochastic nature of the processes &(n) and ®(t) which (3.1) and
(3.3) respectively give rise to is due both to uncertainty in the initial condition (0) and to
the driving noise terms w(n) and W (¢). In contrast, the stochastic nature of the processes
which (3.5) and (3.7) give rise to is due solely to uncertainty in the initial condition. That
is, if the initial condition is known with certainty, the state at all future times, and at
all past times if the system is invertible, is known with certainty as well regardless of the
observation noise v(n). Consequently, the deterministic problem considered in this thesis is
a simpler problem than the one involving a noise-driven state equation and facilitates the
. derivation of potentially effective, albeit heuristic, state estimation algorithms. In addition,
the derivation and interpretation of performance bounds for the deterministic problem, as
is done in Chapter 5, is a far simpler task than the derivation and interpretation of bounds
for the problem involving a noise-driven state equation.

Nonetheless, state estimation involving a deterministic, chaotic system has many sim-
ilarities to state estimation involving a noise-driven system, as one deals with nontrivial,
invariant measures and positive entropy rates for both systems. In addition, because chaotic
systems exhibit sensitive dependence on initial conditions and because round-off error is in-
evitable in computer simulations involving chaos, a state cquation with a small driving
noise term is sometimes a more representative model of the underlying system dynamics

when computer-generated chaos is being dealt with. Although we do not adopt such a
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model in this thesis, in the next chapter we address the problems that arise from computer
round-off error when designing practical, state estimation algorithms and offer simple, albeit
suboptimal remedies for these problems.

As suggested in Chapter 2, we can express the restricted CTS/DTO scenario given
by (3.7) and (3.8) as a DTS/DTO scenario. In particular, since it is deterministic, the

time-sampled state equation (3.7) is given by the following discrete-time state equation:

z(n+1) = fr(z(n)) (3.9)

where z(n) = «(nT) (3.10)
+1)T

fr(z(n)) = z(n)+ F(=z(t))dt. (3.11)

However, as mentioned in Chapter 2, chaotic maps arising from time-sampled chaotic flows
have certain properties not shared by all chaotic maps. In particular, since a differentiable
flow is always invertible, the same holds for any map that arises by time-sampling the flow.
Also, as discussed earlier, there is a minimum state vector dimension of three for a chaotic
flow, and the flow must have at least one zero-valued Lyapunov exponent. The same applies

to maps that arise by time-sampling the flow.

3.3 Maximum-Likelihood (ML) and Minimum-Mean-Squared-
Error (MMSE) State Estimation

The focus in this thesis is on estimating the state &(no) at either a fixed time nq or a sequen-
tial set of times for the restricted DTS/DTO and CTS/DTO problem scenarios introduced
in the previous section, using a given set of observations Y = {y(¢)} which generally will
be sequential in time and thus expressible as Y(M, N) = {y(i)}}_,, where M and N are
integers with A < N. Both filtering and smoothing are considered, where filtering in-
volves estimating ®(ng), the state at time ng, using observations y(¢) only for times i < ng,
whereas smoothing involves estimating &(ng) using observations for times ¢ > ng as well.
Two probabilistic, state estimation approaches that have proven useful in many ap-
plications [52, 72, 86] are emphasized—Maximum-Likelihood (ML) and Minimum-Mean-
Squared-Error (MMSE). Recall that with ML parameter estimation, the unknown param-

eter one seeks to estimate is treated as a nonrandom quantity and the ML estimate is

32



that value of the parameter which maximizes an appropriately defined likelihood function
or equivalently the logarithm of the likelihood function. For the problem of interest here,
the unknown, nonrandom parameter is &(no), a set of observations Y is given, and the ML
estimate of @(ng), hereafter denoted &ps1(no), is that value of x(no) which maximizes the
likelihood function p(Y;®(no)), where p(Y; €(no)) denotes the probability density function
(PDF) of the observation set Y for a given x(no), with an underlying assumption being
that the PDF exists. For the restricted DTS/DTO scenario, it follows from (3.6) and the

assumptions on the observation noise sequence {v(n)} that log p(y(); (%)) is given by

log p(y(i); 2(i)) = log(2 7 |R|) 7"
~2 [(0) = AT B [y() - hla() (3.12)

where P is the dimension of the observation vector and R is the covariance matrix of v(n).
In light of the determinism of the state equation (3.5) and the assumed invertibility of f,

we also have

log p(y(i); #(no)) = log(27 |R))5
~3 [u() - h(F™(2(no)))]” B [y(i) - R(F="(2(no)))] (3.13)
2

Using this equality and exploiting the whiteness of the observation noise leads to the fol-
lowing expression for the log-likelihood function logp(Y (M, N); 2(no)) for the restricted
DTS/DTO scenario:

log p(Y (M, N); z(no)) = log(2 7 |R|) ™3

N
—% > [l - h(f“"°(=c(no)))]T R [y(i) - h(F " (x(no)))] . (3.14)

=M

The log-likelihood function for the CTS/DTO scenario has a similar form.
Also recall that with MMSE estimation, in contrast to ML estimation, the unknown
parameter one seeks to estimate is treated as a random quantity. For the problem of

interest here with ®(ng) the unknown parameter to be estimated and Y a given observation
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set, the mean-squared estimation error is given by

| [ é(n0) - 2(mo)l” pla(no),¥) de(no) d¥ (3.15)

where || - || denotes the Euclidean norm, &(no) denotes an arbitrary estimator for x(ng),
p(x(ng),Y) denotes the joint PDF of the state vector &(ng) and observation set Y, and
where the integration is over the state vector &(ng) and the entire observation set Y. A
Zundamental result in estimation theory is that the MMSE estimator results by choosing
the conditional mean E(x(ng)|Y’) as the estimate of &(ng) for each observation set Y, where

E(x(no)|Y') is given by
E(z(no)lY) = /z(no)p(:c(no)|Y)dz(no), (3.16)

and where p(x(no)|Y), the a posteriori state density, is the PDF of (ng) conditioned on
the observation set Y. Use of Bayes rule allows E(x(ng)]Y) also to be expressed as

where p(x(no)) denotes the unconditional or a priori PDF of (no) and p(Y |x(ng)) denotes
the PDF of Y conditioned on x(ng). Note that p(Y|x(no)) has the same form as the PDF
P(Y; ®(ng)) defined earlier, with the difference between the two PDF's being that x(ng) is
a random vector in the former and a nonrandom vector in the latter.

An inherent assumption in (3.15) is the existence of the joint PDF p(x(no),Y) with
respect to the product measure dz(ng) dY; an inherent assumption in (3.16) is the existence
of the conditional PDF p(x(n¢)|Y’) with respect to the measure dx(ng) (i.e., Lebesgue
measure on RV where A is the dimension of (ng)); and an inherent assumption in (3.17)
is the existence of the PDF p(x(ng)) with respect to the measure dx(ng) and the conditional
PDF p(Y|x(ng)) with respect to the measure dY (i.e., Lebesgue measure on R(N-M+1)P
where N — M + 1 is the number of observations and P is the dimension of each observation
vector). For dissipative, chaotic systems, these assumptions are not necessarily valid. For
example, if the only a priori knowledge about &(ng) is that it lies on the attractor, then an
appropriate a priori distribution for £(no) is given by the physical measure on the attractor.

Intuitively, this a priori distribution corresponds to ®(ng) having the same likelihood of
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being at each point on an (infinitely long) orbit on the attractor. However, as mentioned
earlier, for dissipative, chaotic systems the physical measure is often singular with respect
to Lebesgue measure on RN and thus has no corresponding PDF with respect to Lebesgue
measure. Consequently, the PDFs p(x(no)), p(z(no).Y), and p(2(no)|Y’) are generally not
defined for dissipative systems if the a priori distribution of &(ng) is given by the physical
measure on the attractor. In contrast, the likelihood function p(Y|®(no)) is well-defined in
these situations because of our assumptions on the observation noise.

When the joint density p(z(ng),Y ) is not defined, we can express the MSE with respect

to the joint probability measure on x(no) and Y, or alternatively as follows:

[ [ 12(10) = 2(no)i? (Y (o)) dite(n) 4Y (3.8)

where piz(,,;) denotes the a priori distribution of x(np), and the integration over x(no) is

defined as a Lebesgue integral. Similarly, we can express the conditional mean as

J 2(10) pLY |2(n0)) dio(ne)

[ (Y |2(n0)) dptz(ng) (3.19)

E(z(no)|Y) =

As we show in Chapter 4, although the above definition for the conditional mean is abstract
and not computable in practice, it can be cast in a revealing form that gives rise to a

converging sequence of simple, approximate MMSE state estimators.

3.4 Linear State Estimation and the Kalman Filter

The Kalman filter is a computationally efficient, recursive MMSE state estimator for both
continuous-time and discrete-time, linear, state-space models with certain restrictions on
the driving noise, observation noise, and distribution of the initial state [5, 30, 38, 57]. Of
relevance to this thesis is the form of the Kalman filter applicable to the following, linear,

DTS/DTO scenario:

z(n+1) = Fpz(n)+ Gow(n) (3.20)

y(n) H,z(n) + v(n), (3.21)
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where F;,, G,,, and H,, are matrices, w(n) ~ $(0,Q,,), v(n) ~ ®(0, R,,), £(0) ~ ®(mg, Py)
(where ®&(m, P) denotes the normal distribution with mean vector m and covariance ma-
trix P), and where the drivin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>