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Abstract

Two families of optimum realizable resampling kernels are developed
for use with remotely-sensed data in clean and noisy environments.
These robust, model-based kernels are designed for minimum mean-
square resampling error.

The first family of kernels is designed for use with Nyquist-sampled
imagery. The resulting kernels offer performance as good as the best
of the popular resamplers in clean environments, and superior per-
formance in noisy environments.

The second family of kernels is designed for resampling aliased im-
agery. For smaller kernels, resampling performance improvement
is achieved over traditional resamplers. Most notably, experiments
show that the 4 x 4-point kernel can reduce resampling error by more
than 22% over cubic convolution.

Introduction

The need for radiometrically-accurate resampling algorithms arises
regularly in problems of quantitative remote sensing. Indeed, resam-
pling plays a crucial role in the correction of raw satellite image data
and its and transformation to a UTM coordinate grid.

In general, the problem of resampling or interpolation involves the
reconstruction of a waveform known only at a finite collection of
points—usually on a regular sampling grid. Most interpolators cur-
rently in use fall into two categories:

Spline-based Interpolation Here, the sampled data is splined to-
gether with curves of the desired form. Nearest-neighbour, bi-
linear, and cubic-convolution interpolation are examples of this
method [3], corresponding, respectively, to piecewise-constant,
linear, and cubic-polynomial splines.

Sinc-based Interpolation Here it is assumed that the waveform to
be reconstructed is band-limited and that the sampling grid is
sufficiently dense. In this case, optimun interpolation requires
the use of sinc functions and is, in fact, unrealizable. Realiz-
able approximations to this method have relied on the use of
windowing techniques [4] {3].

Inherently, both approaches make use of certain smoothness assump-
tions about the waveform being reconstructed!. And, while the
resulting interpolators have been shown empirically effective—hoth
subjectively and in terms of RMS error—they have not been designed

to be optimal in any particular sense.

In this work, we describe a framework in which to design families of
optimum realizable resampling kernels which give minimum mean-
square resampling error based on some simple but reasonable models
for the underlying imagery. Some related formulations have been
considered in [1] [2].

A Framework

Through the remote sensing process, distorted and corrupted sam-
ples of the ground radiance image constitute the available raw data.
While various effects such as Earth curvature and satellite motion
cause these samples to be irregularly spaced, we shall assume that
the sampling falls approximately on a rectangular lattice at some
rotation.

Tt will also be convenient to employ imagery models with a degree of
statistical separability with respect to the along-scan and across-scan
directions. While this assumption has no strong physical basis, it
ensures that we obtain separable resampling kernels suitable for two-
pass processing, and it allows us to consider along-scan and across-
scan resampling as two separate one-dimensjonal problems.

In its discrete form, the general one-dimensional resampling environ-
ment is as shown in Fig. 1. The continuous-time signal 2(t) repre-
sents the radiance of ground imagery. The linear shift-invariant filter
g(t) models the sensor distortions before and during sampling. With
Landsat data, for example, g(t) can be used to account for detector
size effects (cross-scan) and hand-pass filtering (along-scan) in the
sensor as well as non-ideal sampling. The additive sequence w([n]
models noise in the acquisition process arising during sensing, sam-
pling at rate T, and quantization. The available data for resampling
is then v[n].

The resampler is represented by the filter fz[n]. To ensure that this
filter is realizable and stable, we enforce the constraint that il[n] have

finite extent, i.e.,
hln]=0, n < M, n> N. (1)

for some M < N (usually M = —N + 1).

Finally, we want the resampler output at some instant no to best
recover z(tg) for an arbitrary to from the sequence v[n], though we
recognize that during subsequent stages of processing we may ulti-
mately be interested in recovering z(fg).

fndeed, without some additional information there is no “correct” way to
reconstruct the waveform.
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Figure 1: The general resampling environment.

We shall assume that z(¢) is a zero-mean, wide-sense stationary ran-
dom process. The zero-mean assumption is not serious, for we may
always process our non-zero mean imagery by removing the mean
prior to resampling and restoring it immedjately thereafter. The
wide-sense stationarity assumption is somewhat stronger, but results
in resampling kernels which are invariant over the imagery. As a
consequence of stationarity, we may write the autocorrelation of z(t)
as

Be(7) = Bfa{t)z(t - 7)) (2)

The noise sequence w(n] is considered to be zero-mean and white with
power o2, so that

Ru[k] = Elw[n)w[n - k] = { gz ,’j ; 3 (3)

Kernels for Band-limited Imagery

In this section, we assume that z(t) is strictly band-limited and that
the corresponding z(¢) has been sampled at or above the Nyquist-
rate. Provided the sampling is noise-free (¢ = 0) it is well-known
that z(tg) may be recovered, in principle, from the samples

v[n] = z[n] = 2(nT), n=0,£1,%2,... (4)
In particular, choosing a suitable o € [0,1) and integer no such that
to = (ng + )T, (5)

Whittaker-Shannon sampling theory assures us that
#(to) = (h* z)[no] (6)

sinw(n + «)

a(n+a)
Unfortunately, this sinc filter, corresponding to band-limited inter-
polation, has infinite extent and is, in fact, unrealizable. Moreover,
we have only a finite segment of the sample sequence z[n] available.

where

hln] = sinc(n + ) =

While the truncated sinc filter seems a natural candidate for our re-
sampling kernel, we shall see that, in fact, it is optimal only for a
rather specific and atypical scenario.

Using a Wiener filtering {ramework, we may define our objective as
minimizing the mean-square resampling error

= E [(2(to) - 2(t0))?] (8)

where #(tg) is the output of filter hln] at ng, viz.,
£(to) = y[no) = Z R[k](z[no — k} + w(no ~ k). (9)

Note that we may express z(to) in terms of the ideal interpolator A[n]
by

Z hlk]z[ng — k). (10)
By minimizing (8) using (9)‘and (10), it is straightforward to show

that the optimal resampler h[n] satisfies the Toeplitz normal equa-
tions

Z R[E|R,[n ~ k] + h[n]o? = Z hlkIR.[n — k] (11)

k=M ka=—o00
forn=M,M+1,...,N.

If the samples z[n] are modeled as a first-order autoregressive [AR(1)]
sequence, then

R.[k] oc pl*! (12)
for some |p| < 1. These are popular simplified models for image
processing. Note that p is a measure of the degree of correlation in
the data, with p = 0 corresponding to white (uncorrelated) data.
Empirical studies have shown that, for a variety of imagery, values of
p near 1 are most applicable.

Using the AR(1) model, the normal equations may be solved to give
the optimum resampler

hl~k + Mlp" n=M

Ms

k=0
Rln}={ hln] M<n<N (13)
Z [k + N)p*  n=N
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Figure 2: Spatial and frequency response characteristics of the opti-
mal 16 X 16-point interpolator for band-limited irmagery corresponding
to p ~ 1 and 0% = 0. The Kaiser-windowed sinc interpolator is shown
for comparison.



Evidently, this resampler is a generalization of the truncated-sine
filter, for when p = 0, h[n] is indeed a truncated sinc. However,
for p near 1, h[n] is a truncated sinc whose end-points are reduced
in magnitude. Note that in the limiting case p — 1, the filter is
normalized

N o0

Z h[n] = Z hin] =1, (14)

n=M k=—oco
obviating the need for mean-removal in the resampling process. Fig. 2
compares the spatial and frequency characteristics of the 16 X 16-
point interpolator corresponding to p ~ 1 and o? = 0 with that of
the Kaiser-windowed sinc interpolator.

[ " Kermel | Noise | Error (DN)
Type P size SNR | RMS | Peak

New ~1 2x%x2 - 4.9 25
Bilinear - 2X2 - 5.1 26

 New |~17] 4x4 | - | 38 | 17
Cubic - 4x4 - 3.2 15
New ~1 8x8 - 2.0 11
Hamming | - 8x8 - 1.8 8
New |[~1]16x16| - | 16 | 8
Kaiser - | 16x16 - 1.4 7
New 09 | 16x16 | 1dB 16.5 75
Kaiser - |16x16 | 1dB 27.0 95
New 0.9 |16 x16 | 11 dB 7.4 36
Kaiser - |16x16 | 11 dB 8.8 36

Table 1: Resampling performance of kernels for band-limited imagery.

Resampling Experiments

To evaluate the resampling kernels derived in this section, a 128 x 128-
pixel test chip was twice resampled by one-half pixel both horizon-
tally and vertically, and compared to a displaced version of the orig-
inal chip. In some tests, the chip was artificially degraded by addi-
tive white Gaussian noise to achieve a prescribed signal-to-noise ratio
(SNR) prior to resampling. As appropriate, comparisons are made
to the traditional resampling schemes: bilinear interpolation, cu-
bic convolution, Hamming-windowed sinc interpolation, and Kaiser-
windowed (3 = 6) sinc interpolation. As the results in Table 1 indi-
cate, the new kernels are competitive with the best of the traditional
resamplers in noise-free environments despite a markedly different
kernel shape. Moreover, in the presence of noise, the new kernels
offer much improved performance.

Kernels for Aliased Imagery

In the last section, it was assumed that 2(¢) was band-limited. Un-
fortunately, in practice, imagery is only approximately band-limited
and, in any case, is always sampled in a manner which introduces
some aliasing. In this section, we develop an alternative set of ker-
nels based upon a model which accounts for aliasing introduced in
the sensing process.

We hegin by modeling z(¢) as a continuous AR(1) process, for which
the autocorrelation function satisfies

R(r) = E[2(t)e(t - 7)) « e~ol"] (15)
where wg > 0 is a parameter. The choice of wy specifies the degree of
correlation in the data, and valnes near 0 are appropriate for imagery.

Since the power spectrum for this process is

Sulw) = FURADY o [ L (16)
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it is evident that 2(¢) is, indeed, not band-limited. Note, also, that
for some 0 < p < 1, (15) may he re-written as

R(r) o VT (17)
where, evidently, wy =~ 0 corresponds to p ~ 1.

Now for arbitrary R.(7), the minimization of {8) subject to (9) gives
the optimal resampler as the solution to the normal equations

N
S WEIRA(n - B)T) + o?h[n] = R.((n + a)T) (18)
k=M
forn=M,M+1,...,N.

In the absence of g(t), this optimum resampler is given by

) (p20=2) — pli=eh)j(p —p) =0
Rlnl =4 (p7 = p®)/(p™" ~ p) n=1 (19)
0 otherwise

which gives bilinear interpolation in the limit p — 1. This rather
surprising result, also deduced by Polydoros and Protonotarios 2],
establishes that for such highly-correlated signals a two-point resam-
pler is optimal. In fact, this is a consequence of the extensive aliasing
in the samples of these signals.

More realistically, some low-pass filtering takes place in the sensor.
In fact, if the sensor performs natural sampling, so that g(¢) is given

by
Jyr <12
y(t)—{ 0 j>T/2 (20)
then
[pr#! = 2o+ 1l 2(1 ]~ Du] u? rl <1
R.(vT) =
OT) [ohi — 2ol 4 ph1-1] /2 Iyl >1
(1)
where
p=1In|p|. (22)

Using this expression for R.(-), the normal equations (18) may be
solved numerically to obtain resamplers parameterized by p and o2,
In noise-free environments (o2 = 0), these resamplers have a damped-
sinc appearance similar to be that of the Kaiser-windowed sinc inter-
polators, but with stronger damping. Fig. 3 compares the spatial and
frequency characteristics of the 4 x 4-point interpolator corresponding
to p = 0.9 and ¢? = 0 with those of cubic convolution.
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Figure 3: Spatial and frequency response characteristics of the op-
timal 4 x 4-point interpolator for aliased imagery corresponding to
p = 0.9 and ¢? = 0. The cubic convolution interpolator is shown for
comparison.

Kernel Error (DN)
Type P size RMS | Peak
New 09| 2x2 4.9 24
Bilinear - 2x2 5.1 26
" New 0.9 4x4 2.5 12
Cubic - 4x4 3.2 15
New 09| 8x8 2.1 10
Hamming | - 8 x8 1.8 8
New | 0.9[16x16| 21 0
Kaiser - | 16 X 16 1.4 7

Table 2: Resampling performance of kernels for aliased imagery.

Resampling Experiments

An experimental framework similar to that described earlier was emn-
ployed in the evaluation of these resampling kernels, though only
noise-free (o2 = 0) scenarios were considered this time. Table 2 indi-
cates the resampling results using kernels corresponding to p = 0.9.
(In fact, resampling performance was ohserved to be relatively in-
dependent of p.} Improvements in performance can be noted for the
smaller sized resamplers—indeed, the 4 X 4-point resampler gives 22%
less resampling error than cubic convolution.

Discussion

Despite the simplicity of the models employed in this work, some
remarkably effective resampling kernels have been developed for use
with remotely-sensed data.

The first family, based on an overly-optimistic model assuming no
aliasing in the sensing process, yields kernels whose performance vir-
tually indistinguishable from the best of the popular resamplers, par-
ticularly in the case of large kernels. However, the new kernels,
though sinc-like in appearance, exhibit considerably less damping
than traditional Kaiser-windowed interpolators. In noisy environ-
ments, the appropriate optimum kernels significantly outperform the
traditional resamplers, optimally combining noise removal (smooth-
ing) and interpolation. These kernels may be of use in some resam-
pling scenarios.

The second family of kernels is based on an overly-pessimistic model
which assumes that significant aliasing is introduced in the sensing
process. These kernels are especially effective for low-order interpola-
tion, such as in the case of 4 X 4-point resampling. Much of this gain
is due to the fact that the false contrast enhancement of cubic con-
volution is avoided. Kernels of this family also have a damped-sinc
appearance, though the degree of damping is more pronounced than
is commonly introduced with, for example, typical Kaiser windows.

Note that while it may seem tempting to by-pass the autoregressive
autocorrelation models R,(-) of this work and estimate the required
values directly from data, this approach has some inherent difficulties:

1. it is only possible to estitnate samples of the autocorrelation
from our sampled data;

2. the quality of the estimation may be poor if the ¢? is large; and

3. some additional assumption about the data such as band-limiting
must be made to enable interpolation of the autocorrelation.
This effectively prohibits the incorporation of aliasing into the
framework.

Nevertheless, for the noise-free, band-limited case, this approach is
feasible and was considered, in fact, by Shlien [3]. However, while
kernels adapted locally to the data can give excellent resampling error
performance, the results can be misleading. After accounting for the
additional computation inherent in the accumulation of statistics, one
finds, in practice, that the same level of performance can be attained
much more cheaply simply by using a larger sized resampling kernel.

In conclusion, therefore, we have described an apparently useful frame-
work for the design of interpolators for remotely-sensed data. Future
work ought to address the development of more refined models for
both the imagery and the satellite-dependent sensing process.
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