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Abstract

This paper develops a linear whitening transformation that minimizes the mean squared
error (MSE) between the original and whitened data, i.e., that results in a white output that
is as close as possible to the input, in an MSE sense. When the covariance matrix of the data
is not invertible, the whitening transformation is designed to optimally whiten the data on a
subspace in which it is contained. The optimal whitening transformation is developed both for
the case of finite length data vectors and infinite length signals.
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1 Introduction

Data whitening arises in a variety of contexts in which it is useful to decorrelate a data sequence

either prior to subsequent processing, or to control the spectral shape after processing. Examples in

which data whitening has been used to advantage include enhancing direction of arrival algorithms

by pre-whitening [1, 2], and improving probability of correct detection in multi-signature systems

[3, 4] and multiuser wireless communication systems [5] by pre-whitening.

Whitening of a random sequence parallels closely the concept of orthogonalization of a set of

vectors. Specifically, orthogonalizing a set of vectors involves mapping the set of vectors to a new

set of vectors through a linear transformation so that the inner products between any two vectors in

the set is zero. Similarly, whitening a zero-mean random sequence involves mapping the sequence

to a new sequence through a linear transformation so that the expectation of the product of any

two elements in the sequence is zero. Since the expectation has similar mathematical properties as

an inner product, the mathematics associated with whitening of a random sequence parallels the

mathematics associated with orthogonalizing a set of vectors.

Just as there are many ways to construct an orthogonal set of vectors from some given set of

vectors, any whitening transformation cascaded with a linear unitary transformation will result in

a different whitening transformation, so that the linear transformation that whitens a data vector

or infinite length signal is not unique. While in some applications of whitening certain conditions

might be imposed on the whitening transformation such as causality or symmetry, there have been

no general assertions of optimality for various choices of a linear whitening transformation.

Recently, the concept of least-squares orthogonalization has been introduced [6, 7] in which an

orthogonal set of vectors is constructed from a given set of vectors in such a way that the orthogonal

vectors are as close as possible in a least-squares sense to the given set of vectors. Least-squares

orthogonalization was originally motivated by a detection problem in quantum mechanics [6], and

later applied to the design of optimal frames [8, 9].
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Paralleling the concept of least-squares orthogonalization, in this paper we develop an optimal

linear whitening transformation. Our criterion for optimality is motivated by the fact that in

general whitening a data vector or signal introduces distortion to the values of the data relative to

the unwhitened data. In certain applications of whitening, it may be desirable to whiten the data

while minimizing this distortion. Therefore, in this paper we propose choosing a linear whitening

transformation that minimizes the mean squared error (MSE) between the original and whitened

data, i.e., that results in a white output that is as close as possible to the input, in an MSE sense. We

refer to such a whitening transformation as a minimum MSE (MMSE) whitening transformation.

Extensions of this concept to other forms of covariance shaping are considered in [4]. Applications

of MMSE whitening and subspace whitening to matched filter detection, multiuser detection, and

least-squares estimation are considered in [3, 5, 10].

In Section 2 we derive the linear MMSE whitening transformation for a finite-length data vector

with positive definite covariance matrix. In Section 3 we consider optimal whitening for the case in

which the covariance matrix is not positive definite, i.e., is not invertible. In this case, whitening

and optimal whitening are restricted to the subspace in which the random vector is contained

with probability 1. In Section 4 we consider optimal whitening of infinite length stationary data,

i.e., stationary random processes, both in the case of positive definite and positive semi-definite

covariance functions.

3



2 Optimal Whitening Transformation

We denote vectors in Rm (m arbitrary) by boldface lowercase letters, and matrices in Rm×m by

boldface uppercase letters. PV denotes the orthogonal projection operator onto the subspace V and

Im denotes the m × m identity matrix. The adjoint of a transformation is denoted by (·)∗, and (̂·)

denotes an optimal vector or transformation. The cross-covariance of random variables a and b is

denoted by cov(a, b), and E(·) denotes the expectation.

Let a ∈ Rm denote a zero-mean1 random vector with positive-definite covariance matrix Ca.

We wish to whiten2 the vector a using a whitening transformation W to obtain the random vector

b = Wa, where the covariance matrix of b is given by Cb = c2Im for some c > 0. Thus we seek a

transformation W such that

Cb = WCaW∗ = c2Im, (1)

for some c > 0. We refer to any W satisfying (1) as a whitening transformation.

Given a covariance matrix Ca, there are many ways to choose a whitening transformation

W satisfying (1), for example using the eigendecomposition or Cholesky factorization of Ca [11].

Although there are an unlimited number of whitening transformations satisfying (1), no general

assertion of optimality is known for the output b = Wa of these different transformations. In

particular, the white random vector b = Wa may not be “close” to the input vector a. If the

vector b undergoes some noninvertible processing, or is used as an estimator of some unknown

parameters represented by the data a, then we may wish to choose the whitening transformation

in a way that b is close to a in some sense. This can be particularly important in applications in

which b is the input to a detector, so that we may wish to whiten a prior to detection, but at the

same time minimize the distortion to a by choosing W so that b is close to a. Applications of this

1If the mean E(a) is not zero, then we can always define a′ = a − E(a) so that the results hold for a′.
2In this paper we define a random vector a to be white if the covariance of a, denoted Ca, is given by Ca = c2I

for some c > 0.
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type have been recently investigated in various contexts including matched-filter detection [3, 4]

and multiuser detection [5]. We therefore propose a whitening transformation that is optimal in

the sense that it results in a random vector b that is as close as possible to a in MSE. Specifically,

among all possible whitening transformations we seek the one that minimizes the total MSE given

by

εMSE =
m∑

k=1

E
(
(ak − bk)2

)
= E ((a − b)∗(a − b)) , (2)

subject to (1), where ak and bk are the kth components of a and b respectively. We may wish to

constraint the constant c in (1), or may choose c such that the total MSE is minimized.

Our approach to determining the whitening transformation that minimizes (2) is to perform a

unitary change of coordinates U so that in the new coordinate system, a is mapped to a = Ua with

the elements of a uncorrelated, and b is mapped to b = Ub. Since U is unitary and Cb = c2Im,

the covariance matrix of b is Cb = c2Im, and the MSE defined by (2) between a and b is equal to

the MSE between a and b.

Such a unitary transformation is provided by the eigendecomposition of Ca. Specifically, since

Ca is assumed positive-definite, it has an eigendecomposition Ca = VDV∗, where V is a unitary

matrix and D is a diagonal matrix with diagonal elements dk > 0. If we choose a = V∗a, then

the covariance matrix of a is V∗CaV = D and cov(ak, al) = dkδkl, where ak denotes the kth

component of a.

Thus, we may first solve the optimal whitening problem in the new coordinate system. Then,

with Ŵ and Ŵ denoting the optimal whitening transformations in the new and original coordinate

systems respectively, it is straightforward to show that

Ŵ = U∗ŴU. (3)
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To determine Ŵ, we express εMSE of (2) as

εMSE =
m∑

k=1

E
(
(ak − bk)2

)
=

m∑
k=1

dk + mc2 − 2
m∑

k=1

E(akbk), (4)

where dk = E(a2
k) and bk denotes the kth component of b. From the Cauchy-Schwarz inequality,

E(akbk) ≤ |E(akbk)| ≤
(
E

(
a2

k

)
E

(
b
2
k

))1/2
, (5)

with equality if and only if bk = γkak for some non-negative deterministic constant γk, in which

case we also have E(b2
k) = γ2

kE(a2
k) = γ2

kdk = c2, so γk = c/
√

dk. Note, that bk can always be

chosen proportional to ak since the variables ak are uncorrelated. Thus, the optimal value of bk,

denoted by b̂k, is b̂k = cak/
√

dk.

If the constant c in (4) is specified, then Ŵ = cD−1/2. The optimal whitening transformation

then follows from (3),

Ŵ = cVD−1/2V∗ = cCa
−1/2. (6)

Alternatively, we may choose to further minimize (4) with respect to c. Substituting b̂k back

into (4), we choose c to minimize

mc2 − 2c

m∑
k=1

√
dk. (7)

The optimal value of c, denoted by ĉ, is therefore given by

ĉ =
1
m

m∑
k=1

√
dk, (8)

and the optimal whitening transformation is

Ŵ = ĉVD−1/2V∗ = ĉCa
−1/2. (9)
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It is interesting to note that the MMSE whitening transformation has the additional property

that it is the unique symmetric whitening transformation [12] (up to a possible minus sign). It is

also proportional to the Mahalanobis transformation, that is frequently used in signal processing

applications incorporating whitening (see e.g., [13, 1, 2]).

The results above are summarized in the following theorem:

Theorem 1 (MMSE whitening transformation) Let a ∈ Rm be a random vector with positive-

definite covariance matrix Ca = VDV∗, where D is a diagonal matrix and V is a unitary matrix.

Let Ŵ be the optimal whitening transformation that minimizes the MSE defined by (2), between

the input a and the output b = Wa with covariance Cb = c2Im where c > 0. Then

Ŵ = αVD−1/2V∗ = αCa
−1/2,

where

1. if c is specified then α = c;

2. if c is chosen to minimize the MSE then α = (1/m)
∑m

k=1

√
dk.

7



3 Optimal Subspace Whitening

Suppose now that Ca is not positive-definite, i.e., Ca is not invertible. In this case there is no

whitening transformation W such that WCaW∗ = c2Im. Instead, we propose whitening a on the

space in which it is contained, which we refer to as subspace whitening.

3.1 Subspace Whitening

Let a be a zero-mean random vector in Rm with covariance matrix Ca, where rank(Ca) = n < m,

and let V ⊂ Rm denote the range space of Ca. If Ca is not invertible, then the elements of a are

linearly dependent with probability one (w.p. 1)3, and consequently any realization of the random

vector a lies in V. This follows from the fact that for any v ∈ V⊥, Cav = 0, so that v∗a = 0 w.p. 1

for any realization of a. We may therefore consider whitening a on V, which we refer to as subspace

whitening.

First consider a zero mean random vector q ∈ Rm with full-rank covariance matrix, and let

r = Wq where W is a whitening transformation, so that r is white. Then r and q lie in the same

space Rm. Furthermore, if r is white then the representation of r in terms of any orthonormal basis

for Rm is also white. This follows from the fact that any two orthonormal bases for Rm are related

through a unitary transformation. We define subspace whitening to preserve these two properties.

Let a be a random vector with covariance Ca with range space V, and let b denote the output

of a subspace whitening transformation of a. Since a ∈ V we require that b ∈ V. In addition,

we require that the representation of b in terms of some orthonormal basis for V is white, which

implies that the representation in terms of any orthonormal basis for V is white.

In Appendix A we translate the conditions such that a random vector b is white on V, to

3Throughout this section when we say that the elements of a random vector are linearly dependent we mean
w.p. 1; similarly, when we say that a random vector lies in a subspace we mean w.p. 1.
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conditions on the covariance matrix Cb. Specifically, we show that Cb must satisfy,

Cb = c2PV = c2VĨV∗, (10)

where PV is the orthogonal projection operator onto V, the first n columns of V form an orthonormal

basis for V, and

Ĩ =


 In 0

0 0


 . (11)

3.2 MMSE Subspace Whitening Transformation

To restate the MMSE subspace whitening problem, let a ∈ Rm be a random vector with kth

component ak and covariance matrix Ca = VDV∗ with rank(Ca) = n < m. Here V is a unitary

matrix with orthonormal columns vk, and D is a diagonal matrix with diagonal elements dk where

dk > 0, 1 ≤ k ≤ n and dk = 0, n + 1 ≤ k ≤ m. Let V denote the range of Ca, spanned by the

columns {vk, 1 ≤ k ≤ n}. We seek a subspace whitening transformation Ws such that the vector

b = Wsa is white on V, namely such that b has a covariance matrix Cb = c2PV = c2VĨV∗, where

Ĩ is given by (11), c > 0, and is as close as possible to a in the MSE sense. Thus, we seek the

transformation that minimizes (2) subject to the constraint

Cb = WsCaW∗
s = c2VĨV∗. (12)

The MMSE subspace whitening transformation, denoted by Ŵs, is derived in Appendix B in

an analogous manner to the derivation of the MMSE whitening transformation of Section 2, and

is given by

Ŵs = αsV(D1/2)†V∗ = αs(Ca
1/2)†, (13)
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where (·)† denotes the Moore-Penrose pseudo inverse [14]. Here αs = c in the case in which c in

(12) is specified, and αs = (1/n)
∑n

k=1

√
dk, in the case in which c is chosen to minimize the MSE

(2).

It is intuitively reasonable and follows from the proof in Appendix B that Ŵs is uniquely speci-

fied on V, but can be arbitrary on V⊥. However, since the input a to the whitening transformation

lies in V w.p. 1, the choice of Ŵs on V⊥ does not affect the output b (w.p. 1).

The results above are summarized in the following theorem:

Theorem 2 (MMSE subspace whitening) Let a ∈ Rm be a random vector with covariance

matrix Ca = VDV∗ with rank(Ca) = n < m, where D is a diagonal matrix and V is a unitary

matrix. Let V denote the range space of Ca. Let Ŵs be any subspace whitening transformation

that minimizes the MSE defined by (2), between the input a and the output b with covariance

Cb = c2PV = c2VĨV∗, where Ĩ is given by (11) and c > 0. Then

1. Ŵs is not unique;

2. Ŵs = αsV(D1/2)†V∗ = αs(Ca
1/2)† is an optimal subspace whitening transformation where

(a) if c is specified then αs = c;

(b) if c is chosen to minimize the MSE then αs = (1/n)
∑n

k=1

√
dk;

3. define WV
s = ŴsPV where PV is a projection onto V and Ŵs is any optimal subspace whiten-

ing transformation; then

(a) WV
s is unique, and is given by WV

s = αsV(D1/2)†V∗ = αs(Ca
1/2)†;

(b) Ŵsa = WV
s a w.p. 1;

(c) b = Ŵsa is unique w.p. 1.
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4 Optimal Whitening of Stationary Random Processes

We now consider optimal whitening and subspace whitening of a stationary random process.

4.1 MMSE Whitening

Let a[n] be a zero-mean stationary random process with positive-definite correlation function Ra[n].

Suppose we wish to whiten a[n], i.e., find an LTI filter with impulse response w[n] such that the

correlation function Rb[n] of the filter output b[n] = a[n] ∗ w[n] is Rb[n] = c2δ[n] for some c > 0.

We can express Rb[n] in terms of the filter impulse response w[n] and Ra[n] as [13]

Rb[n] = Ra[n] ∗ w[n] ∗ w[−n]. (14)

Denoting the Fourier transforms of Ra[n], Rb[n] and w[n] by Sa(ω), Sb(ω) and W (ω) respectively,

and taking the Fourier transform of (14),

Sb(ω) = Sa(ω)|W (ω)|2. (15)

Since Rb[n] = c2δ[n], Sb(ω) = c2, and W (ω) must satisfy

|W (ω)|2 = c2S−1
a (ω). (16)

Note that S(ω) > 0 for all ω since we assume that Ra[n] is positive-definite. A filter with frequency

response W (ω) satisfying (16) is a whitening filter.

Given a random process a[n] with correlation function Ra[n], there are many possible whitening

filters with frequency response satisfying (16). From all possible whitening filters we seek the filter

that results in b[n] as close as possible to a[n] in an MSE sense. Thus we seek the filter that
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minimizes

εMSE = E((a[n] − b[n])2), (17)

subject to the constraint (16).

Expanding (17) we have

εMSE = E(a2[n]) + E(b2[n]) − 2E(a[n]b[n]) = Ra[0] + c2 − 2E(a[n]b[n]). (18)

Minimizing (18) with respect to b[n] is equivalent to maximizing

E(a[n]b[n]) = Rab[0] =
1
2π

∫ π

−π
Sab(ω)dω. (19)

Here Rab[n] is the cross-correlation function between a[n] and b[n], and Sab(ω) is the Fourier trans-

form of Rab[n], which is related to Sa(ω) and W (ω) by [13]

Sab(ω) = W ∗(ω)Sa(ω). (20)

Substituting (20) into (19) and using (16) we have that,

E(a[n]b[n]) =
1
2π

∫ π

−π
W ∗(ω)Sa(ω)dω

=
1
2π

∫ π

−π
c2W−1(ω)dω

≤ 1
2π

∫ π

−π
c2|W−1(ω)|dω

=
1
2π

∫ π

−π
cS1/2

a (ω)dω. (21)

We have equality in (21) if and only if

W−1(ω) = |W−1(ω)| =
1
c
S1/2

a (ω), (22)
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or

W (ω) = cS−1/2
a (ω). (23)

The optimal value of b[n] is then given by b̂[n] = w̃[n] ∗ a[n] where w̃[n] is the inverse Fourier

transform of W (ω) given by (23).

If c is specified, then the MMSE whitening filter is given by

Ŵ (ω) = cS−1/2
a (ω). (24)

We may further wish to minimize the MSE with respect to c. Substituting b̂[n] into (18) and

minimizing with respect to c we have that the optimal value of c, denoted ĉ, is given by

ĉ = E (a[n](a[n] ∗ w̃[n])) =
1
2π

∫ π

−π
S1/2

a (ω)dω, (25)

and the MMSE whitening filter is given by

Ŵ (ω) = ĉS−1/2
a (ω). (26)

Note that the MMSE whitening filter is the unique zero-phase filter that satisfies (16).

The results above are summarized in the following theorem:

Theorem 3 (MMSE whitening filter) Let a[n] denote a random process with positive-definite

correlation function Ra[n], whose Fourier transform is denoted by Sa(ω). Let Ŵ (ω) be the frequency

response of the optimal whitening filter with impulse response ŵ[n] that minimizes the MSE defined

by (17), between the input a[n] and the output b[n] = a[n] ∗ w[n] with correlation function Rb[n] =

c2δ[n] with c > 0. Then

Ŵ (ω) = σSa(ω)−1/2,

13



where

1. if c is specified then σ = c;

2. if c is chosen to minimize the MSE then σ = (1/2π)
∫ π
−π S

1/2
a (ω)dω.

The MMSE whitening filter given by Theorem 3 is reminiscent of the MMSE whitening trans-

formations given by Theorem 1. The optimal whitening transformation is proportional to the

inverse-square root of the input covariance matrix, and is symmetric. Similarly, the Fourier trans-

form of the optimal whitening filter is proportional to the inverse-square root of the input spectral

density function, and has zero phase.

4.2 MMSE Subspace Whitening

In the previous section we assumed that Ra[n] is positive definite. If it is not positive-definite then,

as is well known, Sa(ω) will be zero for some ω.

Suppose now that Sa(ω) = 0 on a set of frequencies {ωi}. If a[n] is the input to the filter

with impulse response h[n] = ejωin, then the spectral density function Sd(ω) of the output d[n] =

a[n] ∗ h[n] is given by

Sd(ω) = (2πδ(ω − ωi))2Sa(ωi) = 0, (27)

and consequently d[n] = 0 w.p. 1. But

d[n] =
∑
m

a[m]h[n − m] = ejωin
∑
m

a[m]e−jωim. (28)

Thus, A(ωi) =
∑

m a[m]e−jωim = 0 w.p. 1, and therefore the elements of the sequence a[n] are

linearly (deterministically) dependent. The same analysis holds true when Sa(ω) = 0 over a set of

frequency intervals.

As in the finite-dimensional case, we then propose whitening a[n] on the subspace to which it

is confined. This is equivalent to whitening a[n] over the frequency intervals for which Sa(ω) �= 0.
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Thus, the subspace whitening filter satisfies

|W (ω)|2 =




c2S−1
a (ω), ω such that Sa(ω) �= 0;

arbitrary, ω such that Sa(ω) = 0.

(29)

The frequency response of the MMSE subspace whitening filter is given by Theorem 3 at

frequencies for which Sa(ω) �= 0, and is arbitrary otherwise.

Appendix

A Subspace Whitening

We translate the conditions on a random vector b to be white on V, to conditions on the covariance

Cb of b. The first condition on the vector b is that b ∈ V. Suppose that b ∈ V. Then v∗
kb =

0, m + 1 ≤ k ≤ n (w.p. 1), since the vectors {vk, m + 1 ≤ k ≤ n} span V⊥. This in turn implies

that

Cbvk = 0, n + 1 ≤ k ≤ m, (30)

so that the null space of Cb contains V⊥. Conversely, suppose that the null space of Cb contains

V⊥. Then (30) holds, and we have already shown that this implies that b ∈ V. We conclude that

b ∈ V if and only if the null space of Cb contains V⊥, so that Cb satisfies (30).

We now discuss the requirement that the representation of b in terms of any orthonormal basis

for V is white. Let V1 denote the matrix of columns {vk, 1 ≤ k ≤ n}, that form a basis for V. The

representation of b in this basis for V is bv = V∗
1b, bv ∈ Rn. We require that bv is white, namely

that the covariance matrix of bv is equal to c2In. Since the covariance of bv is given by V∗
1CbV1,

our requirement on Cb is

V∗
1CbV1 = c2In, (31)
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for some c > 0. Thus the matrix Cb has to satisfy (30) and (31), which can be combined into the

single condition

Cb = c2PV = c2VĨV∗, (32)

where V is the matrix of columns {vk, 1 ≤ k ≤ m}, and Ĩ is given by (11).

B Subspace MMSE Whitening

Let a = V∗a, and b = V∗b where b is white on V so that b has covariance Cb = c2VĨV∗.

The covariance of a is then V∗CaV = D, and the covariance of b is V∗CbV = c2Ĩ. As in MMSE

whitening, instead of seeking a subspace whitening transformation that minimizes the MSE between

a and b, we may seek a transformation Ŵs such that the vector b = Ŵsa is as close as possible

to a, and such that b has covariance c2Ĩ. From (3) it then follows that Ŵs = VŴsV∗, where Ŵs

is the optimal subspace whitening transformation that minimizes the MSE between a and b.

Using the Cauchy-Schwarz inequality it follows that Ŵs is such that bk = cak/
√

dk for 1 ≤ k ≤

n. Since the covariance of b must be equal to c2Ĩ, Ŵs must also be chosen so that var(bk) = 0 for

n + 1 ≤ k ≤ m. Now, the covariance of a is D, where the kth diagonal element of D is equal to

0, for n + 1 ≤ k ≤ m. Consequently, ak = 0 w.p. 1 for n + 1 ≤ k ≤ m. Therefore, we conclude

that Ŵs is block diagonal. The upper left n×n block is a diagonal matrix, with diagonal elements

c/
√

dk; the lower right block is arbitrary, since bk = ak = 0 regardless of the choice of this block.

We therefore choose Ŵs to be a diagonal matrix with the first n diagonal elements equal to c/
√

dk

and the remaining diagonal elements equal to 0. Thus Ŵs = c(D1/2)†, and

Ŵs = cV(D1/2)†V∗ = c(Ca
1/2)†. (33)

If we choose to minimize the MSE with respect to c as well, then it is straightforward to show

that the optimal value of c is given by αs = 1/n
∑n

k=1

√
dk.
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