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Abstract

Speaker recognition using support vector machines (SVMs)
with features derived from generative models has been shown to
perform well. Typically, a universal background model (UBM)
is adapted to each utterance yielding a set of features that are
used in an SVM. We consider the case where the UBM is a
Gaussian mixture model (GMM), and maximum likelihood lin-
ear regression (MLLR) adaptation is used to adapt the means of
the UBM. We examine two possible SVM feature expansions
that arise in this context: the first, a GMM supervector is con-
structed by stacking the means of the adapted GMM, and the
second consists of the elements of the MLLR transform. We
examine several kernels associated with these expansions. We
show that both expansions are equivalent given an appropriate
choice of kernels. Experiments performed on the NIST SRE
2006 corpus clearly highlight that our choice of kernels, which
are motivated by distance metrics between GMMs, outperform
ad-hoc ones. We also apply SVM nuisance attribute projection
(NAP) to the kernels as a form of channel compensation and
show that, with a proper choice of kernel, we achieve results
comparable to existing SVM based recognizers.
Index Terms: speaker recognition, MLLR, SVM, supervector

1. Introduction
SVMs have become a popular and powerful tool in text-
independent speaker verification. At the core of any SVM sys-
tem is a choice of SVM feature expansion and an associated
choice of kernel. The feature expansion maps a given utterance
to a feature vector in a high-dimensional SVM feature space,
and the kernel induces a distance metric in this space. A re-
cent trend has been to derive expansions from adapting a UBM
to an utterance-specific model. A system proposed in [1] uses
MLLR to adapt, via an affine transformation, the means of a
speaker independent automatic speech recognition (ASR) sys-
tem to a given utterance. The entries of the affine transforms
are then used as the feature vectors. Another system uses con-
strained MLLR (CMLLR) to adapt the means and covariances
of a GMM UBM to a given utterance and uses the entries of the
transform as features [2]. Maximum a-posteriori (MAP) adap-
tation is used in [3] to adapt the means of a GMM UBM, and the
corresponding feature vector is the Gaussian supervector (GSV)
which consists of the stacked adapted means.

We have chosen to explore the use of MLLR to adapt the
means of a GMM UBM, similar to [2]. In this context, we use
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two SVM feature expansions. The first is the GSV, and the sec-
ond uses entries of the affine transform computed by MLLR.
The choice for using MLLR and a GMM UBM is motivated by
several reasons. Most notably it does not require the overhead
of performing ASR, and the constrained nature of the MLLR
transform may help mitigate channel effects. Note that although
we restrict ourselves to GMM adaptation, our methods are ap-
plicable to the general ASR case.

The breakdown of this paper is as follows. Section 1 gives
a brief overview of SVMs, MLLR adaptation, and NAP channel
compensation. Section 2 presents the two choices of MLLR fea-
ture expansions. Section 3 explores several choices of kernels
in this context. Section 4 contains the details of the performed
experiments. Section 5 presents our results and suggests future
work. Finally, we conclude in Section 6.

2. Background
2.1. Support Vector Machines

An SVM [4] is a two-class classifier constructed from sums of
a kernel functionK(·, ·),

f(x) =
L
X

i=1

γitiK(x,xi) + ξ, (1)

where theti are the ideal outputs,
PL

i=1
γiti = 0, andγi > 0.

The vectorsxi are support vectors and obtained from the train-
ing set by an optimization process [5]. The ideal outputs are
either 1 or−1, depending upon whether the corresponding sup-
port vector is in class0 or class1, respectively. For classifica-
tion, a class decision is based upon whether the value,f(x), is
above or below a threshold.

The kernelK(·, ·) is constrained to have certain properties
(the Mercer condition), so thatK(·, ·) can be expressed as

K(x,y) = φ(x)t
φ(y), (2)

whereφ(x) is a mapping from the input space (wherex lives)
to a possibly infinite-dimensional SVM feature space. We will
refer to theφ(x) as the SVM features.

2.2. Maximum Likelihood Linear Regression

In maximum likelihood linear regression (MLLR), asingle
affine transformation is applied to the means ofall the mixtures
of the GMM UBM to obtain the adapted means:

mi = Am̄i + b ∀i, (3)

whereA andb are chosen to maximize the likelihood that the
utterance was generated by the adapted model [6]. In equa-
tion (3),m̄i are the means of the UBM andmi are the adapted



means. It is important to note that the MLLR algorithm com-
putesA andb, not the transformed meansmi and subsequently
the additional computation suggested by equation (3) is used to
obtain the transformed means.

2.3. Nuisance Attribute Projection

Nuisance Attribute Projection (NAP) is a method for improving
performance in SVM speaker recognition with knowledge of
nuisance attributes such as channel, session, language, etc. [3].
Our emphasis in this paper will be on session variation. The
goal of NAP is to find a low corank projection operatorP such
that the new kernel

KNAP(x,y) = (Pφ(x))t(Pφ(y)) (4)

is not sensitive to channel effects. Note that NAP is applied
to the SVM feature space after deriving an appropriate feature
expansion.

3. MLLR Feature Expansions
The SVM feature expansion is a map between an utterance and
a high-dimensional vector in the SVM feature space. We will
focus on two expansions which are byproducts of MLLR adap-
tation.

The UBM we use is anN = 512 mixture diagonal covari-
ance GMM ,g(x), that models a wide range of speakers,

g(x) =

N
X

i=1

λiN (x; m̄i,Σi), (5)

whereN (x; m̄i,Σi) is a Gaussian with mean̄mi and covari-
anceΣi. Adapting the means of the UBM via MLLR to a given
utterance uttα produces a transformation matrixA and offset
vectorb which can be used to compute a new set of meansmα

i .
The first expansion is the GMM supervectorm, which is con-
structed by stacking the means of the adapted model. The sec-
ond is the MLLR transform-vectorτ which consists of stacking
the transposed rows of the transform matrixA separated by the
corresponding entries of the vectorb. The process is shown in
Figure 1.

b

Feature
Extraction

...
a

aT

a
T

T
1

2

512

MLLR transform
vector

a1

a512

...

a2

...

... GMM Supervector
m

m
m1

2

512

Input Utterance

Adaptation

MLLR

A=

GMM UBM
m=

b=

τ =

512

2

1

512

2

1b
b

b

b

b

Figure 1:Two choices of feature expansions.

4. Choice of Kernels
A major component of an SVM is the kernel which defines a
distance between two different points in the SVM feature space.
In our context, this translates to defining a distance between two
utterances. In this section we will discuss the different kernels
we have explored. Our focus will be on the supervector kernel
since it is well-motivated and produces the best results.

4.1. MLLR Supervector Kernel

Suppose we have two utterances, uttα and uttβ . We adapt the
GMM UBM g(x), via MLLR adaptation of the means, to ob-
tain two new GMMsgα(x) andgβ(x) respectively that repre-
sent the utterances. This results in GMM supervectors,mα and
mβ . A natural distance between the two utterances is the KL
divergence between the two adapted GMMs,

D(gα‖gβ) =

Z

Rn

gα(x) log

„

gα(x)

gβ(x)

«

dx (6)

Unfortunately, the KL divergence does not satisfy the Mercer
condition, so using it in an SVM is difficult.

Instead of using the KL divergence directly, we consider an
approximation [3] which upper bounds it,

d(mα
,m

β) =
1

2

N
X

i=1

λi(m
α
i − m

β
i )Σ−1

i (mα
i − m

β
i ). (7)

The distance in (7) has a corresponding kernel function [3],

KSV (uttα, uttβ) =

N
X

i=1

„√
λiΣ

−
1

2

i m
α
i

«t„√
λiΣ

−
1

2

i m
β
i

«

.

(8)

The MLLR supervector (MLLRSV) kernel in (8) is linear in the
GMM supervector, i.e. the mapping from the GMM supervector
to SVM expansion space is a diagonal linear transform.

A useful aspect of the kernel in (8) is that we can apply the
model compaction technique from [3]. That is, the SVM in (1)
can be summarized as

f(x) =

 

L
X

i=1

γitiφ(xi)

!t

φ(x) + ξ = w
t
φ(x) + ξ. (9)

This means we only have to compute a single inner product
between the target model and the GMM supervector in scoring.

4.2. MLLR Supervector Kernel in MLLR Transform Space

MLLR adaptation transforms the means of all the mixtures of
the UBM GMM by the same affine transformation in equa-
tion (3). This constraint allows us to derive a nonlinear kernel
in MLLR transform-vector space that is equivalent to the su-
pervector kernel. We begin by replacing the adapted means in
equation (8) with the affine transform of the UBM means.

KSV (uttα, uttβ) =

N
X

i=1

„

∆
1

2

i (Am̄i + b)

«t„

∆
1

2

i (Cm̄i + d)

«

, (10)

whereN is the number of mixtures of the UBM,̄mi is the mean
vector of theith mixture of the UBM, and∆i = λiΣ

−1

i which
is diagonal. Expanding equation (10) yields

KSV (uttα, uttβ) =

=
PN

i=1
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∆
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∆
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«
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„
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2

i b
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∆
1

2

i d

«

. (11)



We will focus on the first term in equation (11). Note that tr(A)
is the trace of the matrixA, ek is a vector that has a value of
1 as itskth entry and0 for every other entry,∆ik is thekth

diagonal element of the diagonal matrix∆i, M is the number
of rows inA, and thatak is the transpose of thekth row of the
matrixA.
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In a similar fashion we can rewrite the remaining terms in equa-
tion (11) as follows:

N
X

i=1

„

∆
1

2

i Am̄i

«t„

∆
1

2

i d

«

=
M
X

k=1

dka
t
krk, (13)

N
X

i=1

„

∆
1

2

i b

«t„

∆
1
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i Cm̄i

«

=

M
X

k=1

bkr
t
kck, (14)

N
X

i=1

„

∆
1

2

i b

«t„

∆
1

2

i d

«

=
M
X

k=1

bkdkδk, (15)

whererk =
PN

i=1
∆ikm̄i, bk is thekth element of the vector

b, andδk =
PN

i=1
∆ik. Therefore the supervector kernel can

be rewritten as

KSV (uttα, uttβ) =
PM

k=1
at

kRkck +
PM

k=1
dka

t
krk

+
PM

k=1
bkr

t
kck +

PM

k=1
bkdkδk (16)

= τ
t
αQτ β , (17)

whereτ is the MLLR transform-vector defined in Section 2.2.
The matrix Q must be positive-definite because equa-

tion (17) computes the same quantity as equation (8).Q is
a block diagonal matrix consisting ofM blocks Bk of size
(M + 1)x(M + 1). Equation (18) shows the structure of the
blocksBk,

Bk =

„

Rk rk

rt
k δk

«

. (18)

It is important to note that sinceQ depends only on the UBM
means, covariances and mixture weights it can be computed of-
fline. The block-diagonal nature ofQ also allows us to easily
compute its square root. This in turn allows us to apply the
model compaction technique in equation (9).
An advantage of equation (17) over equation (8) is that the
number of multiplies it requires only depends on the size of
the GMM feature vectors (38 in our case) and not on the
number of mixtures in the GMM. Another advantage is that
it does not require transforming the means which saves com-
putation and removes the need for storing the adapted means.

These two advantages and the block diagonal structure ofQ

result in an overall reduction of the number of multiplies from
O(M ∗ (N + N2)) in equation (8) toO((M + 1)3) in equa-
tion (17), whereM is the size of the GMM feature vectors and
N is the number of mixtures in the GMM. This equates to an
order of magnitude reduction in the number of multiplies for
our case. Note that this reduction in number of multiplies and
storage requirements will have a significantly greater impact if
this kernel is applied to an ASR speaker recognition system.

4.3. Alternative Kernels in MLLR Transform Space

We also explore four alternative kernels in MLLR transform-
vectors. The first replaces the matrixQ by its diagonal approx-
imation, which we refer to as the diag-supervector (DIAGSV)
kernel. The second is the zero-one (Z-O) kernel which subtracts
the means and divides by the standard deviations along each of
the feature dimensions of the MLLR transform-vectors. The
third is the Frobenius (FROB) kernel which does not apply any
scale or shift to the MLLR transform-vectors; tr([Ab]t[Cd]).
The last is the rank-normalized (R-N) kernel which rank nor-
malizes the MLLR transform-vectors.

5. Experiments
We performed experiments on the 2006 NIST speaker recog-
nition (SRE) corpus. We focused on the single-side 1 con-
versation train, single-side 1 conversation test, and the multi-
language handheld telephone task (the core test condition) [7].
This setup resulted in3, 612 true trials and47, 836 false trials.

For feature extraction, a 19-dimensional MFCC vector is
found from pre-emphasized speech every 10 ms using a 20 ms
Hamming window. Delta-cepstral coefficients are computed
over a±2 frame span and appended to the cepstra producing
a 38 dimensional feature vector. An energy-based speech de-
tector is applied to discard vectors from low-energy frames. To
mitigate channel effects, RASTA and mean and variance nor-
malization are applied to the features.

The GMM UBM consists of 512 mixture components. The
GMM UBM was trained using EM from the following corpora:
Switchboard 2 phase 1, Switchboard 2 phase 4 (cellular), and
OGI national cellular.

We produced the SVM feature expansion on a per con-
versation (utterance) basis using MLLR adaptation. We used
the HTK toolbox version3.3 [8] to perform one iteration of
MLLR to obtain the transformation. The various kernels were
implemented using SVMTorch as an SVM trainer [5]. A back-
ground for SVM training consists of SVM features labeled as
−1 extracted from utterances from example impostors [3]. An
SVM background was obtained by extracting SVM features
from 4174 conversations in a multi-language subset of the LDC
Fisher corpus. In our experiments the size of the SVM features
are38 ∗ 512 + 1 for the supervector features and38 ∗ 39 + 1
for the MLLR transform-vector features; note that we stack an
element of value1 at the end of each feature vector so we can
incorporate the biasξ into the SVM features.

For enrollment of target speakers, we produced1 SVM fea-
ture from a single conversation. We then trained an SVM model
using the target SVM feature and the SVM background. This
resulted in selecting support vectors from the target speaker and
background SVM feature vectors and assigning the associated
weights.

For SVM NAP, the desired corank was estimated on the
2005 NIST SRE corpus and the projection was designed based
on session variability, see Section 2.3. The projection was
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Figure 2:Results for the various kernels without NAP.

trained with Switchboard 2 parts 1, 4, and 5. This projection
was applied to the SVM background and to all training utter-
ances. No projection was needed in scoring sinceP2 = P.

We compared the MLLRSV kernel, the DIAGSV kernel,
the Z-O kernel, the FROB kernel, the R-N kernel, and a MAP
supervector kernel (MAPSV) as in [3] where the UBM is
adapted via MAP adaptation. Equal error rates (EER) and NIST
minimum decision cost function (DCF) for the various kernels
are shown in Table 1. DET curves for the experiments without
and with NAP projection are plotted in Figures 2 and 3 respec-
tively.

Table 1: EER and min DCF scores with and without NAP.
No NAP NAP

Kernel EER DCF Corank EER DCF
Z-O 14.95% .064 160 13.23% .056
R-N 13.19% .051 8 13.61% .052
FROB 12.38% .05 64 11.45% .048
DIAGSV 11.43% .047 32 11.43% .047
MLLRSV 9.46% .039 16 8.92% .038
MAPSV 7.24% .031 130 6.29% .030

6. Discussion and Future Work
The results show that of the examined kernels, the MLLRSV
kernel yields the best performance, followed by the DIAGSV
kernel. We believe the superiority of MLLRSV is due to its
derivation from an approximation of the KL divergence as a
distance between two GMMs. When examining the results for
the linear kernels in MLLR transform-vector space we note that
the diagonal approximation to the MLLRSV kernel produced
the best results while the Z-O kernel produced the worst. To at-
tempt and understand why the Z-O kernel performed poorly, we
compared its scaling matrix to that of DIAGSV. The compari-
son showed that the Z-O kernel tended to emphasize dimensions
that were weighted down by DIAGSV and vice versa. We also
note that applying NAP tended to improve the EER by approx-
imately 7.5% on average. Finally, we observe that the results
of our MLLR supervector kernel are comparable to those of the
MAPSV kernel.

A possible avenue for future work is to performY sepa-
rate affine transformations onY distinct subsets of mixtures of
the GMM UBM as opposed to one global transformation for
all the mixtures. It is straightforward to show that this will in-
crease the sizes of theQ matrix and theτ vector by a factor of
Y . However, the structure ofQ remains block diagonal with
each block computed using the means, covariances and mixture
weights of the corresponding subset. Our intuition indicates that
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exploring the use of multiple transforms may yield better per-
formance than the MAPSV since we will be able to achieve a
good balance between constraining the transformation and the
dimensionality of the SVM feature space.

In a similar manner, the MLLR supervector kernel in
transform-vector space in equation (17) can be applied to the
case where the UBM is a speaker independent ASR system that
is adapted via MLLR adaptation to the utterances, as in [1]. We
expect that using the MLLR supervector kernel will improve
performance of the system, similar to what we observed in our
experiments.

7. Conclusion
This paper examined the use of SVMs, for speaker recogni-
tion, whose features are derived from adapting a GMM univer-
sal background model via maximum likelihood linear regres-
sion adaptation. The results clearly highlight the importance of
choosing a properly motivated kernel. The main contribution of
this paper is the formulation of the MLLR supervector kernel in
MLLR transform-vector space. The advantage of this new for-
mulation is that its storage and computation requirements do not
increase with the number of mixtures. Experiments on the NIST
SRE2006 corpus showed the superiority of this kernel over ad-
hoc kernels. Our work can be extended to the case where the
UBM is a speaker independent ASR system to improve the per-
formance of such a system.
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