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ABSTRACT

This thesis addresses two issues related to the problem of reconstructing a one-di-
mensional or a multidimensional sequence from either the phase or the magnitude of its
Fourier transform. The first concerns the development of conditions under which a se-
quence is uniquely defined in terms of only phase or magnitude information. For exam-
ple, it is shown that a one-dimensional sequence is, in most cases, uniquely specified by
the phase of its Fourier transform if the sequence is finite in length. In the case of mag-
nitude, a condition for uniqueness is presented which is a generalization of the minimum
and maximum phase constraints and includes them as a special case. For multidimen-
sional sequences, on the other hand, it is shown that a finite support constraint is suffi-
cient, in most cases, for the sequence to be uniquely defined by either the phase or mag-
nitude of its Fourier transform.

The second issue which is addressed concerns the development of algorithms for
reconstructing a sequence from either the phase or magnitude of its Fourier transform. In
particular, several algorithms are presented for reconstructing a sequence from its phase.
These algorithms, which include iterative as well as non-iterative approaches, always
lead to the correct solution provided the appropriate uniqueness constraints are fulfilled.
An iterative procedure is also described for reconstructing a multidimensional sequence
from the magnitude of its Fourier transform. However, the convergence of this algorithm
to the desired sequence appears to depend upon the availability of an initial estimate
which is sufficiently close to the correct solution. Finally, a number of examples are pre-
sented which illustrate the use of these algorithms.

Supervisor: Jae S. Lim

Title: Professor of Electrical Engineering
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CHAPTER I: INTRODUCTION

I. 1: Introduction

The Fourier transform of a signal is a complex-valued function of a continuous

variable which, when written in polar form, is expressed in terms of its magnitude and

phase. Without any additional information about the signal, the magnitude and phase

are independent functions in the sense that knowledge of one is not sufficient to de-

duce the other. In other words, both magnitude and phase information are generally

required in order to uniquely define a signal. Therefore, each of these components

contains a certain piece of '"information" about the signal. Although it is not easy to

characterize the type of information which is encoded in the phase, it has been ob-

served in many applications that phase is an important component in the representa-

tion of signals. For example, it has been shown that for those signals which typically

arise in such applications as x-ray crystallography, speech processing, image process-

ing, and optics, many of the important features and characteristics are preserved if the

signal is reconstructed on the basis of only phase information [34]. Such a phase-only

synthesis may, for example, be accomplished by combining the correct phase with a

unity magnitude function or with a magnitude which is in some way representative of

the class of signals of interest. If, on the other hand, the reconstruction of a signal is

based only on Fourier transform magnitude information, the result will not, in general,

contain any of the important features of the original signal.

Although Fourier transform phase or magnitude information alone is not, in

general, sufficient to uniquely specify a signal, the ability to reconstruct a signal from

only phase or magnitude information would be useful in a number of important appli-

cations. For example, in many problems which arise in x-ray crystallography [42],
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electron microscopy [44], coherence theory [31], and optics [28], only the magnitude

of the Fourier transform of an electromagnetic wave may be recorded or is available

for measurement. Therefore, the specification of the electromagnetic wave depends

upon the retrieval of the Fourier transform phase of the wave from only spectral mag-

nitude information. In other applications, either the spectral magnitude or phase of a

signal may be severely distorted so that the restoration of the signal must rely only on

the undistorted component. For example, in the class of problems referred to as blind

deconvolution, a desired signal is to be recovered from an observation which is the

convolution of the desired signal with some unknown signal [46]. Since little is usually

known about either the desired signal or the distorting signal, deconvolution of the

two signals is generally a very difficult problem. However, in the special case in which

the distorting signal is known to have a phase which is identically zero, the phase of

the signal is undistorted. Such a situation occurs, at least approximately, in long-term

exposure to atmospheric turbulence or when images are blurred by severely defocused

lenses with circular aperture stops [1]. In this case, except for phase reversals, the

phase of the observed signal is approximately the same as the phase of the desired sig-

nal and, therefore, it is of interest to consider signal reconstruction from phase infor-

mation alone.

1.2: Scope of thesis

Due to its theoretical as well as practical importance, this thesis considers the

problem of reconstructing a discrete-time signal, or sequence, from only the phase or

magnitude of its Fourier transform. Specifically, there are two issues related to

phase-only and magnitude-only reconstruction which are addressed. The first con-

cerns the issue of uniqueness. In particular, although a sequence may not generally be
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uniquely defined in terms of only its Fourier transform phase or magnitude, there are

certain classes of sequences for which such a unique specification is possible. It is well

known, for example, that the log magnitude and phase of the Fourier transform of a

minimum phase sequence are related by a Hilbert transform [36]. For minimum phase

sequences, therefore, magnitude information alone is sufficient to uniquely recover the

phase and, hence the sequence, whereas phase information alone is sufficient to recover

the magnitude to within a scale factor which, in turn, specifies the sequence to within

a scale factor. However, since the minimum phase requirement is fairly restrictive,

many of the signals which arise in practice do not satisfy this constraint. Therefore,

the first issue which is to be addressed concerns the development of some alternative

conditions under which a sequence is uniquely defined by either the phase or magni-

tude of its Fourier transform. Although it is possible to derive many different sets of

conditions for which such a unique specification is possible, it will be of interest to

find conditions which are satisfied by many of the signals which are found in practical

applications.

The second issue which is addressed concerns the numerical reconstruction of a

sequence from only Fourier transform phase or magnitude information. In particular,

for those sequences which are determined to be uniquely defined in terms of the phase

or magnitude of their Fourier transform, the development of practical algorithms for

phase-only or magnitude-only reconstruction are investigated.

1.3: Outline of thesis

The organization of this thesis is as follows. In Chapter II is a review of some

of the results which have appeared in the literature and are related to the problem of

reconstructing a signal from either the phase or magnitude of its Fourier transform.
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Due to its importance in applications such as x-ray crystallography, spatial and tem-

poral coherence theory, electron microscopy, and optics, the recovery of phase from

only magnitude information has received considerable attention in the literature. The

results which are briefly reviewed include a discussion of the question of uniqueness in

the phase retrieval problem as well as a brief survey of some of the algorithms which

have been proposed for recovering phase from magnitude. Although there has not been

a similar treatment of the problem of recovering a signal from only phase information,

it has been noted in a number of different contexts and applications that phase is an

important component in the representation of a signal. Therefore, a survey of some of

the literature which address the importance of phase in signals is also presented.

In Chapter III, the uniqueness of a one-dimensional discrete-time signal in

terms of the phase or magnitude of its Fourier transform is considered. In particular,

it is shown that any finite length sequence which contains no zero phase components

is uniquely defined to within a scale factor by the phase of its Fourier transform. Fur-

thermore, it is shown that for a sequence of length N, the phase need only be known

over a set of N-1 distinct frequencies in the open interval (0,w). Unfortunately, howev-

er, a finite length constraint does not lead to a similar result for the uniqueness of a

sequence in terms of only the magnitude of its Fourier transform. Nevertheless, a con-

dition for uniqueness in terms of magnitude is presented which is an extension of the

minimum and maximum phase constraint and which includes these constraints as a

special case.

In Chapter IV, the uniqueness constraints presented in Chapter III are extended

to the case of multidimensional sequences. This extension is first performed by map-

ping a multidimensional sequence into a one-dimensional sequence by means of an in-

vertible transformation. The one-dimensional uniqueness constraints in Chapter III are
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then applied to this one-dimensional sequence. Although this approach is straightfor-

ward, it has the limitation that the uniqueness constraints are expressed in terms of a

one-dimensional function of a multidimensional sequence rather than directly in terms

of the multidimensional sequence. Therefore, a different approach is then presented

which relies on some basic results in the algebra of multivariable polynomials. The

uniqueness constraints which follow consist of restrictions on the types of factors

which are allowed in the multidimensional z-transform of a multidimensional se-

quence. In particular, as is the case for a one-dimensional sequence, it is shown that

a finite extent constraint is sufficient, in most cases, to insure the unique specification

of a multidimensional sequence in terms of the phase of its Fourier transform. Fur-

thermore, unlike the case for one-dimensional sequences, it is shown that for most

multidimensional sequences, a finite extent constraint is also sufficient for a unique so-

lution in terms of Fourier transform magnitude. Finally, it is shown that the phase or

magnitude only needs to be known over a finite set of frequency values when these

samples are obtained from a Discrete Fourier Transform (DFT) of the appropriate

size.

Chapters III and IV present a number of conditions which are sufficient for a

sequence to be uniquely specified in terms of its Fourier transform phase or magni-

tude. Chapter V addresses the problem of numerically reconstructing a sequence from

only Fourier transform phase or magnitude information. In particular, for the problem

of reconstructing a sequence from only phase information, several practical algorithms

are described which always lead to the correct result provided the appropriate unique-

ness conditions are fulfilled. The algorithms presented include iterative as well as

non-iterative procedures, and a number of examples of reconstruction from phase are

presented to illustrate these algorithms. In reconstructing a sequence from the magni-
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tude of its Fourier transform, however, it appears that there is, as yet, no practical al-

gorithm which will always yield the correct solution even when it is known that the

solution is unique. Nevertheless an iterative algorithm is described which appears to

yield the correct solution when an initial estimate of the unknown sequence may be

found which is sufficiently close to the correct sequence.

Finally, Chapter VI provides a brief summary of the results presented in the

previous chapters. In addition, some unanswered questions and some areas for future

research are described.

Although this thesis addresses only the problem of reconstructing a discrete-time

signal from either the phase or magnitude of its Fourier transform, it should be point-

ed out that all of the results which are presented may be easily applied to the dual

problem of reconstructing a periodic (complex-valued) continuous-time signal from

its phase or magnitude. Specifically, since a periodic continuous-time signal may be

written in terms of a Fourier series, the coefficients in this series may be considered to

be a discrete-time signal or sequence. Consequently, if the Fourier series coefficients

satisfy the appropriate set of constraints, it may be possible to recover these coeffi-

cients from either the phase or magnitude of the continuous-time signal. From the re-

constructed coefficients, the continuous-time signal may then be recovered.

- 14 -



CHAPTER II: BACKGROUND

II.I: Introduction

When the Fourier transform of a signal is written in polar form, it is expressed

in terms of its magnitude and phase. Although the Fourier transform magnitude and

phase are generally independent functions, with some additional information about the

signal it may be possible to derive one from the other. It is well known, for example,

that if a signal satisfies the minimum phase constraint, then the log magnitude and

phase of its Fourier transform are related by a Hilbert transform [36]. Therefore,

phase may be uniquely recovered from magnitude information and magnitude may be

uniquely recovered to within a scale factor from phase information. Signals which ar-

ise in practice, however, may not generally satisfy the minimum phase constraint. Nev-

ertheless, in many applications it is desirable to be able to reconstruct a signal from

only phase or magnitude information.

11.2: The phase retrieval problem

The recovery of phase from only magnitude information, generally referred to as

the phase retrieval problem, arises in a variety of different contexts and applications.

In x-ray crystallography, for example, the molecular structure of crystals is to be in-

ferred from the observed diffraction pattern of x-rays [42]. Although the diffraction

pattern is related to the scattering density of the crystal by a Fourier transformation,

only the intensity (squared magnitude) of the diffraction pattern may be measured.

Since knowledge of the phase of the diffracted wave is indispensable for the determina-

tion of the crystal structure, the phase retrieval problem is particularly important. A
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similar problem arises in optical and electron microscopy when, for example, the index

of refraction of a thin object or the height distribution of a surface is to be determined

from the intensity of the wave distribution in the image plane or some other plane in

the microscope. Again, in order to determine the object structure, phase information of

the wave is required. In some applications, however, it is only the wave intensity in the

image plane of an optical system which is of interest. Nevertheless, the retrieval of

phase information may still be an important problem. Imaging through a turbulent

atmosphere, for example, may reduce the resolution of objects well below the diffrac-

tion limits of the telescope. With interferometric techniques, however, it is possible to

obtain diffraction limited information about the Fourier transform magnitude of the

object [13]. Therefore, if it were possible to recover the phase of the Fourier transform

of an object from only its magnitude, it may then be possible to obtain a diffraction

limited image through a turbulent atmosphere.

Due to the importance of the phase retrieval problem in a number of practical

applications, a considerable effort has been devoted to the development of conditions

under which the phase of a complex function may be uniquely recovered from its

magnitude. For one-dimensional functions, the uniqueness of the phase retrieval prob-

lem is now fairly well understood. In order to briefly review some of these results, let

f(x) be a complex-valued function of the continuous variable x, and let F(0) be its

Fourier transform. In an optical imaging system, the functions f(x) and F(u) may, for

example, represent the wave distributions in the image plane and Fraunhoffer plane

(exit pupil), respectively. On the other hand, f(x) may represent the electron density

distribution in a crystal with F(o) the x-ray diffraction pattern. Since both f(x) and

F(u) are, in general, complex-valued functions, they may be written in terms of their

magnitude and phase as

f(x) = If(x)A exp[jf(x)] (2-1 a)
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F(w) = IF(A) exp[jo,(w)] (2-1 b)

Without any additional information or constraints, it should be clear that F(W)

may not be recovered from only its magnitude, IF(), or from any function of jF(()A

since it is always possible to combine the magnitude of F(w) with the phase of some

other function, G(w), to obtain another function with the same magnitude. In many

situations of interest, however, physical constraints restrict the set of admissable solu-

tions. In optical imaging systems, for example, a finite aperture in the exit pupil im-

poses a band-limited constraint on the field in the image plane, f(x). Similarly, crys-

tals which are analyzed by x-ray diffraction methods are of finite size and, therefore,

the diffracted field must be the Fourier transform of a space-limited function, f(x). It

is natural to ask, therefore, whether JF(O) uniquely defines the phase of F(o) under the

constraint that f(x) is zero outside an interval [a,b] or, equivalently, whether If(x) uni-

quely defines the phase of f(x) under the constraint that F(w) is band-limited to an in-

terval [tl,*2]. These problems were addressed independently by Hofstetter [20] and

Walther [49,32] who were able to prove that space-limitation (or band-limitation) is

not, in general, sufficient to insure a unique solution to the phase retrieval problem.

The reason for this lack of uniqueness follows from the possibility of "zero-flipping".

In particular, suppose that f(x) is zero outside the interval [a,b]. In this case, the La-

place transform of f(x), F(s), is an entire function and is uniquely defined to within a

factor by the distribution of its zeros in the s-plane. Therefore, with sk a zero of F(s),

define Hk(s) as

s+s(*
Hk(s) - k (2-2)

s-sk
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and consider the product GO(s)=F(s)Hk(s). Since IHk(~)= for all o, H,(s) is the

transfer function of an all-pass filter [in many applications Hk(s) is referred to as a

Blaschke factor]. Therefore, the output of this filter, gk(x), has a Fourier transform

with the same magnitude as F(o). In addition, it is straightforward to show that if f(x)

is zero outside the interval [a,b], then g,(x) is also zero outside [a,b]. Since the effect

of the filter Hk(s) on F(s) is to flip the zero at sk about the jt-axis, it follows that

the flipping of a zero about the ju-axis preserves the magnitude of the Fourier trans-

form of the signal as well as the duration of the signal. It may also be shown that if

an arbitrary (i.e. possibly infinite) number of zeros are flipped about the jo-axis, the

result will be another signal which is zero outside [a,b] with a Fourier transform with

the same magnitude [20]. Therefore, zero flipping allows for a possibly infinite number

of different signals to be found which have the same duration and Fourier transform

magnitude as f(x). However, if all of the zeros of F(s) are imaginary, then there will

be a unique solution to the phase retrieval problem. For example, since

F(s)=2sinh(s)/s has only imaginary zeros, the unit pulse is the only signal which is

zero outside the interval [-1,1] and has a Fourier transform with magnitude [2sino/o]2.

Although these uniqueness results have been stated in terms of signals which are

functions of a continuous variable, they are easily extended to the case of discrete time

signals. For example, let f(n) be a discrete time signal which is zero outside the inter-

val [NA, NB. In this case, the z-transform of f(n), F(z), is analytic for all finite and

non-zero values of z and is uniquely defined to within a factor by its (NA-Nd zeros

in the region 0<(z~lo. With zk a zero of F(z) and Hk(z) defined as

H(z) -I_ *(2-3)Hk(z)= -_ (2-3)
z-zk

- 18 -
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it is straightforward t9 show that the product G,(z)=F(z)Hk(z) represents the z-trans-

form of a signal which is zero outside the interval [NA,NSJ and has a Fourier trans-

form with the same magnitude as f(n). Since the effect of Hk(z) on F(z) is to flip the

zero at zk about the unit circle, it follows that if an arbitrary number of zeros of F(z)

are flipped about the unit circle, the result will be a signal of the same duration with

a Fourier transform with the same magnitude as f(n).

The ambiguity which appears as the result of zero-flipping has led to a search

for solutions to the phase retrieval problem which are based on the availability of ad-

ditional information. In electron microscopy, for example, the field in the object plane

of the microscope is of finite extent. Therefore, the field in the exit pupil is known to

be an entire function. In addition, due to the finite size of the aperture in the exit pu-

pil, the field in the image plane is also an entire function. In this case, Hoenders [19]

has shown that these constraints are sufficient to reduce the phase ambiguity to a sin-

gle field, f(x), or its "twin", f*(-x). In a similar vein, it has been shown that the pres-

ence of any interval [c,d] over which the field in the object plane is known to be zero

is sufficient to insure a unique solution [16].

The uniqueness question has also been considered when the field intensity in two

planes is known. This may be the case, for example, in electron microscopy when the

field may be measured both in the image plane as well as in the exit pupil plane, thus

providing information about F(w) as well as Vf(x)A. In this case, it was demonstrated by

Huiser et. al. that the solution to the phase retrieval problem is unique to within a

constant phase factor assuming the analyticity of the functions involved [21]. As an-

other example, in an optical imaging system it may be possible to measure the field in-

tensity in two slightly defocused planes. For this case it has also been shown that there

is a unique solution to the phase retrieval problem [9,19].
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Solutions to the phase retrieval problem have also been considered for those

cases in which a known reference signal is added to the unknown signal prior to the

observation or measurement of the wave intensities (3]. Such a procedure is used in

holography, for example, to encode phase information into the intensity of the wave-

front which is then recorded on a photographic plate. Knowledge of the reference sig-

nal may then allow for the phase information to be retrieved and the original complex

wavefront to be reconstructed. Related procedures are used in x-ray crystallography

by incorporating, for example, heavy atoms into the unknown crystal structure [42].

With the appropriate reference signal (such as a point source of sufficient magnitude)

it may also be possible to insure that the signal intensity which is observed corre-

sponds to a minimum phase signal. In this case, the Hilbert transform may then be

used to retrieve the unknown phase.

Most of the results which have been reported concerning the uniqueness of the

solution to the phase retrieval problem have considered only one-dimensional func-

tions. However, in many of the applications in which the phase retrieval problem is

important, the signals of interest are functions of two or more variables. The difficulty

encountered in considering the uniqueness of the solution to the phase retrieval prob-

lem for functions in more than one variable lies in the fact that entire functions in two

or more variables may not generally be characterized by a countable collection of ze-

ros. Nevertheless, some results have recently appeared which address the ambiguity of

the solution to the phase retrieval problem for two dimensional fields. Huiser and van

Toorn, for example, address the two-dimensional version of the problem considered

by Hofstetter and Walther and show that a phase ambiguity is not ruled out for a

two-dimensional field, f(x,y), which is known to be zero outside some closed convex

set S in R2 [22]. In particular, if f(x,y) is zero outside S, and if f(x,y) can be written
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as a product of the form f(x,y)=p(x,y)g(x,y) where p(x,y) is a polynomial and g(x,y) is

an entire function, then fx,y)=p*(x*,y*)g(x,y) is also zero outside S and has a Fourier

transform with the same magnitude as f(x,y).

A slightly different approach was taken by Bruck and Sodin who considered the

case of a real-valued discrete two-dimensional field, f(nl,n 2) which is finite in extent

[5]. Since the z-transform of this two-dimensional field is a polynomial in two vari-

ables, F(zl,z2), the authors assert that if this polynomial is irreducible, i.e. if it cannot

be factored, then the ambiguity of the phase retrieval problem is reduced to only one

of two fields, the field f(n,,n 2) or the field which is obtained by rotating f(nl,n2) by

180 degrees.

In addition to a discussion of the uniqueness of the solution to the phase re-

trieval problem, a number of algorithms have been proposed for recovering phase from

magnitude information. Perhaps the most familiar algorithm is the iterative approach

proposed by Gerchberg and Saxton for recovering phase information from intensity

measurements in both the image plane and diffraction plane (exit pupil) of an imaging

system [15]. Specifically, given f(x) and F(w0)4 their algorithm is an iterative procedure

which is characterized by the repeated Fourier transformation between the image and

diffraction planes where in each plane, the known intensities are incorporated into the

current estimate of the unknown field. Similar iterative procedures have also been pro-

posed for solving the phase retrieval problem under different sets of constraints. Fien-

up, for example, modified the Gerchberg-Saxton algorithm in order to retrieve the

phase from the magnitude of the Fourier transform of an image under the constraint

that the desired solution is non-negative [12]. Misell also proposed an iterative proce-

dure similar to the Gerchberg-Saxton algorithm for the case in which the intensity dis-

tributions in two slightly defocused planes are known [28]. For each of these iterative
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procedures, however, it appears that the convergence of the algorithm to the correct

solution depends upon the properties of the signal to be recovered as well as on the in-

itial estimate which is used to begin the iteration.

Other algorithms which have been proposed for retrieving phase from intensity

measurements in the image and exit pupil planes include the algebraic approaches of

Gerchberg and Saxton [14], Dallas [8], and Bates [2], and a recursive algorithm pro-

posed by Quatieri [40]. Although this list is not intended to be exhaustive, references

to some additional algorithms may be found in [11].

11.2: The importance of hase.

Although there has been a large amount of research directed towards the devel-

opment of an understanding of the uniqueness questions related to the phase retrieval

problem, it appears that similar research has not been undertaken to investigate the

question of uniqueness for the case in which only phase information is available. Nev-

ertheless, it has been noted in a number of different contexts and applications that

many of the important features of a signal are contained within the phase of its Fouri-

er transform. Specifically, it has been observed that a phase-only synthesis of a signal,

formed by combining the phase of the Fourier transform of the signal with a constant

or ensemble average magnitude, contains a number of similarities to to the true signal.

It appears that the first context in which the similarity between a signal and its

phase-only synthesis was noted is in the field of x-ray crystallography [45]. Since the

x-ray diffraction pattern of a crystal is related to the electron density distribution in

the crystal by a Fourier transform, if both the magnitude and phase of the diffracted

wave could be measured, then an inverse Fourier transform of the diffraction pattern

would yield the desired structure. However, since only the intensity of the diffraction
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pattern may be measured, the only available information which is obtained by meas-

urement is that which is contained in the autocorrelation function (Patterson diagram)

of the electron density distribution. Therefore, although the autocorrelation function

contains peaks at positions corresponding to the interatomic vectors between the atoms

in the crystal, phase information is necessary to uniquely recover the structure. In or-

der to determine the importance of phase information in crystal structure determina-

tion, Srinivasan performed a number of experiments in the Fourier synthesis of crystal

structures by combining the correct phase with various other magnitude functions [45].

For example, shown in Figure 2.1a is a contour diagram of the electron density distri-

bution of L-tyrosine HCL which was obtained by combining the correct phase and

magnitude information. The contours in this plot correspond to regions of constant

electron density with the peaks representing the locations of the atomic positions.

Shown in Figure 2.1b is the contour plot which is obtained by combining the correct

phase with a magnitude function which is inversely proportional to frequency (a prop-

erty which is known to be characteristic of the diffracted wave). Therefore, although

the magnitude information has been essentially discarded, the resulting synthesis still

contains many of the important features and properties of the correct structure (the

correct atomic structure is overlaid in solid lines). Shown in Figure 2.1c is the synthe-

sis which is obtained by randomly permuting the correct magnitudes and again many

of the important properties are preserved. Finally, in Figure 2.1d is the result which is

obtained by combining the correct phase with the magnitude of a totally different

structure which has atomic locations at the positions indicated by the crosses. It is ap-

parent that the resulting structure most closely resembles the structure corresponding

to the phase used in the synthesis. The conclusion which may be drawn from this se-

ries of experiments is that, at least for those signals which typically arise in x-ray crys-

tallography, most of the essential information of interest is contained in the phase.
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Finure 2.1: The Fourier synthesis of crystallographic structures. (a) Contour dia-
gram of L-tyrosine HCL synthesized from the correct phase and magnitude. The con-
tours correspond to constant electron density with peaks occurring at the atomic posi-
tions. (b) Fourier synthesis from correct phase and a magnitude which is inversely
proportional to frequency.
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Figure 2.1 (cont.): (c) Fourier synthesis from correct phase and a random permutation
of correct magnitude. (d) Fourier synthesis from correct phase and a magnitude asso-
ciated with a totally different structure whose atoms are located at the positions indi-
cated by the crosses (after Ramachandran and Srinivasan [42]).
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The similarity between a signal and its phase-only synthesis has also been noted

in the context of image processing by performing a similar set of experiments [34,35].

In particular, it has been observed that when only phase information is used to syn-

thesize an image, the result contains many of the important features of the original

image. An image synthesized on the basis of magnitude information alone, however,

will not, in general, bear any similarity to the original. Shown in Figure 2.2a, for ex-

ample, is an original image and in Figure 2.2b is the magnitude-only image which is

formed by combining the magnitude of the Fourier transform of the image in (a) with

zero phase. While this magnitude-only image contains no recognizable features, the

phase-only image which is formed by combining the phase of the Fourier transform of

the image in (a) with a constant magnitude contains many of the features of the origi-

nal image as shown in Figure 2.2c. An even better phase-only Fourier synthesis is

possible if the correct phase is combined with a magnitude which is representative of

the class of images of interest. Shown in Figure 2.2d, for example, is the result which

is obtained by combining the phase of the Fourier transform of the image in (a) with

an ensemble average magnitude which was computed by averaging the Fourier trans-

form magnitudes of several completely different images.

Finally, Figure 2.3 illustrates the effect of combining the phase of the Fourier

transform of one image with the magnitude of another. Specifically, in Figure 2.3a and

b are two original images, and in Figure 2.3c is the result which is obtained by com-

bining the phase of the Fourier transform of image (a) with the magnitude of the

Fourier transform of image (b). Similarly, in Figure 2.3d is the result which is ob-

tained by combining the phase of the Fourier transform of image (b) with the magni-

tude of the Fourier of image (a). As is apparent from this figure, the images with the

same phase are the ones which most closely resemble each other.

- 26 -



(a) (b)

(c) (d)

Figure 2.2: Phase-only and magnitude-only synthesis of images. (a) Original im-
age. (b) Image formed by combining the magnitude of the Fourier transform of image
(a) with zero phase. (c) Image formed by combining the phase of the Fourier trans-
form of image (a) with a constant magnitude. (d) Image formed by combining the
phase of the Fourier transform of image (a) with an ensemble average magnitude.
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(a) (b)

(c) (d)

Figure 2.3: Images synthesized by combining the phase of the Fourier transform
of one image with the magnitude of another. (a) Original image A. (b) Original image
B. (c) Image formed by combining the phase of the Fourier transform of image A with
the magnitude of the Fourier transform of image B. (d) Image formed by combining
the phase of the Fourier transform of image B with the magnitude of the Fourier
transform of image A.
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The importance of phase in the representation of signals has also been noted in

a number of other applications such as speech processing [35], and acoustical and op-

tical holography [24,25,29,39]. In speech processing, for example, 4 set of experiments

similar to those described above have been performed with similar results [35]. Specifi-

cally, if the Fourier transform of a sentence of speech is computed and the phase is set

equal to zero, the intelligibility is lost in the signal which is obtained by an inverse

Fourier transform. However, if the phase is preserved and the magnitude is set equal to

a constant, an inverse Fourier transform leads to an intelligible synthesis of the origi-

nal sentence of speech.

Although the importance of phase in the representation of signals has been noted

in a number of applications, it should be pointed out that the importance of phase de-

pends, in part, on the class of signals of interest. In particular, although it may be ap-

propriate to conclude that phase is an important component in the representation of

those signals which typically arise in speech processing, image processing, and x-ray

crystallography, this statement is certainly not true for all signals. For example, for

any signal which may be written in the form f(x)=g(x)*g(-x) where g(x) is an arbitrary

real-valued function, the phase of the Fourier Transform of f(x) is identically zero.

Therefore, while the magnitude-only synthesis of such a signal will reproduce the sig-

nal f(x) exactly, a phase-only synthesis with unit magnitude will yield only an impulse

at the origin.

Finally, it should be noted that a number of different approaches have been tak-

en in order to explain or quantify the relative importance of phase in the representa-

tion of signals. Tescher, for example, considered the rms error introduced when the

phase or magnitude of the Fourier transform is quantized [47]. For random signals, it

was concluded that for the same rms error, approximately two more bits are required
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in quantizing the phase than in quantizing the magnitude. Pearlman and Grey reached

a similar conclusion using rate distortion theory in their investigations into Fourier

transform coding [38]. Specifically, it was concluded that phase must be encoded with

approximately 1.37 more bits than magnitude to achieve an equivalent distortion.

From another approach, Kermisch provided a quantitative analysis of the effect of re-

constructing an image from a phase-only hologram (kinoform) [23]. Specifically, it

was shown that in the phase-only reconstructed image, approximately 78% of the total

image irradiance exactly reconstructs the original image. The remaining 22% of the

image irradiance represents the image degradation and consists of convolutions of the

original image with itself.
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CHAPTER III: UNIQUENESS CONSTRAINTS (1-D)

III. 1: Introduction

This chapter is concerned with the uniqueness of a one-dimensional sequence in

terms of either the phase or magnitude of its Fourier transform. In general, phase or

magnitude information alone is not sufficient to uniquely specify a sequence since con-

volution with a zero phase sequence produces another sequence with the same phase

whereas convolution with an all-pass sequence produces another sequence with the

same magnitude. Therefore, phase or magnitude information alone may, at best, uni-

quely define a sequence to within an arbitrary zero-phase or all-pass convolutional

factor, respectively. In spite of this ambiguity, it is possible to include some additional

information or constraints on a sequence so that it is uniquely defined by the phase or

magnitude of its Fourier transform. For example, a minimum phase sequence may be

uniquely recovered from the magnitude of its Fourier transform and may be recovered

to within a scale factor from the phase of its Fourier transform [36]. Although this re-

sult is important and has been exploited in a number of applications, the minimum

phase requirement is very restrictive since it is unlikely that an arbitrary sequence will

satisfy this constraint. Therefore, it is the purpose of this chapter to develop some oth-

er classes of sequences which are uniquely specified by the phase or magnitude of their

Fourier transform.

The organization of this chapter is as follows. After a brief review of some nota-

tion and terminology in Section 111.2, the uniqueness of a sequence in terms of the

phase of its Fourier transform is considered in Section 111.3. Then, in Section 111.4,

uniqueness in terms of Fourier transform magnitude is addressed.
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111.2: Notation and framework

A one-dimensional sequence is a function of an integer-valued variable, n, and

will be denoted by x(n). Unless otherwise specified, all sequences will be assumed to

be real-valued. The z-transform of x(n), denoted by X(z), is defined by

X(z) = x(n) z-" (3-1)

When x(n) is real, X(z) has the following property:

X(z) = X*(z*) (3-2)

Although the sum in (3-1) will not, in general, converge for all values of z, it

will always be assumed that X(z) is a rational function of z with a region of conver-

gence which includes the unit circle, I 1. In this case, the Fourier transform exists

and is given by

X(W) = X(z)L, )= = x(n) eOF (3-3)

Furthermore, when x(n) is real then X(w) is a conjugate symmetric function of W, i.e.,

X(W) = X*(-W) (3-4)

Since X(w) is, in general, a complex-valued function of w, it may be expressed in

terms of its real and imaginary parts as

X(O) = X1,() + jX1(o) (3-5)

or, in terms of its magnitude and phase as

X() = JX(W ) exp[j0,(o)] (3-6)
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where

X()F = [X, (u)]2 + [X,()] 2  (3-7 a)

and tan[oe(a)] = Xj(o) / X,(o) (3-7 b)

Finally, if X(w) is sampled at M uniformly spaced frequencies between zero and

2%, then these samples correspond to the M-point Discrete Fourier Transform (DFT),

X(k)M, of x(n). Specifically,

X(k)m = X()Lh. = x(n) e-ft" (3-8)

Furthermore, if x(n) is zero outside an interval of length N where N•M then X(k), is

sufficient to uniquely recover x(n).

Thus, it is the purpose of this chapter to develop some conditions under which

x(n), or equivalently X(p), is uniquely specified in terms of either o.(w) or IX()|. In

the case of phase, these conditions include the case in which o,(w) is known for all w

as well as the case in which oe,() is known for only a finite number of frequencies

and, in particular, when only the phase of X(k), is known.

111.3: Uniqueness in terms of phase

In this section, some conditions are developed under which a one-dimensional

sequence is uniquely defined by the phase of its Fourier transform. Specifically, it is

shown that almost all finite duration sequences are uniquely defined (to within a scale

factor) by the phase of their Fourier transform. This result is established first for the

case in which the phase of the Fourier transform of a real sequence is known for all

frequencies and then is extended to the case in which only a finite number of phase
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values are known. Similar uniqueness constraints are then developed for complex se-

quences and for sequences whose convolutional inverses are finite in length (i.e. all-

pole sequences). Finally, the dual problem of uniquely defining a periodic continuous-

time signal in terms of its phase or magnitude is briefly addressed.

111.3.1: Uniqueness in terms of continuous pjase

Recall from Section III.1 that for any sequence, x(n), it is always possible to

find another sequence which has a Fourier transform with the same phase by simply

convolving x(n) with a zero phase sequence g(n),

y(n) = x(n) * g(n) : s() = 0 (3-9)

It is also true, however, that if two sequences, x(n) and y(n), have a Fourier transform

with the same phase then they are related by (3-9). This result follows simply by not-

ing that

Y(W) = X(W) [ Y(W)/X(W) ] = X(M) G(W) (3-10)

Therefore, since oY,()=o*,()+o,(s), if o,(w)=oY(), then o5,()=0 for all w and g(n) is a

zero phase sequence.

In order to gain some insight into the uniqueness question, it will be useful to

characterize zero phase sequences. Therefore, note that if g(n) is a zero-phase se-

quence, then its Fourier transform, G(w), must be real and non-negative. However, if

G(~) is real, then g(n) must be conjugate symmetric,

g(n) = g*(-n) (3-11)

and therefore G(z) = G*(l/z*) (3-12)
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Furthermore, if g(n) is real then (3-11) implies that g(n) is even

g(n) = g(-n) (3-13)

and therefore G(z) = G(1/z) (3-14)

From (3-12) it follows that the singularities of G(z) (i.e. its poles and zeros) occur in

conjugate reciprocal pairs. In other words, if G(z) has a zero (pole) at z=z o, then

G(z) must also have a zero (pole) at z= 1/z o2  which is the mirror image of zo about

the unit circle. Note, however, that (3-12) places no restrictions or constraints on the

zeros of G(z) which lie on the unit circle.

Since (3-12) is a necessary and sufficient condition that G(w) be real, it is

equivalent to the constraint

tan[(o(u)] = 0 for all a (3-15)

i.e., for each w, o,(w) is either equal to zero or w. However, in order for g(n) to be a

zero phase sequence, in addition to being real, G(w) must also be non-negative. Al-

though (3-12) places no restrictions on the zeros of G(z) which lie on the unit circle,

in order for G(a) to be non-negative, any unit circle zeros of G(z) must be of even

multiplicity (Spectral Factorization Theorem). Therefore, if g(n) is a zero-phase se-

quence, its z-transform may always be written in the form:

G(z) = a2 A(z) • A*(I/z*) (3-16)

where a is a real number and A(z) is a rational function of zt.

t Recall that it is assumed that all sequences have rational z-transforms.
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Since convolution with a zero-phase sequence produces another sequence with

the same phase, it will be useful to consider the effect of convolution with a zero-

phase sequence. Therefore, let x(n) be a finite duration sequence which has a z-trans-

form with no zeros on the unit circle or in conjugate reciprocal pairs, and let g(n) be

an arbitrary zero-phase sequence. With Y(z)=X(z)G(z), at least one of the following

statements about Y(z) must be true:

(1) Y(z) contains conjugate reciprocal zeros or poles.

(2) Y(z) contains zeros of even multiplicity on the unit circle.

(3) The zeros of X(z) are replaced with poles in Y(z) at the conjugate
reciprocal locations.

Furthermore, if g(n) is only constrained to be an even sequence, i.e. tan[o,(w)]=0, then

again at least one of these statements must apply to Y(z) if the zeros on the unit cir-

cle in (2) are not constrained to be of even multiplicity. In either case, in order for

y(n) to be finite in length, Y(z) must either have zeros on the unit circle or in conju-

gate reciprocal pairs. Therefore, this leads to the following:

Theorem 3.1: Let x(n) and y(n) be real finite length sequences

with z-transforms which have no zeros on the unit circle or in conjugate

reciprocal pairs. If ,(0()=o,(~) for all w, then x(n)=By(n) for some positive

real constant 8. If tan[,(1()]=tan[o,(u)] for all o, then x(n)=By(n) for

some real constant B.

Prookf Let x(n) and y(n) satisfy the constraints of the theorem and consider the se-

quence g(n) defined by:

g(n) = x(n) * y(-n) (3-17)

which has a z-transform given by
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G(z) = X(z) Y(z')

By noting that the phase of the Fourier transform of g(n) is

() = e,(0) - $,() (3-19)

it follows that if oZ(4)= ,(w) then eo(u)=O. Also, if tan[o1(w)]=tan[o (w)] then oe,()
and o,(w) are equal to within a factor of ir and, therefore, tan[os(w)]=0. In either case,

G(w) is real and

G(z) = G(z-r) (3-20)

Therefore, from (3-18) and (3-20)

X(z) Y(z') = X(z') Y(z) (3-21)

Now, suppose that X(z) has a kth-order zero at z=z o where 0(IAzoj (since X(z) has

no zeros on the unit circle then, in addition, Sz- ). Since y(n) is finite in length then

Y(l/zo) must be finite and

G(z- ) = X(z') Y(z) (3-22)

must also have a kth-order zero at z=z o. However, since X(z) has no zeros in conju-

gate reciprocal pairs, it follows that X(l/zo) is non-zero. Therefore, Y(z) must also

have a kth-order zero at z=z o. Repeating the argument for the zeros of Y(z), it fol-

lows that X(z) and Y(z) have the same zero set for all z such that 0(I.zo< . Conse-

quently,

X(z) = 'a zk Y(z) (3-23)
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where R is a real number and k is an integer. However, if either the phase or the

tangent of the phase of the Fourier transforms of x(n) and y(n) are equal, then k must

be equal to zero. Finally, if oe(w)= 7,(w), then B must be a positive real number and

the theorem follows. ///

Although the conditions in Theorem 3.1 exclude the possibility of zeros on the

unit circle, the theorem may be generalized to allow first-order zeros on the unit cir-

cle for the case in which o,(0)=e,(w). In particular, if .(6)=oy(w), then g(n) in (3-17)

is a zero phase sequence. Therefore, if zJ 1 and if G(z)=0O, then G(z) must have at

least a second-order zero at zo. However, since

G(z) = X(z) Y*(1/z*) (3-24)

and since X(z) and Y(z) have at most one zero at zo, then the zero of G(z) at zo

must be second-order. Consequently, since neither X(z) nor Y(z) may have a second-

order zero at zo, then both X(z) and Y(z) must have a simple zero at zo and, thus,

the zeros of X(z) and Y(z) on the unit circle are identical.

These results may be summarized in a slightly different form as follows:

(1) If x(n) is finite in length and cannot be written as the convolution of

two finite-length sequences, x(n)=xo(n)*g(n), where g(n) is a zero-

phase sequence, then 1,(w) uniquely specifies x(n) to within a positive

scale factor.

(2) If x(n) is finite in length and cannot be written as the convolution of

two finite-length sequences, x(n)=xo(n)*g(n), where tan[o,(u)]=0 [i.e.

g(n)=g(-n)], then tan[(0(o)] uniquely specifies x(n) to within a scale

factor.
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In Chapter V, several algorithms are presented for reconstructing a sequence which

satisfies the constraints of Theorem 3.1 from the phase of its Fourier transform. At

this point, however, it will be instructive to consider the following algorithm which

may, in theory, be used to reconstruct a sequence from the phase of its Fourier trans-

form. In addition, this algorithm may be viewed as an alternative proof of Theorem

3.1.

Let x(n) be a sequence which satisfies the constraints of Theorem 3.1 and let

e0(w) be the phase of its Fourier transform. With 0.(w) the associated unwrapped

phase [36], it follows that the z-transform of x(n) is restricted to be of the form:

N, No

X(z) = C z% - (l-akz-') fl (1-4b) (3-25)
kni kol

where C is a real number, no is an integer, Iak(l, |P<(1 for all k, and ahkb,* for any

k and i.

Step 1: From o,(a), the algebraic sign of C may be determined by using the fact

that o,(O) is zero if and only if C is positive [36]. In addition, the value of no may be

obtained from the unwrapped phase by

no = 1/n [ 0(() -0 (0) ] (3-26)

Step 2: From the unwrapped phase and the value of no obtained in Step 1, a new

phase function may be defined as

O (W) = 0(~) - now - O(O) (3-27)
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Using the Hilbert transform, a minimum phase sequence x,(n) may then be found

which has a Fourier transform with a phase equal to 0i(w) [36]. The z-transform of

x 1 (n), X, (z), is given by [36]:

N,

[I (1-akr')
-I

X =() = (3-28)
N.No
n (1-b4*')
k-1

where the coefficients at and bk are identical to those in (3-25).

Step 3: Since pole/zero cancellations cannot occur in (3-28) by virtue of the fact

that atkb,* for any k and i, the coefficients ak and b in (3-25) may be obtained

from the zeros and poles of X..k(z).

Step 4: From the sign of C, the value of no, and the coefficients ak and bk which

are obtained in Steps I through 3, X(z) in (3-25) is uniquely specified to within a po-

sitive scale factor. Therefore, x(n) may then be recovered to within a positive scale

factor by an inverse z-transform.

The condition in Theorem 3.1 that there are no zeros in reciprocal pairs insures

that there are no pole/zero cancellations in (3-28). If the original sequence has recip-

rocal zeros, then this algorithm may still be used. However, due to pole/zero cancella-

tions in (3-28), only those zeros which are not in reciprocal pairs may be recovered.

Although the algorithm outlined above may be used, in theory, to reconstruct a

sequence from the phase of its Fourier transform, due to the difficulties involved in

obtaining the unwrapped phase in (3-27) and in determining the locations of the poles
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and zeros in (3-28), this algorithm would probably not be used in practice. More

practical algorithms for recovering a sequence from the phase of its Fourier transform

will be described in Chapter V.

111.3.2: Uniqueness in terms of phase samples

Theorem 3.1 provides a set of conditions under which a sequence is uniquely de-

fined to within a scale factor by the phase of its Fourier transform. Although the theo-

rem assumes that the phase is known for all frequencies, due to the finite length con-

straint, it is possible to extend this result to the case in which the phase is known only

for a finite number of frequency values. Specifically,

Theorem 3.2: Let x(n) and y(n) be real sequences which are zero

outside the intervalt [0,N-l] with z-transforms which have no zeros in

conjugate reciprocal pairs or on the unit circle. If o,(w)=oY(w) at (N-l)

distinct frequencies in the open interval (0,u), then x(n)= y(n) for some

positive real number 8. If tan[o1(w)]=tan[o,(w)] at (N-l) distinct frequen-

cies in the interval (0,w), then x(n)=8y(n) for some real number 8.

Proof: Let x(n) and y(n) satisfy the constraints of the theorem. As in the proof of

Theorem 3.1, consider the sequence g(n) defined by

g(n) = x(n) * y(-n) (3-29)

t More generally, x(n) and y(n) may be taken to be zero outside any interval of
length N.
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If •l,,o ,...,, Nl}are (N-1) distinct frequencies in the interval (0,w) and if

,(wOk)-•,(k ) or tan[•0,(k)]=tan[oy,(k) ] for each k, then

tan[ok(w)] = 0 for k= 1,2,...,(N-l) (3-30)

Therefore, G(ok) is real for eack k and, since g(n) is zero outside the interval

[-N+I,N-1], then

N-1
Im[G(7) ] = j g(n) sin(nok) = 0 (3-31)

p-N+1

Thus, (3-31) may be expressed as

N-1
C [g(n) - s(-n)] sin(nok) = 0 (3-32)
a. 1

for k= 1,2,...,(N-1). Since the functions jsino,sin2A,...,sin(nw) 1 form a Chebyshev set,

it follows that [g(n)-g(-n)]=0, i.e., g(n) is an even sequence [43]. As a result,

tan[os(o)]=0 for all a which implies that tan[o,(W)]=tan[o,(W)] for all W. Therefore,

from Theorem 3.1, x(n)=8y(n) where 0 is a real number. Finally, if 1(w4)=o,(w) for at

least one oe(0,r), then 8 must, in addition, be positive. ///!

As a special case of this theorem, note that if x(n) is zero outside the interval

[0,N-1], then for any MŽ2N-l, the phase of its M-point DFT uniquely specifies x(n)

to within a scale factor.

Although it was possible to extend Theorem 3.1 to allow first-order zeros on

the unit circle for the case in which 0,(a)=$,(o), this extension is not possible in the

case of Theorem 3.2 as illustrated by the following example:
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Example: Let x(n) and y(n) be two sequences which are zero outside

the interval [0,2] and which are defined by

x(n) = 8(n-1) and y(n) = 8(n) + 8(n-2) (3-33)

Since Y(u)=2coa•-X(o), then o,()=,(o) for all we(-T/2,T/2). Therefore,

although x(n) and y(n) have Fourier transform with the same phase over

any set frequency values in the interval (0,T/2), they are not related to one

another by a scale factor.

Theorems 3.1 and 3.2 assert that, within the set of all finite length sequences

which have z-transforms with no zeros on the unit circle or in conjugate reciprocal

pairs, a sequence is uniquely defined to within a scale factor by its phase or, if the in-

terval over which the sequence is non-zero is known, by a finite number of phase

samples. In Chapter V, a number of algorithms are developed for reconstructing a se-

quence which satisfies the constraints of Theorem 3.2 from samples of the phase of its

Fourier transform. Although the sequences obtained from these algorithms have the

correct phase samples and are zero outside a given interval, some additional informa-

tion about the sequence is required in order to guarantee that the solution has a z-

transform with no zeros on the unit circle or in conjugate reciprocal pairs. For exam-

ple, suppose that a sequence is known to be zero outside the interval [0,2] with phase

0,(w)=--. Although scaled versions of x(n)=8(n-l) are the only sequences consistent

with this information and which satisfy the constraints of Theorem 3.2, there are many

other sequences which do not satisfy the constraints of Theorem 3.2 but which are

zero outside the interval [0,2] and have Fourier transforms with phase y(o)=--u, e.g.,

any sequence of the form y(n)=6(n)+x6(n-l)+8(n-2) for any 'x2. However, if it is

known that the first non-zero value of x(n) is at n= 1, then scaled versions of x(n) are
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the only sequences consistent with the known information. This result is true in gen-

eral as the following theorem states:

Theorem 3.3: Let x(n) be a real sequence which is zero outside the

interval [O,N-i] with x(O)*O and which has a z-transform with no zeros in

conjugate reciprocal pairs or on the unit circle. Let y(n) be any real se-

quence which is also zero outside the interval [0,N-1]. If o,(w)=oy(w) at

(N-i) distinct frequencies in the interval (0,w), then y(n)=Bx(n) for some

positive constant 8. If tan[o,()]-=tan[oy,( )] for (N-i) distinct frequencies

in the interval (0,r), then y(n)=hx(n) for some real constant 8.

Note that, in contrast to Theorem 3.2, there are no constraints on the z-trans-

form of y(n). In particular, y(n) may be any finite duration sequence which is zero

outside the interval [0,N-I]. It should also be pointed out that although Theorem 3.3

assumes that the first non-zero point of x(n) is at n=O, the theorem may easily be ex-

tended to the case in which the first non-zero point of x(n) is at an arbitrary n=no.

Furthermore, knowledge of the location of the first non-zero point of x(n) may be re-

placed with the knowledge of the location of the last non-zero point of x(n).

Proof. Let x(n) and y(n) satisfy the constraints of the theorem and consider the se-

quence g(n) defined in (3-29). As in the proof of Theorem 3.2, g(n) is an even se-

quence which is zero outside the interval [-N+ ,N-l]. Now let N,-I represent the lo-

cation of the last non-zero point of x(n), i.e., x(n)=O for nŽN, and x(N,-l)0O. Then,

N,-1 N-I

G(z) = X(z) Y(z-') = [ x(n) z-" [ y(n) z2 (3-34)
.=o .=o
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Since g(n) is even and x(O)O0, then y(n)=O for n>N,. Therefore, the number of zeros

in Y(z) is less than or equal to the number of zeros in X(z). For reasons identical to

those in the proof of Theorem 3.1, since g(n) is an even sequence and x(n) has no ze-

ros in reciprocal pairs or on the unit circle, if X(z) has a kth-order zero at z=z o, then

Y(z) must also have a kth-order zero at z=z o. Therefore, since Y(z) cannot have

more zeros than X(z), it follows that y(n)=8x(n) for some constant 8. Furthermore, if

(~.()=-•(0) for at least one w, then B must, in addition, be positive. ///

111.3.3: Extensions

Theorems 3.1-3.3 provide some conditions under which a sequence is uniquely

defined to within a scale factor by the phase of its Fourier transform. Although these

constraints include the restriction that the sequence be real-valued, it is possible to

develop similar theorems which apply to complex sequences. For example, the state-

ment of Theorem 3.1 is unchanged when the sequences are allowed to be complex.

Furthermore, the only significant change required in the proof is to redefine g(n) in

(3-17) by

g(n) = x(n) * y*(-n) (3-35)

The statements of Theorems 3.2 and 3.3, on the other hand, are slightly different for

complex sequences. Specifically, for a sequence of length N, instead of (N-1) phase

samples in the interval (0,w) for a real sequence, (2N-1) phase samples in the half

open interval [0,2Tr) are necessary for the unique specification of a complex sequence.

Since the proofs of these results are slightly different from those in Theorems 3.2 and

3.3, the statement and proof of the extension of Theorem 3.2 to complex sequences is
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presented below. The proof of the extension of Theorem 3.3 to complex sequences fol-

lows in a similar manner.

Theorem 3.4: Let x(n) and y(n) be complex sequences which are

zero outside the the intervalt [0,N-l] with z-transforms which have no

zeros in conjugate reciprocal pairs or on the unit circle. If MŽ2N-l and

0,(w)=oY(w) at M distinct frequencies in the the interval [0,2n), then

x(n)=By(n) for some positive real number B. If MŽ2N-1 and

tan[o,(o)]=tan[eY,(() ] at M distinct frequencies in the interval [0,2r), then

x(n)=By(n) for some real number 8.

Proof. Let x(n) and y(n) satisfy the constraints of the theorem and consider the se-

quence g(n) defined by

g(n) = x(n) * y*(-n) = g1(n) + jg1(n) (3-36)

where gt(n) and g,(n) are the real and imaginary parts of g(n) respectively. If

1,l,IU2...,o are M distinct frequencies in the interval [0,2r) and if e,(W)=e,(W) or

tan[o,(w)]=tan[o,(w)] for each k, then

tan[oS(wk) ] = 0 for k= 1,2,...,M (3-37)

Therefore, G(wk) is real and, since g(n) is zero outside the interval [-N+1,N-1],

N-1

Im[G(Wk) ] = T [g,(n) cos nak - g1(n) sin nuk] = 0 (3-38)
n-N+I

t As before, x(n) and y(n) may be taken to be zero outside any interval of length N.
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Thus, with

u(n) = g(n) - ga(-n) (3-39)

and v(n) = g,(n) + g,(-n) (3-40)

then (3-38) becomes

N-I N-I

[ v(n) cos n, - 7 [ u(n) sin no, ] = 0 (3-41)
U=0 U-1

Since the functions l,cosn,siDn,...,cos n (),sin) form a Chebyshev set, it follows

that if MW2N-l then u(n)=0 and v(n)=0 for n=0,1,...,M [43]. Consequently,

g,(n) = gL(-n) and g,(n) = - g(-n) (342)

so g(n) is conjugate symmetric. As a result, tan[e,(w)]=0 for all a which implies that

tan[eo,(()]=tan[o,(a)] for all w. Therefore, it follows in a style similar to that used in

the proof of Theorem 3.1 that x(n)=8y(n) where 9 is a real number. Finally, if

0,(w)=o,(w) for at least one we[0,2w), then B must, in addition, be positive. ///

Although the results which have been presented thus far have been confined to

finite length sequences, an extension is easily made to those sequences whose convolu-

tional inverses are finite in length. Specifically, let x,(n) denote the convolutional in-

verse of a sequence x(n), i.e.,

x(n) * x,(n) = 8(n) (343)

where 8(n) is the unit sample function. Now suppose that x(n) is a stable all-pole se-

quence so that the z-transform of x(n) is given by

X(z) = 1 / P(z) (344)
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where P(z) is a polynomial in z and z- '. In this case, the convolutional inverse of

x(n) is finite in length with a z-transform given by

XA(z) = P(z) (3-45)

Furthermore, the phase of x,(n) is uniquely specified by the phase of x(n):

O1 (0) = - Oz(W) (3-46)

Therefore, a stable all-pole sequence is uniquely specified to within a scale factor by

the phase of its Fourier transform if its convolutional inverse satisfies the constraints

of Theorem 3.1. A similar statement applies if the phase is known for only a finite

number of frequency values or if x(n) is complex.

Finally, note that the results of this section may be applied to the dual problem

of uniquely defining a periodic continuous-time signal in terms of its phase. Specifical-

ly, let x(t) be a complex-valued function of the continuous variable t with phase o,(t),

i.e.,

x(t) = I(t)I exp[j0,(t)] (3-47)

If x(t) is periodic with period T, then x(t) has a Fourier series expansion of the form

x(t) - 7 xe j2Wt/ r  (3-48)

where xn are the Fourier series coefficients of x(t) which may be viewed as a sequence

of complex-valued numbers. Therefore, the results of this section provide conditions

under which the Fourier series coefficients x,, and thus x(t), is uniquely defined to

within a scale factor by o,(t). For example, if x(t) is a band-limited periodic signal,
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then the Fourier series coefficients are a finite length sequence of complex numbers.

Therefore, using Theorem 3.4 it follows that x(t) is uniquely defined to within a scale

factor by its phase, 01 (t), if x(t) cannot be factored into a product of two band-limit-

ed signals, x(t)=x 0(t)g(t), where g(t) is a positive real function of t, i.e., g(t) has zero

phase.

1.4: Uniqueness in terms of magnitude

This section considers the uniqueness of a one-dimensional sequence in terms of

the magnitude of its Fourier transform. As is the case for phase, without any addition-

al information or constraints, a sequence is not uniquely defined by the magnitude of

its Fourier transform. Specifically, for any sequence x(n), another sequence y(n) may

always be found which has a Fourier transform with the same magnitude by simply

convolving x(n) with an all-pass sequence, g(n):

y(n) = x(n) * g(n) : |0() = 1 (3-49)

It is also true, however, that if two sequences x(n) and y(n) have the same magnitude,

then they are related by (3-49). This result follows simply by noting that

Y() = X(a) [ Y(a)/X(,) ] = X(o) G(a) (3-50)

Therefore, since [Y()t=|X(w)|G(w)[, if x(n) and y(n) have Fourier transforms with the

same magnitude, then G()t)= I for all w.

In order to gain some insight into the uniqueness question, it will be useful to

characterize all-pass sequences. Therefore, let g(n) be a sequence which has a Fourier

transform with unit magnitude. In this case,

PG(j)p = O(w) G*() = 1 (3-51)
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which implies that the autocorrelation of g(n), rs(n), equals the unit sample function

r,(n) = g(n) * g*(-n) = 8(n) (3-52)

and therefore Rs(z) = G(z) 0*(I/z*) = 1 (3-53)

Furthermore, if g(n) is real then (3-52) and (3-53) become

r,(n) = g(n) * g(-n) (3-54)

and R,(z) = (z) G(z- ') (3-55)

From (3-53), however, it follows that

0-'(z) = 0*(l/z*) (3-56)

Therefore, G(z) consists of conjugate reciprocal pole/zero pairs. In other words, if

G(z) has a zero (pole) at z=zo then G(z) must also have a pole (zero) at z=l/zo*.

Note, in addition, that G(z) may have no singularities on the unit circle.

Since convolution with an all-pass sequence produces another sequence with the

same magnitude, it will be useful to consider the effect of convolution with an all-

pass sequence. Therefore, let x(n) be a sequence which has a z-transform with no con-

jugate reciprocal pole/zero pairs and let g(n) be an arbitrary all-pass sequence, other

than a delayed unit sample function. With Y(z)=X(z)G(z), at least one of the follow-

ing statements about Y(z) must be true:

(1) Y(z) contains conjugate reciprocal pole/zero pairs.

(2) Poles or zeros of X(z) are reflected about the unit circle.

Therefore, this lead to the following:
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Theorem 3.5: Let x(n) and y(n) be real sequences with z-trans-

forms which have no conjugate reciprocal pole/zero pairs and, in addition,

a) all the zeros of X(z) and Y(z) (except at z=0 or z'=0)

are either inside or outside the unit circle.

b) all the poles of X(z) and Y(z) (except at z=0 or z'=0)

are either inside or outside the unit circle.

If |X(t=)HY(•), then x(n)=+y(n+k) for some integer k.

Note that minimum phase sequences as well as maximum phase sequences satisfy

the constraints of this theorem. However, since minimum (maximum) phase sequences

have no singularities at z'=O (z0-), the magnitude of the Fourier transform uniquely

specifies a minimum phase or maximum phase sequence to within a multiplicative sign

factor.

Prookf Let x(n) and y(n) satisfy the constraints of the theorem. If the Fourier

transform magnitudes of x(n) and y(n) are equal, then their autocorrelations are equal

and, therefore,

X(z) X(z') = Y(z) Y(z') (3-57)

Now consider the case in which all of the zeros of X(z) and Y(z) are inside the unit

circle, and suppose that X(z) has a kth-order zero at z=z0 where 0<Iz(l. Since X(z)

has no conjugate reciprocal pole/zero pairs, then X(z) does not have a pole at z= 1/z
and, consequently,

R(z) = Y(z) Y(z - ) (3-58)
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must have a kth-order zero at z=z o. However, since z~'> )l and since Y(z) has no

zeros outside the unit circle, then Y(l/zo)'0 and Y(z) must have at least k zeros at

z=z 0. Finally, since Y(z) has no conjugate reciprocal pole/zero pairs, then Y(z) must

have exactly k zeros at z-z o. Reversing the roles of X(z) and Y(z), it follows that

X(z) and Y(z) have the same zero set for 0<1Oz<z. By a similar argument, the same re-

sult holds for the case in which the zeros of X(z) and Y(z) are outside the unit circle.

Finally, repeating the argument for poles, it follows that the poles of X(z) and

Y(z) are identical for O(<jzjo. Thus,

Y(z) = B zk X(z) (3-59)

where B is a complex number and k is an integer. However, since pX((W)H= Y(a) it fol-

lows that 11ý1 which, since x(n) and y(n) are real, implies that R=+1. Therefore,

y(n)=+x(n+k) as desired. /////

It should be pointed out that this theorem is valid, as well, for complex-valued

sequences. Furthermore, the only change required in the proof in this case is to use

(3-52) for the autocorrelation of a complex-valued sequence.

Finally, it may be noted that there are other classes of sequences which are uni-

quely defined by the magnitude of their Fourier transforms. For example, suppose that

x(n) and y(n) are even sequences with IX(w)j-Y(~). From (3-57) and the fact that

X(z)=X(z - 1) and Y(z)=Y(z-1), it follows that

X2(z) = Y2(z) (3-60)

Therefore, X(z)=±Y(z) and, consequently, x(n)=+y(n). In other words, an even se-

quence is uniquely defined to within a sign by the magnitude of its Fourier transform.

As another example, suppose that x(n) is a real-valued finite length sequence which is
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equal to zero outside the interval [O,N-l] with x(O)#0. In this case, since X(z) is a

polynomial in z-1 over the real numbers, it may be shown (See Section IV.5.2) that if

X(z) is irreducible and if y(n) is any finite length sequence with [Y(W) X(o)X, then ei-

ther y(n)=ix(n) or y(n)=+x(-n). However, due to the Fundamental Theorem of Alge-

bra [30], no polynomial of degree greater than two is irreducible over the real num-

bers. Therefore, this result constrains x(n) to be of length three or less.

Although these constraints do not encompass a very large or useful class of

one-dimensional sequences, they are special cases of a set of constraints under which a

multidimensional sequence is uniquely defined by the magnitude of its Fourier trans-

form (Theorem 4.9). Furthermore, unlike the one-dimensional case, many multidimen-

sional sequences of practical interest satisfy these constraints.
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CHAPTER IV: UNIQUENESS CONSTRAINTS (m-D)

IV. I: Introduction

In Chapter III, some conditions were presented under which a one-dimensional

sequence is uniquely defined in terms of either the phase or magnitude of its Fourier

transform. In this chapter, the uniqueness question is considered for sequences in two

or more dimensions. First, however, some notation and terminology related to multi-

dimensional sequences is presented in Section IV.2. Then, in Section IV.3 the results

of Chapter III are used to develop some conditions under which a multidimensional

sequence is uniquely defined in terms of either the phase or magnitude of its Fourier

transform. Specifically, it is shown that a multidimensional sequence may be mapped

into a one-dimensional sequence by means of an invertible transformation. Conse-

quently, the one-dimensional uniqueness constraints may then be applied to this one-

dimensional sequence. Although this approach is straightforward, it is limited by the

fact that the uniqueness constraints are expressed in terms of a one-dimensional func-

tion of a multidimensional sequence rather than directly in terms of the properties of

the multidimensional sequence. Therefore, another approach is presented in Section

IV.5 which leads to uniqueness constraints which involve restrictions of the types of

factors which are allowed in the multidimensional z-transform of a multidimensional

sequence. However, since this approach requires some results from the algebra of

polynomials in two or more variables, Section IV.4 is intended to provide the neces-

sary background. Finally, Section IV.6 presents some further extensions of the theory

developed in Section IV.5.
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IV.2: Notation and framework

An m-dimensional sequence is a function of m integer-valued variables, nt

through n,, which will be denoted by x(n,,...,n). As in Chapter III, all sequences

are assumed to be real-valued with rational z-transforms. Therefore, with X(zl,...,z,)

the m-dimensional z-transform of x(n1,...,n.), then

-ni -n. A(z,_...,z M)X(z=,...,Z) 7= . x(nj,...,nm) z i  z -= (4-1)
a, ... ,a B(z,...,z )

where A(z,,...,z,) and B(z,,...,z,) are polynomials.

In order to express (4-1) as well as some later results more succinctly, vector

notation will be used whenever possible. For example, an m-dimensional sequence and

its z-transform will be written as

x(n) = x(n ,...,n,) (4-2 a)

X(s) = X(z,,...,z,) (4-2 b)

In addition, with n=(nt,...,n,) an integer-valued vector, z--will be defined by

nt n2 n.zA = z 2... z= (4-3)

Thus, (4-1) may be written more succinctly as

AOz
X(z) = x(n) z-- (4-4)

n B(z)

It will always be assumed that the region of convergence of X(z) includes the

unit polydisc: tzk l1 for k= 1,...,m. In this case, the Fourier transform of x(n) exists and

is given by
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X(•) X( expg = 7' x(n) exp[-jn~] (4-5)
n

Since X(W) is, in general, a complex-valued function of _, it may be written in polar

form in terms of its magnitude and phase as:

X(Y) X@( ) exp[jOx(~] (4-6)

Finally, with M=(MI,...,M,), the M-point Discrete Fourier Transform (DFT)

of x(n) will be denoted by X(k)M. The magnitude and phase of X(k), will be denot-

ed by X(k)IM and ox(k)M, respectively.

As in the one-dimensional case, many of the sequences considered in this chap-

ter are assumed to have finite support, i.e. x(n) is non-zero only for finitely many val-

ues of n. For convenience, any sequence with finite support is assumed, without any

loss in generality, to be non-zero only when _0 nt. In the general case, any sequence

may simply be shifted in order to satisfy this assumption. If x(n) is zero outside the

region 0 K n < N, i.e. x(n,...,n,)=0 whenever nk<O or nkŽNk for k=l,...,m, then the

region of support will be denoted by R(N)=R(N,,...,N,). Furthermore, F(n) will be

used to denote the set of all m-D sequences which have, for some N, support R(N).

Thus, xEF(n) will be taken to mean that x(n) is an m-D sequence with finite support

which is non-zero only when 0 ( n.

t If k and n are two vectors, then k<n means that ki<n i for i=1,...,m.
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IV.3: Uniqueness via projections

In this section, the uniqueness constraints in Chapter III are used to provide

some conditions under which a multidimensional sequence is uniquely defined in terms

of the phase or magnitude of its Fourier transform. Specifically, a multidimensional

sequence is first mapped into a I-D (one-dimensional) sequence by means of an inver-

tible transformation. This transformation has the property that the Fourier transform

phase or magnitude of this one-dimensional sequence may be easily determined from

the phase or magnitude of the multidimensional Fourier transform of the original se-

quence. Therefore, the I-D uniqueness constraints in Chapter III provide conditions

under which this one-dimensional sequence, and hence the multidimensional sequence,

is uniquely specified in terms of the phase or magnitude of its Fourier transform. Since

the 2-D (two-dimensional) results are easily extended to sequences of higher dimen-

sion, the following discussion will focus only on the 2-D case.

Consider first the case of a 2-D sequence with finite support. Specifically, sup--

pose that x(n,,n 2) has support R(N,,N 2), i.e., x(n,,n2) is zero outside the region

O1n,<N, and 0n 2•N2, and let x1(n) be the I-D sequence which is defined in terms

of x(n,,n2) by the following mapping:

xt(Nn,+n 2) = x(n,,n) with NN 2, and On 2%<N (4-7)

When N=N 2, the sequence Ax(n) in (4-7) is defined simply as the concatenation of the

columns of the array x(n,,n2). If, on the other hand, N)N 2, then each column of

x(n,,n 2) is padded with (N-N 2) zeros before concatenation. Clearly, the mapping

(4-7) is invertible for any NŽN 2.
AWith X(zl,z 2) the two-dimensional z-transform of x(n1 ,n2) and with X,(z) the

Az-transform of xM(n), then
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X,(z) = x,(k) zk = x(Nnl+n2) z• 'I+÷ ,)
k n¶ 2

= 7 x(nl,n 2) z "Nn Z- ' = X(zN,z) (4-8)
U1n 3

A
Therefore, X,(z) equals the z-transform of x(n,,n 2) along the contour zl=z 2N. The

sequence x1(n) is referred to as a projection of x(nl,n 2) and l,(z) is referred to as a

slice of X(z1 ,z2) [27].

With z=exp(jw), the Fourier transform of x,(n) is

A
X,(w) = X(Nwo,) (4-9)

Therefore, X(ow) is equal to X(o1,w2) along the line ow=No 2. However, since X(,ou 2)
A

is periodic with period 21T in both ws and o 2, XP(o) is also equal to X(l,w,2) along a

series of N parallel lines in the w1,, 2-plane, each of which makes an an-

gle e=tan-'(1/N) with the uw-axis as shown in Figure 4.1.

Note that (4-7) is not the only invertible transformation which maps a 2-D se-

quence with finite support into a I-D sequence. For example, the mapping

Ax2(n1+Nn 2) = x(n,,n 2) with NŽN, and On,<N (4-10)

is also invertible and represents the concatenation of the rows of x(nt,n 2) which have

been padded with (N-N 1 ) zeros. The Fourier and z-transforms of x2(n) are given by

A A
X2(o) = X(o,Nu) X2(z) = X(z,zN) (4-11)

Since x(n1 ,n2) has finite support, both x1(n) and x2(n) are finite length sequenc-

es. For example, if N=N 2 in (4-7) or if N=N 1 in (4-10), then x(n) and 2 (n) are

equal to zero outside the interval [0,M-l] where M=NIN 2. In this case, MA(n) and
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Ax2(n) are uniquely defined in terms of their one-dimensional M-point DFT's which
A A

consist of M equally spaced samples of X,(o) and X,2() between 0 and 2w, respective-

ly. In the 2-D Fourier plane, these samples correspond to equally spaced samples

along the lines (t=N•o and oa2 N=,, respectively, as shown in Figure 4.2.

Consider now the more general case of a 2-D sequence with a rational z-trans-

form. Specifically, let

A(z,,z)
X(zI,z,) = (4-12)

B(z,,Z2)

where A(zl,z2) is a 2-D polynomial of degree N, in z, and N2 in z2 and where

B(z,,z 2) is a 2-D polynomial of degree M, in z, and M2 in z2. Consider the se-

quence xt(n) which is defined to have the following z-transform

A
X,(z) = X(zN,z) (4-13)

Since

X(zN,z) = 7 x(k,i) z- -'
kI

= x(k,n-Nk) z-* (4-14)
a k

Athen x,(n) is defined in terms of x(n,,n 2) by

xl(n) = = x(k,n-Nk) (4-15)
k

Similarly, it follows that if x2(n) is defined to have a z-transform given by

A
X2(z) = X(z,zM) (4-16)
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Athen x 2(n) is defined in terms of x(nl,n2) by

x5(n)= 7 x(n-Mk,k) (4-17)
k

Note that if x(n,,n 2) has support R(N,,N 2) then (4-15) is equivalent to (4-7) provid-

ed NŽN 2 and (4-17) is equivalent to (4-10) provided MWN,.

Finally, it may be shown [27] that for X(zl,z2) a rational function of the form

(4-12), the transformation (4-15) is invertible for any Nkmax(M,,N). Specifically,
A

note that X,(z) is a rational function of z,' i.e.,

A A(zN,z)
X,(z) = (4-18)

B(zN,z)

^ ATherefore, since the poles and zeros of X,(z) are uniquely defined by x,(n), the nu-

merator and denominator polynomials may (theoretically) be obtained from x,(n).

Therefore, since NŽM 2 then A(z,,z,) may be recovered from A(zN,z) and since

NŽN 2 then B(zl,z2) may be recovered from B(zN,z) and the result follows. It may

similarly be shown that the transformation (4-17) is invertible for any

M~max(M,,N,).
AFrom (4-9) and (4-11), it is clear that the phase (magnitude) of X,(w) and

A
X2(o) are specified by the phase (magnitude) of X(t,,a). Therefore, each of the theo-

rems in Chapter III imply conditions under which a multidimensional sequence is uni-

quely defined by the phase or magnitude of its Fourier transform. Specifically, a mul-

tidimensional sequence may be mapped into a one-dimensional sequence by (4-7) or

(4-10) and the I-D uniqueness theorems in Chapter III may then be applied to the

resulting I-D sequence. From a slightly different point of view, note that the trans-
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formations (4-7) and (4-10) may be viewed as invertible mappings of one-dimensional

sequences into multidimensional sequences. Note, in addition, that the theorems in

Chapter III define certain classes of one-dimensional sequences which are uniquely

specified by their Fourier transform phase or magnitude. From these one-dimensional

sequences, therefore, the mappings (4-7) and (4-10) may be used to define certain

classes of multidimensional sequences which are uniquely specified in terms of a slice

of the phase or a slice of the magnitude of their multidimensional Fourier transforms.

From either point of view, however, Theorem 3.1 implies the following

Theorem 4.1: Let x(n,,n,) and y(n,,n2  have finite support and

suppose that, for some N, x,(n) and y,(n) as defined in (4-7) have z-

transforms with no zeros on the unit circle or in conjugate reciprocal

pairs. If o,((,,o2,)=>o(,,P2) for all o, and o• along the line w,=Nw., then

x(n,,n2)=By(n,,n 2) for some positive constant B. If, on the other hand,

tan[e,(o,,()]=tan[(,(•,wa) ] for all w, and o2 along the line o,=NW2,
then x(n,,n 2)=8y(n,,nd) for some real constant 8.

Note that this theorem asserts that a 2-D sequence with finite support is unique-

ly defined to within a scale factor by the phase of its Fourier transform if there exists

a projection which satisfies the constraints of Theorem 3.1. Unfortunately, however, al-

though one particular projection may not satisfy these constraints, this does not pre-

clude the possibility that they will be satisfied by another projection.

Example: Consider the 2-D sequence x(n,,n 2) which, written as an

array, is defined by

x (4-19)
15 0-
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A
i.e., x(0,0)=2, x(0,1)=5, x(1,0)=2, and x(n,,n2)=0 otherwise. Since X,(z)

with N=2 is given by

A
SX(z) = 2 + Sz- + 2z-2 = (z-'+2) (2z'+ 1) (4-20)

and, therefore, has a pair of reciprocal zeros, ý,(n) is not uniquely defined

by the phase of its Fourier transform for this particular projection. In oth-

er words, knowledge of o,(w,,w) along the line 0,=20, is not sufficient to

uniquely define x(n,,n2 ). In fact, if y(n,,n) is any sequence of the form

9 y O (4-21)
a2  0

where a2a t, then the phase of the Fourier transform of y(n,,n) is equal

to the phase of the Fourier transform of x(n,,n) along the line w,=2z,,

i.e., o,(2w,w)=o,(2•,0 ) . However, if N>2 then the z-transform of ý,(n) is

equal to

A
X,(z) = 2 + 5z' + 2z- N  (4-22)

and has no zeros on the unit circle or in reciprocal pairs. Therefore,

x(nt,n2) is uniquely defined to within a scale factor by the phase of its

Fourier transform along the line w1 =No, for any N>2. Finally, suppose

that NŽ2 and consider the sequence xz(n). Since

A
X2(z) = 2 + 2z-' + 5z -N  (4-23)

has no zeros on the unit circle or in reciprocal pairs, then o,(W,I 2) along

the line oz=No, is also sufficient to uniquely specify x(n,,n 2) to within a

scale factor provided NŽ2.

roufler transform ~ong rue lure o, N02 for Illly N)Z. rllllllly, 8UPPo8e

that N~2 and consider the sequence ~n). Since

~C~(z) 2 + 22' + 5zN (4-23)

has no zeros on the unit circle or in reciprocal pairs, then o,(o,,w,) along

the line o~Nw, is also sufficient to uniquely specify x(n,,n,) to within a

scale factor provided N~2.



This approach of transforming multidimensional sequences into their I-D pro-

jections provides only a partial answer to the uniqueness question. Specifically, with

this approach it is difficult to determine which multidimensional sequences are unique-

ly specified by their Fourier transform phase or magnitude. Therefore, it is the goal of

the remainder of this chapter to develop some constraints which are expressed directly

in terms of the multidimensional sequence or its multidimensional z-transform.

IV.4: Polynomials in two or more variables

In order to consider the uniqueness of a multidimensional sequence in terms of

its multidimensional Fourier transform phase or magnitude, some theory from the al-

gebra of polynomials in two or more variables is required. This section, therefore, is

intended to provide the necessary background. Although only those results which are

needed in the following sections are presented, a more detailed treatment may be

found in [30].

IV.4.1: Definitions

A polynomial in the, m variables z=(z,z 2,....,z,) is a function of the form:

k, k,
p() = p(z,...,z) = ... 7 c(k,,...,k.) z, ... z (4-24)

k, + **+ kL N

where k1,k2,...,k, are non-negative integers, and where c(k,,...,k,) are arbitrary

numbers which are referred to as the coefficients of the polynomial. Each term in the

sum in (4-24) is called a monomial. Thus, monomials are functions of the form:
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k!  k,
f(z) = f(z1,...,z,). c(k,,...,k,) z, ... z. (4-25)

The degree of the monomial in (4-25) is defined to be

d(f) = k + k2 + * * + k, (4-26)

The degree, d(p), of the polynomial (4-24) is therefore defined to be equal to the de-

gree of the monomial which has the largest degree and a non-zero coefficient. Al-

though not standard terminology, polynomials which consist of a sum of two or more

monomials will be referred to as non-trivial polynomials. Monomials are therefore de-

fined to be trivial polynomials.

It is often useful to consider a polynomial in m variables as a function of one

variable, say Zk, which has coefficients which are polynomials in the remaining (m-l)

variables. For example, p(z) in (4-24) may be written as

N

p(-) 7 0k(n) zk0 (4-27)
S-0

where Ek(n) for n=0,1,...,N are polynomials in the (m-1) variables z, for i#k. In this

form, the largest value of n for which tk(n) is non-zero is referred to as the degree of

p(z) with respect to the variable Zk. Therefore, p(z) will be defined to be of degree

N=(N,,...N,) in z=(z,,...,z,) if P(Z) is a polynomial of degree Nk with respect to the

variable zk*

Example: Consider the following polynomial in two variables

p(z1,z 2) = 1 + 2z1 + ZIZ2 + 5z, 2z 2 (4-28)
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which has degree N=(2,1) in z=(z,,z 2). Since (5z, 2z2) is the monomial

with the largest degree, thep d(p)=3. Written as a polynomial in z, with

coefficients which are polynomials in z2, then

p(z,,Z2) = (0) + t1(l)z, + E,(2)z,2  (4-29)

where e1(0)=l, Ej(1)=(2+z2 ), and 11(2)=5z 2.

If all of the coefficients of a polynomial p(z) belong to a particular number

field, Y, then p(z) is called a polynomial over Y.. The set of all polynomials in m

variables over 3 will be denoted by 3;(z). If two polynomials p (z) and p2(0) in Y(z)

are equal to within a factor of zero degree, i.e., pz(z=cp 2(z) where ce Y and c#O,

then p,(•) and p,2() are called associated polynomials. A polynomial p e 3(z) with

d(p)>O is called a reducible polynomial over 3 if there are polynomials pl,P2 E .(z)

with d(p,)>O and d(p,2)O such that p(z)-p,(z)p2(Z). If no such decomposition is pos-

sible, then p(z) is called an irreducible polynomial. It may be noted that a polynomial

which is irreducible over one field may not be irreducible over another field. For ex-

ample, although the polynomial p(z,,z 2)=zl+z 22 is irreducible over the field of real

numbers, over the field of complex numbers p(z1 ,z2) is reducible.

IV.4.2: The factorization of polynomials

The result of interest in this section is the fact that any polynomial of non-zero

degree may always be uniquely decomposed to within factors of zero degree into a

product of irreducible polynomials. Specifically,
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Theorem 4.2 [30, p.335]. Any polynomial p ET(z) having non-zero degree

can be expressed as a product of factors irreducible in Y. Furthermore, if

p(z) has two different factorizations:

p(z) = f1(z)f 2(Z) f,(z) = gl(z)g2(Z) .. g(z) (4-30)

then m=n and the factors f1(z) and gz(z) can be ordered in such a way

that the factors are associated.

It may be noted that the Fundamental Theorem of Algebra states that a polynomial in

one variable of degree two or more is always reducible over the field of complex

numbers and, therefore, may always be written as a product of first order polynomials.

This is not the case, however, for polynomials in two or more variables. In particular,

a polynomial in two or more variables of arbitrarily large degree may be irreducible.

Example: If q(x) is a polynomial in m>0 variables over the field of

complex numbers, then the polynomial p(x,y) in m+1 variables defined by

p(x,y) = q(~ + yk (4-31)

is always irreducible for any k>0.

Since polynomials in two or more variables of arbitrarily large degree may be ir-

reducible, it is of interest to determine the probability with which a multivariable

polynomial is irreducible. More specifically, given an arbitrary polynomial in two or

more variables, is it more likely that it is reducible or that it is irreducible? An answer

to this question may be found in Appendix I where it is shown that "almost all" poly-

nomials in two or more variables are irreducible. In a probabilistic setting, this result

asserts that a multidimensional polynomial is irreducible with probability one.
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IV.4.3: Uniqueness of Polynomials Over a Lattice

It is well known that a polynomial p(z) in one variable of degree N is uniquely

defined in terms of its values over a set A = (a,...,aN+1  of N+1 distinct points and

may be reconstructed from these points by, for example, the Lagrange or Newton in-

terpolation formulas [30]. This result may be extended to polynomials in m variables

if the set of points A is replaced with an m-dimensional lattice of points,

L(A,,...,A,). More specifically, let At be a set of Nk distinct points in the field -for

k= 1l,...,m. The m-dimensional lattice L(A 1,...,A,) is then defined as the m-fold Carte-

sian product of these m sets of points, i.e.,

L(AI,...,A.) = A, = A, x Az x -. x A. (4-32)
k-l

With A= I Al,...,A, I a set of m sets of points, the lattice (4-32) will be denoted by

L(A). However, if all of the sets Al,...,A, are the same, the lattice will be written as

L(A"). The result of interest is therefore the following:

Theorem 4.3 [30, p.3 2 9]: Suppose p1 ,p2 Ec (z) are polynomials of degree

at most N-i. If A is a set of N distinct numbers in the field Y and

P(Z) = p2(0) for all zeL(An ) (4-33)

then pt(z)-p 2(z) for all z.

A slightly different form of this result may be derived which will be of interest in the

following discussions. Specifically,
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Theorem 4.4: Suppose p,,p 2 E Y(z) are polynomials of degree at

most Nk-I in the variable Zk for k=l,...,m. If, for each k, Ak is a set of

Nk distinct numbers in the field Y, and if

Pt(z) = p2Cz() for all zeL(A) (4-34)

then p,(1Z)=p 2(z) for all z.

As an application of Theorem 4.4, note that if x(n) is an m-dimensional se-

quence with support R(N), then its z-transform is a polynomial in z-'. Therefore,

Theorem 4.4 may be used to show that x(n) is uniquely specified by the values of its

z-transform over a lattice of points. One such statement of this fact is provided in the

following

Example: Suppose x,y E F(n) have support R(N) and let At be a set

of Nk distinct complex numbers. If

X ) z = Y O) (4-35)

then x(n)y(n) for all n.

Note that if the elements of the sets Ak are complex numbers with unit magni-

tude, then X(Z) L(A) in (4-35) is equal to the Fourier transform, X(_), evaluated over

a lattice in the _-plane. Specifically, consider the sets:

k = ,Tk,i 1 with 0 , i < 2T for i= 1,2 ,...,Nk (4-36 a)

and Ak = exp(jk,i) (4-36 b)

- 69 -



where the elements of 0k for k= l,...,m are assumed to be distinct. Then,

X() t = X( LO (4-37)

is equal to the Fourier transform of x(n) over the lattice L(Q) in the _-plane. There-

fore, it also follows from Theorem 4.4 that a multidimensional sequence with support

R(N) is uniquely defined by the values of its Fourier Transform over a lattice in the

o-plane:

Example: Suppose x,y E F(n) have support R(N) and let 0
k be a set

of Nk distinct real numbers in the interval [0,2n) for k=1,2,...,m. If

X(WA = Y( ) L (4-38)

then x(n)=y(n) for all n.

Finally, note that if the numbers 8& in (4-36) are equally spaced between zero

and 2T, i.e., 8k,i =2i/Nk, then

X(A_•W) = X(W) (4-39)

is the M-point DFT of x(n).
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IV.5: Multidimensional uniqueness constraints

In this section, the results presented in Section IV.4 are used to develop condi-

tions under which a multidimensional sequence is uniquely defined by the phase or

magnitude of its Fourier transform. In Chapter III, the uniqueness constraints were

geometrically motivated in terms of the pole/zero plots of one-dimensional z-trans-

forms. However, since the z-transform of a multidimensional sequence is, in general, a

function of two or more independent variables, it is not possible to represent a multi-

dimensional z-transform in terms of a pole/zero plot as in the l-D case. For exam-

ple, a 2-D sequence with support R(N,,N) has a z-transform, X(z,,z), which is a

polynomial in two complex variables, z, and z2. Therefore, the zero set of X(z,,z) is

given by a continuum of values and represents a contour in the z ,z,-plane. Conse-

quently, a certain degree of abstraction is necessary in order to provide a similar moti-

vation for the multidimensional uniqueness constraints.

The multidimensional equivalent of the poles and zeros of a I-D z-transform

are the zero contours of the irreducible factors of a multidimensional .z-transform.

Specifically, note that the z-transform of an arbitrary one-dimensional or multidimen-

sional sequence with finite support may always be written as

P

X()= oa HI X() (4-40)
k-I

where a is a real number, o% is an integer-valued vector, and where Xk(Z• for k= l,...,p

are non-trivial irreducible polynomialst. For one-dimensional sequences, the irreduci-

ble polynomials are linear factors of the form (1-akz'-). Although the irreducible fac-

t It should be kept in mind that although X(z) is used to denote the z-transform of a
sequence x E F(n), X(z is in fact a polynomial in z-'. Therefore, in the following
discussions, whenever X(z) is said to be a polynomial this should be taken to mean
that X(z) is a polynomial in z-1.
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tors in (4-40) need not be linear for sequences in two or more dimensions, these fac-

tors play a role analagous to that played by the poles and zeros of one-dimensional

z-transforms.

IV.5. 1: Uniqueness in terms of phase

As in the one-dimensional case, without any additional information or con-

straints, a multidimensional sequence is not uniquely specified by the phase of its

Fourier transform since convolution with a zero phase sequence produces another se-

quence with the same phase. For one-dimensional sequences, this difficulty was over-

come by constraining a sequence to have no zeros on the unit circle or in conjugate

reciprocal pairs. By imposing a similar constraint on a multidimensional sequence, the

uniqueness theorems in Chapter III may be extended to the multidimensional case.

This constraint involves the idea of a symmetric z-transformt which is defined as fol-

lows. The z-transform of a sequence x F(n) is a polynomial in z-1 and will be de-

fined to be symmetric if, for some vector, k, of positive integers,

X_) = "  k X(z•') (4-41)

Note that if X(z) has no trivial factors and is of degree N in z-1, then

=z) E _z- - X(z- )  (4-42)

is also a polynomial of degree N in z-' which has no trivial factors. Therefore, it fol-

lows that X(z) will be symmetric if it has no trivial factors and X(z)= X((z). Finally,

it should be pointed out that a symmetric z-transform may be reducible, irreducible,

t A symmetric z-transform should not be confused with the algebraic definition of
symmetric polynomials [30].
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trivial, or non-trivial.

Example: The sequence x(n) defined by

x = (4-43)
Ab *a

has a symmetric z-transform which is irreducible if a#b. Also, for any

polynomial A(z),

X() = A( A() (4-44)

is a reducible symmetric z-transform. Finally, if X(z) is a trivial polyno-

mial, i.e.,

X(z = 8- (4-45)

then X(O is a trivial symmetric z-transform.

It should be noted that a I-D sequence which has all of its zeros on the unit

circle or in conjugate reciprocal pairs has a z-transform which is symmetric. There-

fore, (4-42) represents an extension of this property to multidimensional sequences. It

should also be noted that, except for a linear phase term, the Fourier transform of a

sequence which has a symmetric z-transform is either purely real or purely imaginary.
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IV.5.1.1: Uniqueness in terms of continuous phase

It was shown in Section 111.3 that a one-dimensional sequence x(n) is uniquely

specified to within a scale factor by the phase or the tangent of the phase of its Fouri-

er transform if X(z) has no zeros on the unit circle or in reciprocal pairs, i.e., if X(z)

contains no non-trivial symmetric factors. This result may be directly extended to the

case of multidimensional sequences as follows:

Theorem 4.5: Let x,y E F(n). If X(Z) and Y(z) have no non-trivial

symmetric factors and ~.(•)=o•() for all w, then x(n)=2ty(n) for some po-

sitive real number 8. If tan[~,())]=tan[e,(_)] for all W, then x(n )=y(n)

for some real number B.

Note that the theorem hypothesis excludes only non-trivial symmetric factors. There-

fore, X(z) and Y(Z) may have trivial (linear-phase) factors. It should be emphasized,

however, that the non-trivial symmetric factors which are excluded from X(z) and

Y(z) need not be irreducible. For example, if X(z)P()Q(z) with P(z)-A(z)A (z), then

x(n) does not satisfy the constraints of the theorem since P(z) is a (reducible) symme-

tric factor of X(z). In effect, the exclusion of symmetric factors from X(z) is equiva-

lent to the constraint that if A(z) is an irreducible factor of X(z) then A•z) is not a

factor of X(z). A proof of Theorem 4.5 is as follows:

Proof- Let x,y ~ F(n) and let N be an integer-valued vector which is large enough

so that both x(n) and y(n) are equal to zero outside R(N). Now consider the sequence

g(n) defined by

g(n)= x(n) * y(-n) (4-46)

which has a z-transform
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(4-47)

Since the phase of the Fourier transform of g(n) is equal to

co = Q~~- (4-48)

it follows that if ,(w= () then oes(_=0 or if tan[o,(u]=tan[o,( ) then tan[-e(s)]=0.

In either case, the Fourier transform of g(n) is real which implies that

oG( = G(-- ) (4-49)

Therefore, from (4-47) and (4-49)

X(Z Y(r') = X(Xz) Y(Z (4-50)

Multiplying both sides of (4-50) by _z- results in the following polynomial equation

in z-':

(4-51)

where m and n are integer-valued vectors with m Ž 0 and n 2 0. Now consider an ar-

bitrary non-trivial irreducible factor Xk(z) of X(z). From Theorem 4.2 in Section

IV.4.2, it follows that Xk(z) must be associated either with a factor of X(z) or with a

factor of Y(z). However, if Xk(Z) is associated with a factor of Xz) then

X(z) = a X,() (4-52)

for some i. If i=k, then (4-52) implies that

Xk(z) = a2 Xk()O

Therefore, a=+l and Xk(z) is symmetric. If, on the other hand, i;k, then
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G(z) = X(z) Y(z-')

X() Y2) z--= r (z) Y(O z--



Xk() X,() = a X,(z) X,(z) (4-54)

and A(z)=Xi(z)X,(z) is a symmetric factor of X(z). Both cases, however, are excluded

by the theorem hypothesis. Consequently, each non-trivial irreducible factor of Xz()

must be associated with a factor of Y(z). In addition, however, it follows from (4-51)

and Theorem 4.2 that any non-trivial irreducible factor Yk(Z) of Y(O) must be asso-

ciated either with a factor of X(z) or with a factor of Y(z). Furthermore, since Y(z)

contains no non-trivial symmetric factors, it follows that each non-trivial irreducible

factor of Y(z) must be associated with a factor of X(z). Therefore, X(z) and Y(z)

may differ by at most a trivial factor, i.e.,

Y(z =  z Xz (4-55)

However, if the phase or the tangent of the phase of x(n) and y(n) are equal, then

k=O. The theorem then follows by noting that # must be positive if o,(_)=o,(_). ////

As a special case of this theorem, note that if x(n) has finite support and a z-

transform of the form

X(z) = zp. P(z) (4-56)

where P(z) is an irreducible non-symmetric polynomial, then X(z) satisfies the con-

straints of Theorem 4.5. Therefore, since "almost all" polynomials in two or more

variables are of the form (4-56) (Appendix I), it follows that "almost all" multidimen-

sional sequences are uniquely defined to within a scale factor by the phase of their

Fourier transforms.
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IV.5.1.2: Uniqueness in terms of phase samples

Theorem 4.5 provides a set of conditions under which a multidimensional se-

quence is uniquely defined to within a scale factor by the phase of its Fourier trans-

form. Recall, however, that it was possible to extend the one-dimensional version of

this theorem to the case in which the phase is known only over a finite set of points

by using the fact that the trigonometric functions form a Chebyshev set. Unfortunately,

there are no non-trivial Chebyshev sets of functions in two or more variables [43]. In

particular, the trigonometric functions in two or more variables do not form a Che-

byshev set. Nevertheless, note that if X(z) and Y(z) have no non-trivial symmetric

factors, then the proof of Theorem 4.5 essentially relies on the fact that the Fourier

transform of g(n) is real. It is possible, therefore, to show that a sequence with sup-

port R(N) is uniquely defined to within a scale factor by the phase of its M-point

DFT provided MW2N-1. Specifically,

Theorem 4.6: Let x,y E F(n) with support R(N) and let M22N-1. If

X(z) and Y(z) have no non-trivial symmetric factors and o(k),=oy) M,

then y(n)=8x(n) for some positive number 8. If tan[o(k)M]=tan[o,(k), ] ,

then y(n~ 8x() for some real number 8.

Proof: Let x(n) and y n) satisfy the constraints of the theorem and consider the se-

quence g n)=x(n)*y(-n). Since x(n) and y(n) have support R(N), then g(n) is zero out-

side the region -N<n(N. Therefore, if MŽ2N-1 then the M-point DFT of g(n) is

equal to the product of the M-point DFT's of x(n) and y(n),

G(i)M = X(k)M • Y(-k) M (4-57)
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Thus, if ox(W =•y(k)M or tan[o•x)M]= tan[oy(k)M] then G(k)M must be real and,

therefore, the periodic extension of g(n) must be even. However, since g(n) is non-zero

only for -N<n<N, then g(n) must be even and, consequently, the Fourier transform of

g(n) must be real. Thus, repeating the steps in the proof of Theorem 4.5, the desired

result follows. /////

Theorem 4.6 asserts that, within the set of all multidimensional sequences with

support R(N) which have z-transforms with no non-trivial symmetric factors, a mul-

tidimensional sequence is uniquely defined to within a scale factor by the phase of its

M-point DFT when MW2N-l. In reconstructing a sequence which satisfies the con-

straints of Theorem 4.6 from 0x(k)M, however, it is not sufficient to simply find a se-

quence with support R(N) and the correct phase since the reconstructed sequence may

have non-trivial symmetric factors and, thus, will not represent the correct solution.

Therefore, since the factorization of a multidimensional polynomial to check for the

presence of non-trivial symmetric factors is, in general, a very difficult problem, it

will be useful to include some additional information in order to guarantee that the

reconstructed sequence has no non-trivial symmetric factors. For one-dimensional se-

quences, the additional information which is included to insure the correct solution is

the location of the first non-zero point of the sequence. Since the z-transform of any

I-D finite length sequence may always be written as

N-1

X(z) = C z- - (l-akz-1) (4-58)
k= I

the location of the first non-zero point of x(n) is equal to n0. Therefore, Theorem 3.3

asserts that if a sequence of length N has a z-transform with no zeros on the unit cir-

cle or in reciprocal pairs (i.e. X(z) has no non-trivial symmetric factors) then it is
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uniquely specified to within a scale factor by no and the phase of its M-point DFT

provided MŽ2N-l. A similar result is true for multidimensional sequences. Specifical-

ly, recall that the z-transform of any multidimensional sequence with support R(N)

may always be written in the form given by (4-40). Therefore, suppose that X(s) has

no non-trivial symmetric factors and note that if no is equal to zero then X(z), in ad-

dition, has no trivial symmetric factors. The multidimensional extension of Theorem

3.3 asserts that if x(n) has support R(N) and if X(!) has no symmetric factors (trivial

or non-trivial) then scaled versions of x(n) are the only sequences with support R(N)

and a M-point DFPT with phase e,(k)M provided MŽ2N_-I.

Theorem 4.7: Let x,y e F(n) with support R(N) and let MŽ2N-1.

If X(z) has no symmetric factors and oZ•%M=-OM then y(Cn)=x() for

some positive number 8. If tan[o,()MO] tan[•.k)_M] , then y(n)•8x(n) for

some real number B.

Note that, in contrast to Theorem 4.6, there are no constraints on the z-trans-

form of yo(). Therefore, y(n) may be any multidimensional sequence with support

R(N). In addition, note that although the constraint that X(s) has no (trivial) symme-

tric factors is equivalent to the condition that no=0 in (4-40), this does not necessarily

imply that x(0Q)0. In fact, o=0 is equivalent to the constraint that if k Ž 0, then

x'(m)=x(n-_k) will not be equal to zero for all m(O. Finally, it should also be pointed

out this theorem may be easily extended to the case in which no in (4-40) is non-zero

but known. A proof of Theorem 4.7 is as follows:

Proof- If x(n) and y(n) satisfy the constraints of the theorem, as in the proof of

Theorem 4.6, it follows that g(n)=x(n)*y(-n) is an even sequence. Furthermore, as in

the proof of Theorem 4.5, since X(z) contains no symmetric factors, then each non-
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trivial irreducible factor of X(z must be associated with a factor of Y(). Therefore,

X(z) and Y(o must be related by

Y() = z P(z) X(z) (4-59)

where P(z) is a polynomial and m is an integer-valued vector. However, since Y(z)

and X(z) are polynomials in _-' and since X(z) contains no trivial factors, then

Q(z)=zP(z) must also be a polynomial in z-'. Furthermore, in order for the phase

or tangent of the phase of x(n) and y(n) to be equal, q(n) must be an even sequence,

i.e., Q(z)-Q(z-). Therefore, Q(z~ and the theorem follows by noting that B must

be positive if oe(4), = e( . /////

IV.5.2: Uniqueness in terms of m~aitude

In Section IV.5.1, the uniqueness of a multidimensional sequence in terms of the

phase of its Fourier transform was considered. This section addresses the dual problem

related to the uniqueness of a multidimensional sequence in terms of its Fourier trans-

form magnitude. It appears that the first treatment of this uniqueness question was

provided by Bruck and Sodin [5] who postulated that the uniqueness of a 2-D se-

quence x c F(n) is related to the irreducibility of its z-transform. In this section, a

slightly more general result is derived which includes sequences with irreducible z-

transforms as a special case. Even more importantly, however, as in Section IV.5.1, the

uniqueness of a multidimensional sequence in terms of a finite set (lattice) of samples

of its Fourier transform magnitude is considered.
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IV.5.2.1: Uniqueness in terms of continuous magnitude

Consider a sequence xEF(n) for which IX(O)X is known for all W. Since the in-

verse Fourier transform of [X(y)p is the autocorrelation, r,(n), of x(n):

r,(n) ; x(n) * x(-n) (4-60)

the specification of [X(o(_ is equivalent to the knowledge of r1(n) or its z-transform

R,(z):

R,( = X(O X(z') (4-61)

For any x EF(n), the most general form for its z-transform, X(z), is given by

(4-40). Therefore, substituting (4-40) into (4-61) gives

P

R(z) = a (4-62)

Now suppose that the polynomial

(4-63)
k-I

is of degree N in z- '. Multiplying R,(Z) by z -N yields a polynomial in z-' which is

of degree 2N in z-l:

(4-64)

It is apparent that Q,(z) and PX(_) contain exactly the same information about

x(n) since one may be uniquely derived from the other. Therefore, the ability to uni-
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quely recover x(n) from jX(y) is equivalent to the ability to uniquely recover X(z)

from Q,(z). With this in mind, it follows that x(n) cannot be unambiguously recov-

ered from only the magnitude of its Fourier transform. For example, the sign of a as

well as the linear phase term z_* are not recoverable from Q1(-). Even more impor-

tant is the observation that, without additional information, it is not possible to deter-

mine whether X(Z) or X(• is a factor of X(O. This ambiguity is not surprising,

however, since it represents the multidimensional extension of a result which is familiar

for I-D sequences [36]. Specifically, for any finite duration sequence x(n), another se-

quence y(n) may be generated which has the same Fourier transform magnitude as

x(n) by simply reflecting a zero of X(z) about the unit circle. For m-D sequences,

Xkz) represents the reflection of the zero contour of X,()O about the unit polydisc.

It will be useful in the following discussions to define an equivalence relation on

the set F(n) as follows:

y(n) - x(n) if yn = x( k n ) (4-65)

for some integer-valued vector k. In other words, the equivalence class generated by a

sequence x EF(n) is defined to be the set of all sequences which may be derived from

xQn) by a linear shift, a "time-reversal", or a change in the sign of the sequence. Note

that all of the sequences within a given equivalence class have the same Fourier trans-

form magnitude. Thus, it will be convenient to refer to the Fourier transform magni-

tude of the sequences within an equivalence class as the Fourier transform magnitude

of the class.

In general, there will be more than one equivalence class having the same Four-

ier transform magnitude. More specifically, given a sequence x EF(n), there may exist

another sequence yE F(n) with the same Fourier transform magnitude as x(n~ but
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which is not in the same equivalence class as x(n). Therefore, the goal of this section

is to develop a set of conditions which guarantee the existence of only one equivalence

class with a given Fourier transform magnitude. The first question to be addressed,

however, concerns the number of equivalence classes which have a given Fourier trans-

form magnitude. Once this has been established, conditions which guarantee the exis-

tence of only one equivalence class may then be easily determined. The answer to the

first question is implied by the following theorem:

Theorem 4.8: Let xeF(n) have a z-transform given by

P
X@) = a z- xz) (4-66)

k=-

where Xk(z) are non-trivial irreducible polynomials for k=l,...,p. If

yeF(n) and X()=Y( for all w, then Y(z) is of the form:

Y(O = a z_ 1 X )k (4-67)
kcl k I

where I is a subset of the integers in the interval [1,p].

Proof- Let x,y EF(n) and let N be large enough so that both x(n) and y(n) are zero

outside the region R(N). Since IX(_)HY(~, it follows that

X(z) X(z_-) = Y() Y(z-') (4-68)

Therefore, let the z-transform of y(n) be given by

q

Y(z) = B z-  Yk(z) (4-69)
k-I
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where Yk(Z) are non-trivial irreducible factors for k=l,...,q. Substituting (4-66) and

(4-69) into (4-68) and multiplying by z- 1 yields the following equation in z-1 :

p q
a2 z--- [ Xw X(z ) = 82 2 Z- ]- Yk( Yk(z) (4-70)

k=-1 k-I

where mltO and m,2 0. From Theorem 4.2 in Section IV.4.2, it follows that m,=m,
and p=q:

p p
a2 [1 Xk(z) Xk(z) = 62 f] Yk(z) Yk(z) (4-71)

k=-1 k=-1

Again from Theorem 4.2 it follows that the factors Yk(-) may be ordered in such a

way that, for each k, Yk(z) is associated with either Xk(z) or Xk(,). Therefore, from

(4-69) and the fact that JX(_=jY(__ implies that a=o*, the desired result (4-67) fol-

lows. /////

It may be noted that this theorem is simply a statement of the fact that the only

way to generate a new sequence, y(n), which has the same Fourier transform magni-

tude as x(n), is to convolve x(n) with an all-pass sequence, g(p), i.e., a sequence for

which G(g)ý= 1 for all w. However, if G(w$) 1 then

G(o G(z-') = 1 (4-72)

Therefore, with G(z) a rational function of z, let

p

1 Ak@z)
k-l

GZ) =8 0_ - (4-73)
q

k1 Bk
k-1
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where Ak(z) and Bk(z) are non-trivial irreducible polynomials and assume that for

each i and k, Bi,() is not associated with Ak(z) (i.e., the numerator and denominator

have no common factors). Thus, it follows from (4-72) and (4-73) that

P q2 z [j A ,() A ,(z z = f I Bk(Z) BkO) (4-74)
k=- k-I

However, from Theorem 4.2, it follows that p=q and nt=n4. Furthermore, since Ak(Z

is not associated with Bi(z) for any i, then the factors Bk(s) may be ordered in such a

way that

Az = 1k kz) (4-75)

for each k. Therefore,

p

G(o) = z - B-'() B) (4-76)
k-I

Finally, since

IBk-(IW Bk(W = 1 (4-77)

then u=*l. Therefore, any all-pass sequence with a rational z-transform must always

be of the form:

p

GOz) = zA -Bk-Iz B kkZ (4-78)

k=LI

where Bk(Z) are non-trivial irreducible polynomials in z-'. Thus, given a sequence

x E F(n) with a z-transform of the form (4-66), y(n)=x(n)*g(n) has finite support if
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and only if for each k, B,(z)=X,(z) for some i e[l,p]. Consequently, Y(z) must be of

the form given by (4-67).

As a consequence of Theorem 4.8, if x EF(n) is a sequence with a z-transform

given by (4-66), and if yEF(n) with jY()=ýX(, then Y(z) must have the same num-

ber, p, of non-trivial irreducible factors. Furthermore, except for a scale factor of (-1)

and linear shifts, the only way to generate another sequence y E F(n) for which

jY(~)H=X(u] is to replace one or more non-trivial factors Xk()O of X(z) with Xk(Z).

However, if X(Cz) is symmetric, then this replacement may only change X(z) by a fac-

tor of (-1). Therefore, it follows that the number of equivalence classes with magni-

tude 1X(O_ is at most 2') o where p is the number of non-symmetric irreducible fac-

tors in X(z). Thus, the following is an immediate consequence of Theorem 4.8:

Theorem 4.9: Let x E F(n) have a z-transform with at most one ir-

reducible non-symmetric factor, i.e.,

P
X(.) = P(Z) [I Xk z (4-79)

where P(z) is irreducible and where Xk(Z) for k= 1l,...,p are irreducible and

symmetric. If yeF(n) with X(.)JY(.) for all w, then y(n)~x(n).

As a final remark, note that if x(n) has a z-transform of the form

X Z = z- P( (4-80)

where P(z) is irreducible polynomial, then X(z) satisfies the constraints of Theorem

4.9. Furthermore, since "almost all" polynomials in two or more variables are of the

form (4-80) (Appendix I), it follows that "almost all" multidimensional sequences with
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finite support are uniquely specified to within a sign, a linear shift, and a 'time rever-

sal" by the magnitude of their Fourier transforms.

IV.5.2.2: Uniqueness in terms of magnitude samples

As in Section IV.5.1.2, it may be apparent that the assumption in Theorem 4.9

that JX(•)•Y(o) holds for all w is not required if x(n) and y(n) are known to be zero

outside some given domain. More specifically, suppose that for some N, x(! and y(n)

are known to be zero outside R(N). Let 0 k and A, be sets of Mk distinct points as

defined in (4-36) for k=l,...,m, and let L(Q) and L(A) be the lattices generated by

these sets. Since

jX(g O= R,(z4A (4-81)

it follows that if

LX(o~p LO) = IY(N O (4-82)

then

R,(z• ) = R,(z) UA (4-83)

Therefore, (4-82) implies that

Q,(z( A = Q,(-Z LU (4-84)

where Qx(z) and Q,(z) are polynomials of degree at most 2(N-l) in z-1. Thus, if

M22N-I, it follows from Theorem 4.4 that Q,(z)Q(z) for all z and, consequently,

that IX(o)JY (I for all w. This leads, therefore, to the following
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Theorem 4.10: Let x,y e F(n) with support R(N) and let 0 k be a

set of Mk distinct real numbers in the interval [0,2y) with Mk, 2Nk-1 for

k=l,...,m. If X(O has at most one irreducible non-symmetric factor and

PX( L = FY(- W (4-85)

then y(n)~ x(n).

A special case of this theorem results when the points in the sets 0 k are equal-

ly spaced between 0 and 2n. In this instance, X() ,L is equal to the M-point

DFT of x(n), i.e.,

X(A_ = X(_" (4-86)

Therefore, (4-85) may be replaced with the constraint that

jX(kri •= _Y t _ (4-87)

provided that MW2N-1.
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IV.6: Extensions

In Section IV.4, conditions are presented under which an m-D sequence is uni-

quely defined to within a scale factor by the phase of its Fourier transform. A similar

set of conditions are presented in Section IV.5 which allow an m-D sequence to be

uniquely specified by the magnitude of its Fourier transform to within a delay, a sign,

and a '"time-reversal". It is of interest to note that these uniqueness constraints are not

mutually exclusive. Specifically, suppose that x EF(n) has a z-transform which, except

for trivial factors, is non-symmetric and irreducible, i.e.,

X() = z P(~) (4-88)

where P(z) is an irreducible non-symmetric polynomial in z-'. It then follows that

x(n) satisfies the constraints of both Theorems 4.5 and 4.9. Furthermore, if x(n) is

known to have support R(N), then the constraints of Theorems 4.6 and 4.10 are also

satisfied by x(n). Therefore, the following is a direct consequence of these theorems:

Theorem 4.11: If x e F(n) has a z-transform which, except for

trivial factors, is irreducible and non-symmetric, then x(n) is uniquely

specified (in the sense of Theorems 4.5 or 4.9) by either the phase or

magnitude of its Fourier transform. If, in addition, x(n) is known to have

support R(N), then the phase or magnitude of the M-point DFT of x(n)

is sufficient for this unique specification provided MŽ2N-1.

In Appendix I, it is shown that almost all polynomials in two or more variables

are irreducible. Specifically, it is shown that within the set of all polynomials in k2•

variables, the subset of reducible polynomials is a set of measure zero. It may similar-

ly be shown that the set of all symmetric polynomials corresponds to a set of measure
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zero. Since the set of reducible polynomials and the set of symmetric polynomials are

both sets of measure zero, then so is the union of these sets. However, since the com-

plement of this union corresponds to the set of irreducible and non-symmetric poly-

nomials, it follows that almost all polynomials in two or more variables are irreduci-

ble and non-symmetric. Consequently, almost all sequences with finite support satisfy

the constraints of Theorem 4.11 and are uniquely defined to within a scale factor by

the phase of their Fourier transform or to within a sign, a linear shift, and a time-re-

versal by the magnitude of their Fourier transform.

Although the results which have been presented thus far have been confined to

sequences with finite support, an extension is easily made to those sequences whose

convolutional inverses have finite support. Specifically, let xi(p) denote the convolu-

tional inverse of an m-D sequence x(n), i.e.,

x(n) * xi(n) = 8(n) (4-89)

where 80() is the m-D unit sample function. Now suppose that x(n) is a stable se-

quence which has a z-transform of the form

X(z) = I / P(z) (4-90)

where P(z) is a polynomial in z- t. In this case, the convolutional inverse of x(n) has

a z-transform given by

Xz) = Pz) (4-91)

so that xieF(n). In addition, the phase or magnitude of the Fourier transform of xi(n)

is uniquely specified by the phase or magnitude, respectively, of the Fourier transform
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of x(n), i.e.,

X(-) = IX@(t-' (4-92)

and 0,•() = - OX(j) (4-93)

Therefore, if x(n) is a stable sequence with a z-transform given by (4-90), then x(n) is

uniquely defined by the phase or magnitude of its Fourier transform (in the sense of

Theorems 4.5 or 4.9 ) if the polynomial P(z) satisfies the appropriate uniqueness con-

straints.
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CHAPTER V: RECONSTRUCTION

V.1: Introduction

In Chapter III, conditions for a I-D sequence to be uniquely defined in terms

of the phase or magnitude of its Fourier transform were presented. These conditions

were then extended in Chapter IV to multidimensional sequences. In this chapter, the

reconstruction of a sequence from the phase or magnitude of its Fourier transform is

considered. Specifically, in Section V.2 several practical algorithms are presented for

reconstructing a sequence from the phase of its Fourier transform. These algorithms,

which include both iterative as well as non-iterative solutions, always yield the correct

sequence provided only that it satisfies the appropriate uniqueness constraints. In addi-

tion, several examples of l-D and 2-D phase-only reconstruction are presented. The

problem of reconstructing a sequence from the magnitude of its Fourier transform is

then discussed in Section V.3. Unlike reconstruction from phase, however, it appears

that a practical algorithm for magnitude-only reconstruction which always produces

the correct result is yet to be realized. Nevertheless, an iterative solution which has

been proposed [12] is described and several examples are presented.

V.2: Phase-only reconstruction

In this section, the problem of reconstructing a real sequence from the phase of

its Fourier transform is addressed. In particular, given a finite length sequence x(n) (or

a sequence with a finite length convolutional inverse) which has a Fourier transform

with phase o,(w), it is the goal of this section to develop some practical algorithms
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which may be used to recover x(n) from samples of o,(w). The algorithms which are

presented may be applied to any phase-only reconstruction problem. However, unless

the sequence x(n) satisfies the uniqueness constraints developed in Chapters III and

IV, the reconstructed sequence will not, in general, correspond to the desired se-

quence.

First, two non-iterative solutions are presented in Section V.2.1. An iterative

procedure for phase-only reconstruction is then developed in Section V.2.2.

V.2.1: Non-iterative alsorithm

This section presents two algorithms for reconstructing a real sequence from the

phase of its Fourier transform. These algorithms are non-iterative and only require

finding the solution to a set of linear equations. The first is a "time-domain" solution

in the sense that the unknowns in the linear equations are the coefficients of the se-

quence x(n). The second algorithm is a 'Trequency-domain" solution since the un-

knowns in the linear equations are the values of the DFT of x(n). Since there are

slight differences between the one-dimensional and multidimensional case, the algor-

ithms are first formulated in terms of reconstructing a one-dimensional sequence from

the phase of its Fourier transform. The extension of these algorithms to the multidi-

mensional phase-only reconstruction problem is then briefly described.

V.2.1.1: Time-Domain Solution

Let x(n) be a real one-dimensional sequence which is zero outside the interval

[O,N-l] with x(0)%=a0. In addition, suppose that X(z) has no zeros on the unit circle

or in conjugate reciprocal pairs. In this case, x(n) is uniquely defined by ao and any

N-1 samples of its phase in the interval (O,r). Therefore, let ,(0() be the phase of the
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Fourier transform of x(n). Since

tan[o,(w)] = X,((o)/X,(w) (5-1)

where Xl,(o) and X,(o) denote the real and imaginary parts of X(t), respectively, then

N-I

tan[o,(w)] = sin[o,(o)l
costK,()]

Sx(n) sin(no)

N-ISx(n) cos(nm)

Note that if o1(t~w)OI/2, then the denominator in (5-2) is non-zero. Therefore, cross

multiplying and using a standard trigonometric identity, (5-2) may be rewritten as

N-I

7 x(n) sin[o0(w)+nw] = -x(O) sin[0o,()] (5-3 a)

However, if oe.(o)=*f/2 then the denominator in (5-2) is equal to zero, i.e.,

N-I

7 x(n) cos(nt) = -x(O) (5-3 b)

For each fixed o, (5-3) is linear in the unknowns x(n). Therefore, let

itW ,2,"***,O -t1 be N-1 distinct frequency samples in the interval (0,w), and let oe(Wak)

be the corresponding phase samples. Substituting these phase samples into (5-3) then

leads to N-1 linear equations in x(n). When augmented with the equation x(O)=ao

these equations may be written in matrix form as

S x = ab (5-4)
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where S is an NxN matrix and where x is the vector representation of the sequence

x(n), i.e.,

xf = [x(O),x(1),...,x(N-1)] (5-5)

where a superscript T denotes a vector transpose.

Any solution yT=[y(O),...,y(N-l)] to (5-4) corresponds to a finite length se-

quence of length N with y(O)=a, and with the tangent of its phase equal to tan[eo(wk) ]

for k= 1,2,...,N-1. Thus, from Theorem 3.3, it follows that x=y and, therefore, that the

solution to (5-4) is unique. Consequently, the inverse of S exists and x(n) may be uni-

quely reconstructed from its phase by

x = ao S- ' b (5-6)

If x(O)=ao is not known, then (5-4) only specifies x(n) to within a scale factor,

00. Nevertheless, if o,(w) is known for at least one ke(O,w), then the sign of a0 may

be determined. Specifically, with y=S-'b, if o,(k)=O(W(k), then aO0; otherwise, ao<O.

It should be pointed out that if x(n) satisfies the constraints of Theorem 3.2, but

the first non-zero point of x(n) is not at n=0 but rather at n=no0 , then the matrix S

will be singular. This follows from the observation that x is a solution to the equation

Sx--O. However, it is straightforward to show that no may be obtained from

no = N - rank(S) (5-7)

Furthermore, by rewriting (5-3) using the fact that x(n) is zero outside the interval

[no,N-1] with x(no)0, a set of linear equations result for which x(n) is the unique so-

lution.
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The matrix S will also be singular if X(z) either has zeros on the unit circle or

in reciprocal pairs. Specifically, in this case x(n) may be written as the convolution of

two finite length sequences

x(n) = xo(n) * g(n) (5-8)

where tan[eo,()]=0 and where xo(n) satisfies the constraints of Theorem 3.2. There-

fore, since the tangent of the phase of xo(n) is equal to the tangent of the phase of

x(n), and since xo(0)=O, then xo(n) is a solution to the equation Sx-0O and the singular-

ity of S follows. However, it may easily be verified that the location of the first non-

zero point of xo(n) is given by (5-7). Therefore, as noted above, (5-3) may be rewrit-

ten so that xo(n) may be uniquely reconstructed to within a scale factor.

Example: Let x(n) be zero outside the interval [0,2] with o,(a)=--.
From (5-3) it follows that

1 0 0 x(O) ,-1
0 sin[o.(wj)+wj)] sinm[o(uw,+2o,)] x(1) = -o sin[o,(a, )]  (5-9)o0 sin[o1(2)+( 2)] sin[o(wa)+2W2 )] Lx(2)J Lsin[o,(w2)]

and, since o,(wo)--, and O,(W2)=- 2, then

l 0 0 x(0)1 -1
s0 in o |x(l)J -ao sin (1J (5-10)

0 0 sin o2  x(2)J -sin w0-

Therefore, the matrix S is singular. Furthermore, any solution to (5-10)

corresponds to a sequence y(n) of the form

y(n) = a8(n) + aS8(n-1) + a8(n-2) (5-11)
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for arbitrary constants ao and a,. This, however, is not surprising since

any sequence which is zero outside [0,2] with phase o,(w)=- must be of

the form given iq (5-11). Finally, since

no = N - rank(S) = 3 - 2 = 1 (5-12)

then, with x(1)=al, the sequence xo(n) with phase o,()=- which satisfies

the constraints of Theorem 3.2 is given by the solution to the equations

I= 0, I (5-13)
0 sin t .xo(2)J 0

Therefore, xo(n)= a,8(n-1).

The algorithm defined by (5-6) has been applied to a variety of different exam-

ples. Consistent with the theoretical results described above, in all the examples which

have been considered, the desired solution was always obtained provided it satisfied the

constraints in Theorem 3.2 or 3.3.

Finally, in reconstructing x(n) from o,(w), it should be pointed out that there is

some flexibility in the choice of the matrix S. Specifically, since the elements of S are

functions of the samples of o.(o), S may be changed by choosing a different set of

frequency values. This control over S may be useful, for example, in minimizing the

reconstruction error when o,(o) is not known exactly. In particular, it has been ob-

served that the reconstruction error from noisy phase is generally minimized when the

frequency samples are chosen to have the maximum separation [10].
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V.2.1.2: Frequency-Domain Solution

The time-domain solution to the phase-only reconstruction problem given by

(5-6) is defined by a set of linear equations which are to be solved in terms of the se-

quence values, x(n). It is also possible to derive a set of linear equations in which the

unknowns are the values of the DFT of x(n). As is the case for the time-domain solu-

tion, these equations may be solved to uniquely reconstruct X(k), and hence x(n), pro-

vided the uniqueness constraints of Theorem 3.3 are satisfied.

As before, let x(n) be a sequence which is zero outside [0,N-l] with x(0)=%O0.

With X(k) the M-point DFT of x(n), it follows from (5-1) that the real and imagi-

nary parts of X(k) are related by

Xj(k) = tan[o,(k)] X1(k) (5-14)

where o1(k) is the phase of X(k). Therefore, with Xt and LX the vectors whose com-

ponents are Xa(k) and X,(k) respectively, (5-14) may be written as

XI = T,[X,] (5-15)

where T, is a diagonal matrix with T,} I =tan[o,(k)].

Equation (5-15) provides a relationship between the real and imaginary parts of

the DFT of a sequence in terms of its phase. Although (5-15) is not sufficient to re-

construct X(k), it is possible to derive another relationship between X, and X, which,

when combined with (5-15), yields a set of linear equations which may be solved to

recover X(k). Specifically, note that if MW2N-l, then the real and imaginary parts of

the M-point DFT of x(n) are related by the Discrete Hilbert Transform (DHT) [7].

Therefore, with BT=%[1,l,...,1] and using the matrix formulation for the DHT, then
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X, and X, are related by

n = HJ[X,] + B (5-16)

and X, = - HTr[Xa] (5-17)

where Hr is a square circulant MxM matrix [6]. The desired result may now be ob-

tained by substituting (5-15) into (5-16) which yields, after a rearrangement of terms,

( I - HTT) = B (5-18)

where I represents the identity matrix. Note that (5-18) corresponds to a set of M lin-

ear equations in the unknowns Xt(k). However, due to the fact that

X,(k)=X,(M-k), half of these equations may be eliminated.

For reasons identical to those given in justifying the invertibility of the matrix S

in the time-domain solution, it follows that the matrix Q=(I-HrT) will be invertible

if x(n) satisfies the constraints of Theorem 3.3 and if MA2N-1. In this case, X(k) may

be reconstructed as follows

X = (I-jH)X = (I-jHTXI-HTT)- I B (5-19)

However, if M<2N-1 or if x(n) does not satisfy the constraints of Theorem 3.3, then

Q will be singular since there will exist at least one non-zero solution to the homoge-

neous equation Q(XR)=0.

The algorithm defined by (5-19) has been applied to a variety of different ex-

amples. Consistent with the observations above, in all the examples which have been

considered, the desired solution was always obtained provided it satisfied the con-

straints of Theorem 3.3 and MA2N-1. There are, however, several disadvantages of

this algorithm compared with the time-domain solution. Specifically, in contrast to

- 99 -



(5-6), (5-19) requires that the phise samples be uniformly spaced between zero and

2yr. In addition, due to the fact that the entries in the matrix T, correspond to

tan[o,(k)], it is expected that numerical problems will be encountered when o,(k) is

close to + u/2 [If o,(k)=ir/2, then X,(k)=0 and the number of equations in (5-19)

may be reduced to remove this singularity].

V.2.1.3: Extension to multidimensional sequences

In the development of the non-iterative solutions to the phase-only reconstruc-

tion problem described in Sections V.2.1.1 and V.2.1.2, it was assumed that the se-

quences to be recovered were one-dimensional. However, by using the projection/slice

approach described in Section IV.3, it is possible to use either of these algorithms for

reconstructing a multidimensional sequence from its phase. For example, suppose that

a 2-D sequence x(n,,n2) with support R(N,,N,) is to be reconstructed from its phase
Ai,(Ot,, 2). Let NŽN, and assume that x(0,0)=~0O. If the projection x,(n) of x(n,,n 2)

defined in (4-7) has a z-transform with no zeros on the unit circle or in conjugate re-

ciprocal pairs, then ao along with any M=NIN 2-1 samples of the phase 1,(I,,t 2)
Aalong the line o,=N 2o uniquely specify x,(n) and, hence, x(nl,n). Therefore, if

II, ...· uM are M distinct frequencies in the interval (0,r), then (5-6) may be used to

recover x,(n) from the phase samples o,(Nok,k). Consequently, x(n,,nd) may be re-
A Aconstructed from x1(n) by back-projecting xt(n) using (4-7).

It is also possible, however, to modify both of the algorithms so that they may

be used for multidimensional phase-only reconstruction. Consider, for example, the

time-domain solution (5-6). With x(n,,n 2) a two-dimensional sequence with support

R(N,,N2), a two-dimensional version of (5-3) may easily be derived from the defini-

tion of 1,(wI,, 2). The incorporation of the phase samples obtained from an
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M,xM 2-point DFT leads to M,M 2 linear equations in the NN,2 unknowns of

x(n,,n 2) [by exploiting the fact that the the phase is an odd function of o, and o 2,
approximately half of these equations may be eliminated]. Finally, as in the one-di-

mensional case, it is straightforward to show that if M,12N,-l and M,2 2N 2-1 and if

x(n,,n) satisfies the constraints of Theorem 4.10, then these equations may be solved

to uniquely recover x(n,,n,) using generalized inverses [17].

V.2.2: Iterative aIRoithms

In Section V.2.1, two algorithms were presented for reconstructing a sequence

from samples of the phase of its Fourier transform. Although these algorithms are

non-iterative and only require finding the solution to a set of linear equations, for se-

quences with large support, these algorithms are unfeasible due to the computational

difficulties encountered in solving large sets of linear equations. Therefore, it is of in-

terest to consider alternative solutions to the reconstruction problem. One such solu-

tion is an iterative procedure which is similar in style to algorithms proposed by

Gerchberg and Saxton [15], Fienup [12], and Quatieri and Oppenheim [41]. This algor-

ithm, which is described in detail in Section V.2.2.1, has been used successfully in re-

constructing one and two-dimensional sequences from the phase of their Fourier trans-

forms [17,18]. Furthermore, as shown in Section V.2.2.2, it is possible to prove that

the iteration will theoretically always converge to the correct solution provided it satis-

fies the appropriate uniqueness constraints [48]. However, since convergence is general-

ly very slow after the first few iterations, in order to increase the rate of convergence,

an "adaptive relaxation" technique has been developed [33] and is described in Section

V.2.2.3. Although it has not yet been shown theoretically that the iteration will con-

verge when adaptively relaxed, a significant increase in the convergence rate has been

observed.
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V.2.2.1: The phase-only iteration

Let x(n) be a multidimensional sequence with support R(N) which satisfies the

constraints of Theorem 4.6 (or Theorem 3.3 if x(n) is one-dimensional). For conven-

ience, assume in addition, that x(Q)=~oa 0. In this case, if MW2N-1 then x(n) is unique-

ly specified by the phase of its M-point DFT and the value of a0.The mathematical

problem to be solved in recovering x(n) from eO(k) and a. is to find a sequence which

is consistent with the known information in both the time and frequency domains.

Specifically, in the time domain it is known that x(n) is non-zero only within the re-

gion R(N) and that x(O0)qo whereas in the frequency domain it is known that the

phase of the M-point DFT of x(n) is o-.) Therefore, a heuristic approach for re-

constructing x(n) is the iterative algorithm illustrated in Figure 5.1. As shown, this al-

gorithm is characterized by the repeated transformation between the time and frequen-

cy domains where, in each domain, the known information about the desired sequence

is imposed on the current estimate. More specifically, the iteration may be described as

follows:

Step 1: Beginning with X0N( an initial guess of the unknown DFT magnitude,

the first estimate, X,(), of X(k) is formed by combining NXo(| with the known

phase, i.e.,

X,- = PXO) exp[j,(k0] (5-20)

Computing the inverse DFT of X,(k) provides the first estimate, x,(n), of x(n). Since

an _M-point DFT is used, x,(n) is, in general, non-zero outside R(N) (In fact, if

x,(n) is zero outside R(N), then either Theorem 3.3 or Theorem 4.7 imply that x,(n)
is equal to x(.) to within a scale factor).
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= IYP(k. exp[ij,(k)]

= [Y,(U exp[jo,(k)]

Figure 5.1: Block diagram of the phase-only iteration.
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Step 2: From x,(n), another sequence, y,(n), is formed as follows:

xt(n) for n<N and n0O

y,(p) = o for n-0 (5-21)

0 otherwise

Step 3: The magnitude jY1(k) of the NM-point DFT of y,(n) is then used as the

new estimate of jXW(. and the next estimate of X(k) is formed by

X ) = Y,(k~ exp[jX1 )] (5-22)

A new estimate, xa.n), is then obtained by taking the inverse DFT of X,(k). Repeated

application of steps two and three defines the iteration.

*****

In Section V.2.2 it is shown that this iterative procedure will always converge to

the correct sequence provided it satisfies the requirements of Theorem 3.3 for one-di-

mensional sequences or Theorem 4.7 for multidimensional sequences. Consistent with

this theoretical result, in all of the examples which have been considered, the iteration

has always converged to the correct sequence. Two one-dimensional examples are

shown in Table 5.1 for a mixed phase sequence of length N=8. In the first example, a

DFT of length M=16 is used whereas in the second example, the DFT length is ex-

tended to M= 128. In both cases, the initial estimate of the unknown magnitude is cho-

sen to be a constant. The results after 10, 100, 500, and 1000 iterations are presented

along with the values of the Normalized Mean Square Error (NMSE) which is defined

by
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Table 5,1:

ONE-DIMENSIONAL ITERATIVE RECONSTRUCTION FROM PHASE

DFT Number of
Length Iterations x(0) x(1) x(2) x(3) x(4) x(5) x(6) x( SE

10 4.000 0,461 -3.841 0,650 2.584 3,252 5.823 -2.312 .14369

100 4.000 1,936 -8.975 1.897 4.744 6,911 11,749 -4.903 .52976-10-1
16 500 4.000 2,078 -10,567 3.870 4.506 6.103 14.192 -5.713 .78196-102

-3
1000 4.000 2.033 -10.858 4c638 4,163 5.355 14,740 -5 904 .7696510-3

10 4.000 0,765 -4.178 1.727 2,108 2.632 6.139 -2,222 .82863-10- 1

100 4.000 1.774 -9.771 4 302 3.867 4.959 13,495 -5.203 .15958"10 - 2

128
500 4.000 1,997 -10,990 4.996 4.007 5,011 14,996 -5,988 .96828,10 -6

1000 4.000 1.999 -10.998 4.999 3.999 4.999 14.997 -5.999 .42165-10-8

Original Sequence 4,0 2.0 -11.0 5.0 4.0 5.0 15.0 -6.0



N-I

Ep = 1/N 7 [ oa-lx(n) - op-'xp(n) ] 2 (5-23)
a-=0

where a, and a, are the standard deviations of x(n) and x (n) respectively. This error

criterion was chosen since it is invariant to scaling of either x(n) or xP(n).

A two-dimensional example of iterative reconstruction from phase is shown in

Figures 5.2 and 5.3. In Figure 5.2a is an original image, x(nl,n 2), which is 128x128

pixels in extent. Using a 256x256-point DFT, the phase-only synthesis of this image,

xo(nl,n 2), obtained by setting the DFT magnitude equal to a constant, is shown in

Figure 5.2b. With the phase-only image as the initial estimate in the iteration, the im-

ages obtained after 10, 20, 50, and 100 iterations are shown in Figure 5.3.

As a measure of the error between Xp(nl,n2) and x(nj,nL), again consider the

NMSE given in (5-23) where, in this case, the sum is taken over both indices, na and

n2. A plot of log([E versus p is shown in Figure 5.4. Note that the error decreases

rapidly over the first few iterations whereas, for large p, the error decreases very slow-

ly. This behavior has been observed to be typical in all of the examples (both I-D

and 2-D) which have been considered. Therefore, since the number of iterations and,

consequently, the computation time required to achieve a small error may be quite

large, particularly when the support of the unknown sequence is large, it is of interest

to consider methods for increasing the rate of convergence of the iteration. One possi-

bility, as indicated in the I-D example, is to increase the DFT length. Although it has

been observed that increasing the DFT length may increase the rate of convergence,

such an increase obviously results in an increase in the number of computations re-

quired per iteration and increases the memory requirements in the implementation of

the algorithm. Another technique which has proved successful is described in Section

V.2.2.3. First, however, the issue of convergence is addressed.
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(a) (b)

Figure 5.2: Original image and its phase-only synthesis. (a) Original image. (b)
Phase-only image formed by combining the phase of the Fourier transform of image
(a) with a constant magnitude.

- 107 -



(b)

(c) (d)

Figure 5.3: Iterative phase-only image reconstruction. Image reconstructed from
phase-only image after (a) 10 iterations, (b) 20 iterations, (c) 50 iterations, and (d)
100 iterations.
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Figure 5.4: Plot of Normalized Mean Square Error
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V..2.2.2: Converience of the phae-only iteration

A fundamental question of considerable practical and theoretical importance

concerns the conditions under which the phase-only iteration converges to the correct

sequence. Therefore, in this section the issue of convergence is addressed. Specifically,

in the one-dimensional case it is shown that the iteration will always converge to the

correct sequence provided x(O) and o.(k), uniquely specify x(n), i.e., x(n) satisfies the

constraints of Theorem 3.3. In the multidimensional case, it may similarly be shown

that the iteration will always converge to the correct sequence provided x(n) satisfies

the constraints of Theorem 4.7. However, since the proof of convergence for the

one-dimensional case may be easily extended to the multidimensional case, the follow-

ing discussions will fQcus only on the one-dimensional case.

Mathematical Formulation of the Phase-only iteration

Before the issue of convergence is addressed, it will be necessary to mathemati-

cally formalize the phase-only iteration. Therefore, let , and y, be the vector repre-

sentations of the sequences x,(n) and y,(n), respectively. Since x,(n) and y,(n) are

sequences of length M, xAPye RM where RM is M-dimensional Euclidean space.

Note that the functional relationship between x and y, in the phase-only iteration

may be expressed as

4 = T (5-24)

where T(-) is the mapping defined by (5-21). In other words, T(-) operates on a se-

quence by setting it equal to zero outside the interval [0,N-1] and equal to ao for n=0.

Now consider the mapping D(-) which replaces the phase of the M-point DFT

of a sequence with the phase of the M-point DFT of x(n), o1(k). Specifically,
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[Y,(k)] = IYp(k) exp[o,(k)] (5-25)

With W and W-' the linear mappings which represent the M-point DFT and IDFT,

respectively, the functional relationship between -j, and y. may then be expressed as

A., = B [ ,] (5-26)

where B=W - ' 1 W. Therefore, combining (5-24) and (5-26), the phase-only iteration

may be written as

_a, =o [.J] (5-27)

where G:RM->R M is the nonlinear mapping from RM into RM defined as the compo-

sition of the mappings T and B, i.e. O=BT. Similarly, the iteration may be mathemati-

cally formalized in terms of the relationship between yp and yp+, as

+l = F y (5-28)

where F:RM4>RM is the mapping F=TB. In the following, it is shown that if x is the

vector representation of the sequence x(n), then

lim y = x (5-29)

provided x(n) satisfies the constraints of Theorem 3.3.

Properties of the mappine F

As a measure of the distance between two vectors u,v eR M, let d(u,v) be the

standard Euclidean metric which is defined by
M-1

d•(,v = [u(k)-v(k)] 2  (5-30)
k=0
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With this metric, it may be shown that F is a nonexpansive mapping on RM, i.e.,

d(Pu,Fv) K d(uv) for all UV,eRM (5-31)

In order to establish the nonexpansive property of F, consider first the mapping T.

With IT= 0U[N,M-I] it follows that, for any uvER M,

d2(u,v) 7 [u(k)-v(k)] 2 + 7 [u(k)-v(k)]2

keT kELT

S ([u(k)-v(k)]2 = d2(Tu,Ty) (5-32)
ke-IT

where equality holds if and only if u(k)=v(k) for k EIT. Therefore, T is a nonexpan-

sive map.

It may similarly be shown that the mapping B is nonexpansive. Specifically, it

follows from Parseval's Theorem that

M-1

d(,v) = 1/M 7 JU(k)-V(kX) 2  (5-33)
k-o

for any u,vERM. Using the triangle inequality for vector differences, (5-33) becomes

M-1

d2uv) 1/M [ (U(k) - [V(kX ] 2 (5-34)
k=0

where equality holds if and only if, for each k, o,(k)=e,(k), or U(k)=0O, or (V(k)ý0.

Therefore,

M-1

d2(u,v) Ž I/M | U(k) exp[j01 (k)] - V(k) exp[j~,(k)] 12 (5-35)
k=O

- 112 -



which, again using Parseval's Theorem, becomes

d2(u v) d2(Bu!,Bv) (5-36)

as desired.

Finally, since both T and B are nonexpansive mappings, it follows that F is also

nonexpansive. Specifically, combining (5-32) and (5-36)

d(Fu,Fv) = d[T(Bu),T(Bv)] K d(Bu,Bv) K d(u,v) for all _u,•RM (5-37)

Note, in addition, that the nonexpansiveness of T and B also implies that the mapping

O=BT is nonexpansive.

A consequence of the nonexpansiveness of F is the following property. Let x be

the vector representation of a sequence, x(n), which is zero outside the interval [0,N-1]

with x(0)=V$0 and with an M-point DFT with phase o,(k) [x(n) need not necessarily

satisfy the additional constraints of Theorem 3.3]. Since Fx=x and Fp=y,=,, with

u=y, and v=x in (5-37), it follows that

d(y 1 ,x) d(ypx)(5-38)

In other words, the mean square error between x and y, is a nonincreasing function of

p. However, neither (5-37) nor (5-38) are sufficient to insure that yp will converge to

x. In fact, if x represents a sequence which has a z-transform with zeros on the unit

circle or in conjugate reciprocal pairs, then there is more than one sequence which sat-

isfies the time and frequency domain constraints. Therefore, since each of these se-

quences is a solution to the equation Fx_=x, even if the iteration (5-28) converges, then

it may converge to any one of these solutions.

Finally, it should be pointed out that if (5-28) is modified as

yp+ = (1-)y, + xF(y) (5-39)
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where x is a real number with XE(O,1), then it follows from Theorem 2A.4 in Appen-

dix II that yp will always converge to a solution to the equation Fx=x. Therefore, if x

satisfies the constraints of Theorem 3.3, then the solution to the equation Fx=x is uni-

que and the sequence of vectors yP in (5-39) will always converge to x. The next sec-

tion addresses the convergence of the iteration Fyp=yp,, i.e., the case in which =1l in

(5-39).

Con versence

With the phase-only iteration formalized as a mapping F:RM-->RM, it is now

possible to address the issue of convergence of the iteration Fypy-,y,. Therefore, let

x(n) be a real I-D sequence which is zero outside the interval [0,N-1]

with x(O)= a*0 and an M-point DFT with phase e,(k). Since x(n) satisfies both the

time and frequency domain constraints of the iteration, then x(n) is a solution to the

equation Fx=x. Therefore, it follows from Theorem 2A.3 in Appendix II that yp(n)

converges to x(n) for any initial estimate yo(n) of x(n) provided F is a strictly nonex-

pansive map on RM so that equality holds in (5-37) only if u=v, i.e.,

d(Fu,Fv) < d(u,v) for all u,veRM provided ulv (5-40)

Although F is nonexpansive on RM, it is not in general a strictly nonexpansive map.

However, if x(n) satisfies the constraints of Theorem 3.3 and if MŽ2N-1, then it may

be shown that F is strictly nonexpansive on RM. A proof of this only requires show-

ing that if d(Fu,Fv)=d(u,v) then u=v. Therefore, suppose that x(n) satisfies the con-

straints of Theorem 3.3 and that MW2N-l and let u and v be any two vectors in RM

for which d(Fu,Fv)=d(u,). In this case it follows that

d(TBu,TBv) = d(Bu,Bv) = d(u,v) (5-41)
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However, recall that the left equality in (5-41) holds if and only if

(Bu)(k) = (Bv)(k) for kelT (5-42)

Therefore, consider the vector z defined by

z = Bu- Bv (5-43)

and note that z(k)=O for ke I . Since the phase of the M-point DFT's of Bu and Byv

are equal to .e(k), then

tan[o,(k)] = tan[o,(k)] (5-44)

Thus, if x(n) satisfies the constraints of Theorem 3.3 and MŽ2N-1, then z(n)=~x(n)

for some real number 8. However, since z(0)=0 and x(0)= o40, then B=0. Therefore,

z(n)=O for all n from which it follows that Bu=Bv and

d(Bu,y) = 0 (5-45)

Finally, from (5-41), it follows that d(u,v)=0 and, consequently, that u=v. Therefore,

equality holds in (5-41) only if u=v and F is strictly nonexpansive. As a result, it fol-

lows from Theorem 2A.3 in Appendix II that the iteration Fyp=_yp, will converge to

x for any initial estimate, yo.

The strict nonexpansiveness of F, and hence the convergence of y. to x, depends

upon the assumption that x(n) satisfies the constraints of Theorem 3.3 and that

MŽ2N-I. Specifically, as previously noted, if x(n) does not satisfy the constraints of

Theorem 3.3 or if M<2N-1, then there are two distinct sequences, u(n) and v(n),

which satisfy the time and frequency domain constraints of the iteration. Both of these

sequences, therefore, are solutions to the equation Fx=x. Consequently, F is not strictly

nonexpansive on all of RM since d(Fu,Fv)=d(,).
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V.2.2.3: Adaptive relaxation

Although the iteration Fyp=yp,+, will always converge to the correct sequence

provided the solution to Fx=x is unique, in general the convergence is very slow.

Thus, it is of interest to consider methods for increasing the rate of convergence.

Therefore, motivated by various relaxation techniques [37], suppose that the phase-

only iteration (5-27) is modified as follows:

Xp1, = (l-\d) ) + Gp G() (5-46)

where the relaxation parameter, x,, is a scaler which may be allowed to vary as a

function of p. With the vector rp defined by

r = - (5-47)

(5-46) may be equivalently written as

xAP = x + pr (5-48)

Several special cases of (5-48) are immediately apparent. If Xp is a fixed constant, X,

then (5-48) redutces to the original iteration (5-27) when o= 1, whereas xo0O produces

the trivial result xp+1 xp. Intermediate values of o, i.e., 0<o<N 1 correspond to what is

commonly referred to as the under-relaxed form of (5-27) [37].

A common difficulty encountered with iterations of the form (5-48) is the de-

termination of the optimum value of Xp for which the rate of convergence of the itera-

tion is maximized. However, for the phase-only iteration, it is relatively straightfor-

ward to derive an expression for p, which is optimum in a certain sense. Specifically,

consider partitioning (5-48) as follows:
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- + A -1 (5-49)L J LJ it ,i
where the lower part of each partitioned vector is a subvector of length M-N which

corresponds to the interval over which the desired vector, x, is known to be equal to

zero. Now, note that the tangent of the phase of the DFT of xp+, is equal to the tan-

gent of the phase of the DFT of x for any choice of the relaxation parameter x, [This

follows from (5-46) by observing that the phase of the DFT of x and G(x,) are

equal to the phase of the DFT of x]. Consequently, if x satisfies the constraints of

Theorem 3.3 and M2N-1, then _x(=0 implies that xpet,=x for some scale factor 8.

Therefore, a reasonable approach for selecting x, is to choose that value, x,=Xp*

which minimizes IxtJ 2, i.e.,

d-- •',21  =0 (5-50)
dxp IP1\ p*

where Lx(2) z is the Euclidean norm of the vector x(2) The solution to (5-50) may

be easily shown to be

( Xp(2)1r, _(2) )
X, = - (5-51)

where <x (2)r(2)> is the inner product of the vectors xp(2) and r (2)

Although it has not been shown theoretically that this procedure of "adaptive re-

laxation" will always lead to a convergent solution, in all of the examples which have

been considered, the iteration has always converged to the correct sequence. Further-

more, it has been observed that the number of iterations required to achieve a given

normalized mean square error is, in general, substantially reduced when adaptive re-
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laxation is used. For example, consider the image x(n,,n2) shown in Figure 5.2a. Us-

ing the phase only image in Figure 5.2b as the initial estimate of x(n,,n 2), the results

which are obtained after 5, 10, 15, and 20 iterations using adaptive relaxation are

shown in Figure 5.5. For a quantitative comparison of these results with those ob-

tained with the unaccelerated iteration (5-27), a plot of log[E] versus p is shown in

Figure 5.6. As evidenced by this figure, in contrast to the unaccelerated iteration,

adaptive relaxation tends to maintain a rapid decrease in the normalized mean square

error, even for relatively large values of p.

Assuming that the DFT length used in the iteration is M=2N, the number of

multiplications required to compute x, is M and the number of multiplications re-

quired to determine A, in (5-48) is also M. Therefore, this approach requires an

additional 2M multiplications per iteration over the unaccelerated iteration (5-27).

Since the number of multiplications required for each iteration in (5-27) is on the or-

der of Mlog2M, if M)>1 this additional computation is negligible. However, an im-

portant consideration in the implementation of (5-48) is the requirement for additional

memory since two vectors of length M, namely x, and OGx , need to be stored.

The iteration (5-48) may be considered as a first-order acceleration of the basic

iteration (5-27) since it incorporates one previous estimate, x,, of x to modify the cur-

rent estimate G(x). It is possible, therefore, to consider generalizing (5-48) to include

a linear combination of K previous estimates. Specifically, let the set of vectors rk
for k=O,l,...,K-1 be defined by

rp k = G(x - pk  (5-52)

and let •pT=[X p,1,•p**."p,K-l] be a relaxation vector which may, in general, be a

function of p. Then (5-48) may be generalized as follows:
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(a)

(d)

Figure 5.5: Iterative phase-only image reconstruction with
Image reconstructed from phase-only image after (a) 5 iterations,
15 iterations, and (d) 20 iterations.

adaptive relaxation.
(b) 10 iterations, (c)
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I = X + A x (5-53)

where

A = [rp, rp, i ... •_p.-K] (5-54)

is an MxK matrix. As in (5-49), suppose that (5-53) is partitioned as follows:

p+1 -p

where G and H are NxK and (M-N)xK matrices, respectively. The vector X which

minimizes |x4 ~ is then defined by the equation

(HTH) x = -HT X (2) (5-56)P -P

If the columns of H are linearly independent, then (HTH) is invertible and

A = - (HTH)-'HT x (2) (5-57)-p -p

Furthermore, if the relaxation vector X is of length K=M and if the columns of H are

linearly independent, then H is invertible. In this case,

p = - H-I Xp( 2)  (5-58)
and

-p+ AP (1[ ) - GH-'x (2) (5-59)
0

Therefore, if x satisfies the constraints of Theorem 3.3, then xp+, must be equal to a

scaled version of x.
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V.3: Magnitude-only Reconstruction

Due to its importance in the phase retrieval problem for wave amplitudes and

coherence functions [11], an algorithm for the reconstruction of a multidimensional

sequence from the magnitude of its Fourier transform has been the objective of many

research efforts and the subject of a considerable number of published papers. Never-

theless, in the absence of any additional knowledge of the desired sequence, there is as

yet no practical algorithm which will always recover the correct phase from only

magnitude information. It appears that there are at least two problems which have

made the development of such an algorithm difficult. The first is the nonlinear rela-

tionship between the coefficients of a multidimensional sequence and the magnitude of

its Fourier transform. Recall, for example, that the Fourier transform magnitude of a

sequence x(n) may be used to obtain the autocorrelation, r,(n), of xn_). Therefore,

with magnitude information alone, it is always possible to define a set of second-order

equations which relate the known values of the autocorrelation of x(n) at various lags

with the unknown coefficients of the desired multidimensional sequence, e.g.,

r(n) = x(n+k)xW() (5-60)
k

One possible solution to the phase-retrieval problem may thus consist of solving these

nonlinear equations for x(n). Although there exist techniques for finding a solution to

a set of simultaneous nonlinear equations in more than one unknown [37], when the

number of equations and the number of unknowns become large, these algorithms are

not practical.

The second problem which has contributed to the difficulty in developing a

practical phase-retrieval algorithm is that, without any phase information, it is not

generally possible to obtain a very accurate estimate of the unknown sequence from
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only the magnitude of its Fourier transform. Recall, for example, that when the Fouri-

er transform magnitude of an image is combined with zero phase, the result which is

obtained upon an inverse Fourier transformation is an image which generally does not

contain any recognizable features (See Figure 2.2b). In contrast, a phase-only image

which has a Fourier transform with the correct phase and a constant magnitude con-

tains many of the important characteristics of the original image (See Figure 2.2c).

In spite of these difficulties, an algorithm which has been proposed for 2-D

magnitude-only reconstruction [12] is an iterative procedure similar in style to the

phase-only algorithm described in Section V.2. Specifically, this algorithm involves the

repeated Fourier transformation between the time and frequency domains where, in

each domain, the known information about the desired sequence is imposed on the

current estimate. In the time domain, for example, a sequence is constrained to have a

given region of support whereas in the frequency domain, the sequence is constrained

to have a given Fourier transform magnitude. Unlike the phase-only iteration, howev-

er, it has been observed that the magnitude-only iteration will not generally converge

to the correct solution even if the desired sequence satisfies the uniqueness constraints

of Theorem 4.10. There appear to be two factors which determine whether or not the

iteration converges to the correct solution. The first pertains to the ability to obtain an

initial estimate to begin the iteration which is sufficiently close to the correct solution.

It has been observed, for example, that for a 2-D sequence with support R(N1 ,N2), if

the initial estimate used in the iteration has a Fourier transform with the correct mag-

nitude and either a zero phase or a random phase, then the iteration will not generally

converge to the correct sequence. This conclusion is based on many attempts to re-

construct a 2-D sequence from the magnitude of its Fourier transform and the se-

quences considered had regions of support which varied from R(2,2) to R(128,128).
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Even in those cases for which the desired sequence was known to have an irreducible

z-transform and thus satisfied the constraints of Theorem 4.10, the correct solution

was not generally obtained. Two examples are shown in Figure 5.7 for an image which

is 128x128 pixels in extent. In Figure 5.7a is the magnitude-only synthesis of the image

in Figure 5.2a which was formed by taking a 256x256-point DFT of the original im-

age, setting the phase equal to zero, and taking the inverse DFT. Using this image as

the initial estimate in the magnitude-only iteration, the result which is obtained after

30 iterations is shown in Figure 5.7b. If, instead of zero phase, a random phase is used

in the magnitude-only synthesis, the result is the image shown in Figure 5.7c. Using

this image as the initial estimate in the magnitude-only iteration, the result which is

obtained after 30 iterations is shown in Figure 5.7d. Although the results after only 30

iterations are shown, in both cases there is virtually no change in the reconstructed

image from one iteration to the next after the first 10 or 20 iterations. Similar results

have been observed for 2-D sequences with smaller support, e.g. R(4,4), in which the

magnitude-only iteration was run for up to 1000 iterations.

Whereas Figure 5.7 illustrates the effects which typically occur when the magni-

tude-only iteration is initialized with an estimate which is not a close approximation

to the correct solution, Figure 5.8 shows that, with the appropriate initial conditions,

the iteration tends to converge to the correct solution. Specifically, shown in Figure

5.8a is an "amplitude-only" image, xo(n,,n 2), which was obtained from the Fourier

transform of the image in Figure 5.2a by quantizing the phase to one bit so that

Xo(t,,, 2) has the correct magnitude and a phase which, for each frequency, is equal

to either zero or -. In other words,

jX(j,,2) if -i/2 < o,,(u1, 2) I f/2
Xo ( 1,u2) = (5-61)

- oX(,,11 otherwise
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(a) (b)

(c) (d)

Figure 5.77: Iterative magnitude-only image reconstruction. (a) Magnitude-only
image formed by combining the correct Fourier transform magnitude with zero phase.
(b) Image reconstructed after 30 iterations. (c) Magnitude-only image formed by
combining the correct Fourier transform magnitude with random phase. (d) Image re-
constructed after 30 iterations.
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(a) (b)

Figure 5.8: Iterative amplitude-only image reconstruction. (a) Amplitude-only
image formed by combining the correct Fourier transform magnitude with one bit of
phase information. (b) Image reconstructed after 20 iterations.
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where X( 1,W2)=X(,,ot2)Iexpo[j 1,(W, 2)] is the Fourier transform of the image in

Figure 5.2a. With x0(n,,n2) used as the initial estimate in the iteration, the result

which is obtained after 20 iterations is shown in Figure 5.8b. Similar results have been

observed in other examples in which the initial estimate used to begin the iteration

were sufficiently close to the correct solution.

The second factor which appears to have an effect on the convergence of the it-

eration concerns the shape of the known region of support of the sequence. Specifical-

ly, recall from Theorem 4.10 that magnitude information alone may only uniquely

specify a multidimensional sequence to within a sign, a linear shift, and a time-rever-

sal. Therefore, if a 2-D sequence x(n,,n,) is known to have support R(N,,N), even

if information were available to resolve the sign and linear shift ambiguities, there still

would be two possible solutions to the magnitude-only reconstruction problem, name-

ly x(n,,n 2) and Z'(n,,n2)=x(N,-n,,N,-n.). This ambiguity is a result of the fact that

R(N,,N 2) is a "symmetric" region of support so that for any sequence x(nl,n2) which

has support R(N,,N 2), then i(nj,n) also has support R(N,,N). This property, how-

ever, is not true for 'non-symmetric" regions of support. For example, suppose that

x(n,,n2) is known to have a triangular region of support, T(N), i.e., x(n,,n%)=0 when-

ever n<0, n2(0, or n,+n 2ýN. Assuming that no smaller triangular region of support

would contain the non-zero values of x(n,,n 2), the only sequences with support T(N)

and a Fourier transform magnitude equal to NX(w,,w) are *x(n,,n 2). In this case,

therefore, if the triangular support constraint is imposed in the iteration along with a

possible scaling by a factor of (-1) to force an arbitrary but fixed non-zero value of

x,(nl,n 2) to be positive, then there is only one solution consistent with the imposed

time and frequency domain constraints. As may be expected, the convergence of the

magnitude-only iteration is more likely to occur with a non-symmetric support con-
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straint than with a symmetric support constraint. This, in fact, has been observed to

be true in many of the examples which were considered. Furthermore, in each case the

convergence of the iteration was attributed to the fact that a non-symmetric region of

support was imposed in the iteration. Specifically, note that if x(n,,n2) has support

T(N), then it also has support R(N,N). Therefore, while the iteration usually converg-

es to x(nt,n2) when the time domain constraint sets xp(nt,n2) equal to zero outside

T(N), when R(N,N) is used as the support constraint, convergence of the iteration is

not generally obtained.
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CHAPTER VI: SUMMARY AND CONCLUSIONS

This thesis considered the problem of reconstructing either a one-dimensional or

a multidimensional sequence from only the phase or magnitude of its Fourier trans-

form. The first issue which was addressed concerned the development of some condi-

tions under which a sequence is uniquely defined in terms of only phase or magnitude

information. In particular, it was shown that for a one-dimensional sequence, a finite

length constraint is, in most cases, a sufficient condition for the phase to uniquely

specify the sequence to within a scale factor. Furthermore, it was shown that if the se-

quence is of length N, then only (N-1) phase samples are required for this unique

specification provided the phase samples correspond to distinct frequency values in the

interval (0,w). In the case of magnitude, however, due to the possibility of "zero flip-

ping"', it was shown that in the absence of additional information or constraints, a fi-

nite length constraint is not sufficient for magnitude information alone to uniquely

specify a one-dimensional sequence. Nevertheless, a condition for uniqueness in terms

of magnitude was presented which is an extension of the minimum and maximum

phase requirement and includes them as special cases.

For multidimensional sequences, a set of conditions for a unique solution in

terms of phase were developed which are similar to the one-dimensional case. Specifi-

cally, it was shown that a finite support constraint is, in most cases, sufficient for a

multidimensional sequence to be uniquely defined to within a scale factor by its phase.

In addition, however, as opposed to the result for one-dimensional sequences, it was

shown that a finite support constraint is also sufficient, in most cases, for a multidi-

mensional sequence to be uniquely defined by the magnitude of its Fourier transform

to within a sign, a linear shift, and a time-reversal. Finally, it was shown that if a
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multidimensional sequence with finite support is uniquely defined by its phase or mag-

nitude, then only a finite number of phase or magnitude samples, respectively, are re-

quired for this unique specification provided these samples are obtained from a Dis-

crete Fourier Transform of the appropriate size.

The second issue which was addressed concerned the development of algorithms

for the reconstruction of a one-dimensional or a multidimensional sequence from the

phase or magnitude of its Fourier transform. In particular, several practical algorithms

were presented for reconstructing a sequence from samples of its phase. These algor-

ithms, which included iterative as well as non-iterative approaches, always lead to the

correct solution assuming that the appropriate uniqueness constraints are fulfilled. An

iterative procedure was also described for the reconstruction of a sequence from only

the magnitude of its Fourier transform. The success of this algorithm, however, ap-

pears to depend upon the availability of an initial estimate of the unknown sequence

which is sufficiently close to the correct solution or a region of support which is

non-symmetric.

Although a number of results have been presented which relate to the recon-

struction of a sequence from either the phase or magnitude of its Fourier transform,

many important questions and interesting problems still remain to be investigated in

future research efforts. First is the effect of noise in the reconstruction of a sequence

from only phase information. Since, in any practical setting, there will be limits to the

accuracy in which the phase may be measured or computed, it will be important to

understand the sensitivity of the various phase-only reconstruction algorithms to errors

in the phase samples. Although some experimental results have been obtained on the

effect of noisy phase on the reconstruction of a sequence with the non-iterative algor-

ithm in Section V.2.1.1 [10], it will be important to add to these results, a theoretical
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analysis of the errors introduced by noisy phase. For the iterative procedure, it will

also be important to study the error in the sequence reconstructed from noisy phase as

a function of the number of iterations. Although the error in the reconstructed se-

quence will be the same, in the limit, as the error obtained in the non-iterative algor-

ithm for uniformly spaced phase samples, it may be possible that the error after a fi-

nite number of iterations is less than the error of the convergent solution. This may be

the case, in particular, if it is possible to obtain an initial estimate which is sufficiently

close to the correct solution by, for example, combining the noisy phase with an esti-

mate of the correct magnitude. Such a magnitude estimate may possibly consist of a

set of noisy magnitude measurements or simply a magnitude which is in some way

'Tepresentative" of the class of sequences of interest.

A related topic is the development of a phase-only reconstruction algorithm

which is "robust" in the presence of noise. One approach might involve the incorpora-

tion of a noise reduction technique into an algorithm which assumes some statistics on

the noise in the phase. Another approach may involve the incorporation of additional

information or constraints in the reconstruction algorithm. In the iterative algorithm,

for example, an estimate or model of the unknown magnitude may be incorporated as

an additional constraint in the iteration. If, on the other hand, the number of phase

samples which are known exceeds the minimum number required for a unique solu-

tion, it may be possible to reduce the effect of noise by finding the sequence for which

the phase is, in some sense, "as close as possible" to the given phase.

Another important topic for future research concerns the development of an ef-

ficient algorithm for reconstructing a multidimensional sequence from the magnitude

of its Fourier transform. Although a number of algorithms have been proposed, the

success of these algorithms appears to be related to the availability of additional in-
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formation or, in the case of the iterative algorithm described in Section V.3, on the

ability to obtain an initial estimate which is sufficiently close to the correct solution or

on a non-symmetric region of support.

There are also a number of theoretical questions related to the uniqueness of a

multidimensional sequence in terms of phase or magnitude information which need to

be answered. For example, it is of interest to determine whether or not the multidi-

mensional uniqueness constraints in Chapter IV hold for complex-valued sequences.

Such a result will be important in the context of the phase retrieval problems de-

scribed in Chapter II in which an electromagnetic wave, represented in terms of a

complex-valued function in two or more variables, is to be reconstructed from the

magnitude of its Fourier transform. Another question is concerned with the uniqueness

of a multidimensional sequence in terms of its phase. In the one-dimensional case, it

was shown that a sequence is uniquely defined by its phase if it is finite in length and

contains no zero phase factors. The constraint for multidimensional sequences, howev-

er, is slightly different since it restricts sequences with finite support to have no sym-

metric factors. Although a zero phase factor may always be written as a symmetric

factor times a linear phase factor, the converse is not necessarily true due to the plus

or minus sign in the definition of a symmetric factor. Therefore, it will be of theoreti-

cal interest to determine whether or not it is sufficient to exclude only zero-phase fac-

tors in the multidimensional case and, thus, to obtain an equivalence between the

one-dimensional and multidimensional uniqueness constraints.

Finally, there are many interesting and important applications to be explored in

future research efforts which may potentially benefit from the results presented in this

thesis. A number of applications related to the reconstruction of signals from only

magnitude information have been outlined in Chapter II and will not be repeated here.
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There are in addition, however, a number of applications to be explored in the context

of phase-only reconstruction. One such application is the problem of deconvolution

described briefly in Chapter I. Specifically, suppose that an observed signal consists of

the convolution of a desired signal with the impulse response of some unknown filter.

If the frequency response of the filter has a phase which is nearly zero, then the ob-

served signal will have a phase which is approximately equal to the phase of the de-

sired signal. In the absence of noise and assuming that the convolutional model is cor-

rect and that the phase of the filters frequency response is zero, the desired signal is

uniquely specified in terms of the phase of the observed signal. For this case, therefore,

it is reasonable to consider a solution to the deconvolution problem which consists of

a phase-only reconstruction from the phase of the observed signal. In other applica-

tions, it may be that the phase of the filters frequency response is not zero but that the

impulse response of the filter is known approximately. In this case, although the de-

sired signal may theoretically be recovered by inverse filtering, this approach is gener-

ally very sensitive to noise. It is possible, however, to consider deconvolving the two

signals by subtracting the phase of the frequency response of the filter from the phase

of the observed signal and then performing a phase-only reconstruction from the re-

sulting phase.

Another application, which may be viewed as a problem of deconvolution, is the

multiple arrival or echo removal problem. Specifically, consider the case in which an

unknown signal arrives an arbitrary number of times with an unknown attenuation fac-

tor at each of two receivers. From these observations, the unknown signal is to be re-

covered. In the noise-free case, it has been shown that the relative time delays between

the signals as well as the relative attenuation factors may be determined exactly by us-

ing a phase-only reconstruction [26]. Additional processing will therefore lead to the
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recovery of the desired signal. It will be important, however, to determine the effec-

tiveness of this procedure in the presence of noise and to optimize it to minimize any

noise effects.

The phase-only results may also be of some potential use in the context of

Fourier transform coding. Typically, in a Fourier transform coding system, both the

magnitude and the phase are coded and transmitted. However, most signals of interest

may be reconstructed from only Fourier transform phase information. It may be pos-

sible, therefore, to capitalize on this result by developing a Fourier transform coding

system in which some magnitude information is recovered from the coded phase.
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APPENDIX I. REDUCIBLE POLYNOMIALS AND MEASURE ZERO

The Fundamental Theorem of Algebra [30] states that any polynomial in one

variable of degree two or more is reducible over the field of complex numbers and,

therefore, may always be expressed as a product of first order factors. This is not the

case, however, for polynomials in two or more variables. Specifically, it is the purpose

of this appendix to prove that the set of all reducible polynomials in two or more

variables is a set of measure zero. In other words, "almost all" polynomials in two or

more variables are irreducible. This result is important in a number of practical appli-

cations [4]. For example, it implies that a multidimensional filter may not, in general,

be realized in cascade form. It also implies that almost all multidimensional sequences

with support R(N) have z-transforms which are irreducible polynomials. Consequent-

ly, as discussed in Section IV.6, it follows that almost all multidimensional sequences

are uniquely defined to within a scale factor by the phase of their Fourier transform or

to within a sign, a linear shift, and a time-reversal by the magnitude of their Fourier

transform. Before proving that the reducible polynomials in two or more variables are

a set of measure zero, it will be useful to first define what is meant by a set of meas-

ure zero and to list a few properties of these sets.

Generally speaking, a subset A of R" is of measure zero if it has zero volume.

More specifically, suppose that a and b are two vectors in R" with ai<b i for i=1,2,...,n.

The rectangular solid, S(a~), is defined to consist of all those points xER" for which

a,<xi<(b for i= 1,2,...,n. The volume of S(a,b), denoted by vol(S), is defined by

vol(S)E H (bi-a,) (1A-l)
i=-
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If A is a subset of Rm, then A is said to have measure zero in Rm if, for any 00,

there exists a countable covering of A by solids St,S,,... such that

7vol(S) < E (1A-2)
k

Two important properties of sets with measure zero follow immediately from

this definition. The first is that if ACR" is of measure zero, then any subset of A must

also be a set of measure zero. The second property is that a countable union of sets of

measure zero is again a set of measure zero.

Finally, an important and useful theorem which will be referred to in the follow-

ing discussions pertains to the image of a set of measure zero under a continuously

differentiable map. Specifically,

Theorem IA.1 [37, p.131]: If F:R-'R2 is a continuously differentiable

map from Ra to Ra, then the image of F, F(R"), is of measure zero in

Rm provided m<n.

Having defined what is meant by a set of measure zero and having examined a

few basic properties of these sets, it is now possible to prove that within the set of all

polynomials in two or more variables with real coefficients, the subset of all reducible

polynomials is a set of measure zero. In particular, let P(n,m) denote the set of all

polynomials in m variables with real coefficients which are of degree n. A polynomial

pn(x) in the set P(n,m) is therefore of the form

k, k,
pa(_x) = Pa(Xt,...,x) = * ~ c(kl,...,k,) xt ... x. (IA-3)

ki + ***+ k a
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Let a(n,m) denote the number of coefficients required to define an arbitrary

polynomial p,(x) in P(n,m). If, for example, m=2 then a(n,m)=n(n+l)/2. By represent-

ing each coefficient of a polynomial p.(x) as a coordinate of a vector in RO(S ), it

follows that there is a one-to-one correspondence between P(n,m) and R "(u ). In

other words, P(n,m) is isomorphic to RO'O). The result of interest is the following:

Theorem IA.2: The set of all polynomials in P(n,m) which are

reducible over the field of complex numbers corresponds to a set of meas-

ure zero in R"a=)> provided m>1 and n>l.

Proofk Consider the subset P0 of P(n,m) consisting of those polynomials for which

the coefficient of the lowest degree term, c(9)c(O,O,...O), equals zero. Since each poly-

nomial in this subset has a(n,m)-l unconstrained coefficients, the set is isomorphic to

RO( •O ' and thus is a set of measure zero in R90). It follows, therefore, that

only the set P'(n,k) of polynomials for which c)#0 need be considered in the proof.

If c(0)= 1 the polynomial will be referred to as being "normalized".

If a polynomial p.(x) G P'(n,m) is reducible, then its factors may always be

combined in such a way that p.O(x) is either:

(a) a product of two real factors, or

(b) a product of two complex factors
which are conjugates of each other.

Step la: Let B(k) be the subset of P'(n,m) containing those polynomials which

can be written as the product of a real polynomial of degree k and a real polynomial

of degree (n-k). Therefore, with p.(x)OB(k), then

P.(•) = A qk() • r.-k() (lA-4)
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where x is real, O<k<n, and qk(x) and r,.k(x are normalized polynomials. Now

consider the mapping

(1A-5)

which assigns to the vector consisting of x and the coefficients of qk(x) and r,(x)

the vector of coefficients which define the reducible polynomial p*(x). It is obvious

that the mapping f is continuously differentiable since all third-order partial deriva-

tives exist and are identically zero. Thus, from Theorem 1A.1 it follows that B(k) has

measure zero provided

a(k,m) + a(n-k,m) - 1 < a(n,m) (1A-6)

Step Ib: Let Pc be the subset of P'(n,m) containing those polynomials which

can be written as a product of two complex factors. For p,(x)ePc, it is always possi-

ble to write p,(x) as

p.~) = x s,(x s,*(x) (IA-7)

where x is real, k=n/2, and

number of real coefficients in

ferentiable map

sk(X) is normalized. (Note: n must be even). Since the

sk(x) is 2a(n/2,m)-2, one may define a continuously dif-

fc: R x RW a 'nn )-2 - Rc(s )

in accordance with (IA-7). Therefore, Pc is a set of measure zero if

2a(n/2,m) - 1 < a(n,m)

However, this is merely a special case of (IA-6) when k=n/2.
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Step 2: To establish the validity of (IA-6), note that if nýl and mal then

a(n,m) > a(n-l,m) (IA-10)

In other words, the number of coefficients in a polynomial of degree n is greater than

the number of coefficients in a polynomial of degree n-1. The condition mŽl simply

requires that the polynomials have at least one variable whereas the condition n2 is

required so that the right side of (IA-10) makes sense.

Any polynomial p,(x,y) of degree n in the m+1 variables (x,y) may always be

written uniquely as

p,(x,y) = q,() + q-(x)y + q-2 ()y 2 + "'" + qo(x)y (IA- l)

where q1(x) is a polynomial of degree at most i. Therefore,

a(n,m+1) = a(n,m) + a(n-l,m) + -- + a(l,m) + 1 (IA-12)

or, alternatively

a(n,m+ ) = [a(n,m) + ... + a(k+l,m)] + a(k,m+1) (1A-13)

Using (IA-10), it follows from (IA-13) that

a(n,m+ 1) > [a(n-k,m) + - + a(l,m)] + a(k,m+ ) (1A-14)

However, (lA-12) implies that the term in brackets is equal to a(n-k,m+l)-l. There-

fore,

a(n,m+1) > a(n-k,m+1) + a(k,m+1) - 1 (lA-15)
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which is valid provided m1l and ntl. Therefore, (IA-6) is true under the hypothesis

of the theorem as desired.

Step 3: Any reducible polynomial in P(n,k) is always contained within the union

of the sets P, Pc, and B(k) for k=1,2,...,n-1. Since each of these sets has measure

zero in RRA ), then so does their union and Theorem 1A.2 follows. /////

The result presented in Theorem IA.2 may be easily extended to other classes of

polynomials. For example, it is straightforward to modify the proof of the theorem to

show that the set of all reducible polynomials of degree n in m variables with complex

coefficients corresponds to a set of measure zero in RWM2) provided m>) and n>l.

Another class of polynomials which is often encountered consists of those which

have a given degree in each variable. Specifically, let Q(n,m) be the set of all polyno-

mials which have degree ni in x, for i-l,...,m. A polynomial q(x) in Q(n,m) is there-

fore of the form

"a a ki  k.
q(x) = q,(x, ...,x,) = .... c(k,,...,k) x, ... x. (1A-16)

k=l *...k =I

With 8(n,m) the number of coefficients required to specify the polynomial q.(Q), it is

easy to show that

8(k,m) + B(n-k,m) - I < B(n,m) (1A-17)

provided m>l and n>l. Therefore, it follows in a style similar to that used in the

proof of Theorem IA.2 that the set of all reducible polynomials in Q(n,m) corre-

sponds to a set of measure zero in RA(a ).
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APPENDIX II: FIXED POINTS

It is the purpose of this Appendix to define what is meant by a fixed point of a

mapping F and to discuss the convergence issues related to an iterative procedure for

finding the fixed points of F. The results in this appendix are used to discuss the con-

vergence properties of the phase-only iteration in Section V.2.2.2.

Consider a mapping F from a subset A of RM into RM, F:A C RM - RM. If

the image of A under F, F(A), is a subset of A then F is said to map A into itself. If

a mapping F:A C RM - RM has a point x* A which is invariant under F, i.e.,

F(x*)=x*, then x* is called a fixed point of F. A mapping may have any number of

fixed points. For example, if F:R - R is defined as F(x)=-x then F has a unique fixed

point x*=0 whereas the mapping F(x)=x+l has no fixed points. If, on the other hand,

F(x)=x, then every point of R is a fixed point of F.

Whenever it is desired to numerically determine the value of a fixed point of a

mapping, an iterative procedure is often employed. A common iterative approach,

based on the method of successive approximation, is defined by

xp+ = F(x) (2A-1)

where x_ is the pth approximation to the fixed point x*. With FP(x)-F[FP-(x)] and

x0 the initial estimate of x* which is used to begin the iteration, (2A-1) may be writ-

ten as

Xp = FPC(x) (2A-2)

Clearly, if the sequence x. converges, then it must converge to a fixed point of F. Un-

fortunately, however, even if F has a unique fixed point, (2A-1) may not converge.
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For example, although the mapping F:R - R defined by F(x)=-x has a unique fixed

point, x*=0, (2A-1) will not converge unless x=0O.

There are many different types of constraints which may be imposed on the

mapping F or on the set A to insure the existence or uniqueness of a fixed point of F

or to guarantee the convergence of the iteration (2A-1). Perhaps the most familiar re-

sult is that which deals with contraction mappings. The definition of a contraction

mapping involves the notion of a distance function or metric, d, which is defined on

the underlying space. In the following discussion, the metric defined on RM will be

taken to be the standard Euclidean metric, i.e.,

M-1

d2(X,y) = 7 [x(k)-y(k)]' (2A-3)
k-o

A contraction mapping is thus defined as follows. If ACRM and if F maps A into it-

self, then F is called a contraction mapping if there is a constant u~(0,1) such that:

d(FxFy) u d(xy) (2A-4)

for all x,yEA. The contraction mapping theorem is, therefore, the following [37]

Theorem 2A.I: If F is a contraction mapping on a closed subset

A of RM, then there is a unique fixed point x*EA. Furthermore, the itera-

tion x = FP•~) converges to x* for any initial estimate xoeA and

d ,x') WP/(1-U) - d(x,,o )  (2A-5)

Although this' theorem is useful in many applications, not all iterations which

converge to a unique fixed point are characterized by a contraction mapping.
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A larger class of mappings are obtained if u is allowed to be equal to one in

(2A-4) and are called nonexpansive maps. Specifically, a mapping F:A CR M - RM is

said to be nonexpansive if

d(Fx,Fy) ~ d(x,y) (2A-6)

for all x,yeA. Unlike contractions, nonexpansive mappings may have any number of

fixed points. For example, the identity map F(x)=x is nonexpansive and every point is

a fixed point of F whereas the map F(x)=x+l is nonexpansive and has no fixed points.

A mapping F is said to be strictly nonexpansive if the inequality in (2A-6) is

strict whenever x•y, i.e.,

d(Fx,Fy) < d(x,y) for x _ y (2A-7)

Although strictly nonexpansive mappings have at most one fixed point, strict nonex-

pansiveness is not sufficient to quarantee the existence of a fixed point. For example,

the mapping F:R - R defined by

x + exp(-x/2) for x0O
F(x) = (2A-8)

exp(x/2) for x<O

is strictly nonexpansive but has no fixed point. In order to guarantee the existence of a

fixed point, an additional constraint must be imposed on the image of A under F.

Specifically,

Theorem 2A.2: Let F:A C RM  - RM be a strictly nonexpansive

mapping which maps a subset A of RM into itself. If the image of A un-

der F is compact, then F has a unique fixed point x*EA. Furthermore, the

iteration Ax = FP(xo) converges to x* for any _xoEA.
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Note that since the nonexpansiveness of F implies that F is continuous, com-

pactness of F(A) may be replaced by the stronger condition that A be compact. A

slightly different version of this theorem results if, in addition to being strictly nonex-

pansive, F is known to have a fixed point. Specifically,

Theorem 2A.3: If F:RM - RM  is a strictly nonexpansive map-

ping which has a fixed point x e R , then this fixed point is unique and

the iteration x, = FP[_o converges to x* for any x0 in RM.

Proof. The uniqueness of the fixed point follows immediately from the strict no-

nexpansiveness of F. Specifically, suppose there exists two fixed points, xe and y*.

Then,

d(x*,y) = d(Fx*,FyI ) I d(x*,y*) (2A-9)

where, since F is strictly nonexpansive, equality holds if and only if x*=y. Therefore,

since equality must hold in (2A-9), x! must be unique.

To show that the iteration p,=F () converges to x* for any o RM, let S,
denote the unit sphere of radius r about x*:

S, = xeER : d(x,x*) K r (2A-10)

and consider the map F:S, - RM. Since F is strictly nonexpansive and F(x_)=x, it

follows that the image of F is a compact subset of S,. Specifically, for any xESr,

d(Fx,_x) = d(Px,Fx) K d(x,xe) r (2A-11)

Thus, F(x) e S and F maps Sr into itself. Finally, since F is continuous and Sr is

compact, then the image of F is compact and the result follows. Therefore, it follows
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from Theorem 2A.2 that the sequence of vectors x ,=Fx, converges to x* for any

xeRM. ///

Although Theorems 2A.2 and 2A.3 do not hold if the nonexpansiveness of F is

not strict, the following theorem requires only that F be nonexpansive:

Theorem 2A.4: If F is nonexpansive and 'maps a convext com-

pact subset A of RM into itself, then F has at least one fixed point in A.

Furthermore, for any real number AE(0,1) and for any xoeA, the iteration

A, = (1-)x + x Fx (2A-12)

converges to a fixed point of F in A.

For example, consider again the mapping F:R - R with A=[-l,l] and F(x)=-x. Al-

though the iteration (2A-1) will not converge unless x=-x*=0, the constraints of Theo-

rem 2A.3 are satisfied and therefore, (2A-12) will converge to the unique fixed point

x=0O for any xoe[-l,l]. The iteration (2A-12) is commonly referred to as the relaxed

form of (2A-1) and x is referred to as the relaxation parameter.

Finally, it should be pointed out that although Theorem 2A.3 guarantees the ex-

istence of at least one fixed point in A, this fixed point need not be unique (consider,

for example the identity mapping).

t Convexity of A requires that if x,yEA and 0<(<l, then zeA where z=[(l-x)x + Ay].
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