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Low-Power Digital Filtering 
Using Approximate Processing 

Jeffrey T. Ludwig, S .  Hamid Nawab, and Anantha P. Chandrakasan 

Abstract-We present an algorithmic approach to the design of 
low-power frequency-selective digital filters based on the concepts 
of adaptive filtering and approximate processing. The proposed 
approach uses a feedback mechanism in conjunction with well- 
known implementation structures for finite impulse response 
(FIR) and infinite impulse response (IIR) digital filters. Our 
algorithm is designed to reduce the total switched capacitance 
by dynamically varying the filter order based on signal statistics. 
A factor of 10 reduction in power consumption over fixed-order 
filters is demonstrated for the filtering of speech signals. 

I. INTRODUCTION 
ECHNIQUES for reducing power consumption have be- T come important due to the growing demand for portable 

multimedia devices. Since digital signal processing is per- 
vasive in such applications, it is useful to consider how 
algorithmic approaches may be exploited in constructing low- 
power solutions. 

A significant number of DSP functions involve frequency- 
selective digital filtering in which the goal is to reject one or 
more frequency bands while keeping the remaining portions 
of the input spectrum largely unaltered. Examples include 
lowpass filtering for signal upsampling and downsampling, 
bandpass filtering for subband coding, and lowpass filtering 
for frequency-division multiplexing and demultiplexing. The 
exploration of low-power solutions in these areas is therefore 
of significant interest. 

To first order, the average power consumption, P,  of a 
digital system may be expressed as 

where Ci is the average capacitance switched per operation 
of type i (corresponding to addition, multiplication, storage, 
or bus accesses), Ni is the number of operations of type z 
performed per sample, V d d  is the operating supply voltage, 
and fs is the sample frequency. 

Real-time digital filtering is an example of a class of appli- 
cations in which there is no advantage in exceeding a bounded 
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computation rate. For such applications, an architecture-driven 
voltage scaling approach has previously been developed in 
which parallel and pipelined architectures can be used to 
compensate for increased delays at reduced voltages [ 11. This 
strategy can result in supply voltages in the 1 to 1.5 V range by 
using conventional CMOS technology. Power supply voltages 
can be further scaled using reduced threshold devices. Circuits 
operating at power supply voltages as low as 70 mV (at 300 K) 
and 27 mV (at 77 K) have been demonstrated [2] [3]. 

Once the power supply voltage is scaled to the lowest 
possible level, the goal is to minimize the switched capacitance 
at all levels of the design abstraction. At the logic level, for 
example, modules can be shut down at a very low level based 
on signal values [4]. Arithmetic structures (e.g., ripple carry 
versus carry select) can also be optimized to reduce transi- 
tion activity [5]. Architectural techniques include optimizing 
the sequencing of operations to minimize transition activity, 
avoiding time-multiplexed architectures which destroy sig- 
nal correlations, using balanced paths to minimize glitching 
transitions, etc. At the algorithmic level, the computational 
complexity or the data representation can be optimized for 
low power [6]. 

Another approach to reduce the switched capacitance is to 
lower N,. Efforts have been made to minimize N, by intelli- 
gent choice of algorithm, given a particular signal processing 
task [7]. In the case of conventional filter design, the filter 
order is fixed based on worst case signal statistics, which is 
inefficient if the worst case seldom occurs. More flexibility 
may be incorporated by using adaptive filtering algorithms, 
which are characterized by their ability to dynamically adjust 
the processing to the data by employing feedback mechanisms. 
In this paper, we illustrate how adaptive filtering concepts may 
be exploited to develop low-power implementations for digital 
filtering. 

Adaptive filtering algorithms have generally been used to 
dynamically change the values of the filter coefficients, while 
maintaining a fixed filter order [8]. In contrast, our approach 
involves the dynamic adjustment of the filter order. This 
approach leads to filtering solutions in which the stopband 
energy in the filter output may be kept below a specified 
threshold while using as small a filter order as possible. Since 
power consumption is proportional to filter order, our approach 
achieves power reduction with respect to a fixed-order filter 
whose output is similarly guaranteed to have stopband energy 
below the specified threshold. Power reduction is achieved by 
dynamically minimizing the order of the digital filter. 
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The idea of dynamically reducing cost (in our case, power 
consumption) while maintaining a desired level of output 
quality (in our case, stopband energy in the filter output) 
emanates from the concept of approximate processing in 
computer science [9]. While approximate processing concepts 
may be used to describe a variety of existing techniques in 
digital signal processing (DSP), communications, and other 
areas, there has recently been progress in formally using these 
concepts to develop new DSP techniques [lO]-[lZ]. Since our 
adaptive filtering technique falls into this category, we refer 
to our approach as adaptive approximate filtering, or simply 
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approximate filtering. I o9 

11. DIGITAL FILTERING TRADE-OFFS 

impulse response (FIR) or an infinite impulse response (IIR). 

10'' A frequency-selective digital filter may have either a finite 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Frequency, n normalized to 1 
It is known that 'IR use fewer taps than FIR Fig. 1. Frequency response magnitudes for FIR filters of orders N = 20,80, 
filters in order to provide the same amount of attenuation in and 140. 
the stopband region. However, IIR filters introduce nonlinear 
frequency dispersion in the output signals which is unac- \ 

ceptable in some applications. For such cases, it is desirable I 

to use symmetric FIR filters because of their linear phase 
I I 

characteristic. a I 

An important family of symmetric FIR filters corresponds 
to the symmetric windowing of the impulse responses of 
corresponding ideal filters. For example, a lowpass filter of 
this type has an irhpulse response given by [ 13 J 
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Fig. 2. Tapped delay line of an FIR filter structure, and the powering down 
concept To preserve phase linearity, powering down must be applied at both 
ends of the structure. 

h[n] = w[n]- (2) 

where w[n] is a symmetric N-point window. This filter has 
cutoff frequency w, and may be implemented using a tapped 
delay line with N taps. For the purposes of this paper, we 
refer to such a filter as having order N .  In Fig. 1, we display 
the frequency response magnitudes for three different values 
of N when w[n]  is a rectangular window and w, = 7r/2. 

UT 

, 
It should be observed that the mean attenuation beyond the 
cutoff frequency we increases with filter order. Furthermore, 
with respect to a tapped delay-line implementation (see Fig. Z), 
the taps of the shorter Type I filters are subsets of the taps of 
the longer Type I filters. This ensures that if the filter order 
is to be decreased without changing the cutoff frequency, we 
can simply power down portions of the tapped delay line for 
the higher order filter. The price paid for such powering down 
is that the stopband attenuation of the filter decreases. 

Butterworth IIR filters are commonly used for performing 
frequency-selective filtering in applications where frequency 
dispersion is tolerable. The frequency response magnitudes of 
such filters do not suffer from the ripples which can be seen in 
the frequency response magnitudes for FIR filters. These IIR 
filters are commonly implemented as cascade interconnections 
of second-order sections, each of which consists of five 
multiplies and four delays, as shown in Fig. 3. Also in Fig. 3 
is an illustration of a cascade structure for an eighth-order 
IIR filter as the cascade of four second-order sections. For the 
purposes of this paper, we consider the order of a Butterworth 
IIR filter to be equal to twice the number of second-order 
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Fig. 3. Cascade implementation of an IIR filter structure. The detail of one 
of the second-order sections is shown. 

sections in its cascade implementation., An interesting property 
of IIR Butterworth filters is that if the second-order sections 
are appropriately ordered, one may sequentially power down 
the later second-order sections and effectively decrease the net 
stopban attenuation of the filter. 

111. ADAPTWE APPROXIMATE FILTERING 
In this section we present the details of our approxitnate 

processing approach to low-power frequency-selective filter- 
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ing. As discussed earlier, frequency-selective filters are used 
in applications where the goal is to extract certain frequency 
components from a signal while rejecting others. Suppose a 
signal, x[n], consists of a passband component, xp[n], and a 
stopband component, xs[n]. That is, 

(3) 4.1 = xp[n] + xs[n]. 

If it were possible to cost-effectively measure the strength of 
the stopband component, z,[n], from observation of 2[n], we 
could determine how much stopband attenuation is needed at 
any particular time. When the energy in xs[n] increases, it is 
desirable to increase the stopband attenuation of the filter. This 
can be accomplished by using a higher-order filter. Conversely, 
the filter order may be lowered when the energy in xs[n] 
decreases. We have developed a practical technique, based 
upon adaptive filtering principles, for dynamically estimating 
the energy fluctuations in the stopband component, zs [n], and 
using them to adjust the order of a frequency-selective FIR or 
IIR filter. As described in the previous section, the decrease 
in filter order enables the powering down of various segments 
of the filter structure. Powering down of the higher order taps 
has the effect of reducing the switched capacitance at the cost 
of decreasing the attenuation in the stopband. Assuming that 
the FIR delay line is implemented using SRAM, even the data 
shifting operation of the higher order taps can be eliminated 
through appropriate addressing schemes. 

Our overall technique is depicted in Fig. 4. The quantity 
d [ n ] ,  which represents the energy differential between the input 
and the output, is obtained as 

where 

and 
. L-1 

(4) 

The filter order for sample period n, Order [n], is updated at 
each sample period. One approach for the update process is 
to choose Order [n] to be the smallest positive integer which 
guarantees that the stopband energy, Q[n], of the output signal 
will be maintained below a specified threshold y. Assuming 
that the stopband portion of the input spectrum is essentially 
flat,' the stopband energy in the output can be estimated as 

Q[n] = ad[n ]Es~[Orde r  [n]] (7) 

where a is a proportionality constant, and Es~[lc] represents 
the stopband energy in the frequency response, H k ( w ) ,  of the 
lcth order filter. That is, 

'In practice we have found that this flatness constraint may be relaxed 
considerably without detrimental effects. 

Fig. 4. Overview of approximate filtering strategy. 

where S B  denotes the stopband region. Since for every sample 
period this approach requires an expensive search over the 
stored values of EsB[IC], we have designed a more efficient 
strategy which incrementally updates the most recent filter 
order. In this case, we estimate the stopband energy in the 
output as 

&In] = ad[n]Es~[Order  [n - 111. (9) 

The decision rule for choosing Order [n] is then given by 
Order [n - 11 + NO, 

Order [n - 11 - NO, 

QbI> Y 
Y - 6 I Q[n] I Y 
QbI< Y - 6 

(10) 
where a,  y, 6, and NO are application-specific parameters. It 
should be noted that the filter order is changed at most by NO 
during each sample period. 

The parameters S and NO in (10) control the sensitivity 
of the time evolution of the filter order. The choice of the 
parameter L in (5) and (6) involves a trade-off between 
suppression of sensitivity to local fluctuations and preservation 
of the possible time-varying nature of the signal energy. For 
the case of FIR filters, we also observe that when the value 
of L is less than the maximum filter order, there is no extra 
storage required to compute E, [n] beyond that required for 
the filter implementation. On the other hand, excess storage is 
always required to update E,[n]. 

The arithmetic cost of the update process can be easily 
shown to involve five multiplications, five additions, one table 
lookup from a small memory module, and simple control. 
This cost is roughly equivalent to that of increasing the FIR 
filter order by five or the IIR filter order by two. This, for 
example, means that net power savings can be expected in 
the FIR case if for significant periods of time the dynamic 
FIR filter order decreases by more than five with respect to 
the maximum filter order. The overhead of multiplication is 
reduced to one multiplication instead of five per update if 
absolute value operations are used to compute E,[n] instead 
of magnitude-squared operations. 

IV. RESULTS 
In the context of FIR filters, we have used simulations of 

our approximate filtering technique to show that reduction in 
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Stopband energy vs. filter order 
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Fig. 5. 
rectangular window family of FIR filters. 

FIR filter stopband energy, E s ~ [ k ]  versus filler order, k ,  for the 

power consumption by an order of magnitude is achieved over 
fixed-order filter implementations when the stopband energy 
of the output signal is stipulated to remain below a given 
threshold y. The context for most of these simulations is 
frequency-division demultiplexing of pairs of speech wave- 
forms. 

I )  The Speech Signals: Each of the speech signals used in 
our simulations was sampled at 8 KHz and normalized to have 
maximum amplitude of unity. Each signal corresponds to a 
complete sentence with negligible silence at its beginning and 
end. 

2)  Frequency-Division Multiplexing: Each digitized speech 
waveform was pre-filtered to have a maximum frequency of 
1.5 KHz. A guard band of 1 KHz was used in multiplexing a 
reference speech signal (corresponding to the sentence, "That 
shirt seems much too long,") with each of the other speech 
signals. The reference signal always occupied the 0 to 1.5 
KHz band, while the other signals always occupied the 2.5 
KHz to 4 KHz band. 

3) The Demultiplexing: Demultiplexing involves lowpass 
filtering (cutoff frequency 2 KHz) to isolate the reference 
speech signal. The approximate filtering technique was used 
to perform this lowpass filtering for each of the 10 frequency- 
division multiplexed (FDM) signals. The parameter values in 
(10) were chosen to be 

^, 
Y lo logy  = -40dB, 6 = -, No = 2, L = 100. (11) 

10 
The family of FIR filters used in these simulations corresponds 
to (2) with w[n] rectangular. The values of E s ~ [ k ]  for this 
case are plotted in Fig. 5.  

4 )  Peqormance: In Table I we have listed various mea- 
sures obtained for the performance of the approximate filter as 
it was applied to each FDM signal. The first column contains 
the sentence number for the stopband component of the input 
signal. The second and third columns, respectively, list the 
minimum and maximum filter orders used by the approximate 
filter in each case. The final column shows the relative power 

TABLE I 
FUERWG PERFORMANCE FOR DEMODULATLNG FDM SPEECH 

1 Sentence I Minimum I Maxamum I Power Consumptton I 

11 
111 7.1 
127 7.1 

10 3 107 8.3 
I Averuae I 3 I 104.6 1 5.9 I 
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Fig. 6. Evolution of filter order for an FDM example. Two plots are shown 
in the figure. One shows the filter order as a function of time, while the other 
shows the stopband energy of the input signal as a function of time 

consumption of the approximate filter with respect to a fixed- 
order filter which is guaranteed to keep the stopband energy in 
the output below y for all times. We observe that our adaptive 
technique reduces the average power consumption by a factor 
of 5.9. 

To gain further insight into the source for this power 
reduction, in Fig. 6 we illustrate the nature of the adaptation 
pedorrned by our technique in the case of one of the FDM 
signals. One of the curves shows the evolution of the filter 
order while the other curve shows the energy profile of 
the stopband signal. Clearly, the variations in filter order 
roughly follow the energy variations of the stopband signal. 
In particular, the most power savings is achieved during the 
silence regions of the stopband signal. 

5)  Speech Communication Implications: Longer periods of 
speech communication generally include significantly larger 
fractions of silence periods than an individual sentence. To 
factor this into our analysis, we repeated our simulations 
while inserting additional silence at the end of each speech 
signal. The average (over all 10 cases) of the relative power 
consumption is displayed in Fig. 7 as a function of the silence 
duration relative to the duration of the entire signal. As 
expected, the power reduction improves as the relative amount 
of silence is increased. 
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Fig. 8. Filter order evolution for the approximate filtering subband decom- 
position example. The top plot shows the filter order as a function of time, 
which tracks the input’s stopband component z, [n], which is shown in the 
bottom plot. 

6)  Subband Coding: Data compression techniques for 
voice signals often use a binary tree-structured filterbank of 
highpass and lowpass filters, as depicted at the top of Fig. 8. 
Each of these filters may be implemented using the proposed 
approximate filtering technique. To illustrate the potential for 
power savings in the first stage of the subband decomposition, 
an approximate FIR lowpass filter was applied to a speech 
signal, ~ [ n ] ,  corresponding to the sentence, “That shirt seems 
much too long.” The time-varying FIR filter order used by 
our technique is shown in the top plot of Fig. 8. The bottom 
plot in Fig. 8 shows the input’s stopband component, z,[n], to 
demonstrate that the filter order roughly tracks the stopband 
energy of the input signal. 

V. CONCLUSIONS 
An algorithm-based approach has been presented for ob- 

taining low-power implementations of important classes of 
IIR and FIR digital filters. In this approach, adaptive filtering 
and approximate processing concepts are combined to design 
digital filters which have the important property that the 
filter order can be dynamically varied in accordance with 
the stopband energy of the input signal. Simulations of the 
proposed technique using a variety of speech signals have 
shown that our approach offers significant power savings over 
standard fixed-order implementations. Finally, we note that 
while we illustrated our proposed technique in the context of 
lowpass filtering applications, it is equally applicable to other 
types of frequency-selective filtering. 
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