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Abstract—In designing discrete-time filters, the length of the
impulse response is often used as an indication of computational
cost. In systems where the complexity is dominated by arithmetic
operations, the number of nonzero coefficients in the impulse
response may be a more appropriate metric to consider instead,
and computational savings are realized by omitting arithmetic
operations associated with zero-valued coefficients. This metric
is particularly relevant to the design of sensor arrays, where a
set of array weights with many zero-valued entries allows for the
elimination of physical array elements, resulting in a reduction of
data acquisition and communication costs. However, designing a
filter with the fewest number of nonzero coefficients subject to a
set of frequency-domain constraints is a computationally difficult
optimization problem. This paper describes several approximate
polynomial-time algorithms that use linear programming to
design filters having a small number of nonzero coefficients, i.e.,
filters that are sparse. Specifically, we present two approaches that
have different computational complexities in terms of the number
of required linear programs. The first technique iteratively thins
the impulse response of a non-sparse filter until frequency-domain
constraints are violated. The second minimizes the 1-norm of the
impulse response of the filter, using the resulting design to deter-
mine the coefficients that are constrained to zero in a subsequent
re-optimization stage. The algorithms are evaluated within the
contexts of array design and acoustic equalization.

Index Terms—Sparse filters, linear programming, FIR digital fil-
ters, linear arrays.

I. INTRODUCTION

I N THE efficient implementation of discrete-time filters, the
focus has historically been on reducing the number of re-

quired arithmetic operations, and especially the number of mul-
tiplications. Some approaches eliminate multipliers altogether
by restricting coefficient values to be binary [1] or composed of
a limited number of power-of-two terms [2]–[5], thus permitting
realizations requiring a relatively small number of shifters and
adders. Among implementations that include multipliers, there
exist a number of efficient techniques based on cascade struc-
tures. Examples include the use of recursive running-sum pre-
filters [6], [7], cyclotomic polynomial prefilters [8], a prefilter-
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equalizer approach based on piecewise exponentials [9], inter-
polated FIR filters [10], [11], the frequency-response masking
technique [12], [13], and multirate techniques [14]–[16]. For fil-
ters used in rate-conversion systems, efficient structures have
been developed to perform the majority of the computation at a
lower rate, e.g., polyphase structures and generalizations thereof
[17], and multistage decompositions [18], which are also closely
related to interpolated FIR filters and multirate filters.

In this paper, we focus on the design of sparse FIR filters,
i.e., filters with relatively few nonzero impulse response co-
efficients, as a technique for reducing complexity. Sparse fil-
ters offer the opportunity to omit arithmetic operations corre-
sponding to zero-valued coefficients. For instance, in an ASIC
implementation, sparsity allows for the elimination or deactiva-
tion of circuit components, thereby reducing the area and power
consumption. In addition, as demonstrated in [19], [20], sparse
designs may be incorporated in cascade and multistage struc-
tures to yield even more efficient implementations.

Sparsity is also of interest in the design of linear sensor ar-
rays, a problem that closely parallels the design of discrete-time
FIR filters. In designing arrays, it is often desirable to achieve a
given response pattern using as few array elements as possible.
Indeed, sparse design methods may be especially relevant for
arrays since methods based on cascading filters have no clear
analogs.

The problem of determining a filter with maximal sparsity
subject to a set of specifications is computationally difficult.
The problem can be solved using integer programming methods
such as branch-and-bound and more sophisticated techniques
found in commercial software packages [19]–[21]. Generally
speaking, these methods perform an intelligent search over all
possible configurations of zero and nonzero coefficients, and
hence are guaranteed in theory to obtain a maximally sparse
filter. While much more efficient than an exhaustive search, they
still exhibit non-polynomial complexity on average and can be
quite computationally intensive for problems involving many
coefficients.

The difficulty of optimal design has motivated the develop-
ment of efficient approximate methods directed at obtaining
reasonably sparse but not necessarily optimal designs with
a reasonable amount of computation. Approximate methods
are particularly useful for large problems or in applications in
which the filter is frequently redesigned. A simple approach
is to re-optimize a given non-sparse design after forcing some
small-valued coefficients to zero [22], [23]. An alternative is to
judiciously determine the subset of coefficients permitted to be
nonzero, for example using orthogonal matching pursuit [24]
or based on th-band approximations to frequency-selective
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filters with conveniently located cutoff frequencies [25].1 An
approximate, nonconvex measure of sparsity was proposed in
[26], and an algorithm was developed to minimize it in a local
sense.

In this paper, we present two types of approximate algorithms
for sparse filter design. Both approaches make extensive use of
linear programming, and the existence of efficient techniques
for solving linear programs contributes significantly to their
efficiency. In particular, the presented techniques use linear
programming as a significant algorithmic component in deter-
mining both the subset of coefficients permitted to be nonzero
as well as their values. Ongoing advancements in the execution
times of linear program solvers may therefore be leveraged
extensively by the presented techniques.

The first approach is based on successively thinning the im-
pulse response of a predesigned filter and re-optimizing the re-
maining coefficients. Successive thinning algorithms require, in
the worst case, the solution of a number of linear programming
subproblems that is quadratic in the allowed order of the filter.
However, since many of these linear programming subproblems
are closely related, the solution to a given subproblem can be
used to initialize other subproblems in a way that yields a dra-
matic speed increase over naive initialization.

The second approach involves minimizing the 1-norm of the
impulse response, subject to a set of frequency-domain con-
straints, and using the result to indicate which of coeffi-
cients to constrain to zero in a subsequent re-optimization stage.
Specifically, the locations of the nonzero coefficients are chosen
to be the locations of the largest-magnitude coefficients in the
solution to the 1-norm minimization. The algorithm is then iter-
ated, varying to determine the most-sparse design achievable.
The overall design algorithm requires, at most, the solution of

linear programs.
The organization of the paper is as follows. In Section II, the

problem of sparse filter design is formulated in more detail and
notation is established. In Section III, we develop algorithms
based on the idea of successive thinning and discuss strategies
for choosing the coefficients to be thinned. In Section IV, we
outline the use of the 1-norm of the impulse response as an in-
dication of the coefficients to be thinned, and we comment on a
theoretical connection between the technique and the true sparse
design problem. The performance of our algorithms is demon-
strated through a number of design examples in Section V.

II. PROBLEM FORMULATION

For simplicity of presentation, we focus on the design of
causal, Type I linear-phase FIR filters of length , i.e., fil-
ters with impulse responses that are supported on an index
set and are even-symmetric about the integer
index . The methods to be described can be gener-
alized with minor modifications to other types of linear-phase
FIR filters. We regard as a fixed parameter representing the
maximum allowable number of delay elements, with the under-
standing that the final design may require fewer than delays
if coefficients at the ends of the impulse response are zero.

1An �th-band filter has the property that every �th coefficient in its impulse
response is equal to zero except for the central coefficient.

The impulse response values are parameterized by an
-dimensional vector with components

given by

(1)

The frequency response corresponding to (1) is given by

where

(2)

is the real-valued amplitude response used to approximate a de-
sired response . More precisely, we assume that
is chosen such that the maximum weighted error is no greater
than a desired tolerance , i.e.,

(3)

where is a strictly positive weighting function and is a
closed subset of .

We use the number of nonzero coefficients in as a measure
of computational complexity. In Sections III and IV, we make
reference to the function defined as

which, for , is known as the -norm. It is also common to
define

which corresponds exactly to the number of nonzero entries in
. (The function is often referred to as the 0-norm for

convenience despite not being a true norm.) Thus, the problem
of sparse filter design can be formulated as

s.t. (4)

with defined in (2) in terms of .
We emphasize that the problem of sparse filter design in (4)

differs from the basic compressive sensing problem of recon-
structing a signal, known to be sparse, from a small number of
noise-free measurements (see, e.g., [27] and [28]). The latter can
be formulated as follows:

s.t. (5)

where is a vector of measurements and is a matrix repre-
senting the measurement process. In compressive sensing, it is
assumed that the number of measurements is much lower than
the dimension of the signal, i.e., has many fewer rows than
columns, so that the problem in (5) has few constraints relative
to the number of variables. This situation contrasts with that in
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(4) where the number of constraints is infinite. As we discuss in
Section III, even when (3) is approximated by a finite number
of constraints, the number of constraints must be much larger
than the number of variables in order for the approximation to
be valid.

The problem in (4) also differs from that in (5) in having
constraints that are inequalities as opposed to equalities. Even
in the case of noisy measurements, the most common approach
in compressive sensing is to replace the equality constraints in
(5) by an upper bound on the 2-norm of the residual . In
contrast, the weighted -norm of the frequency response error
is more typically of interest in filter design, leading to the linear
inequality constraints in (4).

As stated in Section I, the exact problem in (4) is compu-
tationally difficult. In the following sections, we consider two
approximate approaches to the problem that have the potential
to yield very sparse designs.

III. SUCCESSIVE THINNING ALGORITHMS

In this section, we explore a class of heuristic techniques for
sparse filter design that we refer to as successive thinning. To
motivate the approach, we first observe that (4) can be solved
exactly by finding, for each , a filter
that minimizes the maximum weighted error among all filters
with no more than nonzero coefficients in the set . If for
some value of the optimal error exceeds , then there
exist no feasible solutions to (4) with or fewer nonzero coef-
ficients. Consequently, this procedure is guaranteed to result in
an optimal solution to (4), specifically by determining the lowest
value of for which . The associated computational
complexity, however, can be very high since a naive search for
a minimax optimal filter with nonzero coefficients has com-

plexity of order , which becomes a high-degree poly-

nomial in as decreases from . The complexity of the
overall procedure remains non-polynomial in the total number
of coefficients .

The class of successive thinning algorithms discussed in this
section can be viewed as approximations to the iterative proce-
dure just described. We give an outline of one such algorithm as
an example and then discuss some generalizations. In the first it-
eration of our example algorithm, a minimax optimal filter with
at most nonzero coefficients can be found by constraining
each in turn to a zero value and choosing one that mini-
mizes the maximum error . In the second iteration, rather than
searching over all possible configurations with two zero-valued
coefficients, we continue to constrain to zero the coefficient se-
lected in the first iteration, and restrict the search to finding a
second coefficient that yields the smallest increase in when
also constrained to zero. In each subsequent iteration, all of the
coefficients selected in previous iterations remain constrained
to zero, limiting the task to minimizing over all remaining
choices for one additional zero-valued coefficient. As before,
the algorithm terminates when first exceeds for some ,
at which point the last feasible solution with nonzero coef-
ficients is taken to be the final design. We refer to this algorithm
as the minimum-increase rule since the objective in each itera-
tion is to choose a coefficient to set to zero that minimizes the

increase in . The algorithm resembles the class of greedy algo-
rithms [29] in that decisions regarding zero-valued coefficients
made in previous iterations are never revisited.

A successive thinning algorithm based on the minimum-in-
crease rule greatly reduces the number of configurations that are
explored compared to an exact method for solving (4). More
precisely, since each iteration searches over a number of con-
figurations no greater than , and the number of itera-
tions is also bounded by , the total number of config-
urations grows quadratically with . Despite the loss of
a guarantee of optimality, the minimum-increase rule can in
many cases produce filters with significantly fewer nonzero co-
efficients than conventional designs, without the complexity in-
herent in solving the exact problem.

The idea behind the minimum-increase rule can be general-
ized, and in some cases, further simplified. For example, mul-
tiple coefficients can be chosen in each iteration to be con-
strained to zero instead of a single coefficient, while still pre-
serving the simplification of never removing these zero-value
constraints once imposed. It would seem reasonable that the
likelihood of obtaining a near-optimal solution increases with
the number of coefficients constrained per iteration, while the
complexity of the algorithm also increases. We focus on the
single-coefficient case, i.e., the minimum-increase rule just dis-
cussed, in the interest of maintaining computational simplicity.

To decrease the complexity even further, we propose in
Section III-A a second rule known as the smallest-coefficient
rule, which sets to zero the smallest coefficient in abso-
lute value of the filter obtained in the current iteration. The
smallest-coefficient rule is computationally easier than the
minimum-increase rule since it evaluates a single coefficient
configuration per iteration, for a total number that is linear in

. In our experience, the two rules often yield filters of
equal sparsity.

To describe the structure of a successive thinning algorithm
in more detail, let denote the iteration number.
The algorithm maintains a growing list
of indices at which is constrained to be zero. Equivalently,
we may consider the index set of possibly nonzero coeffi-
cients, i.e., the complement of with respect to the full set

. In most cases, the initial set ,
but this is not necessarily so as certain coefficients may be fixed
to zero a priori, for example in systems with broken multipliers
or array elements. In each iteration after , an additional
index is added to , resulting in a new set
that is one element larger. We defer discussion of rules for se-
lecting the index until Section III-A.

In iteration , we wish to solve the following minimax opti-
mization problem:

s.t.

(6)

and we denote the minimal value of by and the
corresponding coefficients by . In the case where

is empty and (6) can be solved
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using the Parks–McClellan algorithm. We assume that is
sufficiently large and is sufficiently inclusive so that the
initial error is strictly less than the allowable tolerance .2

When is not empty, (6) is approximated by enforcing the
frequency-domain constraints only on a finite grid of frequen-
cies ,3 resulting in

s.t.

(7)

which can be readily converted to a linear programming
problem.

The linear programming dual of problem in (7) is given
by

(8)

s.t.

(9)

and has the same optimal value as the primal problem .
Depending on the linear program solver used, either the primal

or the dual may be more efficient to solve. In the case
of the dual, the optimal coefficients for are avail-
able as the Lagrange multipliers corresponding to the equality
constraints in (9); the coefficients for are zero by
design.

Since problem differs from problem only in the
additional constraint , the sequence is non-
decreasing. Equivalently, it is seen that differs from
in the elimination of the equality constraint in (9) corresponding
to . In Section III-B, we show how to exploit the close
relationship between similar problems to improve the efficiency
of the algorithm.

The algorithm terminates when first exceeds for some
, at which point the last feasible solution

is taken to be the final design. Note that cannot be zero for
any , as otherwise we would have a feasible solution
with zero coefficients and the algorithm could continue.
Thus, minimizing the number of nonzero coefficients is equiva-
lent to maximizing the number of feasible iterations. We dis-

2We have typically chosen� to be 10%–50% larger than the minimum order
required to satisfy (3).

3In our experience with several examples, it is sufficient to set � � ���

and to distribute the frequencies � � � � � � � uniformly over � to ensure that
(3) is well-approximated. This is consistent with previous work on filter design
using linear programming [24], [25], [30].

cuss next some heuristic rules for selecting the indices with
this goal in mind.

A. Selection Rules

In this section, we discuss two rules for selecting coefficients
to constrain to zero in a successive thinning algorithm. The first,
referred to as the minimum-increase rule, was outlined at the
beginning of Section III and is described in more detail below.
A simplification of the minimum-increase rule, referred to as
the smallest-coefficient rule, is described next. Other selection
rules are also possible.

1) Minimum-Increase Rule: In this method, the index
is chosen to minimize the increase in the maximum error . The
algorithm maintains a list of indices that are candidates for
addition to the list . The set is always a subset of the
set , and initially is equal to . In iteration , we
determine for every the optimal error that results
from adding to , namely by solving (7) with replaced
by . The index is chosen to yield the smallest
error value, i.e.,

Then is added to and removed from , the can-
didate list for the next iteration. In addition, to improve effi-
ciency, we also remove from those indices for which

, i.e., those coefficients that yield errors greater than
the tolerance when set to zero. There is no further need to con-
sider these coefficients in later iterations because the errors as-
sociated with setting them to zero can never decrease with the
addition of new constraints.

2) Smallest-Coefficient Rule: In the case of the smallest-co-
efficient rule, the index in the th iteration is chosen to
correspond to the smallest of the optimal coefficients for

, i.e.,

The smallest-coefficient rule can be regarded as a simplification
of the minimum-increase rule. It can be justified by recalling
the interpretation of the coefficients , as the La-
grange multipliers associated with the optimal solution to the
dual problem given in (8). According to this interpretation,
if the right-hand side of constraint in (9) is changed from zero
to a small value , the corresponding optimal value is changed
from to . Hence, if coefficient is constrained
to be zero, or equivalently, if constraint in (9) is relaxed, the
marginal rate of increase of the optimal error is given by .
Choosing to correspond to the smallest thus yields
the smallest marginal rate of increase. The smallest-coefficient
rule is therefore an approximation to the minimum-increase rule
in a marginal or local sense.

A successive thinning algorithm that uses the smallest-coef-
ficient rule evaluates a single coefficient configuration per iter-
ation, for a total number that is linear in . In contrast, the
minimum-increase rule enumerates a number of configurations
that is quadratic in , since the lengths of the candidate
lists are of order . Nevertheless, in our experience the
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two rules seem to yield comparable levels of sparsity as demon-
strated in Section V.

B. Efficiency Enhancements

This section discusses methods for improving the efficiency
of successive thinning algorithms by exploiting relationships
among the linear programming subproblems. These methods are
based on linear programming techniques directed at situations
in which an optimal solution to a problem has been obtained
and a solution to a similar problem is desired. In the context of
successive thinning algorithms, problem has the form of (7)
for some set of zero-valued coefficients, while differs from

only in the additional constraint for an index ,
i.e., the corresponding index set . Such a situation
arises in the case of the minimum-increase rule when solving (7)
with replaced by for given an existing
optimal solution to the problem with alone. In the case of
the smallest-coefficient rule, the problems and in
consecutive iterations also differ by only one constraint.

For notational convenience in what follows, denote by
the column vector composed of the coefficients for ,
where is the index set of coefficients not constrained to be
zero in problem . The vector is defined similarly with the
sets and related by

(10)

We also introduce the matrix and the vectors and with
components

(11a)

(11b)

(11c)

Let and denote matrices obtained by extracting from
the columns corresponding to and , respectively. Then

problem can be written in the following block matrix form:

s.t.

(12)

where the inequalities are to be interpreted as component-wise
inequalities. Problem can be similarly rewritten with re-
placed by and by . The dual of problem in (12)
is given by

s.t.

(13)

and similarly for the dual of problem .
We first discuss how the dual problem can be solved more

efficiently when a solution to problem in (13)
has already been determined. Equation (10) implies that
has one fewer column than , and therefore problem has
one fewer constraint than problem as seen by comparing (13)
with its analog. As a consequence, is also feasible
for problem and can be used to initialize the solution of .
The reader is referred to [31] for the details of this procedure.

The corresponding situation with the primal problems is not
as straightforward. Since the coefficient is not constrained
to zero in problem , an optimal solution to is usu-
ally infeasible for problem and cannot be used directly as an
initialization. To address this, we propose solving an alterna-
tive problem , which is identical to except for an additional
penalty in the objective function on the absolute value of . To
derive the form of , we first use (10) and (11a) to decompose
the product as

where is the column of corresponding to , and
is represented as . Then problem can be expressed
as

s.t.

(14)

where is a penalty constant.
When is sufficiently large, it is expected that the optimal so-

lution to will have , and consequently solving
becomes equivalent to solving . The following theorem spec-
ifies values of sufficient for the equivalence between and

to be exact.
Theorem I: If

(15)

then is an optimal solution to problem if and
only if and is an optimal solution to
problem .

The proof of Theorem 1 can be found in Appendix A.
In MATLAB implementations, the techniques presented in

this section increased the speed of successive thinning algo-
rithms by about 2–3 times compared to an implementation in
which all linear programming problems are solved indepen-
dently. Similar gains are expected for more specialized linear
programming solvers.
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Fig. 1. Contours of equal ��� for various values of �. Determining the min-
imum-cost filter that meets a set of frequency-domain specifications involves
expanding a given contour until it intersects with the polyhedron defining the
set of feasible designs. Smaller values of � tend to promote solutions that lie
close to the coordinate axes, i.e., that tend to be nearly sparse.

IV. MINIMUM 1-NORM DESIGN

Within the context of the successive thinning algorithms
in Section III, the smallest-coefficient rule was proposed as
a method for obtaining a sparse filter from a design having
a coefficient whose magnitude was small. In a particular
iteration of the successive thinning process, the smallest coeffi-
cient was constrained to zero, along with the other coefficients
constrained from previous iterations. In this section, we apply
a similar strategy to filters having many small coefficients. In
particular, we discuss a sparse filter design algorithm in which a
filter is first designed to have many coefficients that are small in
magnitude, followed by a single re-optimization stage where a
filter with is obtained by constraining the
smallest-magnitude coefficients to zero.

We approach designing a filter that is suitable for the re-op-
timization stage, i.e., one that has many small coefficients, by
minimizing the 1-norm of

subject to a set of pre-specified constraints on the magnitude
response of the filter.

The 1-norm is a natural cost function to minimize in several
respects. Because the 1-norm of is equal to the sum of the
magnitudes of the impulse response samples, minimizing the
sum should intuitively tend to promote designs having many
small coefficients. In general, minimizing tends to produce
increasingly sparse solutions as is decreased, and is the
smallest that results in an optimization solvable by a polyno-
mial-time algorithm. The principle is illustrated in Fig. 1.

Choosing as a cost function also results in a linear relax-
ation of the true minimum- problem formulated in (4) and
in that sense is closely related to the exact sparse filter design
problem. The subsections that follow outline the design algo-
rithm and discuss the details of this argument.

A. Proposed Design Technique

In obtaining a filter with many small coefficients, we formu-
late the filter design problem as

s.t.

(16)

which may be cast as the following linear program:

s.t.

(17)

Here, represents the index set for those coefficients con-
strained to zero a priori. The convention for and
is consistent with the use of the variables in (12). Specifically,
the vector contains the filter coefficients whose indices
are elements of the set . transforms the vector to
samples of , the discrete-time Fourier transform of the
designed impulse response.

The minimization of the sum of the coefficient magnitudes in
(17) is formulated by introducing a vector that is constrained
to bound the magnitudes of the coefficients . As (17) is solved,
the minimization of the cost function involving causes its el-
ements to decrease in value and eventually reach the magnitudes
of the optimal coefficients. The cost function in (17) is the sum
of the elements of , and consequently an optimal mini-
mizes and in turn .

Although (17) is designed to yield filters having coefficients
that are small in magnitude, these coefficients will generally be
nonzero. Using the result from (17), the following optimization
is next run to thin the impulse response of the filter:

s.t.

(18)

In particular, the result from (17) is used to determine , the
index set of the largest-magnitude coefficients that are allowed
to be nonzero.

The linear program formulation of (18) is equivalent to
problem in (12). Again, (12) involves an index set that
specifies the coefficients that are allowed to be nonzero. Here,
we use .

The overall design algorithm consists of three stages.
I) Solve (17).

II) Choose as the index set of the largest-magnitude
coefficients from the solution to Stage I.

III) Thin the impulse response of the filter by solving (12)
using .
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Fig. 2. Depiction of design process for the 2-coefficient case where a design
with 1 nonzero coefficient is found. Dot indicates solution to Stage I, and �
indicates solution to Stage III.

To determine the most-sparse filter achievable with the al-
gorithm, Stages II and III may be repeated, iterating over .
In contrast to the successive thinning algorithms presented in
Section III, the result from a given iteration does not depend on
previous iterations. Furthermore, the set of the largest-magni-
tude coefficients is contained in the set of the largest-mag-
nitude coefficients, and the existence of a feasible solution to
(12) for some consequently implies that a feasible
solution exists for all . Likewise, the lack of a fea-
sible solution to (12) for some implies that no fea-
sible solution exists for any . Determining the smallest
that results in a feasible design may therefore be accomplished
using a binary search that requires the solution of no more than

linear programs: a single linear program
corresponding to solving the optimization in Stage I and a max-
imum of linear programs corresponding to re-
peating Stages II and III.

The behavior of the algorithm is summarized in Fig. 2 for the
(2 coefficient) case where a sparse design exists for

. The dot indicates a solution to Stage I of the algorithm,
and the indicates the final design found in Stage III. In this
example, the resulting filter is a true most-sparse design since
the axis that lies closest to the dot intersects the set of feasible
designs, i.e., the index of the smallest coefficient is the index of
the zero-valued coefficient in a true most-sparse filter. This illus-
trates the motivation for the heuristic underlying the minimum
1-norm algorithm: we expect small coefficients resulting from
the solution to (16) to occur at the same locations as zero-valued
coefficients in the solution to (4). Although this expectation is
not always met, it has been our experience that the algorithm
still succeeds at thinning many different types of designs. Ex-
amples illustrating the performance of the algorithm are given
in Section V.

B. Relationship to LP Relaxation of Minimum- Problem

The optimization (16) bears a theoretical connection to the
true minimum problem in (4). Specifically, the minimum

problem is a linear relaxation of the mixed-integer linear
formulation of the minimum problem. We derive this re-
sult and comment on the relationship of the optimal cost of (16)
to the optimal cost of (4).

In arriving at a linear relaxation, (4) is cast as the equivalent
mixed integer linear program

s.t.

(19)

where the set of feasible designs is defined as

(20)

The are binary variables that indicate whether a given coeffi-
cient is nonzero, and the strategy in (19) is to minimize the sum
of the , thereby arriving at the most-sparse design. In arriving
at an optimal solution to (19), each of the inequalities involving

will either constrain the coefficient to have value zero or
will constrain its magnitude to , depending on the value
of . The value of is therefore chosen so that for any feasible
design for all , and consequently the op-
timizations (4) and (19) admit the same set of solutions.

In determining a linear relaxation of (19), we first remove the
integer constraints on the , resulting in the following linear
program:

s.t.

(21)

Making the substitution , we obtain

s.t.

(22)

Again is chosen to be large enough that for any
, and the constraints can be removed without

affecting any solution to (22). The minimization is separable
into two optimizations involving the and the respectively,
and (22) becomes

s.t. (23)
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The bracketed subproblem in (23) is optimized for ,
resulting in

(24)

The optimization (24) differs from (16) only by a constant
scaling of the cost function when we additionally impose on
(16) that . An optimal for (24) is consequently an
optimal solution to (16) under this condition, and a similar
argument applies in a straightforward way to (16) for arbitrary

by introducing in (24) additional equalities that constrain
appropriate coefficients to zero. The minimum- problem
is therein considered a linear relaxation of the mixed-integer
formulation of the true minimum- problem.

As a linear relaxation of the true minimum- problem,
the optimal cost of (24) may be used as a lower bound on the
optimal cost of (4) and consequently may appear to be useful in
the development of sparse filter design algorithms. However, the
lower bound prescribed by (24) is fairly loose and is therefore
not used within the context of the presented techniques. The
details of this argument are presented in Appendix B.

V. DESIGN EXAMPLES

In this section, we present a number of examples to illustrate
the performance of the algorithms in Sections III and IV.

A. Uniform Linear Beamformer

As is well known, the design of uniform linear beamformers
is mathematically identical to the design of discrete-time FIR
filters [32]. For a length linear array with uniform spacing ,
the beam pattern at a wavelength is given by

(25)

where is the angle from the array normal. Equation (25) has the
form of a discrete-time Fourier transform of the array weights

with

(26)

playing the role of the frequency variable. The problem of beam-
former design consists of choosing weights to approximate a
desired beam pattern. When the magnitude of the desired beam
pattern is symmetric about , it is typical to restrict atten-
tion to weights that are real and even-symmetric, in which case
the problem is equivalent to that of linear-phase filter design.
Such symmetry occurs in the case of a beam directed normal to
the array (broadside) with no nulls required at specific angles. In
addition, beam patterns steered in other directions are frequently
obtained by first designing a symmetric broadside beam pattern
and then modulating the corresponding weights by an appro-
priate complex exponential.

For this example, we have chosen a desired beam pattern with
the property that the mainlobe response is equal to unity over

TABLE I
SPECIFICATIONS FOR THE BEAMFORMER EXAMPLE

a range of angles as opposed to a single angle. The specifica-
tions for the desired beam pattern (assumed to be symmetric) are
listed in Table I. In the case , the width of the mainlobe
region is 5 at broadside. Beam patterns with a relatively wide
and flat mainlobe find use in a number of contexts, which are
sometimes grouped under the label robust beamforming [33].
A common feature of these application areas is the presence of
uncertainty in the direction of interest and the consequent desire
for a mainlobe shape that can accommodate the uncertainty.

In this example, we consider sidelobe levels of 20, 30,
and 40 dB. For each sidelobe level, array weights are de-
signed using the algorithms we have developed, namely suc-
cessive thinning algorithms employing the minimum-increase
and smallest-coefficient rules and the minimum 1-norm algo-
rithm, as well as the Parks–McClellan algorithm for compar-
ison. For the sparse design algorithms, we initially allow 50%
more length than that required by the Parks–McClellan design.
The actual length is determined by the positions of the nonzero
weights.

Table II lists the number of nonzero weights (corresponding
to the number of required physical array elements) and the array
length returned by the algorithms in each case. For the succes-
sive thinning algorithms, the decrease in the number of nonzeros
relative to the Parks–McClellan designs ranges from 13% to
33%, with the largest relative decrease at a sidelobe level of

20 dB. The minimum-increase rule gives slightly better re-
sults than the smallest-coefficient rule but requires significantly
more computation. The minimum 1-norm algorithm, which has
the lowest complexity of the sparse algorithms, yields relative
decreases in the 8% to 33% range. Note also that the amount of
extra length used in the sparse designs is never more than 19%
of the Parks–McClellan length and can actually be zero as in the

30-dB case.
In a related experiment, we fix the number of nonzero weights

at the values required by the Parks–McClellan algorithm (43,
55, and 79 for the different sidelobe levels) and determine how
much additional sidelobe attenuation can be achieved using
the sparse methods by increasing the sidelobe attenuation in
0.1-dB increments until an infeasible design is obtained. Here
we allow 50% more length than is required for the respective
initial Parks–McClellan designs. Due to their approximate
nature, it is possible that the algorithms may return a feasible
design at still greater levels of sidelobe attenuation beyond
the point where an infeasible design is first encountered. The
experiment is therefore intended as an indicator of the worst
case increase when no further searching is performed.

Table III lists the sidelobe levels and array lengths yielded
by our algorithms for each number of nonzeros. The sparse al-
gorithms increase the level of attenuation by 2–8 dB over the
Parks–McClellan designs. Fig. 3 shows the beam patterns given
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TABLE II
NUMBERS OF NONZERO WEIGHTS AND ARRAY LENGTHS FOR DIFFERENT SIDELOBE LEVELS

TABLE III
SIDELOBE LEVELS AND ARRAY LENGTHS FOR DIFFERENT NUMBERS OF NONZERO WEIGHTS

Fig. 3. Beam patterns produced by the Parks–McClellan and minimum-in-
crease algorithms for the case of 79 nonzeros.

by the Parks–McClellan and minimum-increase algorithms for
the case of 79 nonzeros.

B. Linear-Phase Acoustic Equalizer

As a second example, we consider the design of an acoustic
equalizer. In equalizing the magnitude response of acoustic sys-
tems such as loudspeakers and microphones, a linear-phase dis-
crete-time filter may be used to attain the desired magnitude re-
sponse while preserving the group delay of the original system
to within a constant offset. Specifications for the equalizing filter
are often given in terms of minimum and maximum constraints
on the desired magnitude response of the overall system, which

Fig. 4. Specifications used in Section V-B for designing an equalizing filter.

in turn specify constraints on the magnitude response of the
filter.

In this example, we design a sparse linear-phase discrete-time
equalizer for use in a low-frequency portion of a public address
system for which the sampling rate is 400 Hz. Two sets of speci-
fications are considered, corresponding to magnitude tolerances
of 0.25 dB and 0.50 dB about an ideal response. Fig. 4 de-
picts the specifications that are used in designing the system.
For the sparse design algorithms, we allow 50% more length
than the minimum required to obtain a corresponding feasible
Parks–McClellan design.
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TABLE IV
NUMBERS OF NONZERO IMPULSE RESPONSE VALUES AND DELAY

ELEMENTS FOR DIFFERENT TOLERANCES ON THE SPECIFICATIONS

FOR AN EQUALIZING FILTER

Fig. 5. Equalizer impulse responses given by the Parks–McClellan and min-
imum-increase algorithms for a magnitude tolerance of�0.25 dB. Only half of
each impulse response is shown, re-indexed to allow easier comparison. Zero-
valued coefficients are omitted.

Table IV lists the number of nonzero values in the impulse
responses returned by the successive thinning and minimum
1-norm algorithms for each tolerance, as well as the number
of required delay elements. The reported number of delay el-
ements reflects the minimum number required to implement the
filter design up to a constant offset in group delay using a causal
direct-form FIR structure. Results from the Parks–McClellan al-
gorithm are also included for comparison. For the successive
thinning algorithms, the decreases in the number of nonzeros
relative to the Parks–McClellan designs are 13% and 33%, with
the largest relative decrease at the dB tolerance. The min-
imum 1-norm algorithm yields relative decreases of 4% and
31% for the -dB and -dB tolerances, respectively.

The impulse responses given by the Parks–McClellan and
minimum-increase algorithms for a 0.25-dB tolerance are
shown in Fig. 5. Only half of each impulse response is shown,
re-indexed to allow easier comparison. It can be observed that
the minimum-increase algorithm tends to produce zero values
at locations where the Parks–McClellan impulse response has
small values. In this particular example, the minimum-increase
algorithm has also introduced nonzero values at locations well
beyond the support of the Parks–McClellan impulse response.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented two heuristic approaches
to designing sparse FIR filters. In the first approach, an ini-
tial impulse response is successively thinned according to cer-
tain rules and the remaining coefficients are recomputed after
each thinning to minimize the error in the frequency domain.

In the second approach, an impulse response having minimal
1-norm is used to determine which coefficients are constrained
to have zero value in subsequent optimizations aimed at in-
creasing sparsity. All of our algorithms rely on linear program-
ming and the highly developed tools available for solving linear
programs. Consequently, our algorithms are able to leverage
ongoing advances in linear programming algorithms as well
as in the implementation of solvers. The algorithms differ in
complexity as measured by the required number of linear pro-
grams and accordingly also differ in the sparsity of the final de-
signs. In terms of complexity and in the use of linear program-
ming, our algorithms are comparable to a number of existing
methods, notably [24]–[26] ([26] uses a simplex-like algorithm
to solve a nonlinear problem). A careful study and comparison
involving a wide range of examples and various linear program
solvers could contribute to a better understanding of how all
these methods compare.

The techniques presented in this work can in principle be
extended to design nonlinear-phase FIR filters and IIR filters.
A straightforward approach is to retain the overall structure of
the algorithms while modifying only the optimization problems
contained within, namely the minimization of the frequency-do-
main error with certain coefficients constrained to zero and the
minimization of the 1-norm of the coefficients. This approach is
likely to be successful for nonlinear-phase FIR filters since the
optimization problems remain convex with respect to the coeffi-
cients and are thus tractable (see, e.g., [34] and [35]). Convexity
is not preserved however in the IIR case if the numerator and de-
nominator of the system function are optimized jointly.

Alternatively, in some IIR design methods, a filter is first de-
signed to approximate a desired squared-magnitude response,
followed by spectral factorization to obtain a stable IIR filter
(e.g., [36]). However, sparsity in the square of the system func-
tion is generally not preserved by spectral factorization, further
suggesting that the application of the presented algorithms to
the problem of sparse IIR design may present additional chal-
lenges.

APPENDIX A
PROOF OF THEOREM 1

To facilitate the proof, we first show that the inequality

(27)

holds for any column of the matrix defined in (11a), any
feasible solution to problem in (13), and satis-
fying (15). Using the fact that the magnitude of a sum is bounded
by the sum of the magnitudes of individual terms
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noting that and are non-negative. Bounding
by its maximum value and by 1, we obtain

as desired, where the second inequality follows from the first
constraint in (13) and the assumption (15) on .

Proceeding with the proof of the main result, suppose
is an optimal solution to problem . Then

and cannot both be nonzero, as otherwise both could
be decreased by , reducing the objective value
without affecting feasibility. Assume first that and

. Let and be optimal solutions to
problem and its corresponding dual . We wish to show that

, which is a feasible solution to problem , has a
strictly lower objective value than the assumed optimal solution

, thus establishing a contradiction.
First, we use strong duality to equate the optimal values for
and

(28)

Since and are non-negative and sat-
isfies the constraints for problem (14)

(29)

(30)

Combining (28)–(30)

(31)

where the simplifications result from the feasibility of
for problem (13). Applying the bound in

(27) to (31)

The left-hand side represents the objective value of the feasible
solution , while the right-hand side represents the

value of the optimal solution . This contradicts
the optimality of , and hence must be zero.
The case is similarly excluded.

The conclusion that has two consequences:
First, the pair becomes a feasible solution to problem

. Second, the inequality in (31) becomes , and in fact
equality must hold in order for to be an optimal
solution to . Therefore, is also an optimal solution to
problem , completing the proof of the forward direction.

To prove the converse, suppose that is an optimal
solution to problem . It was shown in the proof of the forward
direction, specifically in (31), that the optimal objective value in
problem can be no less than . Furthermore, is

a feasible solution for and achieves a value of . We conclude
that is an optimal solution to .

APPENDIX B
RELATIONSHIP BETWEEN OPTIMAL COSTS OF AND

The optimal cost of (24) may be used as a lower bound on
the optimal cost of (4), i.e., the smallest value of for any
in the set of feasible designs, since constraints were removed
in arriving at (24) from (4) while the set of feasible designs
remained unchanged. Specifically,

(32)

The optimization (19), which is the mixed-integer linear formu-
lation of (4), was made under the assumption that for
any . This condition may equivalently be formulated
as , where denotes the maximum
magnitude of the elements of .

In tightening the bound on the value of in
(32), we choose as the smallest allow-
able value of , and we apply the ceiling function to both sides
of the inequality. The right-hand side of (32) takes on integer
values and is unaffected by the ceiling function, resulting in

(33)

where denotes an optimal set of coefficients for the min-
imum- problem (4). The lower bound on prescribed
by the left-hand side of (33) may be computed by solving linear
programs to determine the values in the numerator and denom-
inator or may alternately be estimated using the design param-
eters of the filter.

The bound given by (33) becomes looser as the value
of increases. In illustrating this, consider a set

that contains a single set of feasible
(and optimal) coefficients with the property that .
Equation (33) reduces to

which, as can be verified, is met with equality under these as-
sumptions for any choice of and . Adding an additional
coefficient to the problem so that results in the fea-
sible set . Equation (33) in turn reduces to

which is tight only when the two smallest coefficient magnitudes
add up to strictly more than the largest coefficient magnitude.
The general trend continues; as the number of nonzero coeffi-
cients in a true most-sparse filter increases, the conditions
under which (33) is met with equality become more specific.

Fig. 6 depicts the minimization and maximization involved
in computing the lower bound on given by (33) for cases
where the bound is tight. We illustrate the behavior of the mini-
mization and maximization for , corresponding to filters
with two coefficients. The bound is determined by expanding
the diamond-shaped contour of equal and reducing the
square-shaped contour of equal until each intersects the
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Fig. 6. Depiction of the minimization and maximization involved in computing the lower bound on �� � prescribed by (33), for two situations where the
computed bound is the true value of �� � . (a) The ratio of the norms corresponding to the two contours is positive and less than 1, resulting in the bound
�� � � �. (b) The ratio of the norms corresponding to the two contours is strictly greater than 1 and less than 2, resulting in the bound �� � � �.

set of feasible designs. The ceiling of the ratio of the norms cor-
responding to these contours is the lower bound on pre-
scribed by (33).
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