DISTRIBUTED SIGNAL PROCESSING ~

Li Lee
Alan V. Oppenheim

MIT Research Laboratory of Electronics
77 Massachusetts Ave.
Cambridge, MA 02139

ABSTRACT

This paper presents our recent work on a computa-
tional model for performing digital signal processing in
dynamically-varying, heterogeneous computing environ-
ments. It defines a representation of signal processing
tasks in which concurrency and equivalency are natu-
rally expressed. The ability to express equivalency fa-
cilitates the system’s objective of dynamically adapting
implementations of algorithms to the current available
resources. Furthermore, we present a simulation pro-
gram in which our ideas can be demonstrated and ver-
ified. The paper presents an experiment showing how
execution paths of algorithms can be selected in response
to variations in load in the system.

INTRODUCTION

With the recent growth in internets and intranets,
it becomes increasingly interesting and important to
design new computation models for computing on
dynamically-varying, heterogeneous network environ-
ments. In [3] we proposed a representation of signal
processing algorithms in which alternatives in the im-
plementation can be expressed, and then described a
methodology for dynamically choosing the implementa-
tion. We found that by interpreting algorithmic expres-
sions as similar to data networks, existing techniques
for packet routing in data networks can be extended
to dynamically adapt the algorithm to the computing
resources. In this paper we start with a detailed de-
scription of our model of the distributed network envi-

*This research was supported in part through collaborative
participation in the Advanced Sensors Consortium sponsored by
the U.S. Army Research Laboratory under Cooperative Agree-
ment DAAL01-96-2-0001. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

ronment. We then present an improved algorithm rep-
resentation and describe a simulation program demon-
strating our ideas and algorithms.

COMPUTATIONAL MODEL

The processing network consists of a collection of spe-
cialized virtual processors. One can conceptualize them
as servers capable of executing only specific sets of pro-
cessing instructions or algorithms. In the context of
signal processing, for example, these algorithms may in-
clude radix-2 FFT, convolution, and sequence addition.
The physical manifestation of the virtual processors is
unspecified. Hence a virtual processor may reside on
one or multiple physical processors, and each physical
processor may behave as several virtual processors.

The processing network is assumed to change dynam-
ically and unpredictably due to the random failure and
recovery of communications links and network nodes.
The function of any particular physical processor may
also change. This is modeled by assigning multiple vir-
tual processors to reside within the same physical pro-
cessor, but allowing only one of them to be working
at a time. For simplicity, however, we assume that no
catastrophic failure occurs. In other words, every work-
ing node is connected to a set of working network nodes
with full functionality at all times. Furthermore, we as-
sume that data is not lost due to the failures of the links
and processors. This can be accomplished through fail-
ure recovery mechanisms within the communications
networks itself.

Within the network, data blocks requiring processing
are tagged with descriptions of the desired algorithm.
As they get processed, the algorithmic descriptions are
updated to reflect the current processing needs of the
data block. The focus of our research is to adapt the ex-
ecution paths applied to data blocks to current system
resources efficiently and optimally.

PROCESSING GRAPHS

Description

Signal processing algorithms are often graphically rep-
resented by dataflow networks, which are directed
graphs in which arcs represent data streams and
nodes represent operations on the data[2]. A dataflow
network easily shows the dependencies among data
streams, and naturally expresses concurrency among
operations.

In the context of distributed computation, we pro-
pose a new form of graph in which concurrency and
equivalency in the task implementation are simultane-
ously expressible. To clarify, operations which can take
place simultancously are called concurrent, while those
which would have the same effect on the same data
are called equivalent. For example, different filters in
a filter bank can be operated concurrently, while the
time or frequency domain implementations of each fil-
ter are equivalent. The proposed task graphs express
concurrency to facilitate the full use of the massive par-
allelism that is available on a processor network, and
express equivalency to facilitate the dynamic adapta-
tion of the implementations to the current resources of
the network.

The new task graphs use directed graphs with nodes
representing data blocks and modified arcs representing
operations on the data blocks. Notice that the “unit”
of data is blocks rather than streams (as in the case
of data flow networks). Each block is assumed to be
self-contained and processed and transmitted as a unit,
even though they may be divided and combined with
other blocks as a result of processing. In the task graph,
nodes with no incoming arcs are the inputs of the algo-
rithms, and those with no outgoing arcs are the outputs.

The arcs of the task graph, shown in Figure 1 can
have single or multiple head and tail nodes correspond-
ing to the number of inputs or outputs in the processing
they represent. An task graph composed of nodes and
arcs as we describe is therefore hierachical in the sense
that each arc can be further represented by another
task graph.

Multiple outgoing arcs originating from a single node
represent alternatives in how computation on the data
block can proceed from that node. It means that the
data block represented by the node can be processed
by any one of the outgoing arcs. Consequently, mul-
tiple paths between nodes imply that there are multi-
ple implementations accomplishing the same processing
objectives.

SISO SIMO
®o—@
MISO MIMO

Figure 1: Arcs in task graphs

Example

These concepts are perhaps most easily clarified with
the example shown in Figure 2. Figure 2(a), shows a
block diagram of a modulated filter bank implemen-
tation of periodogram averaging to find the peak fre-
quency of a spectrum, while Figure 2(b) shows the cor-
responding task graph.

In the depicted algorithm, the signal is first passed
through a modulated filter bank. The filter outputs
are downsampled, and then the average is taken of the
magnuitdes of the sequences. The location of the peak
in the spectrum is found finding the channel with the
highest average magnitude. In the task graph of Fig-
ure 2(b), the signal, represented by the leftmost node,
is first duplicated. Each of the replications is filtered
mmdependently via one of two methods: either through
direct convolution, or through multiplication in the fre-
quency domain. This is graphically represented by the
fact that the “Convolution” arc connects the same two
nodes as the “FFT-multiply-IFFT” path. The next two
operations on the filter outputs are downsampling and
finding the magnitudes of the samples. Since these two
operations are commutative, there are parallel paths
showing the two orders of execution. Finally, the chan-
nel with highest average output magnitude is found as
the peak of the spectrum.

Validity

It is important to point out here that not all intercon-
nections of nodes and arcs represent valid, computable
processing task graphs. For example, it is important
to verify that all inputs of a multi-input operation are
indeed guaranteed to be computed in every possible re-
alization of the actual implementation. For example,
in figure 3, we show a simple graph in which MISO
operator C operates on nodes 2 and 3. Iowever, in
any particular realization of the implementation, either

x[n], > g[n] > .16 Re | ’2; > Average, > |

"'.. glnl | » 46 > [fz bglAveragcf Piargmaxi >0
| ! ! ! b

. : | : : !
1 “"331["]; > .6 : > | |2| -'Average: =
(a)

Multiply
Convolution

Multiply

Convolution

Figure 2: (a) Block diagram of a modulated filter bank
implementation of periodogram averaging to find the
peak frequency of a spectrum. (b) Corresponding task
graph

Figure 3: An example of an invalid task graph

node 2 or node 3 (but not both) is computed. Hence
the task graph is not computable.

Furthermore, a valid task graph allows us to propa-
gate an initial data block size at the input, and consis-
tently calculate the data block sizes at all of the nodes
in the graph. That is, it will not be found that an op-
eration represented by an arc in the graph cannot be
used because the size of some input data block is too
small or too large. (For example, the inputs to a ma-
trix multiplication operator must insure that the inner
dimensions of the inputs are equal.)

While much theory can be developed regarding the
verification of task graphs, it is not the focus of our
research. Instead, we assume that any graph presented
to the system is valid and computable.

SIMULATION

A simulation program has been written in Java which
demonstrates the basic ideas discussed here. The pro-
gram is an object-oriented implementation, and in this
section, we describe the program and present the results
from one simple experiment.

Input

The simulation program takes as input a description of
the characteristics of the computing environment and
the processing tasks, including the following:

e The function, processing rate, failure rate, and re-
covery rate of each processor.

e The data generation rate and processing needs of
each sensor. It is assumed that all of the data
blocks generated by a sensor require processing by

the same algorithm.

e The transmission rates of communications links be-
tween sensors and processors.

All random processes in the simulation program are
Poisson processes. Hence, the time between successive
generations of data packets, the time for processors to
process cach data packet, as well as the failure and re-
covery time intervals of processors are all taken as ex-
ponentially distributed random variables with the pre-
specified expected values.

As we describe earlier, the algorithm expressions con-
tain alternatives in execution paths so that they can
be adapted to the system conditions. The method of
adaptation is as described in [3]. Briefly speaking, the
adaptation method is formulated to minimize the ex-
pected system congestion in the network [1]. More
specifically, the adaptation method attempts to min-
imize the expected number of packets occupying the
system by choosing the execution paths appropriately.

Experimental Setup

The experiment described here concerns the task of
spectral analysis by periodogram averaging. In addi-
tion to the direct modulated filter bank implementation
shown in Figure 2, there are two other equivalent im-
plementations, shown in Figure 4 [4]. Figure 4(a) rep-
resents a polyphase implementation of the filter bank,
and Figure 4(b) represents the short-time Fourier anal-
ysis interpretation of modulated filter banks.

In the experiment, there is a single sensor in the sim-
ulated environment, generating data blocks tagged for

XIH]_ | | | | | | | 2| |
P 16 | B=Hyf o B | [» |

|z R [. | [!
[| | 12| el Sequence | I |
!?p. 16 .: "j”m{”-' B pFT | > | .,Iquur:;:c | B=argmax B
! H H | ! :q | |
!" e .’H]j[n’)l B "|| |.| = |
(a)

x[n]ﬁ B Winduw JTum-al'm l’—l DFT | ..ll |2| B |
| | |

|28

| . - 2] s | |
Y B Window B Time-alins | B DFT | B | 1| DJT\DVTE";" > argmax! 0]
, : : T
o B Window | B Timcalias ."| D]"T = | izl .‘l

(b)

Figure 4: (a) Polyphase implementation of modulated
filter bank. (b) Short-Time Fourier Transform imple-
mentation of modulated filter bank.

Convolution 12000 || FFT 12000
Multiplication 9500 || IFFT 6000
" Time-Aliasing | 3000 || Average 9000
Rect. Window 3000 || Argmax 9000
Mamming Win. | 3000 | DownSample | 15000
| Autocorrelation | 8000 || Duplicate 3000
| Serial-Parallel 3000 || Magnitude 9000
Average Seq. 3000

Figure 5: Primitive operations and processing rates in
simulation experiment.

spectral analysis by periodogram averaging. The collec-
tion of primitive processors, along with their processing
rates are shown Figure 5. The experiments tracks the
execution path selections of the data blocks as the input
rate is increased linearly in time.

Experimental Results

Figure 6 shows the results of our experiment. In Fig-
ure 6(a), we plot the input and output rates of the
data blocks versus time. As we can see, under low in-
put rates, the system exclusively chose to use only the
STFT and the polyphase implementations. But the ca-
pacity of these implemenations is reached quickly, re-
sulting in data output rates remaining rather constant
even though the input rate is increasing. The extra load
is mostly placed on the filter bank implementation.
Figure 6(b) shows the number of observed execution
paths as a function of time. As we expcted, the avail-
ability of choices throughout the task graph gave rise

Input/Output Rate
(Datablocks/s)
-9
(=]
o

o
o
=

Polyphase
600 '

o
ny
=]
o
s
=]
o

2500
i |
2 2000
c
28
5 c1500|
52
5 3 1000]
o0
Ed 500
=

0 200 ' 400 ' 600
Time
(b)

Figure 6: Simulation Experiment Results

to many execution paths. It is interesting to note that
this increase occurs non-uniformly in time.

CONCLUSION

This paper presented an improved representation of
signal processing tasks in which equivalency and con-
currency are naturally expressed. Furthermore, a simu-
lation program is described and our initial experiments
show that the specification of alternative implementa-
tions via the proposed task graphs allows the system to
accomplish processing objectives without creating bot-
tlenecks in the system.

REFERENCES

[1] D.P. Bertsckas and R.G. Gallager. Data Networks,
9nd Edition, Prentice-Hall, 1992.

2] E. A. Lee and T. M. Parks, “Dataflow Process Net-
works,”, Proceedings of the IEEE, vol. 83, no. 5, pp.
773-801, May, 1995.

[3] L. Lee and A. V. Oppenheim. “Distributed Signal
Processing,” ICASSPYS pp. 1749-1752

[4] P.P. Vaidyanathan. Multirate Systems and Filter
Banks Prentice Hall, 1993.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied of the Army Research
Laboratory or the U.S. Government.

