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Abstract— Lattice-reduction (LR) techniques are developed
for enhancing the performance of multiple-input multiple-output
(MIMO) digital communication systems. When used in conjunc-
tion with traditional linear and nonlinear detectors, LR techniques
substantially close the gap to fundamental performance limits with
little additional system complexity. Results for individual chan-
nels and ensembles are developed, and illustrated in detail for the
case of small (2 × 2), uncoded, coherent systems. For example,
we show that, relative to the maximum likelihood bound, LR tech-
niques get us within 3dB for any Gaussian channel, and allow us to
achieve the same diversity on the Rayleigh fading channel, when
sufficiently large constellations are used.

I. INTRODUCTION

A wide range of wireless communication problems involve
multiple-input multiple-output (MIMO) channels. These in-
clude the multiuser detection problem and a variety of multiple-
antenna transmission problems.

For the system designer, the goal is to achieve an attractive
performance-complexity tradeoff. At one end of the spectrum,
maximum likelihood detection is optimal, but its complexity
generally makes it impractical. A variety of other detectors,
both linear and nonlinear, require substantially less complexity,
but sacrifice performance significantly. In this paper, we pro-
pose very low complexity receiver structures based on lattice-
reduction techniques that provide near-optimal performance.

In the system of interest, the transmitted signal vector x is to
be detected from the received signal vector y = Hx+w, where
the channel matrix H is Nr × Nt, Nr ≥ Nt, and the entries
of w are independent, circularly-symmetric complex additive
white Gaussian noise (AWGN) with density CN(0, 2σ2

w). We
consider the case in which the channel matrix H is effectively
known at the receiver but not at the transmitter. We consider
both fixed and random H cases. We further restrict our atten-
tion to uncoded systems in which the entries of x are drawn
independently from some constellation.

II. TRADITIONAL DETECTORS

Lattice reduction is used in conjunction with traditional de-
tector structures, the key features of which we now summarize.

An important performance bound corresponds to maximum
likelihood detection (MLD), which minimizes the probability of
block error. In the case where the noise is AWGN, the minimum
distance rule is used,

x̂MLD = arg min
x

‖y − Hx‖2. (1)
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In the absence of special structure, MLD requires computing
distances to every codeword to find the closest one. Therefore,
it has exponential complexity in transmission rate.

By contrast, linear detectors have much lower complexity.
They take the form of x̂ = f(Ay), where A is some matrix
and f(·) is a slicer, which quantizes each entry of Ay to the
nearest constellation symbol to obtain x̂. For familiar constel-
lations such as 4-QAM or 16-QAM, this quantization can be
implemented with very little complexity.

The choice A = H−1 , where H−1 denotes the pseudo-
inverse (H†H)−1H† when Nr > Nt, corresponds to what is
sometimes referred to as inverse channel detection (ICD) [3],
or, in the case of the multiuser detection problem, the decor-
relator. As is well-known, the performance of ICD can suffer
dramatically due to noise enhancement if H is near singular.
Indeed, since H−1y = x + H−1w, the effective noise at the
slicer input is H−1w. Other linear detectors include the min-
imum mean square estimator (MMSE) detector, which offers
slightly better performance by mitigating noise enhancement,
but is still far from the performance of MLD.

A class of nonlinear detectors that offer better performance
with only a modest increase in complexity is that based on
successive cancellation. An example is the Bell Labs Layered
Space-Time (BLAST) receiver [1]. The main steps of the sim-
plest version of BLAST detection are nulling and cancellation.

Nulling : First, the channel matrix is factored as H = QR,
where Q is unitary and R is upper triangular. Next, the received
signal is preprocessed to obtain y′ = Q†y = Rx + w′, where
w′ = Q†w and † denotes the conjugate transpose operation, so
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Cancellation : Using the preprocessed data (2), the entries
of x are detected one by one in decreasing order. Specifically,
after detecting xk, · · · , xNt

, we can subtract their interference
out of y′

k−1 to detect xk−1.
Note that if we did not quantize each x̂k to the nearest con-

stellation symbol as we proceeded, this form of detection would
specialize to ICD. Thus, this quantization serves an important
noise-cancellation role.

A major problem with BLAST detection is error propagation.
The entry detected first usually has the smallest signal to noise
ratio (SNR) and the most error. Unfortunately, detecting later
entries correctly vitally depends on having correctly decoded
previous entries. For this reason, in an uncoded system, where
error correction is not used, the error rate for BLAST detection



is typically dominated by that of the first entry, and thus far
from optimal.

To develop a framework within which to introduce lattice re-
duction, consider MLD, ICD, and BLAST detection in the 2×2
(real) example shown in Fig. 1. The transmitted symbols x1 and
x2 are each integers between −N and N , where N is large, and

the channel matrix is, for purpose of illustration, H =

[
2 3
0 1

]
.
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Fig. 1. Comparison of decision boundaries for various detection methods.

The received constellation Hx is shown in (a). It can be
viewed as a lattice with basis vectors being the two columns of
H, which are drawn to show the distortion of the lattice. The
decision boundaries for ICD, BLAST detection, and MLD are
shown in (b), (c), and (d), respectively. For ICD, the decision
regions are undesirably elongated and narrow parallelograms;
small amounts of noise would lead to detection errors. This
is due to the two basis vectors being highly correlated. For
BLAST detection, the decision regions are rectangular, because
one entry of x is detected at a time. While better than ICD, it
is still inferior to the optimal decision boundary drawn in (d),
whose optimality is apparent by inspection.

In this particular example, if we were to consider the lattice
basis vectors to be

[
1 1

]T
and

[
1 −1

]T
instead of

[
2 0

]T

and
[
3 1

]T
, where T denotes the transpose operator, then

the decision boundaries for ICD and BLAST detection would
coincide with those of MLD, and therefore be optimal.

While a basis change cannot always lead to optimum perfor-
mance, it can in general improve performance. In particular,
changing the lattice basis to be more orthogonal and shorter,
the sense of which we will make precise later, we can gener-
ally obtain better decision boundaries. And the more correlated
the columns of H, the more significant the improvements. Note
that changing lattice basis does not change the lattice. The prob-
lem of finding the optimal lattice basis is called the lattice re-
duction (LR) problem.

III. LATTICE REDUCTION

A lattice in n complex dimensions can be described by
L = {s | s = Bλ} where B =

[
b1 b2 · · · bn

]
is a ma-

trix whose columns are basis vectors for the lattice and
λ =

[
λ1 λ2 · · · λn

]T
is a vector of complex integer

weights, i.e., λi ∈ Z + Zj with Z denoting the set of integers.
For any lattice L there are many possible bases. Indeed, if B

is a basis, so is B′ = BP for any matrix P such that both P and
P−1 have integer entries. Specifically, a point s represented by
x in the basis B is represented by z = P−1x in the basis B′,
i.e., s = Bx = (BP)(P−1x) = B′z.

The basic idea behind using lattice reduction in conjunction
with traditional low-complexity detectors is to operate in a cho-
sen lattice basis that is optimized for those detectors, as shown
in Fig. 2.
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Fig. 2. Using lattice reduction in conjunction with traditional detectors.

In the traditional system, the detector compensates for the
original channel H to produce x̂. In the new system, we per-
form a basis change via a matrix P, specifically

y = Hx + w = (HP)(P−1x) + w = H′z + w. (3)

With this basis change, the traditional detector is first used to
compensate for the new channel H′ = HP to produce ẑ, then
x̂ is produced via x̂ = Pẑ. For example, if ICD is employed,
then (H′)−1y is quantized to produce ẑ, from which we obtain
x̂ via x̂ = Pẑ.

To choose an appropriate basis changing matrix P, we note
that ICD and BLAST detection are more effective when the
channel matrix is further from being singular. Geometrically,
this corresponds to wanting the columns of the new H′, which
are the new basis vectors of the received constellation lattice, to
be less correlated and shorter. Thus, the problem of improving
the condition of the effective channel H′ is one of reducing the
lattice basis corresponding to the original channel H.

Lattice reduction in high dimensions is a known NP-hard
problem. One approach is the polynomial time, sub-optimal
LLL algorithm [2]. In this paper, we focus on the 2 × 2 case
(Nr = Nt = 2) that arises frequently in practice, where we de-
velop important insights and an optimal iterative algorithm.

In the 2 × 2 case, H = [b1 b2]. Let us use b̃1 to de-
note the component of b1 that is orthogonal to b2, and define
b̃2 similarly. For BLAST detection, the effective SNR at the
point of detecting x1 and x2 are r11 = ‖b1‖ and r22 = ‖b̃2‖,
respectively. Therefore, the best basis is the one with the
largest min(‖b1‖, ‖b̃2‖). For ICD, the corresponding mea-
sure is min(‖b̃1‖, ‖b̃2‖). It can be shown that the basis (u,v),
where u is the shortest (non-zero) vector in the lattice and v is



the shortest vector that is not a multiple of u, is the optimal ba-
sis for both detection methods. The proofs are straightforward,
but are omitted due to space limitations.

A. Reduction Algorithm
Given an original set of basis vectors (b1,b2) for a lattice

with ‖b1‖ ≤ ‖b2‖, we develop an iterative algorithm to pro-
gressively reduce their correlation and converge to the desired
basis vectors (u,v).

One intuitive way to reduce the correlation between two lat-
tice basis vectors is to subtract integer copies of one vector out
of the other. Let b′

2 = (b2 − nb1) be the replacement for b2.
The parameter n should be chosen so as to minimize the corre-
lation between b1 and b′

2, i.e.,

n∗ = arg min
n∈Z+Zj

|〈b1,b2〉 − n‖b1‖2| =

⌊ 〈b1,b2〉
‖b1‖2

⌉
, (4)

where the function b·e rounds its argument to the nearest in-
teger. For complex arguments, real and imaginary parts are
rounded separately. And to avoid ambiguity, half integers are
rounded to even integers. Note that this choice of n given by
(4) also minimizes the norm of b′

2.
The resulting correlation after replacing b2 with b′

2 is

〈b1,b
′
2〉 =

〈
b1,

(
b2 −

⌊ 〈b1,b2〉
‖b1‖2

⌉
b1

)〉

=

( 〈b1,b2〉
‖b1‖2

−
⌊ 〈b1,b2〉

‖b1‖2

⌉)
· ‖b1‖2. (5)

Since the rounding errors for real and imaginary parts are each
no more than 1/2, we have

|Re{〈b1,b
′
2〉}| ≤

1

2
‖b1‖2 and | Im{〈b1,b

′
2〉}| ≤

1

2
‖b1‖2.

After replacing b2 with the optimal b′
2, if this new b2 is shorter

than b1, we swap them and then check whether further subtrac-
tion is possible.

Summarizing, the algorithm is as follows:
1) Check the correlation. If |Re{〈b1,b2〉}| ≤ 1

2
‖b1‖2 and

| Im{〈b1,b2〉}| ≤ 1

2
‖b1‖2, stop. Otherwise, replace b2

with b2 −
⌊
〈b1,b2〉
‖b1‖2

⌉
b1 and go to step 2.

2) Check their lengths. If ‖b2‖ > ‖b1‖, stop. Otherwise,
swap them and go to step 1.

When this iterative procedure stops, the resulting basis will
have the properties ‖b1‖ ≤ ‖b2‖, |Re{〈b1,b2〉}| ≤ 1

2
‖b1‖2

and | Im{〈b1,b2〉}| ≤ 1

2
‖b1‖2. It follows that basis vectors

with these properties are the ones we desire, as we show next.
Proposition 1: Given a two dimensional lattice with basis

vectors u and v. If ‖u‖ ≤ ‖v‖, |Re{〈u,v〉}| ≤ 1

2
‖u‖2, and

|Im{〈u,v〉}| ≤ 1

2
‖u‖2, then

1) u is the shortest (non-zero) vector in the lattice.
2) v is the shortest vector that is not a multiple of u.

Proof: 1) Since (u,v) is a lattice basis, any vector s in
the lattice can be written as s = au + bv, with a, b ∈ Z + Zj.

‖s‖2 = ‖au + bv‖2 (6)
= |a|2‖u‖2 + |b|2‖v‖2 + 2Re{a†b〈u,v〉}
≥ (a2

r + a2
i + b2

r + b2
i −|arbr + aibi|−|aibr − arbi|)‖u‖2

≥ ‖u‖2 when ar, ai, br, bi are not all 0,

where ar = Re{a}, ai = Im{a}, br = Re{b}, bi = Im{b}.
The last step uses the identities, for any real numbers a, b, c, d,

a2 + b2 + c2 + d2 ≥ |ac| + |bd| + |bc| + |ad|
|ac| + |bd| ≥ |ac + bd| and |bc| + |ad| ≥ |bc − ad|

The necessary and sufficient conditions for the equalities to
hold are |a|=|b|=|c|=|d|, abcd≥0 and abcd≤0, respectively.

2) Any vector s in the lattice that is not a multiple of u can
be written as s = au + bv, a, b ∈ Z + Zj, and b 6= 0.

‖s‖2 = ‖au + bv‖2 (7)
= |b|2

(
‖v‖2 − ‖u‖2

)

+ |a|2‖u‖2 + |b|2‖u‖2 + 2Re{a†b〈u,v〉}︸ ︷︷ ︸
≥ |b|2

(
‖v‖2 − ‖u‖2

)
+ ‖u‖2 +

(
‖v‖2 − ‖v‖2

)

= (|b|2 − 1) · (‖v‖2 − ‖u‖2) + ‖v‖2

≥ ‖v‖2 because b 6= 0

It is clear that the procedure will end. In particular, after each
iteration, the lengths of both basis vectors decrease (at least one
decreases strictly); otherwise, the procedure ends. Since lattices
are discrete, there can only be finitely many vectors shorter than
the original ones. Thus, the procedure must end.

In the remainder of the paper we examine the effects of using
lattice reduction with traditional detectors. Let us use LR-ICD
and LR-BLAST to refer to the detection schemes that combine
lattice reduction with ICD and BLAST detection respectively.

IV. GAUSSIAN CHANNELS

In this section we develop individual channel results, i.e., for
a fixed channel matrix H.

A. Complexity

The incremental complexity inherent in the use of lattice re-
duction is determined by the number of iterations required to
reduce the basis. The worst-case complexity is unbounded. In
particular, we are able to construct infinite sequences of channel
matrices (based on Fibonacci sequences) that take an increasing
numbers of iterations to finish. However, the fraction of all pos-
sible 2×2 channels that require more than one or two iterations
is actually very small, so in practice the complexity increase is
negligible.

B. Performance

These new detection methods realize decision regions (and
thus performance) much closer to that of MLD, as we now de-
velop.

Fig. 3 shows a comparison of the decision regions for MLD
and LR-ICD. It is drawn for a 2×2 real example for illustration
purpose. The MLD decision region is a hexagon, and that of
LR-ICD is a parallelogram. These regions also coincide with
what are referred to as the Voronoi cell and unit cell of the lat-
tice, respectively.

The minimum distances dmin from the received constellation
point to the decision boundaries are drawn. Recall that dmin



MLD
LR−ICD

MLD
min

LR−ICD
min

u

v

u

d d

Fig. 3. Comparison of the decision regions for MLD and LR-ICD. Minimum
distances to the decision boundaries are also compared.

is the minimum amount of noise needed for an error to occur,
and parameterizes the error probability at high SNR in white
Gaussian noise as 2Q(dmin/σw), where σ2

w is the noise variance
per dimension and Q(x) =

∫ ∞

x
(1/

√
2π) exp{−x2/2}. We see

that for LR-ICD, dmin is shorter, so the performance is worse.
This is a result of the basis vectors not being orthogonal. We
now develop a precise bound on the ratio of dMLD

min to dLR−ICD
min

to quantify the worst SNR gap to the MLD bound.
Generalizing Fig. 3 to the complex case, we see that

dMLD
min =

1

2
‖u‖ and dLR−ICD

min =
1

2
‖ũ‖.

where

‖ũ‖2 = ‖u‖2 −
∥∥∥∥
〈u,v〉
‖v‖2

v

∥∥∥∥
2

= ‖u‖2 − Re{〈u,v〉}2

‖v‖2
− Im{〈u,v〉}2

‖v‖2

≥ ‖u‖2

(
1 − 1

4
− 1

4

)
=

1

2
‖u‖2. (8)

Therefore, dLR−ICD
min ≥ (1/

√
2)dMLD

min , which corresponds to
a maximum SNR loss of 3dB. Note that this bound is tight;
the worst case is achieved by, for example, u =

[
1 0

]T
, and

v = ( 1

2
+ 1

2
j)

[
1 1

]T
. However, for many channel matrices

the ratio is much closer to one.
For LR-BLAST, dLR−BLAST

min = 1

2
min(‖u‖, ‖ṽ‖) ≥ 1

2
‖ũ‖,

so it always performs at least as well as LR-ICD. Comparing to
MLD, dLR−BLAST

min = dMLD
min , when ‖ṽ‖ ≥ ‖u‖, which happens

quite often in the 2 × 2 case. However, the worst case is still
dLR−BLAST
min = dLR−ICD

min = (1/
√

2)dMLD
min .

In summary, LR can improve the performance of detection
to within 3dB from optimal in terms of dmin. The actual gap
depends on how well the particular channel can be reduced.

Another property of lattice reduction is that it monotonically
improves detection performance. In particular, for both LR-
ICD and LR-BLAST, each iteration of the reduction algorithm
improves the decision region and increases dmin. The more
correlated the original basis vectors are, the greater the ultimate
improvement. This behavior is illustrated by the following ex-
ample channel matrices

H1 =

[
6 7
8 −9

]
and H2 =

[
6 7
8 9

]

whose resulting SNR gaps are listed in Table I. We see that little
improvement is obtained for H1, which has nearly orthogonal

columns, while a large improvement in dB is obtained for H2,
which has highly correlated columns.

TABLE I
SNR GAPS TO MLD PERFORMANCE FOR VARIOUS DETECTORS

ICD BLAST LR-ICD LR-BLAST
H1 0.31 dB 0.00 dB 0.31 dB 0.00 dB
H2 18.1 dB 17.0 dB 0.00 dB 0.00 dB

V. RAYLEIGH FADING CHANNELS

In this section we develop results for ensembles of channels,
i.e., for a random channel matrix H. We focus on the Rayleigh
fading case in which the entries of H are independent CN(0, 1)
random variables, independent of the Gaussian noise.

A. Complexity

Since the incremental complexity is dependent on the real-
ized channel, we plot in Fig. 4 on both linear and logarith-
mic scales the empirical distribution of the number of iterations
needed in the Rayleigh fading environment. Note that over 99%
of the bases are reduced in two iterations or less, and that it be-
comes increasingly unlikely to need more iterations.
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Fig. 4. Distribution of number of iterations needed for 2×2 lattice reduction.

B. Performance

In Rayleigh fading, the the average error probability Pe de-
cays according to Pe ∼ 1/SNRν at high SNR, where ν is
termed the order of diversity in the system. The diversity or-
der is a reflection of the systems tolerance of and robustness to
the channel being near singular (i.e., in a deep fade).

In the 2 × 2 case, lattice reduction improves the diversity ν
achieved by ICD and BLAST detection to that of MLD. To see
this, the average symbol error rate (SER) curves for the various
detection methods are plotted in Fig. 5 for 16-QAM. The top
two curves are for ICD and BLAST detection. In the high SNR
regime, they both have diversity 1. Note that for BLAST, if
there were no error propagation, the diversity for the entry de-
tected second would have been 2. However, its actual diversity
is only 1 due to error propagation from the entry detected first,
which itself experiences only diversity 1.

The lowest curve is for MLD. The two curves immediately
above it and parallel to it correspond to LR-ICD and LR-
BLAST. In the high SNR regime, all three evidently have di-
versity two. This shows the improvement in diversity provided
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complex case. The constellation used is 16-QAM.

by using lattice reduction. Notice, with lattice reduction, the
relative benefits of BLAST detection over ICD is smaller; this
is a result of the basis vectors becoming more orthogonal.

It is also insightful to examine the empirical cumulative den-
sity of d2

min for these detectors, which is depicted in Fig. 6. Rel-
ative to the original ICD and BLAST detection (dashed curves),
it is evident that with lattice reduction (solid curves), the prob-
ability of having small d2

min is substantially reduced. Further-
more, comparing the LR curves to the MLD curve (dotted), we
see that the performance gap is much less than the worst case
3dB SNR loss. This is because channels yielding these larger
losses are rare.
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Note that Fig. 6 reflects the diversity behavior seen in Fig. 5
from a different angle. Indeed, the SER is related to a kind of
“outage” probability, the probability of d2

min being less than a
threshold which is inversely related to SNR.

One feature in Fig. 5 that is not captured by Fig. 6 is the gap
between the LR curves and the MLD curve. This is because the
detection performance is also affected by the number of near-
est neighbors and, indirectly, the size of the constellation. In a
finite constellation, some points have fewer nearest neighbors,

for example, the edge points. In some extreme cases, it is even
possible for a point to have all its nearest neighbors distance
dmin away to be outside the constellation, resulting in the ef-
fective dmin to be actually greater. For these reasons, LR based
detection, which treats the constellation as an infinite lattice, is
slightly further sub-optimal compared to MLD, which takes ad-
vantage of the finite size of the constellation. However, as the
constellation gets larger, these differences diminishes. This fi-
nite constellation effect is apparent from extending the constel-
lation to 64-QAM and 256-QAM from the original 16-QAM, at
the 25dB SNR level. The corresponding SER curves for MLD
are plotted in Fig. 7 together with the corresponding SER of
LR-BLAST. We can see that as the constellation gets larger, the
gap between MLD and LR-BLAST becomes smaller.
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Fig. 7. The gap between SER of MLD and LR-BLAST diminishes with in-
creasing constellation size. The noise level is such that SNR is 25dB for the
16-QAM constellation.

VI. SUMMARY AND FUTURE WORK

In this paper, we proposed new coherent detection methods
for MIMO communication systems. These methods signifi-
cantly improve the performance of traditionally employed low-
complexity detectors, in particular, ICD and BLAST detection,
by incorporating lattice reduction. We studied the small (2×2),
uncoded, coherent systems in detail. We presented an itera-
tive lattice reduction algorithm for optimal decoding and stud-
ied its complexity. We showed that the number of iterations
needed is typically low and it is increasingly unlikely to need
more. We also showed that, relative to optimal MLD, LR tech-
niques is sub-optimal by no more than 3dB in terms of SNR for
any Gaussian channel, and allows us to achieve the same diver-
sity on the Rayleigh fading channel, assuming sufficiently large
constellations are used.

The proofs and simulations in this paper are limited to the
2 × 2 case. However, for higher dimensional cases, we believe
lattice reduction could be very useful as well. Work in this di-
rection is in progress.
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