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ABSTRACT 
A novel multiscale framework is introduced for the represen- 
tation of a clam of fractal point processes. Using this frame- 
work, efficient algorithms are developed for the Rynthesis of 
fractal point processes from a mixture of Poisson processes. 
Multiscale analysis algorithms are also developed within 
this framework for computing Maximum-Likelihood frac- 
tal dimension estimates of such processes from corrupted 
observations. 

1. INTRODUCTION 

Point processes with fractal characteristics are promising 
models for a wide range of natural and man-made phe- 
nomena, including distributions of stars and planets in the 
universe, transmission errors in many communication chan- 
nels, and impulsive spikes in auditory neural signals [l] [2] 
[3] [4]. In contrast to fractal waveforms, which have been 
explored in considerable depth (we, e.g., [5]), the develop 
ment of efficient algorithms for synthesizing, analyzing, and 
processing fractal point processes has generally proven dif- 
ficult, largely due to the lack of an adequate mathematical 
framework. In this paper, we present a novel and rather 
natural multiscale framework for the study of an important 
c b  of fractal point processes, and describe some practical 
and efficient signal processing algorithms that arise out of 
this framework. 

Before we present our main results, we briefly summa- 
rize some terminology and notation for the paper. In gen- 
eral, a point process refers to a collection of points, typically 
c d e d  "arrivals," that are randomly distributed over some 
multidimensional space. For simplicity, we shall restrict 
our discussion to the one-dimensional case and refer to the 
underlying space as time t. For convenience, we will also 
choose the time origin to coincide with an arrival referred to 
an the zeroth arrival, and consider only t 2 0. In this case 
it is useful to characterbe a point process in terms of the 
collection of time intervale between arrivals. In particular, 
we use X[n] far n = 1,2,. . . to denote the nth interarrival 
time-specifically, the time interval between the (n - 1)st 
and nth arrivals. An equivalent characterization of a point 
process is in terms of N x ( t ) ,  the total number of arrivals 
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that have occurred up to and including time t. The counting 
process NX (t) is a discrete-valued continuous-time random 
process whose generalized derivative consists of a train of 
unit impulses located at the arrival instants. 

2. A FRACTAL POINT PROCESS MODEL 

The point processes of interest in this work are those that 
possess a key self-similarity property. Formally, a self-simi- 
far point process is defined to be a point process that is 
statistically scale-invariant in the strict sense, so that the 
associated counting process N x  (t) obeys, for all a > 0, 

P where the notation = denotes equality in the sense of all 
finite-dimensional distributions. 

Many physical phenomena of interest exhibit no prefer- 
ence for a space or time origin. Consequently, we are gener- 
ally interested in point process models that are character- 
ized by some form of stationarity. Since renewal processes- 
i.e., proceases with independent, identically-distributed in- 
terarrivals - are widely used to generate stationary point 
process models, it M tempting to restrict our attention to 
those self-similar point processes that are simultaneously re- 
newal processes. However, it is straightforward to show no 
nontrivial self-similar point processes are bona fide renewal 

Fortunately, a weaker but still highly meaningful form 
of stationarity can be imposed by generalizing the notion of 
a renewal process. This notion is baeed on a characteriza- 
tion of the point process after subcolledions of interarrival 
intervals are discarded. Specifically, we say a point process 
is conditionally-renewing if it has the following properties: 

p r o m  (e, e.g., [6I)* 

1. 

2. 

When interarrivals not in the range (g,q are dis- 
carded, for some 0 < g < f < co, the resulting pro- 
cess is a renewal process; and 
Any finite collection of point processes, the ith pro- 
cess of which is derived by removing interarrivals not 
in some range (a ,Zi ]  for some 0 < a < F, < 00, 

are mutually independent when the ranges (3, Z,] for 
distinct i are nonoverlapping. 

It is insightful to note that the conditioningin this definition 
is physically rather natural. Indeed, in empirical tests for 
renewal behavior in many physical point processes, limita- 
tions on data resolution and duration typically preclude the 
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measurements of very short and very long interarrivals. It 
is also worth noting that our definition is closely related to 
the concept of conditional stationarity developed by Man- 
delbrot in [2 ] .  

In the sequel, we restrict our attention to those self- 
similar point processes which are conditionally-renewing. 
For convenience, we shall refer to this class of processes as 
simply fractol renewal processes. From this definition, it 
can be shown [SI that these processes have the key prop- 
erty that upon removal of the interarrivals not in the range 
(ZL,ZH], where X L  and ZH are any constants such that 
0 < ZL < ZH < 00, the resulting renewal process has inter- 
arrivals Y[n] distributed according to the probability den- 
sity function 

where U' is a normalization constant. The shape parameter 
7 of this power-law distribution often lies between 1 and 
2, and is related to the fractal dimension D of the point 
process via 

7 = D + 1 .  

3. A SYNTHESIS ALGORITHM FOR 
FRACTAL RENEWAL PROCESSES 

In this section, we develop a multiscale synthesis for frac- 
tal renewal processes. This synthesis involves the mixture 
of a continuum collection of constituent processes indexed 
by a real variable a E b,,i;l. These constituents are ob- 
tained from different dilations of independent sample func- 
tions derived from a prototype Poisson process with mean 
arrival rate A. Specifically, the interarrivals W,,[n] of each 
constituent are related to the interarrivals W[n] of the pro- 
totype by 

~ . [ n ]  E eaw[n].  
Since the amount of expansion increases with a, the real 
constants a and B can be interpreted a8 the indices of the 
finest and coarsest scales, respectively. 

Using this family of Poisson processes, a point process is 
generated as follows. The synthesis is initialized by locating 
the zeroth arrival of the output at the origin. For the gen- 
eration of each subsequent arrival, a constituent process is 
first selected independently from a generalized exponential 
probability density function 

where U: is a normalization factor, and 7 is a free param- 
eter. The nth arrival of the output is then set at the first 
arrival time of the selected constituent process following the 
(n - 1)st arrival time of the output. 

In [SI we show that the point process generated in this 
manner is a renewal process with the property that, as + 
-a and iT + CO, the probability density function of its 
interarrivals X[n] is a power-law, i.e., 

(3) 
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Figure 1: Interrarival density, discrete synthesis. 

for z > 0. where 

(4) 

More generally, we note that (3) with (4) is a good approx- 
imation to the interarrival density for values of z satisfying 

&/A << x (< e'/A. 

Consequently, the values of g and E required in practice 
depend on the interarrival range of interest. 

Very useful approximations to fractal renewal process 
behavior are obtained when the continuum of constituents 
in the preceding synthesis is replaced with a discrete col- 
lection of constituents, which we index using the integer 
variable m E {m,m + 1,. . . ,E}. In this case, the interarri- 
vals Wm[n] of each of these constituents are related to the 
interarrivals W[n] of the prototype via 

where the constant p > 1 governs the spacing between the 
constituents. The integers and 5i can then be regarded 
as the indices of the finest and coarsest scales, respectively. 
The mixing of the constituents is carried out as in the con- 
tinuum case, but with the integer-valued selection random 
variables M, distributed according to the generalized geo- 
metric probability mass function 

m = tn, 
otherwise, 

+ 1,. . . , iii p { M = m l = {  2~ -(7-1h 

where U% is a normalization factor. 

a renewal process with the property that, as 
m + 00, its interarrival density satisfies 

As shown in [SI, the process synthesized in this way is 
+ -a and - 

(5) 

for some constants 0 < U: 5 U: < 00, and for every x > 0. 
Again, we stress that the number of scales required in prac- 
tice depends on the interarrival range of interest. Fig. 1 
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shows the interarrival density corresponding to the case 
p = 10 and -y = 1.2. As one would anticipate, the ripple 
periodicity is logp. Furthermore, it is worth noting that 
ripple size decreases rapidly as p + 1, leading to increas- 
ingly fine approximations. When p = 2, for example, the 
approximation is essentially perfect; indeed, numerical cal- 
culations yield log(ug/uT) = 3.2e-5 for the case 7 = 1.2! 
Not surprisingly, decreasing p involves a tradeoff-her ap- 
proximations at the expense of requiring more constituents 
for a given interarrival range of interest. 

As a final remark, we note that a statistically equivalent 
but more efficient implementation of the multiscale synthe- 
sis arises by exploiting the memoryless property of Poisson 
processes. In particular, we can generate a fractal renewal 
process from just a single prototype Poisson process. With 
this method, the nth interarrival interval of the Poisson 
process is stretched by the factor p"", where m, is the 
value of the nth selection random variable. From this point 
of view, there are interesting connections between our con- 
struction and the construction of Johnson, et 01.[7] based 
on nonhomogeneous Poisson processes. 

4. A PARAMETER ESTIMATION 
ALGORITHM FOR FRACTAL RENEWAL 

PROCESSES 

In this section, we demonstrate how the discrete multiscale 
representation developed in Section 3 can be exploited in 
the estimation of the shape parameter 7 associated with 
a fractal renewal process. As discussed in Section 2, this 
parameter i s  directly related to the fractal dimension of the 
process and in general captures useful information about 
the pattern of arrivals in the associated point process. In 
addition, estimates of 7 are required in intermediate stages 
of many detection and estimation problems involving such 
processes. 

In the sequel, we present a Maximum-Likelihood (ML) 
algorithm for estimating 7 based on observations of inter- 
arrivals. For robustness, the observations will be modeled 
as distorted. In particular, we assume observations of the 
form 

Y[n] = X[n] + W[n], n = 1,2,. . . , N ,  

where { X ( n ] ; n  = 1 ,2 , . . .  ,N} are theinterarrivalsof afrac- 
tal renewal process and {W[n]; n = 1,2, .  . . , N} are "noise" 
terms. We restrict our attention to the case in which the 
W[n] are both mutually independent and independent of 
the interarrivals X[n], and are identically distributed ac- 
cording to the probability density function 

aexp(-aw) w 2 0 
otherwise. 

This noise component can be used for modeling a variety of 
natural effects that arise in applications, such as a random 
processing delay in an interarrival measurement transducer. 

For convenience, we formulate our problem in terms of 
a new parameter p defined as 

p = p1-7, 

keeping in mind that the ML estimate of 7 can be obtained 
from the resulting ML estimate of /3 via 

=I.ML = 1 - log&L/ logp. 

In addition to 7, the parameters A and a are generally un- 
known a pr ior i ,  and need to be estimated. Consequently, 
we represent the collection of parameters to be jointly esti- 
mated with the vector 8 = (A,a,p)*. We also note that 
without loss of generality we may set = 1 (and appropri- 
ately scale A). The total number of scales required, which 
we denote by L, is typically determined from the spread of 
the data. As will become apparent, overestimating L gen- 
erally does not affect the estimation performance, though 
the corresponding algorithm is less efficient in terms of both 
computation and storage. 

Direct calculation of the ML parameter estimates is dif- 
ficult in general. However, these estimates can be efficiently 
computed using an iterative Estimate-Maximize (EM) al- 
gorithm [8]. In our description of the algorithm, we use 
&[,I = ( ~ [ r ~ , & [ p ~ l & ~ ) T  to denote the estimates obtained at 
iteration r ,  and, for convenience, A,[,] to denote A[,lp-". 
Each iteration of the resulting estimation algorithm consists 
of two steps. 
E-Step. Using the current set of parameter estimates, for 
each m and n estimate the probability that interarrival z[n] 
was derived from scale m given the observation y[n], i.e., 

where 07 is a normalization constant and provided j m r r 1  # 
&[,I. When Am[,] = &[,I, we use the alternative expression 

where 5: is again a normalization constant. 
M-Step. Using the preceding table of probability esti- 
mates, new estimates of the parameters are computed via 

N L  

N L  

where 
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Figure 2: Dependence of parameter estimator performance 
on N and 7; p = 2, 0 = 1/15 

provided A,,, # &; otherwise, 

Straightforward variants of this algorithm apply when 
m e  of the parameters are known a priori. In particu- 
lar, parameter estimates of any known parameters in the 
algorithm am replaced with their true values in both the 
E and M-steps, and the corresponding parameter update 
in the M-step is omitted. In all cases, the EM algorithm 
increases the likelihood function at each iteration and con- 
verges to the ML estimates. Not surprisingly, however, the 
convergence rate of the algorithm generally improves when 
some of the parameter values are known. 

In some preliminary experiments, the dyadic version 
( p  = 2) of th is  algorithm was tested on simulated data. 
While all three parameters A,a,P were assumed unknown 
and were estimated throughout the experiments, we focus 
on the performance of estimates for p (and, hence, 7) since 
this is the primary parameter of interest. 

In one set of experiments, we investigated the estimator 
performance (LB a function of sample size N and 7, with the 
noise parameter fixed at a = 15-’. To ensure that mod- 
eling error effects were included in these tests, both the 
power-law random Variables and exponential noise terms in 
the test data were synthesized via transformation of uni- 
form random variables. The results of the experiments are 
shown in Fig. 2. The RMS errors of the 7 estimates were 
taken over 64 Monte Carlo trials. AB we would expect, bet- 
ter estimates are obtained when larger data sets are avail- 
able. The apparent relationship between performance and 
the shape parameter 7 can be understood as follows. When 
7 fi: 1, extremely long and extremely short interarrivals oc- 
CUI with comparable hquency. In this case, very few data 
points are suflicient to capture the behavior of the prob- 
ability density function over a broad range. For -y fi: 2, 
however, short interarrivals predominate over longer ones. 
Hence, a narrower range af the distribution is generally ob- 
served, making it difficult to accurately estimate 7. 

In a separate set of experiments, the ef!ecte of the quan- 
tity a / A  were examined, and the corresponding results are 
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Figure 3: Dependence of parameter estimator pedormance 
on a/A; p = 2 

shown in Fig. 3. As before, the estimator variance was 
taken from 64 trials. Since large values of a / A  correspond 
to low distortion in observations, the performance of the 
estimator improves as this quantity increases. Note that to 
d o w  specification of the true value of A, the synthesis of 
the power-law random variables was based on the multiscale 
framework in this case. 

These results, together with the results of a more ex- 
tensive evaluation of this algorithm contained in [6], sug- 
gest that these multiscale estimation algorithms are robust, 
computationally &cient, and highly practical for a variety 
of applications. 
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