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Chapter 1

Introduction

Exponential signals are often used to model relationships for which a constant change in the
independent variable corresponds to a constant proportional change in the dependent variable. This
property, and the fact that the derivative of an exponential signal is itself an exponential signal, are
just two of the many reasons that this class of signals plays an important role in a broad range of
disciplines. For example, exponential signals play a fundamental role in: the solutions to differential
equations, the study of radioactivity in nuclear physics, the behavior of various electronic compo-
nents, compounding interest in finance, tunneling in quantum physics, the behavior of atmospheric
pressure in geophysics, and in a number of other places.

In the field of signal processing, exponential signals play a fundamental role in characterizing
the behavior of signals and systems, e.g., Fourier and Laplace transforms, eigenfunctions of Linear
and Time-Invariant (LTI) systems, etc. With respect to exponential-based transforms, exponential
signals are used as a basis for representing a set of data, irrespective of the quantities represented by
the data. Consistent with this methodology, an important contribution in this thesis is the derivation
of a representation for a useful class of discrete-time signals based upon linear combinations of real,
decaying exponential signals. After establishing this representation, important key properties and
consequences of such a representation are identified and discussed.

Digital signal processing has enjoyed widespread use on both standard computers and special
purpose hardware, e.g., application-specific integrated circuits, field-programmable gate arrays, etc.
In order to use digital processing techniques on a continuous-time data source, the signal must be
appropriately sampled. However, the process of sampling a transient signal inherently includes the
effects of aliasing due to the infinite bandwidth of each exponential component. More commonly,
it is often only the low frequency content of any signal that can be measured due to the lowpass
characteristic of numerous physical sampling systems. In general, a signal is not guaranteed to be
uniquely recovered from the output of a non-invertible system, e.g., an ideal lowpass filter (LPF),
without further knowledge of the input signal prior to the system. In other words, the heavily
attenuated portion of the frequency spectrum cannot be recovered in any meaningful sense. As
a consequence, the process of sampling a transient signal cannot completely avoid aliasing effects.
Therefore it is of particular interest in many fields that rely upon transient signals to convey infor-
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1.1. ORGANIZATION OF THESIS CHAPTER 1. INTRODUCTION

mation to account for this effect. For this reason, an important aspect of this thesis deals with the
recovery of a transient signal after it has been processed by an LPF. As we will show, by exploiting
prior knowledge on the structure of transient signals, it becomes possible to recover transient signal
parameters under fairly broad conditions relating the passband of the lowpass filter and the fastest
decaying exponential component of the filtered transient signal.

The algorithms developed in this thesis are easily extendable to a more general structure of sig-
nals, specifically a linear combination of damped complex exponentials, all of the same frequency.
Given a signal of this structure, the algorithms in this thesis are directly applicable by simply imple-
menting a pre-processing stage where the signal to be analyzed is frequency-modulated to baseband,
therefore becoming a real, transient signal.

1.1 Organization of Thesis

This thesis progressively discusses three stages of parameter recovery for transient signals in
which each stage builds upon the previous. The remainder of this section outlines this progression
as well as the organization of results.

Chapter 2 defines the structure of transient signals and motivates the need for the algorithms
and techniques proposed in this thesis. In addition, detailed definitions of successful parameter
recovery are presented for the three stages discussed below. A transient signal, in what follows,
is completely characterized by its decay rates and amplitude coefficients, where each amplitude
coefficient corresponds to an exponential component with a unique decay rate.

The first stage of this thesis considers determining the amplitude coefficients of a transient signal
given both the samples of the signal and the decay rates present in the signal. Chapter 3 proposes
two algorithms for determining the amplitude coefficients for this case, one of which avoids solving
an ill-conditioned formulation using matrix operations, but instead exploits the structure inherent in
exponential signals. Although the linear system of equations derived for the amplitude coefficients
is uniquely invertible, the solutions found using the proposed algorithms result in fewer numerical
errors.

The second stage considers determining the amplitude coefficients and decay rates of a transient
signal given only the samples of the signal. (Definitions 1 and 3 in Table 2.2) Two approaches
used to solve for the decay rates are considered in this thesis. The first approach is discussed in
Chapter 3 where the transient transform is defined in order to use spectral analysis techniques,
similar to Fourier spectral analysis, in order to determine which decay rates are present in the
transient signal. Due to the numerical instability of implementing this transform for large data sets,
several approximate transient spectral analysis techniques are proposed in Chapter 4. The second
approach considered is to make use of well known parameter recovery algorithms, a survey of which
is presented in Appendix B. The result of either of these approaches is the set of decay rates present
in the transient signal. The algorithms presented for the first stage may then be used to determine
the amplitude coefficients.

The third and final stage of this thesis considers determining the amplitude coefficients and decay
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rates of a transient signal given samples of the transient signal after lowpass filtering. (Definitions
2 and 4 in Table 2.2) Chapter 5 presents a framework for determining the decay rates in this
scenario based upon overdetermined parameter recovery. The recovery of the decay rates is shown
to be possible under a broad range of cutoff frequencies of the LPF. This framework requires the
number of exponential components present in the signal to be known a priori. To address this, an
algorithm for determining the model order when it is unknown is proposed. Further, an alternating
projection-based algorithm is also proposed which utilizes both the transient transform and the
Fourier transform, i.e., representations using both real exponential and complex exponential bases,
in order to determine the amplitude coefficients.

Chapter 6 provides a summary of the key results within this thesis as well as highlighting several
potential directions for future research.
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Chapter 2

Transient Structure, Spectra, and

Parameter Recovery

This chapter defines the transient structure of signals as well as identifies the need for transient
parameter recovery through example applications. The concept of a transient domain representa-
tion of a signal is also motivated by an example. Further, the full definitions of successful parameter
recovery under various scenarios are defined.

2.1 Multi-Component Decaying Exponential Signal Structure

The structure of signals under consideration in this thesis is that of a linear combination of
decaying, real exponentials with distinct decay rates. Specifically, the d

th-order continuous-time
model is defined by

xd(t) =
d�

k=1

αke
−λkt, t ≥ 0, (2.1.1)

where λk �= λj , for j �= k, for a finite order d. The parameters αk and λk are real, non-zero
amplitude coefficients and positive decay rates, respectively, for 1 ≤ k ≤ d. A time-series is defined
as a sequence of uniformly spaced samples of a continuous-time model. For the remainder of this
thesis, unless otherwise stated, the signal in Eq. (2.1.1) is assumed to be uniformly sampled,
producing a time-series of the form

xd[n] =
d�

k=1

αk(σk)
n
, n ≥ 0. (2.1.2)

The shorthand notation {αk}1:d and {σk}1:d will be used to denote the set of amplitude coefficients,
αk, and the set of decay rates, σk, for 1 ≤ k ≤ d, respectively. The decaying restriction of each
exponential component implies that the value of each σk must lie within the open interval of (0, 1).
Eq. (2.1.2) is henceforth referred to as the transient signal structure.

Consider N samples of the transient signal xd[n] over a finite and possibly non-consecutive
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interval of support, e.g., for n = n1, ..., nN , ni < nj for 1 ≤ i < j ≤ N . This observed set of
transient data, using the notation in Eq. (2.1.2), is completely characterized using the structure of
a generalized Vandermonde matrix and is given by





xd[n1]

xd[n2]
...

xd[nN ]




=





σ
n1
1 σ

n1
2 · · · σ

n1
d

σ
n2
1 σ

n2
2 · · · σ

n2
d

...
... . . . ...

σ
nN
1 σ

nN
2 · · · σ

nN
d









α1

α2
...
αd




. (2.1.3)

In this formulation, the decay rates, {σk}1:d, are seen to have a non-linear relationship with the
observed sample values, while the amplitude coefficients, {αk}1:d, have a linear relationship to the
samples− given that the decay rates are fixed. An important special case of Eq. (2.1.3) is considered
next.

A convenient and commonly appropriate interval of support is given by

ni = i− 1, for 1 ≤ i ≤ N (2.1.4)

in which case Eq. (2.1.3) becomes





xd[0]

xd[1]
...

xd[N − 1]




=





1 1 · · · 1

σ1 σ2 · · · σd

...
... . . . ...

σ
N−1
1 σ

N−1
2 · · · σ

N−1
d









α1

α2
...
αd




(2.1.5)

or expressed in matrix notation as xd = V
�
σ
T
�
α, where σ

T = [σ1, · · · ,σd] is defined as the pole
vector, V

�
σ
T
�

is a Vandermonde structured matrix defined by
�
V
�
σ
T
��

ij
= σ

i−1
j

, α = [α1, · · · ,αd]T

is the amplitude vector, and xd = [xd [0] , · · · , xd [N − 1]]T is defined as the observation vector. For
this special case, the structure of the decay rates is completely characterized by the geometric
progression in each column of the Vandermonde matrix. Unless indicated otherwise, the interval of
support in Eq. (2.1.4) is assumed for the remainder of this thesis.

When N = d the determinant of the Vandermonde matrix in Eq. (2.1.5) is given by [25]

�

1≤i<j≤d

(σj − σi) , (2.1.6)

which can be seen by induction on d. Since the decay rates are distinct, the determinant is guar-
anteed to be non-zero and strictly less than one, which is equivalent to stating that the columns of
the Vandermonde matrix are linearly independent. These facts will be exploited in various places
throughout this thesis.

In order to represent the physical process of sampling a continuous-time signal, we consider a
model which includes the presence of additive Gaussian noise to account for possible effects of the
sampling hardware, e.g., jitter or thermal noise. The model of a sampled continuous-time d

th-order

20



CHAPTER 2. TRANSIENT SIGNALS 2.2. MOTIVATION AND NEED

multi-component real decaying exponential signal with additive noise is given by

x̄d[n] = xd[n] + η[n], (2.1.7)

where η [n] is an additive white Gaussian noise process with constant finite spectral density.

2.2 Motivation and Need

The values taken by the amplitude coefficients and decay rates in a transient signal typically
have some physical significance with respect to the origin of the signal. In these applications it
is often of greater importance to accurately identify these parameters rather than, for example,
model the observed data samples. This is especially true when the observed samples are known to
contain additive noise and/or aliasing effects. In the following two examples, various disciplines,
both scientific and otherwise, use a physical model or a mathematical description best represented
by a sum of real, decaying exponentials. In the third example, the need for a parametric spectrum
based upon decay rate is motivated.

2.2.1 The Smart Grid: Non-Intrusive Load Monitoring

A Non-Intrusive Load Monitoring (NILM) system provides the capability of recording and/or
reacting to different electrical components being added or removed from an electrical grid. One
approach for identifying which component is added to the system is to classify the initial transient
signature of each component, resulting from the sudden change in impedance seen by the grid when
a component is added or removed. This signature dies off in steady-state. Therefore proper identi-
fication of this transient signal is important to a NILM system. In the United States, the electric
grid operates at 60 Hz, and therefore the recorded signal must be appropriately modulated to base-
band in order to abstract the transient envelope from the data. The NILM systems described in
[19] use this approach followed by a least-squares comparison to each template signal in order to
identify which component was added or removed from the grid. An alternative to this procedure,
using several algorithms proposed within this thesis, would be to store the exponential decay rates
corresponding to each electrical component in place of the template signals. Then a transient signal
would be analyzed to identify if each possible decay rate was present. The resulting amplitude
coefficients would then signify which electrical component was added or removed from the electrical
grid accordingly.

2.2.2 Economic Recession Intervention

A common measure of the economic growth of a country is the percentage change in that coun-
tries real Gross Domestic Product (GDP), i.e., a measure of the goods and services produced by
that country within a fixed time period using a fixed price for the good or service. For example, the
United States real GDP per capita has been approximately growing by two percent per year for over
200 years, implying an exponential rate of growth. Various methods for predicting a countries GDP
during a fiscal quarter are often used to indicate whether market regulation is needed to prevent
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major economic recession. This process requires the estimation of an exponential parameter in a
noisy signal, motivating the recovery of decay rates when the signal is time-reversed.

2.2.3 Dual Tone Multi-Frequency

In what follows, as an illustration of an advantage to using a parametric spectrum based upon
decay rate, we consider a comparison to the commonly used frequency spectrum using an example
of when each spectrum is best utilized. In order to do so, we define a periodic signal and a transient
signal, over the finite-duration interval 0 ≤ n ≤ N − 1, by

v1 [n] = αa cos (ωan) + αb cos (ωbn) (2.2.1)

v2 [n] = αa (σa)
n + αb (σb)

n
. (2.2.2)

In many contexts, a received signal may convey information through identifying which signal, if
any, out of a set of template signals was received. This may be accomplished through comparing
distinguishable characteristics of the received signal to the characteristics of each of the possible
template signals. For example, v2 [n] has the structure of a template signal of a specific load in a
NILM system for fixed values of σa, σb ∈ (0, 1). In this scenario it is useful to define a parameter
spectrum in which the calculated coefficients describe the amount of each of the specific decay
rates present in the received signal. Henceforth the parameter spectrum based upon decay rate
will be termed the transient spectrum, an example of which is shown in Figure 2.2.1(b). As a
second example, v1 [n] has the form of the template signals used in Dual-Tone Multi-Frequency
(DTMF) signaling, the current industry standard for landline telecommunication service. [6, 22]
This communication scheme uses the presence of a pair of frequencies to distinguish one template
signal from another.

DTMF is a multi-frequency tone dialing system by which the push button keypad used for
dialing in a landline telephone call, or in response to an in-call menu, conveys the number or
keys dialed by the caller. With DTMF, each key pressed transmits the linear combination of two
sinusoids comprised of predetermined frequencies; one from a high frequency group and one from a
low frequency group. The high frequency group ranges in frequency from 1209 − 1633 Hz and the
low frequency group ranges from 697− 941 Hz. Two frequencies are used per transmitted signal to
ensure that a human voice cannot imitate one of the template signals. The sinusoidal component
from the high frequency group is slightly louder than the sinusoidal component from the the low
frequency group to compensate for the high-frequency roll off of most communication channels.
Table 2.1 shows the pairs of frequencies used in each of the template signals corresponding to the
transmittable symbols.
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1209 Hz 1336 Hz 1477 Hz 1633 Hz
697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz * 0 # D

Table 2.1: Dual-tone multi-frequency signaling codebook

For DTMF, one method for identifying which symbol was transmitted is to check the received
signal for the presence of each of the eight possible frequency components by computing the Discrete
Time Fourier Transform (DTFT) coefficient at each frequency. Then, each of these coefficients is
compared to a threshold to determine which pair of frequencies is present, or if no key was pressed.
A plot of the DTFT coefficients with respect to these frequencies is termed the parameter spectrum
for DTMF. An example is shown in Figure 2.2.1(a).

Many techniques are available to compute the DTFT coefficients needed to produce the param-
eter spectrum corresponding to DTMF. Among these techniques, with respect to efficiency in terms
of the number of multiplications and additions, the Goertzel algorithm is often used. The Goertzel
algorithm simultaneously computes the real and imaginary portions of a sample of the DTFT of a
finite length signal using a second order recursion followed by a correction term. [10] Note that the
Goertzel algorithm is often more efficient than using a Fast Fourier Transform (FFT) algorithm to
compute the Discrete Fourier Transform (DFT) followed by discarding the non-relevant frequency
bins. The Goertzel algorithm also has the advantage of not having to compute DTFT coefficients
at evenly spaced points on the unit circle in the z-plane, but can be used instead for any harmonic.
Finally, an understanding of additive noise in a communication channel is well understood in the
frequency domain− the parameter spectrum based on frequency. This allows for symbol decoding
to take the effects of noise into account.

Figure 2.2.1 displays the resulting parameter spectra of these two signals; the spectra in Figure
2.2.1(a) are for the sinusoidal signal v1 [n] while the spectra in Figure 2.2.1(b) are for the transient
signal v2 [n]. Each spectrum has N possible components present. Although both signals are com-
pletely represented using either spectrum, we see that in Figure 2.2.1(a) it is straightforward to
identify which frequencies are present in v1 [n], however, identifying the two decay rates in v2 [n]

is not as straightforward. Likewise, in Figure 2.2.1(b) it is straightforward to identify which decay
rates are present in v2 [n] while it is not straightforward to identify which frequencies are present
in v1 [n] . Therefore, for selecting which decay rates are present in a template signal, e.g., v2 [n], a
transient spectrum is advantageous.
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(a) Parametric spectra of v1 [n]

(b) Parametric spectra of v1 [n]

Figure 2.2.1: A comparison of parametric spectra based upon (a) frequency and (b) decay rate

2.3 Transient Spectra

Consider the scenario in which computing the amplitude coefficients is of interest when both
samples from the signal in Eq. (2.1.1) and the decay rates, {σk}1:d, are known. This is equivalent to
computing the transient spectrum for the signal xd [n] as discussed in Section 2.2.3. Procedurally,
this involves solving the system of equations described by Eq. (2.1.5) for α. In Section 3.7 we show
that solving for α using a matrix inverse is a poorly conditioned approach, resulting in considerable
error in the amplitude vector found. In Section 3.4, two algorithms are proposed that exploit the
structure of these equations to produce the solution without requiring the direct inversion of the
matrix V

�
σ
T
�
.

An inefficiency arises when a matrix inverse is used to to solve for α in Eq. (2.1.5) and only a
subset of the amplitude coefficients corresponding to a subset of the decay rates is desired, suggest-
ing that a technique which allows each amplitude coefficient to be found independently would be
advantageous, rather than solving for the entire set and discarding the undesired coefficients. To
address this inefficiency, the two algorithms proposed are each capable of solving for an amplitude
coefficient corresponding to a specific decay rate independent of the other coefficients.

We next consider the scenario in which computing the amplitude coefficients is of interest when
only samples from the signal in Eq. (2.1.2) are known. In this case, the transient spectrum may be
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computed using any set of values for the decay rates. Peaks in the resulting transient spectrum pro-
vide an indication of which decay rates are present in the transient structured signal. Interpreting
the results of a transient spectrum, similar to spectral analysis in the frequency domain, is discussed
in Section 3.8.

2.4 Parameter Recovery

Distinguishing between a parameter identification algorithm and a parameter estimation algo-
rithm is often quite subtle, depending on the context. In the context of this thesis, parameter
estimation is defined to be parameter identification in the presence of noise, where a parameter
identification algorithm processes data in order to identify the parameter values of a model which
the data is known to fit. Therefore, a parameter estimation algorithm attempts to approximate
the values of model parameters based upon measured or empirical data containing a random noise
component, where the data is known to fit the model if the noise component was not present. Under
these definitions, a specific algorithm is not classified as strictly an identification or estimation al-
gorithm, but can be either depending on the relationship between the data and the model. In other
cases, a set of samples, with or without a random component, does not accurately fit the model
selected, but the model is chosen for other reasons. This thesis does not consider the determination
of model parameters for this scenario.

The term “parameter recovery” is used in this thesis as an umbrella for which both parameter
identification and parameter estimation, as defined above, fall beneath. Regardless of the algorithm
or data used, the objective of a parameter recovery algorithm is to determine transient signal pa-
rameters by processing a set of observed samples. Appendix B provides a summary of several well
known parameter recovery algorithms, which are later used in Chapter 5.

2.5 Parameter Identification

The successful recovery of the decay rates present in a transient signal is defined next when only
the samples from a transient structured signal in Eq. (2.1.2) and the model order d are known.
Because the observed samples are guaranteed to satisfy Eq. (2.1.2), this scenario is classified as
parameter identification, as described in Section 2.4.

Definition 1. Successful Recovery in the Identification Case: Given a set of observed samples

that exactly fit the model in Eq. (2.1.2), successful recovery corresponds to accurately determining

the full set of decay rates, {σk}1:d, that were used to generate the observed samples, {xd [n]}0:N−1.

Equivalently, accurate recovery of the pole vector σ.

Several existing methods, summarized in Appendix B, achieve successful recovery of the decay
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rates as defined above.
The next scenario considered is an extension of Definition 1 where the samples available are from

the result of lowpass filtering the transient structured signal. In order to simplify the upcoming
definition, define the signal gd [n] as the output of an LPF when the input is the signal xd [n], and
let {gd [n]}0:N−1 be the set of N observed samples for n = 0, ..., N − 1.

Definition 2. Successful Recovery in the Identification Case Post-Lowpass Filtering:

Given the cutoff frequency of the LPF and the set of observed samples, {gd [n]}0:N−1, corresponding

to the output of the LPF when the input exactly fits the model in Eq (2.1.2), successful recovery

corresponds to accurately determining the full set of decay rates, {σk}1:d, that were used to generate

the samples prior to the LPF. Equivalently, accurate recovery of the pole vector σ.

One approach for achieving successful recovery, as stated in Definition 2, is to perform a two step
procedure of signal recovery followed by parameter identification. The first step is to recover the
signal xd [n] prior to the LPF. The second step is then exactly the parameter recovery formulation
in Definition 1. This approach inherently requires the extrapolation of frequency content from a
non-bandlimited signal and is considered in Section 5.5.

Another approach for achieving successful recovery is to use the observed samples, {gd [n]}0:N−1,
to directly solve for the desired parameters. By defining a parametric model x̂d [n], e.g.,

x̂d [n] =
d�

k=1

α̂k(σ̂k)
n
, 0 ≤ n ≤ N − 1, (2.5.1)

where the parameters {α̂k}1:d and {σ̂k}1:d are to be determined, we can formulate the second and
more direct approach as an optimization problem. Doing so yields

(α̂, σ̂) ∈ argmin
α,σ

�gd − x̂d ∗ flp�
2
2 (2.5.2)

where ∗ denotes linear convolution and flp[n] represents an ideal LPF. This formulation determines
parameters that produce a residual signal with minimum �2-norm, where the residual signal is
defined to be

r [n] = gd [n]− x̂d [n] ∗ flp [n] . (2.5.3)

The residual signal, depending on the cutoff frequency of the LPF and the form of the parametric
model x̂d [n], can be either the sequence of modeling error or the sequence of linear prediction
error. [15, 18] These two interpretations and their relation to one another are further discussed in
Appendix B. The following two subsections formulate direct parameter recovery in two ways: first
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in the time domain and then in the frequency domain. From the frequency domain formulation we
conclude that the parameters that minimize the �2-norm of the residual signal are unique. A proof
of this uniqueness is presented in Appendix A.

2.5.1 Time Domain Formulation

Denote the cutoff frequency of the ideal lowpass filter, flp[n], as ωc, 0 < ωc < π. Directly solving
for the parameters of a transient structured signal, as in Eq. (2.1.2), yields the non-linear set of
equations

gd[n] = flp[n] ∗ xd[n] (2.5.4)

=
sin (ωcn)

πn
∗

d�

k=1

αk(σk)
n
u[n] (2.5.5)

=
1

π

�
α1σ

n

1

�
n�

l=−∞

sin (ωcl)

l
σ
−l

1

�
+ · · ·+ αdσ

n

d

�
n�

l=−∞

sin (ωcl)

l
σ
−l

d

��
. (2.5.6)

For each value of n, gd [n] is an equation of the 2d parameters to be determined. Note that for a
fixed set of decay rates, the amplitude coefficients still maintain a linear relationship to the lowpass
filtered sample values.

2.5.2 Frequency Domain Formulation

An equivalent formulation of this problem is to consider the DTFT of each signal involved.
Define the DTFTs of xd[n], flp[n], and gd[n] as Xd(ejω), Flp(ejω), and Gd(ejω), respectively. This
optimization problem is then formulated by selecting the parameters of Xd(ejω) that minimize the
energy in the DTFT of the residual, Gd

�
e
jω
�
− Xd

�
e
jω
�
Flp

�
e
jω
�
. The parameters of the signal

xd[n] are related to Xd(ejω) by,

Xd(e
jω) =

d�

r=1

αr

d�

l=1,l �=r

�
1− σle

−jω
�

d�

k=1

�
1− σke

−jω
�

. (2.5.7)

Writing this as an explicit optimization problem yields

(α̂, σ̂) ∈ argmin
α,σ

��Gd

�
e
jω
�
−Xd

�
e
jω
�
Flp

�
e
jω
���2

2
. (2.5.8)

2.6 Parameter Estimation

The successful recovery of the decay rates present in a transient signal is defined next when only
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noisy samples of the transient structured signal in Eq. (2.1.2) and the model order d are known.
Because the observed samples are guaranteed to satisfy Eq. (2.1.7), this scenario is classified as
parameter estimation, as described in Section 2.4.

Definition 3. Successful Recovery in the Estimation Case: Given the set of observed sam-

ples {x̄d [n]}0:N−1, corresponding to samples which fit the model in Eq. (2.1.7), successful recovery

corresponds to determining the full set of decay rates, {σk}1:d, that produce a recovered pole vector,

σ̂, that is closest to the true pole vector, σ, for a given distance metric.

This parameter estimation formulation motivates the discussion of robustness for each of the
algorithms presented in Appendix B.

The final scenario considered is an extension of Definition 3 where noise is added to the result of
a transient structured signal processed by an LPF. Denote ḡd [n] as the output of the lowpass filter
with the inclusion of additive white Gaussian noise, i.e., ḡd [n] = gd [n] + η [n] and {ḡd [n]}0:N−1 as
the set of N observed samples for n = 0, ..., N − 1.

Definition 4. Successful Recovery in the Estimation Case Post-Lowpass Filtering: Given

the cutoff frequency of the LPF and the set of observed samples {ḡd [n]}0:N−1, corresponding to the

sum of additive Gaussian noise and the output of the LPF when the input exactly fits the model in

Eq (2.1.2), successful recovery corresponds to determining the full set of decay rates, {σk}1:d, that

produce a recovered pole vector, σ̂, that is closest to the true pole vector, σ, for a given distance

metric.

Both Definitions 3 and 4 use a distance metric in order to measure the distance from a recovered
pole vector to the true pole vector. Two examples of possible distance or error metrics include the
Chebyshev distance and the �p-norm.

Table 2.2 summarizes the four definitions pertaining to successful recovery of the decay rates,
{σk}1:d . For each definition, the structure of the data assumed is stated for the interval 0 ≤ n ≤

N − 1. Figure 2.6.1 depicts the generation of the available data for the different cases where the
signals are also observed over the same interval of support.
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Definition Data
Definition 1: Successful Recovery in the Identification Case xd [n]
Definition 2: Successful Recovery in the Identification Case Post-Lowpass Filtering gd [n] = flp [n] ∗ xd [n]
Definition 3: Successful Recovery in the Estimation Case x̄d [n] = xd [n] + η [n]
Definition 4: Successful Recovery in the Estimation Case Post-Lowpass Filtering ḡd [n] = gd [n] + η [n]

Table 2.2: Summary of the definitions for successful transient parameter recovery

Figure 2.6.1: Summary of the formulations of transient parameter recovery
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Chapter 3

Transient Spectral Analysis

This chapter formally defines the transient transform in order to represent a signal using a basis
comprised of real exponential signals. For finite-length signals, several algorithms for converting
to this representation are derived. Further, several properties of the algorithms for generating the
transient spectrum as well as properties of the transient spectrum itself are discussed. In order to
establish notation, a brief review of orthogonal and non-orthogonal change of bases is first presented.

3.1 Background on Basis Expansions

Consider representing a general discrete-time signal using a basis expansion of the form

x[n] =
�

k

αkφk [n] . (3.1.1)

The set of signals {φk [n]}−∞:∞ is a countable set of pre-specified basis signals while the scalar
coefficients {αk}−∞:∞ are the expansion coefficients with respect to the corresponding basis signals.
The representation of a signal by its expansion coefficients with respect to any basis will be referred
to as a spectrum. For example, consider the discrete sifting equation, i.e.,

x [n] =
�

k

x [k] δ [n− k] . (3.1.2)

Here the standard sampling basis is used, i.e., φk [n] = δ [n− k], and the resulting expansion co-
efficients are the observed data values. In this example, note that the expansion coefficients, with
respect to the standard sampling basis, provide a complete characterization of the signal x[n] . As a
second example, the representation of a signal by its DTFT completely characterizes a signal with
respect to a complex exponential basis.

The following two subsections describe a change of basis for the cases of an orthogonal and
non-orthogonal basis.

3.1.1 Orthogonal Basis Expansions

For any two signals u [n] and v [n] in a vector space V defined over the field F , the standard
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inner product, �·, ·� : V × V → F , is defined by

�u, v� =
�

n

u [n] v∗ [n] = v
H
u, (3.1.3)

where v
∗ and v

H denote the complex conjugate and complex conjugate transpose of v, respectively.
Note that the standard inner product is a sample of the cross-correlation between the two signals,
which is often implemented using linear convolution. When the basis signals {φk [n]}−∞:∞ are
chosen such that they are orthogonal, i.e., �φk,φl� = 0 for k �= l, the resulting transformation is
an orthogonal transform. When the basis signals are additionally normalized such that the basis
signals also satisfy the set of constraints

�φk, φl� = δkl =





1,

0,

if k = l

otherwise
, (3.1.4)

then the basis expansion is an orthonormal basis expansion. For either the orthogonal or the
orthonormal case, the expansion coefficients may be directly computed using the standard inner
product, as defined in Eq. (3.1.3). This allows the signal x [n] to be decomposed by

x[n] =
�

k

�x, φk�

�φk, φk�
φk [n] . (3.1.5)

The second example of an orthogonal basis expansion given above was the DTFT where the
basis signals are complex exponentials. In Section 3.9 the algorithms proposed in this chapter, for
finite-length signals, will be seen to hold for a complex exponential basis. Additional examples of or-
thogonal basis expansions include the Discrete Cosine Transform and the Hadamard Transform. [14]

3.1.2 Biorthogonal Basis Expansions

When the basis signals selected are not orthogonal under the standard inner product, then
Eq. (3.1.5) cannot be used to represent x [n]. Several alternative approaches are discussed in the
following section. One approach, which is taken in this thesis, is to generate a different set of signals
with a desirable inner product structure with respect to the original set of basis signals in order to
determine the desired expansion coefficients. That is, given a non-orthogonal basis {φk [n]}−∞:∞,
define the set of signals {ψk [n]}−∞:∞ such that they satisfy the set of constraints

�φk, ψl� =
�

n

φk [n]ψ
∗
l
[n] = δkl. (3.1.6)

These constraints will be collectively referred to as the biorthogonality constraints. The set of
signals {ψk [n]}−∞:∞ is the dual basis of {φk [n]}−∞:∞ and each signal is a dual signal. Given
{ψk [n]}−∞:∞, the expansion coefficient αl, for a fixed index l, is determined by performing the
standard inner product of x [n] with ψl [n], resulting in the desired coefficient, i.e.,
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�x, ψl� =

�
�

k

αkφk, ψl

�
(3.1.7)

= · · ·+ αl−1�φl−1, ψl�+ αl�φl, ψl�+ αl+1�φl+1, ψl�+ · · · (3.1.8)

= αl. (3.1.9)

The second equality comes from the linearity of an inner product in the first argument, and the third
equality comes from the biorthogonality constraints. Therefore, the signal x [n] may be represented
by

x [n] =
�

k

�x, ψk�φk [n] . (3.1.10)

The dual signal corresponding to an orthogonal basis signal is easily obtained from the orthogonal
basis signal, e.g., ψk ∝ φ

∗
k
. This result implies that if the dual basis can be obtained, then a

non-orthogonal basis expansion may be computed using a similar procedure to the orthonormal
case.

If we choose the set of linearly independent, non-orthogonal signals {φk [n]}−∞:∞ as the basis
for a vector space V , then the vector space V may be decomposed as

V = Vl ⊕ V∼l

where ⊕ is a direct sum, Vl = span {φl [n]} and V∼l = span
�
{φk [n]}−∞:∞ \ {φl [n]}

�
where \ de-

notes set subtraction. From the definition of the biorthogonality constraints we have that the dual
signal ψl [n], for a fixed index l, is orthogonal to the space V∼l, i.e., if we denote Φ∼l to be any
onto linear map from V to V∼l, then ψl [n] ∈ R⊥ (Φ∼l), where R (·) is the range of a linear map.
Using the adjoint equivalence identities, the dual signal ψl [n] equivalently lies in the nullspace of
the adjoint of Φ∼l, i.e., ψl [n] ∈ N (Φ∗

∼l
), where N (·) is the nullspace of a linear map and Φ∗

∼l
is the

adjoint of Φ∼l. [24]

3.2 The Exponential Bases

This section defines the general exponential basis, using which we define two special cases: the
complex exponential basis and the real exponential basis. The orthogonality of each of these two
special cases of the general exponential basis is then discussed.

Definition. The General Exponential Basis. The general exponential basis is defined as the

set of signals denoted by

{φ (σ, n]}
σ∈I , (3.2.1)
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where I is either a continuous contour in the complex plane or a finite set of distinct complex

numbers, and, for each value of σ, φ (σ, n] is a general exponential signal of the form

φ (σ, n] = (σ)n , n ≥ 0, σ ∈ C. (3.2.2)

Consider the general exponential basis {φ (σ, n]}
σ∈I when I is a continuous contour in the complex

plane. For any finite value of N , the first N non-zero samples of any N basis signals with distinct
values of σ ∈ I form a valid basis for CN . This means that a finite general exponential basis may be
constructed using values of σk that are samples along a contour in the complex plane. Specifically,
define the set of signals {φk [n]} 1:N such that

{φk [n]}1:N = {φ1 [n] , . . . ,φN [n]}, φk [n] =





1

σk

σ
2
k

...
σ
N−1
k





, 1 ≤ k ≤ N, σk �= σj for k �= j. (3.2.3)

Define the matrix Φ, where each column corresponds to a general exponential signal, to have the
structure

Φ =




| |

φ1 [n] · · · φN [n]

| |



 . (3.2.4)

The matrix Φ takes the form of a Vandermonde matrix with [Φ]ij = (σj)
i−1, hence the columns of

Φ are linearly independent. This implies that the general exponential signals {φk [n]} 1:N are also
linearly independent, and since CN is finite dimensional, this is sufficient to show that {φk [n]} 1:N

forms a basis of CN .
Unless otherwise stated, the notation φ is used to denote an exponential signal for the remain-

der of this thesis. The first special case of the general exponential basis considered is the complex
exponential basis, which is the basis used in Fourier analysis.

Definition. The Complex Exponential Basis. The complex exponential basis is defined to be

structurally identical to the general exponential basis where the interval I is chosen to be

Iinf =
�
σ | Re

2 (σ) + Im
2 (σ) = 1

�
(3.2.5)

for the infinite complex exponential basis, or
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Ifin =
�
σk | σk = e

j
2π
N k

, k = 0, · · · , N − 1
�

(3.2.6)

for the finite complex exponential basis.

Under the definition of the standard inner product in Eq. (3.1.3), it is straightforward to verify
that both the finite and infinite complex exponential bases are orthogonal.

The second special case of the general exponential basis considered is the real exponential basis,
which is the basis used in the transient domain representation of a signal. For brevity, this basis
will often be referred to as simply the exponential basis.

Definition. The (Real) Exponential Basis. The (real) exponential basis is defined to be struc-

turally identical to the general exponential basis where the interval I is chosen to be

Iinf = {σ | σ ∈ (0, 1)} (3.2.7)

for the infinite (real) exponential basis, or

Ifin = {σk | σk ∈ (0, 1) , k = 0, · · · , N − 1, σk < σj for k < j} (3.2.8)

for the finite (real) exponential basis.

We denote the transient spectrum of a signal by A (σ) or A [k] depending on whether the basis
{φ (σ, n]}

σ∈(0,1) or {φk [n]}1:N is used, respectively. Consider the standard inner product �·, ·� given
in Eq. (3.1.3), for which it immediately follows that

�φ (σk) ,φ (σl)� �= δσkσl , for any φ (σk) ,φ (σl) ∈ {φ (σ, n]}σ∈(0,1), (3.2.9)

and
�φk, φl� �= δkl, for any φk,φl ∈ {φk [n]}1:N . (3.2.10)

Consequently, in order to compute the transient spectrum, i.e., A (σ) or A [k], several alternative
approaches may then be taken. For example, the exponential basis may be orthogonalized through
the Gram-Schmidt procedure, or we may generate the closest orthogonal basis to the exponential
basis in a least squares sense using Inner Product Shaping. [7] These two approaches are considered
in Section 4.6. Alternatively, we may define a new inner product under which the basis is orthogonal.
The existence of such an inner product is guaranteed because for any set of linearly independent
signals an inner product always exists under which the signals are orthogonal. This thesis takes the
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route of deriving the dual basis signals under the standard inner product. However, the possibility
of a finite exponential basis being orthogonal under a weighted standard inner product is ruled out
next.

For any two signals u [n] and v [n] in a vector space V defined over the field F , the weighted
standard inner product, �·, ·�w : V × V → F , is defined by

�u, v�w =
�

n

u [n] v∗ [n]w [n] , (3.2.11)

where w [n] is a non-negative weighting function. For V = RN , an equivalent formulation of the
weighted inner product is given by, for u [n] , v [n] ∈ RN ,

�u, v�w = v
H
Wu where W =





w [0] 0 · · · 0

0 w [1] · · · 0
...

... . . . ...
0 0 · · · w [N − 1]




. (3.2.12)

We are interested in determining if a non-negative weighting function w [n], or a positive semi-
definite, diagonal matrix W , exists such that φk [n] and φl [n] are orthogonal for k �= l.

We denote Gw as the matrix of weighted inner product constraints, meaning [Gw]ij = �φi, φj�w.
The desired orthogonality constraints are given in matrix notation as

ΦT
WΦ = Gw (3.2.13)

where Gw is a diagonal matrix with strictly positive elements on the principal diagonal. The fol-
lowing proposition shows that under this definition of a weighted inner product, there exists no
non-negative weighting function w [n] such that the elements of {φk [n]}1:N are orthogonal. This is
equivalent to saying there is no matrix W which is both diagonal and satisfies Eq. (3.2.13).

Proposition. Given a real exponential basis {φk [n]}1:N , then there exists no non-negative weighting

function w [n] such that

�φk, φl�w =





gk,

0,

k = l

k �= l

(3.2.14)

for any strictly positive scalars {gk}1:N .

Proof. The weighted inner product for two elements of an exponential basis reduces to

�φk,φl�w =
N−1�

n=0

(σkσl)
n
w [n] . (3.2.15)
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The terms in the summand resulting from the exponential signals are strictly positive. This implies
that the only non-negative weighting function that can be used in order to sum strictly positive
terms and result in 0 is w [n] = 0.

Therefore this proposition shows that there exists no weighted standard inner product, including
the standard inner product, for which the exponential basis signals are orthogonal.

3.3 Transient Transforms

In this section we formally define the Discrete-Time Transient Transform (DTTT)−a reversible
mapping through which a causal, transient signal is represented by a linear combination of expo-
nential signals.

Definition. The Discrete-Time Transient Transform.

A (σ) =
�

n

xd [n]ψ (σ, n] , 0 < σ < 1, (3.3.1)

xd [n] =

ˆ 1

0
A (σ)φ (σ, n] dσ, n ≥ 0, (3.3.2)

where {φ (σ, n]}
σ∈(0,1) is the real exponential basis and {ψ (σ, n]}

σ∈(0,1) is the corresponding dual

basis. Furthermore, we refer to Eq. (3.3.1) as the DTTT analysis equation and Eq. (3.3.2) as the

DTTT synthesis equation.

No known method for generating a dual exponential signal ψ (σ, n] exists for any value of
σ ∈ (0, 1), and it appears that without access to the dual basis the DTTT cannot be used for
analysis. However, for any finite-duration signal the dual exponential basis may be found. Thus
we define the Discrete Transient Transform (DTT)−a reversible mapping through which a general
finite-length signal is represented by a linear combination of exponential signals. Algorithms for
generating the dual finite exponential basis are derived in Section 3.4. The DTT is a set of samples
of the DTTT where the spacing of these spectral samples is determined by the decay rates selected in
the finite exponential basis used, i.e., {σk}1:N . The invertibility of the DTT follows by substituting
the analysis equation into the synthesis equation and simplifying.
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Definition. The Discrete Transient Transform.

A [k] =
N−1�

n=0

x [n]ψk [n] , 1 ≤ k ≤ N, (3.3.3)

x [n] =
N�

k=1

A [k]φk [n] , 0 ≤ n ≤ N − 1, (3.3.4)

where {φk [n]}1:N is the real exponential basis and {ψk [n]}1:N is the corresponding dual basis. Fur-

thermore, we refer to Eq. (3.3.3) as the DTT analysis equation and Eq. (3.3.4) as the DTT synthesis

equation.

The DTT, as defined, possesses both homogeneity and additivity with respect to the input. To
see this, denote the DTT pairs v1 [n] ↔ V1 [k] and v2 [n] ↔ V2 [k], corresponding to signals of length
N ; if x [n] = a · v1 [n] + b · v2 [n] then A [k] = a · V1 [k] + b · V2 [k], for any real scalars a and b.
Therefore this transformation is linear.

Given the dual signals {ψk [n]}1:N , a transient analysis filter bank may be constructed to com-
pute the transient spectrum A [k] according to Eq. (3.3.3). This process is identical to the filter bank
implementation of the DFT where the dual signals correspond to the finite complex exponential
basis. Computationally the standard inner product is a single sample of the correlation sequence,
which can be implemented using convolution. For example, to compute the standard inner product
of a transient signal xd [n] with ψk [n], for a fixed index k, a linear convolution is performed with
the time-reversed dual basis signal ψk [−n]. Denoting the output of this linear convolution as sk [n],
the output is given by

sk [n] = xd [n] ∗ ψk [−n] =
N−1�

l=0

xd [l]ψk [l − n] . (3.3.5)

By sampling the output sk [n] at n = 0, the expansion coefficient αk is computed, i.e., sk [0] =

�xd, ψk�. A signal flow graph representing this procedure for transient spectral analysis is depicted
in Figure 3.3.1.
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Figure 3.3.1: The DTT analysis filter bank used to generate the transient spectral coefficients A [k]

The definition of another mapping, referred to as transient filtering, is established by the fol-
lowing procedure. First, compute the DTT of the signal x [n], i.e. A [k] = T {x [n]} where T {·}

is the transient analysis mapping in Eq. (3.3.3). Next, modify the transient spectrum A [k] by
multiplying it element-wise by a function H [k], for each value of k. Finally, the output is defined by
y [n] where y [n] = T −1 {A [k]H [k]} and T −1 {·} is the transient synthesis mapping in Eq. (3.3.4).
The input-output relationship of this mapping depends on the structure of H [k], which may be
designed freely. This mapping describes the procedure for a novel signal processing algorithm. Note
that the mapping is linear but not circularly time-invariant, and therefore cannot, in general, be
represented as the circular convolution of an input signal with any impulse response. As a trivial
example, H [k] = 1, for 1 ≤ k ≤ N , results in an identity mapping.

As a more interesting example, the design of a high decay pass filter is given by

HHP [k] =





1,

0,

σ1 ≤ σk < σc

σc ≤ σk ≤ σN

for some 0 < σc < 1. This choice of a transient domain scaling sequence passes all transient
components in a signal which decay faster than the cutoff decay rate σc, and rejects all transient
components decaying slower than σc. The design of the complementary low decay pass filter is then
defined by HLP [k] = 1 − HHP [k] for the same value of σc. Using these two filters to separate a
signal into two transient channels allows for different processing of the slowly decaying and rapidly
decaying components. In a similar fashion to this example, numerous different regions of decay rate
may be selected, emphasized, or attenuated depending on the desired processing of the input signal.
In Chapter 5, an adaptive transient filtering algorithm is proposed.

3.4 Algorithms for Generating Dual Exponential Bases

We have shown that in order to compute the expansion coefficients with respect to a general
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exponential basis, the orthogonality of the basis cannot be assumed. Therefore, the standard inner
product of the corresponding dual basis signals may be taken with the signal to be analyzed in
order to produce the desired expansion coefficients. In practice, this requires the dual signals to be
available for computation. This section derives the dual basis signals using three algorithms: the
first generates the dual signals for any basis while the remaining two are specialized to generating
the dual basis of a general exponential basis specifically. Before presenting these algorithms, the
uniqueness of a dual basis is presented in order to confirm that the three algorithms all theoretically
result in identical bases, though in practice the resulting bases are often different due to implemen-
tation errors.

3.4.1 Uniqueness of the Dual Basis

We begin by defining a linear map ζ from a vector space to the field of scalars over which the
vector space is defined, i.e., ζ (·) : V → F . The uniqueness of a dual basis is established by showing
that the biorthogonality constraints define a unique linear map ζ for each dual signal. In order
to understand how a dual signal paired with the standard inner product acts as the linear map
ζ, consider Figure 3.3.1. This figure depicts the transient spectral coefficient A [k] as the result of
sampling the correlation of two signals at a specific time, i.e.,

A [k] = sk [0] =
N−1�

l=0

xd [l]ψk [l] = �xd,ψk�. (3.4.1)

In this example, the combination of the dual signal ψk ∈ V and the standard inner product is then
interpreted as taking a linear combination of the input signal xd [n] to produce a scalar A [k] ∈ F ,
i.e., ζ (·) = �·,ψk�. We next show that there is a unique signal v ∈ V such that

ξ (u) = �u, v� (3.4.2)

for every u ∈ V. To see this we first show that there exists a vector v ∈ V such that ξ (v) = �u, v�

for every u ∈ V , and then we show that only one vector v ∈ V has this desired behavior.

Let {φk}−∞:∞ be an orthonormal basis of V . Then decompose the transformation as

ξ (u) = ξ

�
�

k

�u,φk�φk

�
(3.4.3)

=
�

k

�u,φk� ξ (φk) (3.4.4)

=

�
u,

�

k

ξ
∗ (φk)φk

�
. (3.4.5)

By setting v =
�

k
ξ
∗ (φk)φk we have ξ (u) = �u, v� for every u ∈ V , as desired.
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To see that only one vector v ∈ V has this behavior we define v1, v2 ∈ V such that

ξ (u) = �u, v1� = �u, v2� (3.4.6)

for every u ∈ V . Then
0 = �u, v1� − �u, v2� = �u, v1 − v2� (3.4.7)

for every u ∈ V . Taking u = v1 − v2 shows the uniqueness. In other words, v1 = v2. Therefore we
may conclude that the dual signals are the unique set of signals as defined by the biorthogonality
constraints.

3.4.2 Generating Dual Bases by Matrix Inversion

The algorithm for generating the dual basis by matrix inversion may be used for any basis,
however we specialize the discussion below to a general exponential basis {φk [n]}1:N in order to
establish useful notation. Define the set of dual signals {ψk [n]}1:N to satisfy the biorthogonality
constraints given by

�φk, ψl� = δkl, (3.4.8)

for 1 ≤ l, k ≤ N , i.e., there are no inner product constraints between the original basis signals or the
dual signals themselves. The only inner product constraints are pairwise between the exponential
basis signals and the dual basis signals. This is distinct from enforcing orthogonality between
elements of the dual basis, as will be explored in Section 4.6 on Inner Product Shaping. In matrix
notation the biorthogonality constraints in Eq. (3.4.8) are

ΦΨH = IN (3.4.9)

where the matrix Ψ is defined by

Ψ =




| |

ψ1 [n] · · · ψN [n]

| |



 (3.4.10)

and IN is the identity operator on V. Therefore the dual signals {ψk [n]}1:N may be determined by
taking the columns of the matrix Ψ given by

Ψ =
�
ΦH

�−1
. (3.4.11)

The matrix ΦH is guaranteed to be invertible as its columns form a basis, i.e., are linearly
independent. The uniqueness of a matrix inverse, when a matrix is full rank, is consistent with
the uniqueness of the dual basis previously discussed. Solving this system of equations using a
matrix inverse provides the entire set of dual signals. Each of the expansion coefficients are found
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simultaneously by taking the inner product of xd[n] with each dual signal, or equivalently

α = ΨH
xd. (3.4.12)

Note that when the decay rates of a transient structured signal are known, we may choose
Φ = V

�
σ
T
�
. In this case α is the solution for the amplitude coefficients by directly solving Eq.

(2.1.5) using matrix operations.

The canonical procedure for finding the dual basis signals, given in Eq. (3.4.11), has two major
disadvantages. First, the dual basis signals must all be computed simultaneously, which is inefficient
if only specific expansion coefficients are of interest. Second, for the real exponential basis, the ma-
trix to be inverted, ΦH , has a Vandermonde structure, for which it is well known that Vandermonde
structured matrices are poorly conditioned when they are constructed with real distinct roots, as
will be discussed in Section 3.7. [9] As a consequence, the solutions found using matrix inversion
may contain large amounts of computational error. Motivated largely by these these two factors,
two alternative algorithms for generating the dual basis signals for a general exponential basis is
proposed in the following two subsections.

3.4.3 Generating Dual General Exponential Bases by Modulation

The algorithm proposed in this subsection eliminates both of the disadvantages discussed when
the dual exponential basis is generated by matrix inversion. Specifically, it avoids computing the
inverse of a potentially ill-conditioned matrix and allows for the dual signals to be found indepen-
dently. To begin developing this method, define the mapping κ : V × V → F as

κ (x, y) =
�

n

x [n] y∗ [n]µ (y∗ [n]) (3.4.13)

for any x, y ∈ V and where the function µ (·) : V → V will be defined shortly. Note that κ is
linear in its first argument and non-linear in its second. Also, note that κ is structurally identical
to the standard inner product given by �x, y ◦ µ (y)�, where ◦ denotes element by element vector
multiplication, or equivalently, signal modulation.

Given a finite general exponential basis {φk [n]}1:N , our interest lies in determining a set of
modulating signals {µ (φk [n])}1:N , such that the biorthogonality constraints hold, i.e., κ(φk, φl) =

δkl for 1 ≤ l, k ≤ N where ψl [n] = φl [n] ◦ µ (φl [n]). Thus the modulating signals, {µ (φl [n])}1:N ,
are named primarily because of their interpretation as the set of signals used to modulate the basis
signals in order to generate the dual signals. Note that this algorithm relies upon the basis signals
being non-zero for all sample values, which is guaranteed for the general exponential basis. For
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1 ≤ l, k ≤ N , the biorthogonality constraints are then given by

κ (φk,φl) = φ
H

l
K (φl)φk =





1,

0,

k = l

k �= l

, where K (φl) =





µ (φ∗
l
[0]) 0 · · · 0

0 µ (φ∗
l
[1]) · · · 0

...
... . . . ...

0 0 · · · µ (φ∗
l
[N − 1])




.

(3.4.14)

The following proposition states that for a general exponential basis, the set of modulating
signals, {µ (φk [n])}1:N , which satisfy the desired biorthogonality constraints exist and are unique.
However, for simplicity in the following proposition, the constraint of κ(φl,φl) being unity is relaxed
such that any non-zero scalar is accepted. In this way an appropriate normalization of the resulting
modulating signal can be applied later to enforce the biorthogonality constraints as defined in Eq.
(3.4.14). These unnormalized modulating signals are denoted by {ν (φk [n])}1:N , i.e., ν (φk [n]) ∝

µ (φk [n]).

Proposition. Given a general exponential basis {φk [n]}1:N , then a set of unnormalized modulating

signals {ν (φk [n])}1:N exists such that

κ (φk,φl) =
N−1�

n=0

φk [n]φ
∗
l
[n] ν (φ∗

l
[n]) =





γ
−1
l

,

0,

k = l

k �= l

(3.4.15)

for 1 ≤ l, k ≤ N and for some non-zero constants {γk}1:N . Furthermore, the unnormalized modu-

lating signals are unique to within a scaling.

Proof. We have previously shown that the dual signal ψl [n], for a fixed index l, lies in the orthogonal
complement of any linear map Φ∼l : V → V∼l , where the vector space V is decomposed as

V = Vl ⊕ V∼l

where Vl = span {φl [n]} and V∼l = span {{φk [n]}1:N \ {φl [n]}}. For each l, 1 ≤ l ≤ N , repeat the
following argument. We choose Φ∼l to be the linear transformation

Φ∼l =




| | | |

φ1 · · · φl−1 φl+1 · · · φN

| | | |





By definition we have that ψl [n] ∝ φl [n]◦ν (φl [n]), therefore the modulating signal ν(φl [n]) must be
in the orthogonal complement to the space spanned by {φ1◦φl, · · · , φl−1◦φl, φl+1◦φl, · · · , φN ◦φl},
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i.e.,

ν (φl [n]) ∈ R
⊥








| | | |

φ1 · · · φl−1 φl+1 · · · φN

| | | |









φl [0] 0
. . .

0 φl [N − 1]







 .

Written in matrix notation this is ν(φl) ∈ R⊥ (Φ∼lΦl). The product Φ∼lΦl is guaranteed to span
an N − 1 dimensional space because each of the N − 1 basis signals are modulated by the same
non-zero signal, so no two basis signals end up being collinear after the modulation. Therefore
dim

�
R⊥ (Φ∼lΦl)

�
= 1 by the Rank Plus Nullity Theorem, meaning the modulating signals are

unique to within a scaling.

The proof of the above proposition not only shows the existence of the unnormalized modulating
signals, but also suggests an algorithm to determine them one at a time. In order to compute a
nullspace we define the full Singular Value Decomposition (SVD) next. However, any technique to
determine the nullspace of a linear map may be used in the following algorithm.

Definition. The Singular Value Decomposition (SVD). If A is an N × N , rank r matrix,

then there exists an N × r matrix U and an N × r matrix V such that U
H
U = V

H
V = Ir and

A = UΠV H
, where Πr is an r × r diagonal matrix whose diagonal entries, called singular values,

satisfy

π1 ≥ π2 ≥ · · · ≥ πr > 0. (3.4.16)

The extended or full SVD can be written as

A =
�
u1 · · · ur ū1 · · · ūN−r

� � Πr 0

0 0

�





v
H

1
.
.
.

v
H
r

v̄
H

1
.
.
.

v̄
H

N−r





=
r�

k=1

πkukv
H

k
+

N−r�

k=1

0ūkv̄
H

k
. (3.4.17)

The vectors uk and vk are the left singular vectors and right singular vectors of A, respectively, and

comprise the columns of the matrices U and V . The vectors ūk and v̄k span the null space of AH

and A, respectively.

By definition, all N values of σk are distinct. Therefore, σ1σl �= · · · �= σl−1σl �= σl+1σl �=

· · · �= σNσl, so all N − 1 of these values are also distinct. Define the function ζj [n] = (σlσj)
n for

0 ≤ n ≤ N − 1 and l �= j. The standard inner product of ν (φl [n]) with ζj [n], for each j, must be

44



CHAPTER 3. TRANSIENT SPECTRAL ANALYSIS 3.4. DUAL BASIS GENERATION

0 for the desired constraints to be met. Writing these constraints in matrix notation, we have that
ν (φl [n]) must satisfy





ζ1 [0] · · · ζ1 [N − 1]
... . . . ...

ζl−1 [0] · · · ζl−1 [N − 1]

ζl+1 [0] · · · ζl+1 [N − 1]
... . . . ...

ζN [0] · · · ζN [N − 1]









ν (φl [0])
...

ν (φl [N − 1])



 =





0
...
0

0
...
0





. (3.4.18)

The matrix above is Vandermonde with N − 1 linearly independent rows. Therefore the null space
of this matrix contains exactly one non-trivial vector corresponding to ν(φl[n]).

Denote the matrix in Eq. (3.4.18) as Ql. The vector v̄N in the full SVD representation of Ql

is a basis for the null space and consequently is a scalar multiple of µ (φl [n]), i.e., v̄N = ν (φl).
Therefore, the modulating signal, for a fixed index l, is found to be

µ (φl [n]) = γl · ν (φl [n]) (3.4.19)

for some scalar γl. In order to use Eq. (3.1.10) to produce the transient spectrum we enforce that
�φl,φl ◦ µ (φl)� = 1. Therefore we find that, for each l,

γl =
1

�φl, ν (φl) ◦ φl�
. (3.4.20)

If the entire transient spectrum is desired, then this process only needs to be repeated for each
l, 1 ≤ l ≤ N . The normalization by γl is the appropriate scaling for the set of biorthogonality
constraints to be met.

This algorithm has the advantage of enabling the separate computation of the modulating signal
corresponding to each exponential basis signal. The ability to produce the dual basis signals one at
a time is given by

ψk [n] = γk · φk [n] ◦ ν (φk [n]) , (3.4.21)

for 1 ≤ k ≤ N. This resolves the first of the two limitations discussed when the dual basis is
constructed by matrix inversion by allowing the dual signals to be computed independently. The
second issue of computational noise can be mitigated by using either algorithm based upon whether
computing the nullspace of the matrix Ql or inverting the matrix ΦH results in lower computational
error.

3.4.4 Generating Dual General Exponential Bases by Polynomial Expansion

The derivation of the algorithm for generating the dual general exponential basis by modulation
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took advantage of the structure of a general exponential basis such that a matrix inverse was
avoided. However, any technique for finding the null space of a matrix may be used to find the
dual signals. A third algorithm, also specific to a general exponential basis, is now proposed for
generating the dual exponential signals directly by exploiting the structure in the unnormalized
modulating signals {ν (φk [n])}1:N . This results in a formulation where the dual basis signals are
determined using polynomial expansion and knowledge of the parameters {σk}1:N used to define
the general exponential basis.

An important observation about Vandermonde structured matrices and their relation to zeros
of polynomials, which will be useful in the ensuing discussion, is highlighted first. This approach is
based on the fact that a polynomial P of degree N < ∞ with scalar coefficients of the form

P (z) =
N�

k=0

bkz
k (3.4.22)

=
N�

k=1

bN (z − βk) (3.4.23)

has N , not necessarily distinct or real, zeros {βk}1:N . P evaluated at each zero, βk, must equal
0, i.e., P (βk) = 0, for 1 ≤ k ≤ N. Consequently, the polynomial coefficients must also satisfy the
matrix equation 



1 β1 β
2
1 · · · β

N

1
...

...
... . . . ...

1 βN β
2
N

· · · β
N

N









b0
...
bN



 =





0
...
0



 (3.4.24)

where the matrix above has a Vandermonde structure. Note that in Eq. (3.4.24), the N roots of P
appear explicitly in the second column of the N ×N + 1 matrix. Further, the vector of coefficients
b = [b0, · · · , bN ]T lies in the nullspace of the Vandermonde structured matrix. When the roots of
the polynomial are unique, the vector b is a basis for the nullspace as well.

We use the relationship between a polynomial and a Vandermonde matrix to generate a dual
basis signal by exploiting the matrix Ql to find the unnormalized modulating signal ν (φl [n]), for
a fixed index l, using polynomial expansion. The matrix Ql in Section 3.4.3 is Vandermonde with
[Ql]ij =

�
β
(l)
i

�j−1
, where

β
(l)
i

=





σlσi,

σlσi+1,

1 ≤ i < l

l ≤ i < N

. (3.4.25)

Using the relationship between a polynomial and a Vandermonde matrix established in Eq. (3.4.24),
we construct a polynomial in z

−1 given by
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V
(l) (z) =

N−1�

j=1

�
1−

�
β
(l)
j

�−1
z
−1

�
(3.4.26)

=
N�

j=1, j �=l

�
1− (σjσl)

−1
z
−1

�
(3.4.27)

=
N−1�

n=0

ν (φl [n]) z
−n (3.4.28)

where for each l, 1 ≤ l ≤ N , Eq. (3.4.27) defines an expression for the z-transform of ν (φl [n]),
denoted by V(l) (z). Therefore the z-transform of the modulating signal µ (φl [n]), denoted by
M(l) (z), is defined by M(l) (z) = γlV

(l) (z). Using Eq. (3.4.27) is an improvement upon the previous
two algorithms for dual basis construction in the sense that neither a matrix factorization nor a
matrix inverse need to be computed. Instead, any computational error arising in this calculation
is due only to the multiplication of the inverse parameters {σk}1:N used to define the general
exponential basis signals.

Continuing further with the interpretation of Eq. (3.4.27) as the z-transform of ν (φl [n]), for
some fixed index l, the product of N − 1 binomial terms in the z-domain is equivalent to N − 1

convolutions of length-two signals in the temporal domain. Each length two signal has the form

h
(l)
k

[n] = Z
−1

�
1− (σkσl)

−1
z
−1

�
(3.4.29)

= δ [n]− (σkσl)
−1

δ [n− 1] (3.4.30)

for 1 ≤ k ≤ N, k �= l. The convolutional procedure for generating an unnormalized modulating
signal is given by

ν (φl [n]) = h
(l)
1 [n] ∗ · · · ∗ h(l)

l−1 [n] ∗ h
(l)
l+1 [n] ∗ · · · ∗ h

(l)
N

[n] (3.4.31)

for 1 ≤ l ≤ N. Together Eqs. (3.4.30) and (3.4.31) yield an expression for determining the unnor-
malized modulating signals {ν (φk [n])}1:N using only knowledge of the parameters {σk}1:N .

Figure 3.4.1 shows a signal flow graph depiction of the algorithm for dual exponential basis
generation by polynomial expansion. The dual basis signals are given by ψk [n] = γkψ̃k [n], for
1 ≤ k ≤ N , where the unnormalized dual signals ψ̃k [n] are generated independently by constructing
scalar multiples of the unnormalized modulating signals, ν (φk [n]), and then modulating each by
the appropriate exponential basis signal. Also depicted is the construction of the scaling coefficients
in Eq. (3.4.20), where the summation needed for the inner-product is performed by sampling a
rectangular window filter at the appropriate sample value.
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Figure 3.4.1: The signal flow graph for generating the unnormalized dual exponential basis signals�
ψ̃k [n]

�

1:N
and the normalization constants {γk}1:N directly using the modulation algorithm

Consider the zeros of the z-transform of an unnormalized modulating signal ν (φl [n]), for a
fixed index l. The zeros possess additional structure in the sense that every zero in Eq. (3.4.27) is
a multiple of the parameter σ

−1
l

. This additional structure is exploited next.

Vieta’s formula [26], which gives the relationship between the coefficients of a polynomial and
functions of its zeros, states that, using the notation of Eqs. (3.4.22) and (3.4.23),

β1 + · · ·+ βN = −
bN−1

bN

(β1β2 + β1β3 + · · ·+ β1βN ) + (β2β3 + β2β4 + · · ·+ β2βN ) + · · ·+ βN−1βN = bN−2

bN...
...

...
β1β2 · · ·βN = (−1)N b0

bN

.

(3.4.32)
Consider the zeros of V (l)(z) for a fixed index l. Each of the zeros are of the form β

−1
j

= σ
−1
j

σ
−1
l

,
as defined in Eq. (3.4.25). Therefore a factor of the form

�
σ
−1
l

�k, for some positive power k, can be
factored out of each of the equations above when specialized to V

(l)(z). Without loss of generality
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assume that l = 1. The left-hand side of the set of equations above reduces to

σ
−1
1

�
σ
−1
2 + · · ·+ σ

−1
N

�
�
σ
−1
1

�2 �
(σ−1

2 σ
−1
3 + σ

−1
2 σ

−1
4 + · · ·+ σ

−1
2 σ

−1
N

) + (σ−1
3 σ

−1
4 + · · ·+ σ

−1
3 σ

−1
N

) + · · ·+ σ
−1
N−1σ

−1
N

�

...
�
σ
−1
1

�N �
σ
−1
2 · · ·σ

−1
N

�
.

(3.4.33)

This representation is interpreted as the coefficients of the z-transform of a signal u (φ1 [n])

modulated by φ̃1 [n] =
�
σ
−1
1

�n for 0 ≤ n ≤ N − 1. Denote the z-transform of u (φ1 [n]) as U
(1) (z),

then U
(1) (z) has zeros at σ

−1
2 , . . . ,σ

−1
N

. Generalizing to an arbitrary index l, 1 ≤ l ≤ N, define

U
(l) (z) =

N�

k=1, k �=l

�
1− σ

−1
k

z
−1

�
(3.4.34)

to be the z-transform of u (φl [n]), a signal that when modulated by φ̃l [n] produces ν (φl [n]). That
is

ν (φl [n]) = u (φl [n]) ◦ φ̃l [n] (3.4.35)

for 1 ≤ l ≤ N. Next, the product of N − 1 binomial terms in Eq. (3.4.34) is interpreted as N − 1

convolutions of length two sequences in the sample domain where each length two sequence has the
form, for 1 ≤ k ≤ N ,

gk [n] = Z
−1

�
1− σ

−1
k

z
−1

�
(3.4.36)

= δ [n]− σ
−1
k

δ [n− 1] . (3.4.37)

These length two sequences have many advantages over those defined in Eq. (3.4.30), as they are
reused in the process of generating each dual basis signal. Therefore the convolutional expression
for u (φl [n]) is given by, for 1 ≤ l ≤ N,

u (φl [n]) = g1 [n] ∗ · · · ∗ gl−1 [n] ∗ gl+1 [n] ∗ · · · ∗ gN [n] . (3.4.38)

Directly using Eqs. (3.4.35) and (3.4.38) in order to generate the unnormalized modulating
signals {ν (φl [n])}1:N is shown next in Figure 3.4.2.

49



3.4. DUAL BASIS GENERATION CHAPTER 3. TRANSIENT SPECTRAL ANALYSIS

Figure 3.4.2: The signal flow graph for generating the unnormalized modulating signals
{ν (φk [n])}1:N using the modulated signals {u (φk [n])}1:N

Combining the signal flow graphs in Figures 3.4.1 and 3.4.2, note that the modulating terms
cancel, i.e., φl [n] φ̃l [n] = 1, for 0 ≤ n ≤ N − 1 and 1 ≤ l ≤ N. An expression for the dual signals
{ψl [n]}1:N is obtained then by directly using knowledge of the parameters {σk}1:N used to define
the general exponential basis instead of pairs of these parameters. That is, for 1 ≤ l ≤ N,

ψl [n] = γl · u (φl [n]) , (3.4.39)

where γl is the scalar in Eq. (3.4.20) and u (φl [n]) is given in Eq. (3.4.38). A signal flow graph
implementation of this system is depicted in Figure 3.4.3. Again, the figure shows the procedure
used to calculate the normalization parameters {γk}1:N .
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Figure 3.4.3: The simplified signal flow graph for generating the unnormalized dual exponential
basis signals

�
ψ̃k [n]

�

1:N
and the normalization constants {γk}1:N

One final simplification of the signal flow graph representation of dual basis generation shown in
Figure 3.4.3 involves the re-use of the sub-system components {gk [n]}1:N . Consider the polynomial
in Eq. (3.4.34) where we reformulate it to be a rational function given by, for 1 ≤ l ≤ N ,

U
(l) (z) =

N�

k=1

�
1− σ

−1
k

z
−1

�

�
1− σ

−1
l

z−1
� . (3.4.40)

The numerator of this function is invariant to l, meaning it may be used for each U
(l) (z), 1 ≤ l ≤ N.

Utilizing this fact gives another implementation for generating the dual basis signals and is shown
in Figure 3.4.4.
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Figure 3.4.4: The signal flow graph optimized for computational savings for generating the unnor-
malized dual exponential basis signals

�
ψ̃k [n]

�

1:N
and the normalization constants {γk}1:N

3.5 Pole-Zero Interpretation of Polynomial Expansion

This section describes an alternative algorithm for generating the unnormalized dual signal,
ψ̃k [n], using a modification of the algorithm presented in Section 3.4.4 for generating the dual
exponential basis using polynomial expansion. The discussion in this section is specialized to the real
exponential basis, although similar arguments hold for the general exponential basis. This algorithm
uses a straightforward argument based upon the pole-zero representation of signals and systems. To
begin, consider the set of N infinite duration exponential signals,

�
φ̌k [n]

�
1:N

, where φ̌k [n] = σ
n

k
u [n],

for 1 ≤ k ≤ N . The process of designing a filter bank to detect which φ̌k [n] ∈
�
φ̌k [n]

�
1:N

is the
input to the filter by looking at an output snapshot is described next. Once this process has been
stated, the system function for each channel in the filter bank is shown to be equivalent to the
unnormalized dual signals found by polynomial expansion. The primary difference in this section
and the derivation of the algorithm in Section 3.4.4 is that for finite-length exponential basis signals
the arguments used here do not hold.

Define the structure of the l
th channels system function by F

(l) (z), where F
(l) (z) has a zero

at each of the decay rates in the infinite duration exponential basis, except for decay rate σl.
The impulse response of the l

th channels system function is denoted by f
(l) [n]. Therefore, the

z-transform representation of the l
th channel is given by

Z

�
f
(l) [n]

�
=

N�

k=1, k �=l

�
1− σkz

−1
�
. (3.5.1)

The implication of the N − 1 zeros of F (l) (z), corresponding to N − 1 of the decay rates in the

52



CHAPTER 3. TRANSIENT SPECTRAL ANALYSIS 3.5. POLYNOMIAL EXPANSION

infinite duration exponential basis
�
φ̌k [n]

�
1:N

, is that f
(l) [n] has a non-zero length corresponding

to 0 ≤ n ≤ N − 1. The pole-zero representation of F
(l) (z) is shown in Figure 3.5.1(a), for a

fixed index l. Each infinitely long exponential basis signal has the z-transform structure given by
Φ̌k (z) =

1
1−σkz

−1 , 1 ≤ k ≤ N . Therefore, for k �= l, F (l) (z) ·Φ̌k (z) results in a pole-zero cancellation
at σk. Equivalently, the convolution of f (l) [n] and φ̌k [n] results in a signal of non-zero length for
0 ≤ n ≤ N − 2. The pole-zero representation of this case is depicted in Figure 3.5.1(b). For the
case where k = l, F (l) (z) · Φ̌k (z) does not result in a pole-zero cancellation. The convolution of
f
(l) [n] and φ̌k [n] results in an infinitely long non-zero output due to the pole at σk in the pole-zero

representation. The pole-zero plot for this case is depicted in Figure 3.5.1(c).

(a) Pole-zero representation of the lth channels system function F (l) (z)

(b) Pole-zero representation of the output of the lth-channel using the input
φ̌k [n] when k �= l

(c) Pole-zero representation of the output of the lth-channel using the input
φ̌k [n] when k = l

Figure 3.5.1: Pole-zero representations for understanding the dual exponential basis generation by
polynomial expansion

To detect which of the infinitely long exponential signals is the input into the filter bank is easily
obtained by looking at the snapshot of outputs at time n = N − 1. The index of the channel with
non-zero output at this sample corresponds to the index of the infinitely long exponential signal
that was the input into the filter bank. Note that without an appropriate scaling, the value of the
output at this sample is not the expansion coefficient, but just an indication of presence. This means
that if the linear combination of two infinitely long exponential signals are put into the filter bank,
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then the two corresponding channels would have non-zero output at n = N − 1. However, the two
output values would not necessarily indicate which exponential component had greater magnitude.
Note that the l

th channel of the filter bank described above, i.e., F (l) (z), is structurally identical
to U

(l) (z) in Section 3.4.4.

3.6 Desirable Properties of Transient Spectra

The expansion coefficients resulting from a change of basis often have some physical significance
with respect to the structure of basis signals selected. For example, one decomposition commonly
used in a broad range of engineering disciplines is the Discrete Fourier Transform. The DFT has
been successfully used across numerous disciplines; the importance of the DFT needs no elaboration.
The orthogonal basis signals used in the DFT are harmonically related complex exponentials, and
the expansion coefficients correspond, in amplitude, to the specific frequencies present in a sampled
signal. The Fourier spectrum computed by the DFT has many properties that have aided it in its
widespread success, only a subset of which are described in what follows. In discussing the DTT,
many of the same properties exhibited by the DFT are desired.

As we saw in Section 3.1, the expansion coefficients for an orthogonal basis are easily determined
through the standard inner product. Consequently, the dual signals of a purely imaginary complex
exponential basis have a simple structure−they are also harmonically related complex exponentials.
Specifically, each dual signal is the complex conjugate of its corresponding complex exponential ba-
sis signal, to within a scaling. As a result, both the basis signals and the dual basis signals remain
numerically stable, even for large values of N . Parsevals theorem provides a simple relationship
between the energy content of a signal in the standard sampling basis and the complex exponential
basis. For signals with only a few large DFT coefficients, Parsevals theorem is helpful for determin-
ing an approximation to a signal while preserving as much energy content as possible, laying the
foundation for many transform coding methods.

With regard to systems theory, the convenient result that an exponential signal is an eigenfunc-
tion of an LTI system means that the action of an LTI system, described by linear convolution, is
restricted to a possibly complex scaling when the input is a complex exponential. This fact allows
the Fourier spectrum to be interpreted as a spectrum of eigenvalues. Additionally, any finite-length
signal can be represented using a complex exponential basis, where the correct “amount” of each
complex exponential is the expansion coefficient, i.e., the DFT coefficient. Using this fact, lin-
ear convolution may be performed by multiplying the DFT of an input signal with the DFT of
an LTI system’s impulse response, assuming the degrees of freedom of the output are preserved
in the resulting spectrum. Using an FFT algorithm for this procedure provides an alternative to
the computationally intensive linear convolution by multiplying the possibly zero-padded DFTs of
the signals involved. This procedure, referred to as Fast Convolution, motivates the design and
implementation of numerous LTI systems directly in the complex exponential basis. Many physi-
cal systems, such as the human auditory system, are easily understood in the frequency domain,
therefore designing directly in this basis is often advantageous.
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The ability to resolve two closely spaced complex exponentials is well understood; the longer
the interval of support, the higher the spectral resolution will be. Additionally, the ability to reduce
spectral leakage, which occurs when a complex exponential being analyzed doesn’t correspond to
one of the basis signals, is mitigated by pre-processing the signal via windowing in the sample
domain. When a signal acquired contains additive noise, the signal-to-noise ratio is invariant with
respect to the number of samples acquired. This provides a meaningful indication of the distortion
in the samples accounted for by the noise.

In parallel with the discussion above for the complex exponential basis, many similar properties
will be presented for the exponential basis. In order to meaningfully discuss the transient spectrum,
the dual exponential basis signals must be available and thus their structure was derived in Section
3.4. The remainder of the chapter discusses the numerical stability, transient resolution, spectral
leakage, and the effects of additive noise with respect to the transient spectrum.

3.7 Ill-Conditioning of the Matrix Inversion Algorithm

In addition to miss-modeling and physical measurement errors, numerical errors in the imple-
mentation of algorithms for solving systems of linear equations often arise. Such errors are inherent
in finite precision computer representations, and can play a significant role in the final error of an
obtained solution. Previously, the algorithm for generating the dual exponential basis using matrix
inversion labeled the process of inverting a Vandermonde structured matrix as an ill-conditioned
procedure, potentially resulting in large computational errors. This section describes the sensitivity
and conditioning of this matrix inversion problem as it was formulated in Section 3.4.2. In this
section the SVD is used to analyze a system of equations in the form of Eq. (2.1.5) in order to
understand the effect of noise on the matrix V (σT ). Note that V

�
σ
T
�

is structurally equivalent to
the matrix Φ which was used to find the dual signals in the matrix inversion algorithm. For the
remainder of this section, A denotes a general square matrix, which includes the class of square
Vandermonde matrices.

Every linear transformation possesses a Moore-Penrose pseudo-inverse, given by

A
† = VΠ−1

U
H =

r�

k=1

π
−1
k

vku
H

k
. (3.7.1)

When the matrix A is full rank, the inverse and the pseudo-inverse are identical. The Frobenius
norm of a matrix, a straightforward generalization of the �2-norm of a vector, is defined by

�A�
2
F
=

N�

i=1

N�

j=1

|Aij |
2 =

rank(A)�

k=1

π
2
k
= tr

�
A

H
A
�

(3.7.2)

where tr(A) =
�

N

k=1 [A]
kk

. A second matrix norm, known as either the �2 or spectral norm, is given
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by
�A�2 = max

x, �x�2=1
�Ax�2 . (3.7.3)

The spectral norm has the form of maximizing the gain of the matrix A, measured by �Ax�2
�x�2

, over
all possible directions x. It is straightforward to verify that the spectral norm of the matrix A is
bounded by �A�2 ≤ π1, where equality is achieved when x = v1, the first right singular vector.

These tools enable us to determine the smallest perturbation that makes A singular in both
the Frobenius and spectral norm sense. Because the solution to the system of equations given by
Ax = b is not unique when A is singular, when A is close to singular the solution is sensitive to
small errors in b, even though it is unique. Consider a perturbation or error in b of δb. The solution
is then perturbed to x+ δx, where

�δx�2 ≤

���A†
���
2
· �δb�2 . (3.7.4)

Using the pseudo-inverse, we find that the spectral norm of A† is bounded above by π
−1
N

, therefore

�δx�2 ≤ π
−1
N

· �δb�2 . (3.7.5)

Note that the bound of a small error in b is inversely proportional to the smallest singular value;
this bound is typically very large for Vandermonde structured matrices. However, we also know
that �x�2 is at least as large as π

−1
1 �b�2. Therefore the relative change in the solution, �δx�2

�x�2
, is

upper bounded by the ratio �δb�2
�b�2

. When this bound is met the system is said to be well-conditioned,
because the relative perturbation in the solution x is never larger than the relative perturbation in
the measurement vector b. In general, we have that

�δx�2

�x�2

≤
π1

πN

�δb�2

�b�2

= �A�2

���A†
���
2

�δb�2

�b�2

. (3.7.6)

In order to quantify the extent by which a small error in the right hand vector b can effect the
solution to the linear system of equations, a metric known as the condition number is established.
The definition of the condition number of a square matrix A is given by

κm (A) = �A�2

���A†
���
2
=

π1

πN
(3.7.7)

where the condition number κm (A) = 1 is ideal. Note that the condition number does not depend
on the right hand side of the system of equations Ax = b, but only on the matrix A. Also, note
that the condition number of a matrix A, given this definition for the condition number, is the same
as the condition number of A†

. This means that the condition number of Φ is the same as Ψ, i.e.,
κm (Φ) = κm (Ψ).

From a numerical standpoint, solving for the inverse of a Vandermonde matrix is usually a
bad approach, even though the matrix is guaranteed nonsingular. The condition number of Van-
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dermonde systems has been shown to grow exponentially with the system size, yielding terribly
ill-conditioned problems even for relatively small system complexities. [9] For example, the expo-
nential basis with decay rates {σk}1:17 = {0.1, 0.15, · · · , 0.9} yields κm (Φ) = 8.1512× 1014.

3.8 Transient Spectral Leakage

In many scenarios, the amplitude coefficients of a transient signal are desired when a finite set of
possible decay rates present in the signal is either unknown or unobtainable. When this occurs, one
approach is to use the DTT with any set of any N distinct decay rates. In this case, the resulting
transient spectrum will generally exhibit spectral leakage. This section introduces the effects of
spectral leakage by way of an example, followed by a comparison to the spectral leakage exhibited
in the complex exponential basis. In addition, the effects of noise on the transient spectrum are
discussed.

Consider computing the transient spectrum of the signal x1 [n] = 3 (0.41)n using an exponential
basis with decay rates {σk}1:17 = {0.1, 0.15, · · · , 0.9}. Note that for this example, the decay rate
of the signal is not in the exponential basis, i.e., 0.41 /∈ {σk}1:17 . The magnitude of the resulting
transient spectrum is depicted in Figure 3.8.1. One desirable attribute that was discussed in Section
3.6 is observed in this example, namely, the behavior of a broadened peak around the true decay
rate. The maximum magnitude found in this example corresponds to decay rate σ7 = 0.4 and the
second highest is found corresponding to decay rate σ8 = 0.45. For decay rates further from σ7 and
σ8, the expansion coefficients decay to 0.

Figure 3.8.1: Transient Spectrum of a single exponential signal depicting the effects of spectral
leakage

A natural question arising from the transient spectrum in the previous example is whether or not
any techniques exist to reduce the effects of spectral leakage. For example, a common pre-processing
technique used in the DFT is to change the shape of the window the signal is multiplied by in the
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sample domain, or equivalently a circular convolution in the frequency domain, which introduces a
bias into the spectrum. A technique which reduces the spectral leakage for the transient spectrum
is proposed in Section 4.1. Instead of modifying the signal to be analyzed, a relaxation of the
biorthogonality constraints leads to reduced spectral leakage. Spectral leakage also arises due to the
effects of additive noise contaminating the transient structured signal, such as in Eq. (2.1.7).

In order to explore the effects additive noise, we define the signal-to-noise ratio (SNR) of a
finite-length noisy transient signal as

SNRdB (x̄d [n]) = 10 · log10





N−1�

n=0

(xd [n])
2

N−1�

n=0

(η [n])2




. (3.8.1)

Consider the signal x̄1 [n] = φk [n] + η [n], for some k, 1 ≤ k ≤ N . The denominator of the
logarithm in SNRdB (x̄1 [n]) is invariant to k while the numerator is monotonically increasing as
σk approaches 1, meaning that the SNR monotonically increases as σk approaches 1 for a fixed
amplitude coefficient. Given a fixed noise power, the transient spectral results are more accurate
for slowly decaying exponentials for this reason; they contain more energy. However, with transient
structured signals, the longer the interval of support for which sample values are obtained, the worse
the SNR becomes. This behavior is demonstrated next as the data size grows large.

The following demonstrates one of the inherently difficult problems faced when dealing with
noisy transient signals: the SNR, as calculated in Eq. (3.8.1), does not remain constant as the data
size increases. Specifically, consider the SNR in the limit of the data record. A general transient
signals instantaneous energy decays towards 0 as n → ∞ while the noise power remains fixed. In
the limit we find that

lim
N→∞

SNRdB (x̄d [n]) ≤ lim
N→∞

10 · log10
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(3.8.2)

≤ lim
N→∞

10 · log10
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(3.8.3)

= −∞ (3.8.4)

where αMAX =
d�

k=1

|αk| and σMAX = max
k

{σk}1:d. This result demonstrates an important property

when working with transient signals: it is often best to use a shorter data record rather than longer,
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because the overall SNR decreases to the extent that the recorded sample values contain strictly the
effects of noise. When signal quantization is taken into account this phenomena results, in many
cases, relatively quickly.

3.9 Dual Basis Generation for the Complex Exponential Basis

In this chapter three algorithms have been presented for generating a dual basis given a finite
general exponential basis, two of which were derived explicitly for generating a dual exponential
basis. This section shows that these two algorithms for dual basis generation, i.e., by modulation
and by polynomial expansion, reduce to producing the expected dual signals used in the DFT.

The finite complex exponential basis signals are denoted by {ek [n]}0:N−1, where

{ek [n]}0:N−1 = {e0 [n] , · · · , eN−1 [n]} , ek [n] = e
−j

2π
N nk

, 0 ≤ n ≤ N − 1. (3.9.1)

In what follows, the dual basis signals for the complex exponential basis are derived in three ways.
First, a straightforward argument using the standard inner product is used to uncover the structure
of the dual basis signals from first principles. This is equivalent to understanding the change of basis
undergone by the DFT, discussed in Section 3.6. Second, the algorithm for dual basis generation by
modulation is used to derive the correct structure of the unnormalized modulating signals for the
complex exponential basis. Finally, the algorithm for dual basis generation by polynomial expansion
is shown to be consistent by producing the correct dual basis signal structure.

We have previously seen that {ek [n]}0:N−1 is an orthogonal basis. Therefore the dual signal
structure is given by a scalar multiple of the complex conjugate of the original basis signal, specifi-
cally, denote the set of dual signals by {dk [n]}0:N−1 where

{dk [n]}0:N−1 = {d0 [n] , · · · , dN−1 [n]} , dk [n] =
1

N
e
j
2π
N nk

, 0 ≤ n ≤ N − 1. (3.9.2)

By inspection, computing the dual basis by matrix inversion leads to the same result. Using Eq.
(3.4.11) to generate the dual basis signals by matrix inversion inverts ΦH when the structure of Φ
is the canonical DFT matrix. One well known property of the DFT matrix is that it is a unitary
operator when appropriately scaled by 1√

N
, thus the dual signals are a scaled version of the complex

conjugates of the complex exponential basis signals.

Next, we find the unnormalized modulating signals, {ν (ek [n])}0:N−1, that satisfy Eq. (3.4.21)
specialized to the complex exponential basis. This is given by, for 0 ≤ n ≤ N − 1,

dk [n] = γk · ek [n] ◦ ν (ek [n]) , (3.9.3)

where γ
−1
k

= N , for 0 ≤ k ≤ N − 1. To find the unnormalized modulating signal ν (ek [n]),
for a fixed index k, the complex signal ν (ek [n]) = x1 [n] + jx2 [n] is found such that e

∗
k
[n] =

ek [n] (x1 [n] + jx2 [n]). Setting up the system of equations to determine x1 [n] and x2 [n] yield, for
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0 ≤ n ≤ N − 1,
�

cos
�
2π
N
nk

�
sin

�
2π
N
nk

�

− sin
�
2π
N
nk

�
cos

�
2π
N
nk

�
� �

x1 [n]

x2 [n]

�
=

�
cos

�
2π
N
nk

�

sin
�
2π
N
nk

�
�
. (3.9.4)

The solution to this system of equations is given by x1 [n] = cos2
�
2π
N
nk

�
− sin2

�
2π
N
nk

�
and x2 [n] =

2 sin
�
2π
N
nk

�
cos

�
2π
N
nk

�
. Converting to polar representation, ν (ek [n]) = e

j2
� 2π
N

�
nk. Thus the signal

modulated against ek [n], for a fixed index k, is (ek [n])
−2

. Therefore, for 0 ≤ k ≤ N − 1,

ν(ek [n]) = e
j2

� 2π
N

�
nk
, 0 ≤ n ≤ N − 1. (3.9.5)

By substituting Eq. (3.9.5) into Eq. (3.9.3), it is straightforward to verify that the method of
generating the dual basis for a complex exponential basis using modulation is valid.

Finally, we show that the dual complex exponential basis signals, {dk [n]}0:N−1, that result from
polynomial expansion are also generated from the dual basis generation algorithm by polynomial
expansion. Solving for U

(l) (z) = Z {u (el [n])}, for a fixed index l, yields

U
(l) (z) =

N−1�

k=0,k �=l

(1− (σk)
−1

z
−1) (3.9.6)

=
N−1�

k=0,k �=l

(1− e
j
2π
N (k)

z
−1) (3.9.7)

=
N−1�

k=0

e
j
2π
N k

z
−k

. (3.9.8)

This procedure can also be verified using Vieta’s formula as described in Section 3.4.4.
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Chapter 4

Approximate Transient Spectral Analysis

In order to compute the DTT, as defined in Section 3.4, a number of practical issues related
to numerical stability, transient resolution, and spectral leakage must be addressed. This chapter
proposes various algorithms for computing approximate transient spectra which mitigate many of
these issues. Of course, nothing is gained without consequence, and each algorithm presents a
fundamental tradeoff between conflicting properties. For example, just as with harmonic spectral
analysis, in order to reduce spectral leakage, a biased transient spectrum is developed in Section
4.1, however the approximate spectrum is no longer uniquely invertible. As another example, recall
the algorithm for generating dual signals using polynomial expansion where the zeros of the defined
polynomials were both real and strictly greater than one. The resulting dual signal coefficients
inherently alternate in sign and grow numerically unstable as the size of the exponential basis is
increased. Section 4.3 proposes an unconstrained optimization problem whose solution is a set of
numerically stable approximate dual signals, even for large basis sizes. This stability is gained at
the expense of limiting transient resolution. An approach for creating an orthogonal basis closest
to an exponential basis in a least squares sense is presented in Section 4.6. Finally, an approximate
transient spectrum for continuous-time transient signals in the form of Eq. (2.1.1) based upon or-
thogonal polynomials is considered in Section 4.7.

4.1 Parametric Biorthogonal Constraint Relaxations

The techniques proposed in this section utilize various parametric relaxations to the biorthog-
onality constraints resulting in a set of approximate dual signals, denoted by

�
ψ̂k [n]

�

1:N
. The

approximate dual signals are then substituted into the DTT in place of the dual exponential signals,
resulting in an approximate transient spectrum. Several reasons for relaxing the biorthogonality
constraints exist: to decrease computational errors when computing the transient spectrum for large
N , to improve transient resolution in the presence of additive noise, and/or to reduce spectral leak-
age. Two of these properties are highlighted for each relaxation: transient resolution and spectral
leakage.

Three relaxations of the biorthogonality constraints are presented, where each relaxation is
parameterized by a single parameter θ. This parameter is then restricted to a range of values for
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which desirable spectral resolution guarantees can be made. Recall that the transient spectrum of
a signal of the form

x1 [n] = αa (σa)
n
, 0 ≤ n ≤ N − 1, (4.1.1)

where σa �∈ {σk}1:N and αa �= 0 has been previously demonstrated to contain a broadened peak in
the expansion coefficients corresponding to the decay rates nearest to σa. For signals with multiple
exponential components, such spectral leakage could possibly interfere with the identification of
other decay rates. Each relaxation addresses this issue using an example in which the approximate
spectrum is computed for a signal consisting of two closely spaced exponential components. En-
forcing spectral resolution requires that the two components produce two visually distinguishable
peaks in the approximate spectrum. Though in general the decay rates of a signal being analyzed
are unknown, this analysis will provide the ratio of amplitudes guaranteed to be resolvable for each
biorthogonality relaxation as it relates to the parameter θ.

4.1.1 Uniform Relaxation

Define the approximate DTT analysis equation using a uniform relaxation of the biorthogonality
constraints to be

AU [k] =
N−1�

n=0

x [n] ψ̂U,k [n] =
�
x, ψ̂U,k

�
, 1 ≤ k ≤ N, (4.1.2)

where the uniformly relaxed approximate dual basis,
�
ψ̂U,k [n]

�

1:N
, satisfies the uniformly relaxed

biorthogonality constraints given by

�φl, ψ̂U,k� =





1,

θU ,

l = k

l �= k

, 1 ≤ k, l ≤ N, (4.1.3)

for θU ∈ IU , for some interval IU . Only positive values of θU are considered in limiting the domain
of θU based upon spectral resolution. Towards this end, consider x2 [n] = α1φk1 [n] + α2φk2 [n] =

α1σ
n

k1
+α2σ

n

k2
with α1,α2 > 0, |k1 − k2| > 1 (non-adjacent), and k1, k2 ∈ {1, . . . N}. The uniformly

relaxed approximate transient spectrum of x2 [n] is given by

AU [k] = α1�φk1 , ψ̂U,k�+ α2�φk2 , ψ̂U,k� (4.1.4)

=






α1 + α2θU ,

α2 + α1θU ,

(α1 + α2) θU ,

k = k1

k = k2

otherwise

. (4.1.5)

Enforcing meaningful spectral peaks for the limiting case of two exponential components requires
distinct peaks in the spectrum when |k2 − k1| = 2. Without loss of generality, assume that k2 > k1.
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In order to resolve the two spectral peaks, θU is constrained such that the following conditions hold:

AU [k1] > AU [k1 − 1] ⇐⇒ α1 + α2θU > (α1 + α2) θU

AU [k1] > AU [k1 + 1] ⇐⇒ α1 + α2θU > (α1 + α2) θU

AU [k1 + 2] > AU [k1 + 1] ⇐⇒ α2 + α1θU > (α1 + α2) θU

AU [k1 + 2] > AU [k1 + 3] ⇐⇒ α2 + α1θU > (α1 + α2) θU .

Figure 4.1.1 depicts the resulting approximate spectrum. Specifically, Figure 4.1.1(a) and Fig-
ure 4.1.1(b) depict the approximate transient spectrum of the exponential components α1φk1 [n]

and α2φk2 [n], respectively. Figure 4.1.1(c) depicts the result of adding the two previous spectra,
equivalent to the approximate transient spectrum of the signal x2 [n].

(a) Approximate DTT of the signal α1φk1 [n] using a uni-
form relaxation of the biorthogonality constraints

(b) Approximate DTT of the signal α2φk2 [n] using a uni-
form relaxation of the biorthogonality constraints

(c) Approximate DTT of the signal x2 [n] using a uniform
relaxation of the biorthogonality constraints

Figure 4.1.1: Spectral resolution of x2 [n] using a uniform relaxation of the biorthogonality con-
straints in the limiting case

Taking the symmetry of the desired spectral constraints into account, the domain of θU is
restricted to the interval IU = (0, 1). Note that the value of θU is invariant to the amplitude of
the transient spectral components to be resolved. This property is not true for the remaining two
constraint relaxations. The manifestation of bias in this spectrum is evident in looking at, for
example, AU [k1], where the spectral amplitude is α1 + α2θU and the contribution of α2θU is the
result of spectral leakage. Note that the approximate spectrum is asymptotically unbiased, meaning
the true transient spectrum is found as θU → 0.

The effect of the uniform relaxation of the biorthogonality constraints on spectral leakage for
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an exponentially decaying signal where the decay rate does not match one of the exponential basis
signals is now presented. Specifically, to illustrate this effect, define an exponential signal of the
form x1 [n] = α1 (σ)

n, 0 ≤ n ≤ N − 1, where σ �∈ {σk}1:N and α1 �= 0. The set of exponential basis
signals {φk[n]}1:N are used where the decay rates are uniformly spaced between 0.1 and 0.9 and we
select N = 17. Additionally, let x1 [n] have a decay rate of σ = 0.38. The resulting approximate
transient spectrum, AU [k] is shown in Figure (4.1.2) for θU = 0.05 and θU = 0.2. For comparison
the transient spectrum using the DTT is shown as well. The magnitudes of the transient spectra
are also included. As is demonstrated in the figure, the uniform relaxation of the biorthogonality
constraints does not produce a significant advantage in terms of spectral leakage, and actually
increases the spectral leakage at further decay rates from the decay rate present.

Figure 4.1.2: Approximate DTT of x1 [n] using a uniform relaxation of the biorthogonality con-
straints for different values of θ

4.1.2 Linear Relaxation

Define the approximate DTT analysis equation using a linear relaxation of the biorthogonality
constraints to be

AL [k] =
N−1�

n=0

x [n] ψ̂L,k [n] =
�
x, ψ̂L,k

�
, 1 ≤ k ≤ N, (4.1.6)

where the linearly relaxed approximate dual basis,
�
ψ̂L,k [n]

�

1:N
, satisfies the linearly relaxed

biorthogonality constraints given by

�φl, ψ̂L,k� =





1,

θL

�
1

|l−k|

�
,

l = k

l �= k

, 1 ≤ k, l ≤ N, (4.1.7)

for θL ∈ IL, for some interval IL. Only positive values of θL are considered in limiting the domain
of θL based upon spectral resolution. Towards this end, consider x2 [n] = α1φk1 [n] + α2φk2 [n] =
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α1σ
n

k1
+ α2σ

n

k2
with α1,α2 > 0, |k1 − k2| > 1 (non-adjacent), and k1, k2 ∈ {1, . . . N}. The linearly

relaxed approximate transient spectrum of x2 [n] is given by

AL[k] = α1�φk1 , ψ̂L,k�+ α2�φk2 , ψ̂L,k� (4.1.8)

=






α1 +
α2

|k2−k1|θL, k = k1

α2 +
α1

|k2−k1|θL, k = k2�
α1

|k−k1| +
α2

|k−k2|

�
θL, otherwise

. (4.1.9)

Enforcing meaningful spectral peaks for the limiting case of two exponential components requires
distinct peaks in the spectrum when |k2 − k1| = 2. Without loss of generality assume that k2 > k1.

In order to resolve the two spectral peaks, θL is constrained such that the following conditions hold:

AL[k1] > AL[k1 − 1] ⇐⇒ α1 +
1

2
α2θL >

�
α1 +

1

3
α2

�
θL

AL[k1] > AL[k1 + 1] ⇐⇒ α1 +
1

2
α2θL > (α1 + α2) θL

AL[k1 + 2] > AL[k1 + 1] ⇐⇒ α2 +
1

2
α1θL > (α2 + α1) θL

AL[k1 + 2] > AL[k1 + 3] ⇐⇒ α2 +
1

2
α1θL >

�
α2 +

1

3
α1

�
θL.

Figure 4.1.3 depicts the resulting approximate spectrum. Specifically, Figure 4.1.1(a) and Fig-
ure 4.1.1(b) depict the approximate transient spectrum of the exponential components α1φk1 [n]

and α2φk2 [n], respectively. Figure 4.1.1(c) depicts the result of adding the two previous spectra,
equivalent to the approximate transient spectrum of the signal x2 [n].
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(a) Approximate DTT of the signal α1φk1 [n] using a lin-
ear relaxation of the biorthogonality constraints

(b) Approximate DTT of the signal α2φk2 [n] using a lin-
ear relaxation of the biorthogonality constraints

(c) Approximate DTT of the signal x2 [n] using a linear
relaxation of the biorthogonality constraints

Figure 4.1.3: Spectral resolution of x2 [n] using a linear relaxation of the biorthogonality constraints
in the limiting case

The second spectral constraint restricts the domain to θL ∈

�
0, 2α1

2α1+α2

�
while the third spectral

constraint, by symmetry, restricts the domain to θL ∈

�
0, 2α2

2α2+α1

�
. Exploiting monotonicity and

symmetry, the first and fourth spectral constraints are met if the second and third are. Therefore,
the domain of θL is restricted to

IL =

�
0, min

�
2α1

2α1 − α2
,

2α2

2α2 − α1

��
.

For example, if α1 = 5α2 then IL ≈ (0, 0.2857), however if α1 = α2 then IL = (0, 2). The
manifestation of bias in this spectrum is evident in looking at, for example, AL[k1], where the
spectral amplitude is α1+

1
2α2θL and the contribution of 1

2α2θL is the result of spectral leakage. Note
that the approximate transient spectrum is asymptotically unbiased, meaning the true transient
spectrum is found as θL → 0.

The effect of the linear relaxation of the biorthogonality constraints on spectral leakage for an
exponentially decaying signal where the decay rate does not match one of the exponential basis
signals is now presented. Specifically, to illustrate this effect, define an exponential signal of the
form x1 [n] = α1 (σ)

n, 0 ≤ n ≤ N − 1, where σ �∈ {σk}1:N and α1 �= 0. The set of exponential
basis signals {φk[n]}1:N are used where the decay rates are uniformly spaced between 0.1 and 0.9

and we select N = 17. Additionally, x1 [n] has a decay rate of σ = 0.38. The resulting approximate
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transient spectrum AL [k] is shown in Figure (4.1.4) for θL = 0.05 and θL = 0.2. For comparison the
transient spectrum using the DTT is shown as well. The magnitudes of the transient spectra are also
included. As is demonstrated in the figure, the linear relaxation of the biorthogonality constraints
does not produce a significant advantage in terms of spectral leakage, and actually increases the
spectral leakage at further decay rates from the decay rate present.

Figure 4.1.4: Approximate DTT of x1 [n] using a linear relaxation of the biorthogonality constraints
for different values of θ

4.1.3 Exponential Relaxation

Define the approximate DTT analysis equation using an exponential relaxation of the biorthog-
onality constraints to be

AE [k] =
N−1�

n=0

x [n] ψ̂E,k [n] =
�
x, ψ̂E,k

�
, 1 ≤ k ≤ N, (4.1.10)

where the exponentially relaxed approximate dual basis,
�
ψ̂E,k [n]

�

1:N
, satisfies the exponentially

relaxed biorthogonality constraints given by

�φl, ψ̂E,k� =





1,

θ
|l−k|
E

,

l = k

l �= k

, 1 ≤ k, l ≤ N, (4.1.11)

for θE ∈ IE , for some interval IE . Only positive values of θE are considered in limiting the the
domain of θE based upon spectral resolution. Towards this end, consider x2 [n] = α1φk1 [n] +

α2φk2 [n] = α1σ
n

k1
+ α2σ

n

k2
with α1,α2 > 0, |k1 − k2| > 1 (non-adjacent), and k1, k2 ∈ {1, . . . N}.

67



4.1. BIORTHOGONAL RELAXATION CHAPTER 4. APPROXIMATE TSA

The exponentially relaxed approximate transient spectrum of x2 [n] is given by

AE [k] = α1�φk1 , ψ̂E,k�+ α2�φk2 , ψ̂E,k� (4.1.12)

=






α1 + α2θ
|k2−k1|
E

, k = k1

α2 + α1θ
|k2−k1|
E

, k = k2

α1θ
|k−k1|
E

+ α2θ
|k−k2|
E

, otherwise

. (4.1.13)

Enforcing meaningful spectral peaks for the limiting case of two exponential components requires
distinct peaks in the spectrum when |k2 − k1| = 2. Without loss of generality, assume that k2 > k1.

In order to resolve the two spectral peaks, θE is constrained such that the following conditions hold:

AE [k1] > AE [k1 − 1] ⇐⇒ α1 + α2θ
2
E >

�
α1 + α2θ

2
E

�
θE

AE [k1] > AE [k1 + 1] ⇐⇒ α1 + α2θ
2
E > (α1 + α2) θE

AE [k1 + 2] > AE [k1 + 1] ⇐⇒ α2 + α1θ
2
E > (α1 + α2) θE

AE [k1 + 2] > AE [k1 + 3] ⇐⇒ α2 + α1θ
2
E >

�
α2 + α1θ

2
E

�
θE .

Figure 4.1.5 depicts the resulting approximate spectrum. Specifically, Figure 4.1.5(a) Figure
4.1.5(b) depict the approximate transient spectrum of the exponential components α1φk1 [n] and
α2φk2 [n], respectively. Figure 4.1.5(c) depicts the result of adding the two previous spectra, equiv-
alent to the approximate transient spectrum of the signal x2 [n].
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(a) Approximate DTT of the signal α1φk1 [n] using an
exponential relaxation of the biorthogonality constraints

(b) Approximate DTT of the signal α2φk2 [n] using an
exponential relaxation of the biorthogonality constraints

(c) Approximate DTT of the signal x2 [n] using an expo-
nential relaxation of the biorthogonality constraints

Figure 4.1.5: Spectral resolution of x2 [n] using an exponential relaxation of the biorthogonality
constraints in the limiting case

The second spectral constraint restricts the domain to

θE ∈

��
0, min

�
1,

α1

α2

��
∪

�
max

�
1,

α1

α2

�
,∞

��
. (4.1.14)

By symmetry, the third spectral constraint restricts the domain to

θE ∈

��
0, min

�
1,

α2

α1

��
∪

�
max

�
1,

α2

α1

�
,∞

��
. (4.1.15)

The first spectral constraint factors into the form (1− θE)
�
α1 + α2θ

2
E

�
> 0 therefore it restricts

θE ∈ (0, 1). By symmetry the fourth constraints make the same restriction. Therefore we define
the domain of θE to be IE =

�
0, min

�
α1
α2
,
α2
α1

��
. The manifestation of bias in this spectrum

is evident in looking at, for example, AE [k1], where the spectral amplitude is α1 + α2θ
2
E

and the
contribution of α2θ

2
E

is the result of spectral leakage. Note that the approximate transient spectrum
is asymptotically unbiased, meaning the true transient spectrum is found as θE → 0.

The effect of the exponential relaxation of the biorthogonality constraints on spectral leakage
for an exponentially decaying signal where the decay rate does not match one of the exponential
basis signals is now presented. Specifically, we illustrate this effect using an exponential signal of
the form x1 (n) = α1σ

n, 0 ≤ n ≤ N − 1, where σ �∈ {σk}1:N and α1 ∈ R. The set of exponential
basis signals {φk[n]}1:N are used where the decay rates are uniformly spaced between 0.1 and 0.9
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and we select N = 17. Additionally, x1 [n] has a decay rate of σ = 0.38. The resulting approximate
transient spectrum, AE [k] , is shown in Figure 4.1.6 for θE = 0.05 and θE = 0.2. For comparison the
transient spectrum using the DTT is shown as well. The magnitude of the transient spectra are also
included. As is demonstrated in the figure, the spectral peaks closest to decay rate σ are improved
(heightened) and the spectral values of other decay rates are generally decreased, especially the
values of high leakage, which is advantageous. This parametric technique is the only one with a
clear advantage with respect to spectral leakage.

Figure 4.1.6: Approximate DTT of x1 [n] using an exponential relaxation of the biorthogonality
constraints for different values of θ

4.1.4 Implementation

The previous three subsections contained examples of approximate transient spectra computed
using various approximate dual signals without discussing how these signals were obtained. The
algorithms for generating dual exponential bases in Chapter 3 can easily be extended to generate
these signals using only an additional matrix multiplication. Let the columns of the matrix Ψ̂

represent the approximate dual signals {ψ̂k [n]}1:N and denote G (θ) as one of the relaxed biorthog-
onality constraint matrices given in Table 4.1, where θ is the design parameter. Then, the relaxed
biorthogonality constraints are written as

ΦΨ̂H = G (θ) or �φi, ψ̂j� = [G (θ)]
ij
. (4.1.16)

Therefore the approximate dual signals are the columns of Ψ̂ given by

Ψ̂ =
�
ΦH

�−1
G (θ) . (4.1.17)

Any of the algorithms proposed in Chapter 3 for computing (ΦH)−1 may be used. The main result
of this section is not necessarily the ability to produce these approximate dual signals, but to use
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the spectral resolution guarantee equations to understand the spectral resolution of a stable set of
dual signals produced through a well conditioned algorithm. An example of this use is presented in
Section 4.3.

Uniform Relaxation Linear Relaxation Exponential Relaxation

[GU (θ)]
ij
=






1,

θU ,

i = j

i �= j

[GL (θ)]
ij
=






1,

θL

�
1

|i−j|

�
,

i = j

i �= j

[GE (θ)]
ij
=






1,

θ
|i−j|
E

,

i = j

i �= j

Table 4.1: Parametric relaxation structures for the biorthogonality constraints

4.2 The Equal Energy Exponential Basis

In developing the parametric biorthogonal constraint relaxations in Sections 4.1.1, 4.1.2, and
4.1.3, the parameters α1 and α2 in x2 [n] are interpreted as scalings of the amplitudes of two
exponential basis signals where each basis signal contains a different amount of energy. That is,
the derivation for spectral resolution used an exponential basis where each of the exponential basis
signals φk [n] has equal initial amplitude, i.e., φk [0] = 1 for 1 ≤ k ≤ N. This section extends
all of the results for transient spectra thus far using the equal initial amplitude exponential basis,
{φk [n]}1:N , to an exponential basis where each basis signal has equal energy.

The energy in an exponential basis signal φk [n], for a fixed index k, is

E (φk [n]) =
N−1�

n=0

(σn

k
)2 (4.2.1)

=
σ
2N
k

− 1

σ
2
k
− 1

. (4.2.2)

Therefore, the energy in the basis signal monotonically increases as σk approaches 1. In order to
create a set of exponential basis signals with equal energy, define the equal energy exponential basis,�
φ̃k [n]

�

1:N
, as

�
φ̃k [n]

�

1:N
=

�
1�

E (φk [n])
φk [n]

�

1:N

. (4.2.3)

The equal energy exponential basis signals are each a scaled version of the equal initial amplitude
exponential signals using the scalar α̃k = 1/

�
E(φk[n]). This definition allows a straightforward exten-

sion of the results for an equal initial amplitude exponential basis to the equal energy exponential
basis. For example, the bounds on transient resolution derived in the previous section can be ex-
tended to the equal energy exponential basis by incorporating the scalars {α̃k}1:N into the expansion
coefficients, consequently adjusting the range of resolution.
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4.3 Unconstrained Optimization Formulation

The approximate transient spectra derived in Section 4.1 utilize approximate dual basis signals
in the DTT which are capable of larger basis sizes than the dual exponential basis before numerical
errors cause noticeable distortion in the resulting spectra. However, the procedure for generating
these bases required first generating the dual exponential bases. Therefore, for large values of N , the
numerical stability gained by using these approximate dual signals is lost. The algorithm proposed
in this section generates a numerically stable approximate dual exponential basis as the solution
to an unconstrained optimization problem. Again, in order to gain numerical stability, a trade-
off with spectral resolution is made. This algorithm uses a non-parametric approximation of the
biorthogonality constraints and includes an approximate enforcement of orthogonality between the
approximate dual signals. To accomplish this, an optimization problem is formulated by trading off
between these two forms of orthogonality.

4.3.1 Quadratic Penalty Formulation

Given the exponential basis {φk [n]}1:N , the inner product structure of the dual basis is un-
constrained, meaning the dual signals do not satisfy both the biorthogonality and orthogonality
constraints simultaneously. That is, for 1 ≤ i, k ≤ N , the 2N2 constraints

�ψi, ψk� = δik (orthogonality) (4.3.1)

�φi, ψk� = δik (biorthogonality) (4.3.2)

have no solution for {ψk [n]}1:N . We then settle for finding an approximate dual basis that is closest
to meeting these constraints, for some definition of closest. It has been observed experimentally
that approximate orthogonality of the dual exponential signals significantly improves the behavior
of the transient spectrum when analyzing a signal that contains additive noise, e.g., x̄d [n]. In order
to relax these constraints, a quadratic penalty formulation1 is proposed, i.e., instead of enforcing
the constraints directly, we penalize solutions that do not meet them and optimize over the space
consisting of all sets of N length N signals to find the set of approximate dual signals that are
closest to meeting the constraints for the given penalization values. [4] This yields an optimization
problem given by

�
ψ̌k [n]

�
1:N

∈ arg min
{ψk[n]}1:N

�1

N�

i=1

N�

k=1

�
Λ(1)

�

ik

· (�φi, ψk� − δik)
2

+ �2

N�

i=1

N�

k=1

�
Λ(2)

�

ik

· (�ψi, ψk� − δik)
2
, (4.3.3)

1A quadratic penalty formulation is also referred to in some texts as a Lagrangian method, while in other texts a
Lagrangian method is defined by only a linear penalty.
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where the optimal approximate dual signals are denoted by
�
ψ̌k [n]

�
1:N

.

This formulation allows an emphasis to be placed on meeting a specific constraint with respect
to the other constraints using the 2N2 Lagrangian multipliers,

�
Λ(k)

�
1:2

. Even for reasonable values
of N , the number of penalty coefficients required is quite large and a parametric penalty structure is
often useful, but not necessary. A few simple parametric structures are listed in Table 4.2, where each
penalty structure is parametrized by the design parameter λ. In each of the structures given, selecting
0 < λ < 1 emphasizes penalizing deviations from the constraints given by �φk,ψk� = �ψk,ψk� = 1,
for 1 ≤ k ≤ N . The coefficients {�k}1:2 are used to emphasize the set of biorthogonality constraints
with respect to the set of orthogonality constraints.

Equal Penalty Linearly Decreasing Penalty Exponentially Decreasing Penalty

�
Λ(k)
Eq

�

ij

=






1,

λ,

i = j

i �= j

�
Λ(k)
L

�

ij

=






1,

λ
1

|i−j| ,

i = j

i �= j

�
Λ(k)
E

�

ij

=






1,

λ
|i−j|

,

i = j

i �= j

Table 4.2: Structures of Lagrangian coefficients for the biorthogonal and orthogonal constraints in
the quadratic penalty optimization formulation

The examples presented in this thesis using the solution to the optimization problem in Eq.
(4.3.3) use a non-linear conjugate gradient algorithm to find the approximate dual basis. This
algorithm is briefly described in Section 4.3.2.

Let the objective function in Eq. (4.3.3) be defined by F = C1 + C2, where C1 represents the N
2

biorthogonality constraints, with associated Lagrangian multipliers Λ(1), given by

C1 = �1

N�

i=1

N�

k=1

�
Λ(1)

�

ik

· (�φi, ψk� − δik)
2
, (4.3.4)

and where C2 represents the N
2 orthogonality constraints, with associated Lagrangian multipliers

Λ(2), and is given by

C2 = �2

N�

i=1

N�

k=1

�
Λ(2)

�

ik

· (�ψi, ψk� − δik)
2
. (4.3.5)

Any optimization technique utilizing gradient descent can be used to at least find a local minimum
of this formulation. Gradient descent algorithms require the gradient of the objective function, ∇F ,
to move from one solution to the next. The derivative of the objective function, with respect to one
approximate dual signal ψk [n], for a fixed index k, is given by

∂

∂ψk

F =
∂

∂ψk

C1 +
∂

∂ψk

C2 (4.3.6)

where the derivatives with respect to a single signal ψk are given by
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∂

∂ψk

C1 = �1

N�

i=1

2
�
Λ(1)

�

ik

(�φi, ψk� − δik) · φi (4.3.7)

and

∂

∂ψk

C2 = �2




N�

i=1, i �=k

2
�
Λ(2)

�

ik

(�ψi, ψk� − δik) · ψi + 4
�
Λ(2)

�

kk

(�ψk, ψk� − δkk) · ψk



 . (4.3.8)

The following subsection details the non-linear conjugate gradient optimization algorithm used in
this thesis. For a detailed treatment of this, or other possible gradient descent methods, see [4, 3, 13].

4.3.2 Conjugate Gradient Method

A simple unconstrained formulation of the non-linear method of Conjugate Gradient (CG) op-
timization is to solve the problem given by

x̂ ∈ argmin
x

F (x) (4.3.9)

where F(x) is the objective function. When the form of F (x) = �Ax− b�
2
2 then a CG algorithm

attempts to find a solution to the system of equations A
T
Ax = A

T
b, which may be found from

either taking the gradient and solving, i.e., ∇xF (x) = 2AT (Ax− b) = 0, or from the orthogonality
principle of least squares.

The non-linear CG algorithm used in this thesis is presented in summary next, a more thorough
treatment may be found in [1]. Given a multi-objective function F (x), where x represents N length
N signals, an initial feasible solution x0 is assumed. In this thesis, the initial solution used is the
dual exponential basis as found by polynomial expansion. The initial step is to move to a solution
in the direction of steepest descent, i.e. negative of the gradient of F (x). This direction is given by

∆x0 = −∇F (x0) (4.3.10)

where the partial derivatives of F (x) with respect to a single dual signal is given in Eqs. (4.3.7)
and (4.3.8). Next, the size of the step in this direction is computed by a line search of the form

α0 = arg min
α, α∈R

F (x0 + α∆x0) (4.3.11)

where α0 is the step size and the region R is selected using the Armijo Rule. The current solution
is updated to x1 by the formula

x1 = x0 + α0∆x0. (4.3.12)

Once the first step has been taken, an iterative procedure begins where all following directions are
conjugate directions, denoted by sn. Note that s0 = ∆x0. This iterative procedure is described in
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Algorithm 4.1. The procedure is stopped when the change in the objective function is less than a
predetermined threshold in making the next move.

Algorithm 4.1 Update step of the non-linear conjugate gradient algorithm
For each iteration t:

1. Find the direction of steepest descent: ∆xt = −∇F (xt).

2. Determine the value βt by the Fletcher-Reeves formula: βt =
∆x

T
t ∆xt

∆x
T
t−1∆xt−1

3. Update the conjugate direction st: st = ∆xt + βtst−1

4. Perform a line search to determine the step size αt: αt = arg min
α, α∈R

f(xt + αst)

5. Move to the new solution: xt+1 = xt + αtst.

4.4 Bounds on Transient Resolution

The tradeoff made in Section 4.1 resulted in a reduction of the space of transient signals for
which spectral resolution is guaranteed. The derivation of the spectral resolution guarantees relied
upon the symmetric properties of the relaxed biorthogonality constraints. The solution to the
optimization problem in Eq. (4.3.3) results in a set of approximate dual signals,

�
ψ̌k [n]

�
1:N

, for
which the resulting biorthogonality structure cannot be guaranteed to be symmetric. This is because
the feasible space includes all possible sets of N signals where each signal is of length N . If we denote
the standard inner product of φi [n] with ψ̌j [n] as [GL]ij , then, for i �= j, we have, in general,

�
φi, ψ̌j

�
= [GL]ij �= [GL]ji =

�
φj , ψ̌i

�
. (4.4.1)

As a result, the biorthogonality structure resulting from
�
ψ̌k [n]

�
1:N

is generally unlike the biorthog-
onality structures defined in Sections 4.1.1, 4.1.2, and 4.1.3, for which simple expressions of spectral
resolution guarantees were found. However, the analysis tools and expressions developed in those
sections allow bounds on spectral resolution to be given for any approximate dual basis, including
�
ψ̌k [n]

�
1:N

. The remainder of this section describes a procedure to provide spectral resolution
guarantees for any solution to the optimization problem in Eq. (4.3.3).

Define GB to be structured as either the equal penalty, the linearly decreasing penalty, or
the exponentially decreasing penalty, as defined in Table 4.2, where λB was previously a design
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parameter. Instead, we now solve for λB such that

λB = argmin
λ

λ (4.4.2)

s.t. [GB (λ)]
ij
≥

���[GL]ij

��� (4.4.3)

for 1 ≤ i, j,≤ N. The value of λB that minimizes the right hand side of Eq. (4.4.2) provides an
indication of what range of transient coefficients are guaranteed to be resolved in the same way that
θ did in the aforementioned three sections. Often the spectral resolution bounds given by λB are
only tight for a few values of GL. This means that signals with larger ratios of transient coefficients
are sometimes able to be resolved, but the guarantee of such resolution is not possible. Therefore,
the bound on λB is typically due to restrictions between only a few specific neighboring decay rates.
Consider the simple example when λB = 0 is found. Then, the resulting approximate dual signals
correspond to the exact dual signals. This solution is found when �2 = 0.

Next, a tractable example is considered for which the unconstrained optimization formulation
is solved using parameters: {σk}1:5 = {0.1, 0.3, 0.5, 0.7, 0.9}, �1 = 104, the equal penalization
structure is used for the biorthogonal constraints with λ = 10, �2 = 1, and the equal penalization
structure is used for the pairwise orthogonality constraints with λ = 1

2 . The initial solution chosen
is the exact dual basis, which was computed using the algorithm in Section 3.4.4. The numerical
results of the inner product structure [GL]ij = �φi, ψ̌j� are displayed in Table 4.3.

1 0.32734 -0.17458 -0.058744 0.02121
0.21947 1 0.70888 -0.10421 -0.003078
-0.08127 0.59807 1 0.50362 -0.082594
-0.050135 -0.1401 0.67168 1 0.093969
0.027698 -0.0063279 -0.15898 0.14038 1

Table 4.3: Inner product structure of the approximate dual signals from the quadratic penalty
optimization formulation

The inner product structure in this example is bounded from above, in absolute value, by an
exponential bound with λB = 0.7088, i.e., (0.70888)|i−j|

≥
���φi, ψ̌j�

�� for 1 ≤ i, j ≤ 5. From Section
4.1.3 we have that 0.70888 ∈

�
0, min

�
α1
α2
,
α2
α1

��
. Without loss of generality assume that α2 > α1.

Using this exponential bound on the inner product structure given in Table 4.3, transient signals
with amplitudes related up to α2 = 1.4107 · α1 are guaranteed to be resolved using the approxi-
mate dual basis

�
ψ̌k [n]

�
1:5

. Notice that the exponential bound is only tight for a few values in
the table, and for some it is a large over-estimate, meaning signals of greater amplitudes may be
resolved. However, signals with transient coefficients larger than this ratio cannot be guaranteed to
be resolved.

4.5 Visualization of Approximate Dual Signals

This chapter has proposed several algorithms for generating approximate dual exponential sig-
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nals for use in the DTT. For each algorithm, a fundamental tradeoff between conflicting properties
was identified and then discussed. In order to demonstrate the numerical instability of the dual
exponential basis, as well as the stability of the approximate dual basis from solving the optimiza-
tion problem in Eq. (4.3.3), Figure 4.5.1 depicts the exponential basis signals, dual exponential
signals, approximate dual signals using a linear relaxation of the biorthogonality constraints, and
the approximate dual signals found from the unconstrained optimization formulation. Each axis
of this figure depicts one dimension of the corresponding length N = 3 vectors. The exponential
basis is defined using the decay rates {σk}1:3 = {0.3, 0.5, 0.8}. The numerical instability of the
dual basis is clearly evident, even given the low model complexity. Note that the approximate
dual basis produced by the linear relaxation to the biorthogonality constraints appear to be less
numerically unstable than the dual basis, but still relatively unstable. The approximate dual signals
resulting from the unconstrained optimization formulation are both numerically stable and seen to
be approximately orthogonal to the exponential basis signals as well as to one another, as desired.

Figure 4.5.1: Visualization of the numerical instability of various dual bases

4.6 Inner Product Shaping

Inner product shaping is used to create an orthogonal basis, under the standard inner product,
using which we may compute an approximate transient spectrum. Specifically, the result of inner
product shaping on the exponential basis {φk [n]}1:N is an orthogonal basis, denoted

�
ψ̄k [n]

�
1:N

,
where the orthogonal basis signals are chosen to minimize the distance from exponential basis signals
in a least squares sense. For a more thorough and general treatment of inner product shaping see
[7]. The following discussion is specialized to an exponential basis.
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The inner product shaping formulation considered in this thesis is given by

�
ψ̄l [n]

�
1:N

= arg min
{ψk[n]}1:N

N�

k=1

�φk − ψk,φk − ψk� (4.6.1)

s.t. �ψk,ψl� = δkl.

An equivalent formulation of the inner product shaping problem, using matrices, results in

Ψ̄ = argmin
Ψ

tr
�
(Φ−Ψ)H (Φ−Ψ)

�
(4.6.2)

s.t. ΨHΨ = IN .

Note that approximately enforcing orthogonality of the approximate dual signals was observed in
Section 4.3 to improve the transient spectra found when the signal to be analyzed contains noise.
The resulting signals,

�
ψ̄k [n]

�
1:N

, are known as the Orthonormal Least Squares Vectors (OLSV).

In order to solve the formulation in Eq. (4.6.2), we perform a unitary change of basis using the
linear map U such that

ΦU = ΦU and ΨU = ΨU. (4.6.3)

Note that unitary matrices preserve inner products, which can be seen by definition: �Ux,Uy� =

(Uy)HUx = y
H
U

H
Ux = �x, y�. Therefore, the constraints in Eq. (4.6.2) become ΨH

U
ΨU = IN . Fur-

ther, it is straight forward to verify that the objective function is equivalent to tr
�
(ΦU −ΨU )

H (ΦU −ΨU )
�
.

We shall denote the optimal ΨU and ΦU as Ψ̂U and Φ̂U , respectively. The following relation then
holds to convert the optimal solution back from this new basis,

Ψ̂ = Ψ̂UU
H (4.6.4)

The SVD may be used in order to find a suitable unitary change of basis. Denote the SVD of Φ by
Φ = WΠV

H where both W and V are unitary matrices. By selecting ΦU = ΦV = WΠ, we find
that the unitary map U in Eq. (4.6.3) is equivalent to V in the SVD of Φ.

Now that we have constructed ΦU , we may solve for Ψ̂U in the optimization problem given by

Ψ̂U = argmin
ΨU

tr
�
(ΦU −ΨU )

H (ΦU −ΨU )
�

(4.6.5)

s.t. ΨH

UΨU = IN .

Re-writing the objective function in terms of basis signals yields

N�

k=1

�φU,k − ψU,k,φU,k − ψU,k� = N +
N�

k=1

π
2
k
− 2

N�

k=1

�φU,k,ψU,k� (4.6.6)
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Next, from the Cauchy-Schwartz inequality, the relation

�φU,k,ψU,k� ≤ |�φU,k,ψU,k�| ≤ �ψU,k,ψU,k�
1/2

�φU,k,φU,k�
1/2 = πk. (4.6.7)

is maximized when the inequalities are made equality. This occurs when ψ̂U,k = wk, where wk is the
k
th column of W . This implies that Ψ̂U = W. Therefore the solution to the optimization problem

is given by
Ψ̄ = WV

T
.

An example is considered next which demonstrates the use of inner product shaping to produce
an approximate transient spectrum. Consider the signal x1 [n] = 1 (0.35)n and the exponential
basis with decay rates {σk}1:17 = {0.1, 0.15, 0.2, · · · , 0.9}. The resulting approximate transient
spectrum is depicted in Figure 4.6.1. The figure exhibits a peak corresponding to the correct decay
rate, however the amplitude is incorrect and there is significant spectral leakage throughout the
spectrum. In fact, it has been observed for general transient signals xd [n] with d > 1 the peaks
generally correspond to incorrect decay rates due large amounts of spectral leakage.

Figure 4.6.1: Spectrum of x1 [n] using inner product shaping on the exponential basis

Another well known algorithm for generating an orthogonal basis given a non-orthogonal basis
is the Gram-Schmidt procedure. The inner product shaping algorithm has a distinct advantage over
the Gram-Schmidt process of generating an orthogonal basis given a non-orthogonal basis in that it
is not order dependent. The Gram-Schmidt algorithms initial iteration uses the first original basis
signal as it’s first orthogonal basis signal and subsequent signals reflect only the space not spanned
by the first signal. The inner product shaping algorithm does not have an ordering of original basis
signals, meaning that there is no optimal ordering to be solved for, as in the case of Gram-Schmidt.
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4.7 Polynomial Based Algorithms

This section considers the generation of an approximate transient spectrum for continuous-time
signals. Neither an exponential basis nor a dual exponential basis is used directly in this section. The
general outline of this approach is to select a known orthogonal polynomial structure, orthogonal
over the domain [0, 1], and perform a substitution of variables such that the resulting functions are
polynomials of real, decaying exponentials. The domain is then mapped such that these exponential
polynomials are orthogonal over [0,∞). This technique is known in the literature as the Orthogonal
Exponential Transform. [17]

This type of algorithm is now presented by an example using Jacobi polynomials. Jacobi polyno-
mials are used to define a specific structure of functions, which are both orthogonal and polynomials
of decaying exponentials, to play the role of an approximate dual signal in order to compute transient
spectral coefficients. Towards this end, consider the n

th-order Jacobi polynomial, defined by

Jn (a, c|x) =
x
1−c (1− x)c−a Γ (c)

Γ(c+ n)
·
d
n

dxn

�
x
c+n−1 (1− x)a+n−c

�
(4.7.1)

where Γ (·) is the Gamma function and a and c are design parameters. Jacobi polynomials also
satisfy the recurrent relationships below. [16]

d

dx
Jn(a, c|x) = −

n (n+ a)

c
Jn−1 (a+ 2, c+ 1|x) (4.7.2)

xJn (a, c|x) =
c− 1

2n+ a
[Jn (a− 1, c− 1|x)− Jn+1 (a− 1, c− 1|x)] . (4.7.3)

The orthogonality of two Jacobi polynomials, for x ∈ [0, 1], requires a weighting function of the
form

wJ (x) = x
c−1 (1− x)a−c

. (4.7.4)

The Jacobi orthogonality equation is given by

ˆ 1

0
x
c−1 (1− x)a−c

Jm (a, c|x) Jn (a, c|x) dx =
n! [Γ (c)]2 Γ (n+ a− c+ 1)

(a+ 2n)Γ (a+ n)Γ (c+ n)
· δmn, (4.7.5)

and is only defined for a > 0 and a+ 1 > c. Next, we simplify the expression by selecting a = c in
order to vanish the term (1− x) in the weighting function. This simplifies the expression to

ˆ 1

0
x
a−1

Jm (a, a|x) Jn (a, a|x) dx =
n! [Γ (a)]2 Γ(n+ 1)

(a+ 2n) [Γ (a+ n)]2
· δmn. (4.7.6)

Performing a change of variables where x → e
−t requires a change in the domain; when t ranges

from 0 to ∞, e−t goes from 1 to 0, the same domain as x. Therefore, substituting x = e
−t and thus
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dx = −e
−t
dt into Eq. (4.7.6) results in

ˆ ∞

0
e
−at

Jm

�
a, a|e

−t
�
Jn

�
a, a|e

−t
�
dt =

n! [Γ (a)]2 Γ(n+ 1)

(a+ 2n) [Γ (a+ n)]2
· δmn. (4.7.7)

We now consider selecting a value for a. Note that for any order n, Jn (a, a|0) = 1. Therefore it
is desirable to have the Jacobi polynomials multiplied by the expression e

−t, this way the resulting
functions approach 0 as t goes to infinity. One simple choice results from selecting a = 2. Continuing
with this choice the expression simplifies to

ˆ ∞

0

�
e
−t
Jm

�
2, 2|e−t

�� �
e
−t
Jn

�
2, 2|e−t

��
dt =

1

2(1 + n)3
· δmn. (4.7.8)

Using this simplified equation, the structure of functions which take the role of the dual signals
in creating an approximate transient spectrum based on Jacobi polynomials is defined. Define the
order (k + 1) function to have the structure

ψ́k+1 (t) = (−1)k
�
2 (1 + k)3e−t

Jk

�
2, 2|e−t

�
(4.7.9)

for k ≥ 0. Substituting these functions into the continuous inner product, it is straightforward to
verify that

�ψ́k, ψ́l� =

ˆ ∞

0
ψ́k (t) ψ́

∗
l
(t) dt = δkl. (4.7.10)

Therefore a continuous-time transient signal xd (t), as in Eq. (2.1.1), may be represented by

xd (t) =
∞�

k=1

βkψ́k (t) (4.7.11)

where we compute βk as the continuous inner product of xd (t) with the approximate dual function
ψ́k (t) as

βk =

ˆ ∞

0
xd (t) ψ́k (t) dt. (4.7.12)

[2] showed that xd (t) may be represented in the following manner.

xd (t)=
∞�

k=1

k�

l=1

βkckle
−lt

=
∞�

l=1

αle
−lt

.

Therefore the approximate transient spectrum using Jacobi polynomials is defined as the αl values
as a function of l. In practice, an infinite number of coefficients cannot be computed, so a finite
approximation is used instead.

It has been observed that the spectrum produced using the approximate dual signals formed
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by Jacobi polynomials generally does not exhibit meaningful spectral results. When the transient
spectrum is generated for a linear combination of exponentials with integer decay rates the transient
spectrum is often well behaved. On the contrary, when the decay rates are not integer, the resulting
spectrum may have wildly varying behavior. The following example demonstrates these phenomena.
Consider the transient signal x1 (t) = e

−λt for λ = 2 and λ = 2.1. The resulting transient spectrum
for λ = 2 is shown in Figure 4.7.1(a) while the spectrum for λ = 2.1 is shown in Figure 4.7.1(b).
In the second case, it is clear that the transient spectrum produced does not exhibit a broadened
peak between λ = 2 and λ = 3 and provides no indication of the true decay rate of x1 (t).

(a) Spectrum of x1 (t) = e−2tu (t) using the OET with Jacobi Polynomials

(b) Spectrum of x1 (t) = e−2.1tu (t) using the OET with Jacobi Polynomials

Figure 4.7.1: Spectra produced using the OET using Jacobi polynomials to form a basis
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Chapter 5

Overdetermined Recovery

The successful recovery of the decay rates present in a transient signal given only samples of
the lowpass filtered transient signal was previously defined in Chapter 2 under Definitions 2 and 4.
These definitions were motivated by noting that the process of sampling a causal, continuous-time
transient signal, i.e., the signal in Eq. (2.1.1), to produce the transient time-series in Eq. (2.1.2)
unavoidably included aliasing effects due to the infinite bandwidth of the continuous-time signal.
Furthermore, most physical sampling systems have a lowpass characteristic and often include an
anti-aliasing LPF as the first stage of the sampling process. Many signal processing systems also
include a sample rate conversion system in which a signal is lowpass filtered as a part of this
conversion process, e.g., oversampled noise shaping. This chapter develops a parameter recovery
framework for transient signals inspired by these types of scenarios. The general approach is to
solve for a larger number of decay rates than the true order of the transient signal in such a way
that from this larger set of parameters the correct parameters are identifiable. This procedure is
defined as overdetermined recovery.

In order to use the overdetermined recovery framework, the order of a transient model must
be known a priori. The parameter recovery algorithms presented in Appendix B each require
the model order to be established before determining values for the decay rates. Each recovery
algorithm assumes a fixed model order of d, meaning that each method produces d values for
the decay rates as a function of the available data. However, it is often the case that the order
of a transient signal acquired is not known a priori, resulting in a need to estimate it. To do
this, a typical approach begins by postulating several potential model orders. Based on these
educated guesses, one computes some error criterion that indicates which model order to select.
The process of determining a model order encompasses the use of intuition and insight into the
structure of the problem−a prime example of the art in engineering. In many cases there is no
obvious solution, and thus an engineering judgement must be made. Selecting too low a model
order produces a smooth estimate of the Fourier spectrum of the data while selecting too high a
model order increases the resolution and introduces spurious detail into the frequency representation.
The issues associated with selecting an appropriate model order demonstrate the classic tradeoff
scenario between increased resolution and decreased variance.
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The algorithms for model order selection presented in this chapter may be used as a guideline for
initial order selection. The techniques presented are known to work well for computer generated,
synthetic transient signals, but may or may not work well with actual data depending on how
well such data is modeled by a transient structured signal. Section 5.1 begins by providing a
qualitative insight into why the structure of the SVD is useful for de-noising a set of transient data.
Taking advantage of this representation, Section 5.2 proposes an algorithm which uses the SVD in
conjunction with the Eckart-Young theorem in order to use the numerical rank of a data matrix to
determine the transient model order as a function of the available data.

In Section 5.3, several typical examples of the overdetermined recovery framework are high-
lighted using different lowpass filters, recovery algorithms, data lengths, and overdetermined model
orders. These examples provide insight into the recovery process, where the correct decay rates
are visually identified from the larger set of parameters, as described in Section 5.4. Finally, an
alternating projection algorithm is proposed in Section 5.5 in order to solve the transient recovery
problem for the amplitude coefficients utilizing both the DFT and the DTT.

5.1 SVD-like Transient Representation

The singular value decomposition, which was defined in Section 3.4.3, is an extremely powerful
tool for determining the order of a transient signal given data. The exposition in this section leads
directly to an algorithm for determining the order of a transient model as a function of available
data using an SVD-like representation. The following discussion specifically pertains to the transient
structure of signals. However, a straightforward generalization may be used to extend this insight
to other structures, e.g., sinusoidal or damped sinusoidal signal models. Note that the model order
determination algorithms in this chapter rely on access to the transient signal prior to the lowpass
filter. If this data is unavailable, Section 5.5 presents an algorithm that attempts to recover a
transient signal prior to the lowpass filter, for which the following model order determination may
be used.

Suppose, for example, that a transient signal is acquired over the interval 0 ≤ n ≤ N − 1, where
the true order d is unknown. In order to use a parameter recovery algorithm, an estimated model
order d̂ is chosen such that the data, either {xd [n]}0:N−1 or {x̄d [n]}0:N−1, can be modeled as a
sum of d̂ decaying exponentials with distinct decay rates and real amplitudes. We first present a
structural understanding of why the SVD is useful for identifying a model order, d̂, in the noiseless
case. An understanding of the noiseless case can then easily be extended to include when the
available data contains additive noise, which is discussed in the next section.

We begin the process of determining the model order by defining an order d̂ Toeplitz data
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matrix, which will provide much insight into this problem, by

X

�
d̂

�

=





xd

�
d̂− 1

�
xd

�
d̂− 2

�
· · · xd [0]

xd

�
d̂

�
xd

�
d̂− 1

�
· · · xd [1]

...
... . . . ...

xd [N − 1] xd [N − 2] · · · xd

�
N − d̂

�




. (5.1.1)

The range of values taken by the integer d̂ will momentarily be restricted. First, consider the case
of a simple transient signal with a single decay rate, i.e., x1 [n]. In this case, the structure of the
transient signal is known to be x1 [n] = α1 (σ1)

n, for 0 ≤ n ≤ N − 1. Plugging this model for x1 [n]

into the definition of X
�
d̂

�

yields

X

�
d̂

�

= (α1)





σ
d̂−1
1 · · · σ1 1

σ
d̂

1 · · · σ
2
1 σ1

... . . . ...
...

σ
N−1
1 · · · σ

N−d̂+1
1 σ

N−d̂

1




, (5.1.2)

which is valid for d̂ > 1 = d. It is straightforward to verify that the matrix in Eq. (5.1.2) factors
into an outer product in the following manner:

X

�
d̂

�

= α1f (σ1)h (σ1)
T (5.1.3)

where the dimension N − d̂+ 1 vector f (σ1) is defined by

f (σ1) =
�
1,σ1,σ

2
1, · · · ,σ

N−d̂

1

�T
(5.1.4)

and the dimension d̂ vector h (σ1) is defined by

h (σ1) =
�
σ
d̂−1
1 ,σ

d̂−2
1 , · · · ,σ1, 1

�T
. (5.1.5)

The decomposition of the matrix X

�
d̂

�

into this form makes clear that the matrix has unit rank.

By exploiting linearity, when xd [n] =
d�

k=1

αk (σk)
n, for 0 ≤ n ≤ N − 1, the expression for X

�
d̂

�

is

expanded to be

X

�
d̂

�

=
d�

k=1

αkf (σk)h (σk)
T
, (5.1.6)
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or equivalently as

X

�
d̂

�

= F (σ)A (α)H (σ)T (5.1.7)

= [f (σ1) , f (σ2) , · · · , f (σd)]





α1 0 · · · 0

0 α2 · · · 0
...

... . . . ...
0 0 · · · αd









h (σ1)
T

h (σ2)
T

...
h (σd)

T




. (5.1.8)

From this factorization, specifically the structures of F (σ), H (σ), and A (α), it is straightforward

to verify that rank
�
X

�
d̂

��
= d. Consequently, when initially selecting values for d̂, any prior

knowledge on the transient model order should be used to select a value d̂ which is believed to
satisfy d ≤ d̂ ≤ N − d. Generally, because the value of d is unknown, several values of d̂ are often
attempted in hopes that one may fall into this range.

The matrix decomposition in Eq. (5.1.7) is similarly structured to the SVD of the matrix X

�
d̂

�

.
It is important to understand that these two decompositions are not equivalent. This is easily
understood by considering either the matrix F (σ) or H (σ). For example, the matrix F (σ) is guar-

anteed not to be unitary. In fact, when the matrix X

�
d̂

�

is populated with a transient structured
signal, F (σ) has columns corresponding to transient structured signals, which we have shown to be
non-orthogonal. A decomposition of this structure would be extremely useful for transient model
order determination, but unfortunately no known method decomposes a general Toeplitz matrix
into this form.

5.2 Model Order Determination Algorithms

The factorization of the Toeplitz data matrix in Eq. (5.1.7) is structured similarly to the SVD
factorization in Eq. (3.4.17). This section combines this similarity with the fact that the procedure
to compute an SVD is well-known in order to discuss a commonly used algorithm for determining
the model order of available transient data and to propose a new method. [23]

In Eq. (5.1.2) the decomposition of the Toeplitz data matrix X

�
d̂

�

, populated using the signal
x1 [n], was not necessary for determining the true model order d. In fact, only the rank of that
matrix needed to be determined. Now the application of the SVD becomes clear. First, choose an

initial integer value for d̂ which is believed to satisfy d ≤ d̂ ≤ N−d. Next, form the matrix X

�
d̂

�

for

this initial value of d̂. The rank of X
�
d̂

�

is easily determined by computing the SVD and counting
the total number of non-zero singular values. For the case of noiseless transient data, the transient
model order d̂ = d is determined once the following condition is satisfied:

rank
�
X

�
d̂+1

��
= d̂. (5.2.1)

In fact, due to the noiseless assumption, any value of ď such that ď > d may be used where the rank
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of X
�
ď
�

is d and therefore the model order can be determined immediately.
In practice, the Toeplitz data matrix is often populated with noisy transient data corresponding

to the underlying transient signal corrupted by measurement noise, i.e., {x̄d [n]}0:N−1. Using the
intuition developed in the noiseless case, this procedure is now extended to the case of a noisy
Toeplitz data matrix of the form

X̄

�
d̂

�

=





xd

�
d̂− 1

�
· · · xd [0]

xd

�
d̂

�
· · · xd [1]

... . . . ...
xd [N − 1] · · · xd

�
N − d̂

�




+





η

�
d̂− 1

�
· · · η [0]

η

�
d̂

�
· · · η [1]

... . . . ...
η [N − 1] · · · η

�
N − d̂

�




. (5.2.2)

In general, X̄
�
d̂

�

will always have full rank for any valid choice of d̂. Therefore, the stopping criterion
in the previously described algorithm must be altered in order to overcome this obstacle.

The most straightforward extension of the previous stopping criterion is to determine the nu-
merical rank in place of the rank of the data matrix. We previously defined the rank of a matrix by
the total number of non-zero singular values in the SVD representation of that matrix. However,
taking into consideration numerical representation used in computation and the effects of additive
noise, the numerical rank of a matrix is an important quantity in practice. The numerical rank of
a general M ×N matrix A, denoted rankn (A), is defined by

rankn (A) =
���{πk > max(M,N) ∗ � �A�2}1:min(M,N)

��� (5.2.3)

where |·| represents the cardinality of a set of singular values and � represents the relative machine
precision for the hardware the algorithm is computed on, e.g., � = 2.22 × 10−16. Therefore, the
modified stopping criterion is to find the value of d̂ for which

rankn
�
X̄

�
d̂+1

��
= d̂. (5.2.4)

Note that alternative thresholds to max(M,N) ∗ � �A�2 may be used, but the observation that the
smallest singular values of noiseless data matrices are quite small should be taken into account when
designing such a threshold.

Next, an alternative model order estimation algorithm is proposed by considering the application

of the Eckart-Young theorem, as discussed in Appendix B.2, to the matrix X̄

�
d̂

�

in Eq. (5.2.2).
An inherent assumption in this procedure is that the smallest non-zero singular value in the SVD

representation of X̄

�
d̂

�

corresponds to the noise in the samples and not one of the exponential

components. If we denote the result of this de-noising process by G

�
d̂

�

, then the matrix E

�
d̂

�

=

X̄

�
d̂

�

−G

�
d̂

�

corresponds to the smallest unit rank reducing perturbation of the noisy data matrix
in a Frobenius norm sense. This estimate of the noise matrix is generally not Toeplitz structured,
although we know from Eq. (5.2.2) that the true noise matrix is. Therefore, we produce a new
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Toeplitz noise estimate by

Ê

�
d̂

�

= h

�
E

�
d̂

��
(5.2.5)

where h is the diagonal-averaging operator in Eq. (B.3.4). Using this estimate for the noise, we
create an estimate of the underlying noiseless transient data as

X̂

�
d̂

�

= X̄

�
d̂

�

− Ê

�
d̂

�

.

This estimate of the de-noised data is guaranteed to remain Toeplitz. X̂
�
d̂

�

can then be used in the

same way X̄

�
d̂

�

was previously for model order determination, i.e., a comparison of the number of
singular values larger than a given threshold. This proposed method is summarized by determining
the model order of the data given by

X̄

�
d̂

�

− h

�
X̄

�
d̂

�

− f

�
X̄

�
d̂

���
(5.2.6)

where f is the unit rank reduction operator from Eq. (B.3.5).

Consider the signal x̄4 [n] over the interval 0 ≤ n ≤ 28, using decay rates {σk}1:4 = {0.3, 0.5, 0.7, 0.9}

and amplitude coefficients {αk}1:4 = {3,−5, 7, 2}. Figure 5.2.1 depicts the singular values of the
matrix X

(8) from Eq. (5.1.1), the average singular values of the matrix X̄
(8) from Eq. (5.2.2), and

the average singular values of the proposed algorithm in Eq. (5.2.6) with d̂ = 8, where the averages
are over 100,000 trials for various SNRs. Note that in all 3 cases, the singular values drop off sharper
for the proposed algorithm, making the underlying model order d = 4 easier to identify.
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(a) Average singular values for three transient model order estimation
matrices with an SNR of 10 dB

(b) Average singular values for three transient model order estimation
matrices with an SNR of 0 dB

(c) Average singular values for three transient model order estimation
matrices with an SNR of −10 dB

Figure 5.2.1: Singular values of a noisy transient signal using the proposed model order estimation
algorithm for different SNR values

5.3 Illustrating Overdetermined Recovery

Consider the following example in which the overdetermined recovery framework is applied
using the Tufts-Kumaresan parameter recovery algorithm on the data {g4 [n]}0:29 for several values
of d̂. The signal g4 [n] is produced by lowpass filtering the transient signal x4 [n] with decay rates
{σk} = {0.3, 0.5, 0.7, 0.9} and amplitude coefficients {αk}1:4 = {−1, 2, 7, 3} by a truncated sinc
filter of length 65536 and cutoff frequency ωc = 0.8π. Figure 5.3.1 depicts the resulting decay rates
where in parts (a), (b), (c), and (d) the values 4, 8, 12, and 16 are used for d̂, respectively. This
example shows that as the value of d̂ increases from the model order d, the desired decay rates are
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easy to visually identify in the z−plane. However, it becomes increasingly difficult to identify the
decay rates when the value of d̂ becomes too high.

Figure 5.3.1: Pole-zero representation of the estimated decay rates resulting from the Tufts-
Kumaresan method for various values of d̂

The decay rates resulting from the overdetermined recovery framework are presented in the
following three examples for the same signal x4 [n] as above, but for different LPFs, data records,
parameter recovery algorithms, and overdetermined model orders.

Example. Figure 5.3.2 depicts the decay rates resulting from the overdetermined recovery frame-
work where the signal x4 [n] is lowpass filtered using a length 512 Parks-McClellan LPF with cutoff
frequency ωc =

3π
4 , the overdetermined model order d̂ = 13 is used, the data record length is N = 34,

and the covariance method of linear prediction is used for recovering the decay rates.
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Figure 5.3.2: Overdetermined recovery results after lowpass filtering x4 [n] by a Parks-McClellan
LPF

Example. Figure 5.3.3 depicts the decay rates resulting from the overdetermined recovery frame-
work where the signal x4 [n] is lowpass filtered using an 18th-order Butterworth LPF with cutoff
frequency ωc =

π

2 , the overdetermined model order d̂ = 20 is used, the data record length is N = 44,
and the extended method of Prony is used for recovering the decay rates.

Figure 5.3.3: Overdetermined recovery results after lowpass filtering x4 [n] by a Butterworth LPF

Example. Figure 5.3.4 depicts the decay rates resulting from the overdetermined recovery frame-
work where the signal x4 [n] is lowpass filtered using a 10th-order Elliptic LPF with cutoff frequency
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ωc = 3π
10 , the overdetermined model order d̂ = 23 is used, the data record length is N = 50, and

Cadzows method for recovering the decay rates.

Figure 5.3.4: Overdetermined recovery results after lowpass filtering x4 [n] by an Elliptic LPF

A simple qualitative explanation of the overdetermined recovery procedure is now proposed with
regard to the spectral matching property of the Yule-Walker method of all-pole modeling. Con-
sider breaking the frequency spectrum of the signal gd [n] into the passband and stopband regions
of the lowpass filter. The frequency spectrum over the passband can be completely characterized
using d poles placed along the real line between 0 and 1 in the z-plane. However, if we only use d

poles to model the entire frequency spectrum, then the poles also attempt to model the stopband
attenuation, and thus will not model the passband exactly. By allowing d̂ − d additional poles to
model the stopband, the original d poles may completely characterize the passband. At a high
level, this explanation hints at the fact that the estimated poles should be easily separated into two
groups: the decay rates and the extraneous solutions. A systematic way to differentiate between
the decay rates and the extraneous solutions is considered in Section 5.4. The preceding examples
demonstrated typical results of the overdetermined recovery framework where the two sets of poles
were easy to visually separate in the z-plane: the decay rates were found on the real axis between
0 and 1, while the extraneous solutions were found in regions corresponding to the lowpass filters
high frequency attenuation. Note that when a lowpass filter has a narrow passband, the decay rates
corresponding to quickly decaying exponentials are not recoverable.
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5.4 Overdetermined Recovery Framework

The key criterion in selecting an order for the overdetermined recovery framework, defined as
d
∗, is that the underlying model order has already been established and we need to select d

∗ to
be meaningfully larger than the true order d, with respect to the size of the LPF’s passband.
The general procedure of overdetermined recovery simply uses the parameter recovery algorithms in
Appendix B with the overdetermined order d∗ where an additional step is needed to sort through the
resulting parameter estimates in order to identify the correct decay rates, {σk}1:d . This additional
step is discussed in the remainder of this section.

Note that an overdetermined parameter recovery algorithm produces a set of d∗ decay rate es-
timates for which none of the estimates are guaranteed to be real or positive. Generally, when
the wrong number of recovered parameters are on the positive real axis in the z-plane, one of two
problems most likely occurred: (1) the passband of the LPF may be too narrow to recover a quickly
decaying component and/or (2) the value of d∗ may have been chosen either too high or too low
for the given LPFs passband. A useful heuristic is that the larger the stopband of the LPF, the
higher the overdetermined order d

∗ should be. Often several choices for d
∗ must be attempted

in a trial-and-error type procedure. Section 5.4.1 describes process of separating the decay rates
from the extraneous solutions where the locations of the extraneous solutions are unconstrained
and the value of d∗ has been chosen appropriately for the passband of the LPF. Subspace based
parameter recovery algorithms, e.g. the Tufts-Kumaresan method or Cadzows method, are capable
of producing d

∗ − d sets of d
∗ parameter estimates. In the noiseless case, each estimate has the

same d decay rates, but the extraneous solutions are often different. Section 5.4.2 identifies one set
of parameter estimates for which the extraneous solutions are guaranteed to be within the unit circle.

5.4.1 Classifying Roots

Recall the Toeplitz data matrix from Eq. (5.1.1) with the structure

X
(d∗+1) =





xd [d∗] xd [d∗ − 1] · · · xd [0]

xd [d∗ + 1] xd [d∗] · · · xd [1]
...

... . . . ...
xd [N − 1] xd [N − 2] · · · xd [N − d

∗ − 1]




. (5.4.1)

The homogeneous solution to the linear system of equations given by

X
(d∗+1)

θ = 0, (5.4.2)

where θ = [1, θ1, · · · , θd∗ ]T , lies in the nullspace of the matrix X
(d∗+1), and consequently in the

nullspace of the matrix
�
X

(d∗+1)
�T

X
(d∗+1) too. If the matrix X

(d∗+1) contains noise, i.e., X̄(d∗+1)
,

then, with high probability, the data matrix has an empty nullspace. In this case, the right singular
vectors corresponding to the d

∗ − d smallest singular values are defined to be the approximate
nullspace of X̄(d∗+1). In either of these cases, the d

∗−d solutions are easily obtainable via the SVD.
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Next, define the monic, order d∗, characteristic polynomial using the coefficients from any solu-
tion θ by

Θ (z) = 1 +
d
∗�

k=1

θkz
−k

. (5.4.3)

Section 5.3 illustrated that for a broad range of cutoff frequencies, d of the zeros of Θ (z) corre-
sponded to the desired decay rates {σk}1:d. However, the characteristic polynomial also has d

∗ − d

additional zeros, which we defined to be the extraneous solutions. Therefore, the order d
∗ charac-

teristic polynomial can be factored such that

Θ (z) = Θ1 (z)Θ2 (z) (5.4.4)

where the two sub-characteristic polynomials are defined by

Θ1 (z) =
d�

k=0

pkz
−k =

d�

k=1

�
1− σkz

−1
�
, (5.4.5)

where we select p0 = 1, and

Θ2 (z) =
d
∗−d�

k=0

qkz
−k =

d
∗−d�

k−1

�
1− ϑkz

−1
�
, (5.4.6)

where we select q0 = 1. The zeros of Θ2 (z) are the extraneous solutions.

Consider the case where d
∗ is selected such that d∗−d > 1. As a consequence, there are at least

two vectors in the nullspace of X(d∗+1), or at least two vectors that span the approximate nullspace
of X̄(d∗+1), depending on whether the data contains noise or not. We proceed by assuming noiseless
data, although the following procedure is similar in both cases where approximations are made
accordingly.

We would like to separate the zeros of Θ (z) into {σk}1:d and {ϑk}1:d∗−d
, or equivalently to factor

Θ (z) into Θ1 (z) and Θ2 (z), using any solution θ. One procedure for doing so is to systematically
discard the extraneous solutions for each θ. The decay rates appear in each solution while the
extraneous solutions are typically different, therefore, a systematic procedure for identifying the
decay rates is to identify the zeros that are real, in the range (0, 1), and common to each of the
characteristic polynomials formed by homogeneous solutions to Eq. (5.4.2).

5.4.2 Special Case of the Extraneous Solutions

When multiple homogeneous solutions θ exist for the system of equations in Eq. (5.4.2), one of
these solutions has an identifiable property for which the locations of the extraneous solutions are
guaranteed to be within the unit circle. [11] This subsection uses the correlation method of linear
prediction in order to identify which solution guarantees this property. Specifically, we show that if
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the solution θ with coefficients that minimize the sum of squares, i.e.,

�θ�
2
2 = 1 +

d
∗�

k=1

|θk|
2
, (5.4.7)

is used to form the polynomial Θ (z), then the zeros of Θ2 (z) are found to lie strictly inside the
unit circle. Note that each vector must be normalized such that θ0 = 1 for the comparison.

We previously factored the polynomial Θ (z) into the product of the two polynomials Θ1 (z)

and Θ2 (z), therefore the coefficients in the vector θ are the result of a linear convolution between
the coefficients of the two sub-polynomials. Using the notation in Eqs. (5.4.5) and (5.4.6), the
coefficients of θ are given by

θn =
�

k

pkqn−k. (5.4.8)

We consider the the coefficients pk to be fixed, as they correspond to the desired decay rates. By
interpreting this convolution as linear prediction, where the input sequence is the signal with co-
efficients from Θ1 (z), we select the coefficients qn in order to minimize the sum of squares of the
linear prediction error, θn. Thus the solution, i.e., coefficients for Θ2 (z), is the solution to the Yule-
Walker equations in Eq. (B.4.3), where the autocorrelation sequence is structured as the biased
autocorrelation estimator in Eq. (B.4.4). A well-known result states that the solution to this set of
equations always results in a set of roots that have magnitude less than 1. Therefore, by selecting
the solution θ with minimum �2-norm, the extraneous solutions are guaranteed to be found inside
the unit circle. In Figure 5.3.1(a)-(d) the solution θ was chosen with minimum �2-norm, resulting
in the parameter estimates being contained in the unit circle.

5.5 Iterative Transient Spectral Projection

This section proposes an alternating projection algorithm for the lowpass filtered transient pa-
rameter recovery problem in order to recover the signal xd [n] from samples of the signal gd [n].
This algorithm exploits two inherent properties of the underlying transient signal xd [n] in order
to iteratively project a signal between two spaces in anticipation of converging to the underlying
signal, for which a parameter recovery algorithm will identify the desired parameters. Each of these
spaces satisfies one of the known properties of xd [n]. To begin, define the space of all dth-order
transient structured signals as

Vd = {xd[n] : xd[n] of the form of Eq. (2.1.2)}

and the space Wgd to be the space of all signals with the same Fourier transform as the signal gd [n]
over the passband regime of the lowpass filter. Therefore, this algorithm can be summarized by

find x
∗
d
[n] (5.5.1)

s.t. x
∗
d
[n] ∈ Vd ∩Wgd .
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Appendix A establishes the uniqueness of the solution to this formulation. To solve this formulation,
the parametric estimator of a d

th-order transient signal, defined in Eq. (2.5.1), is iteratively updated
as its parameter estimates are updated. Therefore, the t

th iteration of the parametric estimate of
the underlying transient structured signal is given by

x̂
(t)
d

[n] =
d�

k=1

α
(t)
k

�
σ
(t)
k

�n

, (5.5.2)

where the parameters
�
α
(t)
k

�

1:d
and

�
σ
(t)
k

�

1:d
are the t

th iterative estimates of the amplitude
coefficients and decay rates, respectively. The overall methodology used here is to iteratively update
the signal g(t)

d
[n] by

g
(t+1)
d

[n] = PWgd

�
PVd

�
g
(t)
d

[n]
��

(5.5.3)

until g(t+1)
d

[n] = g
(t)
d

[n], where PVd {·} and PWgd
{·} are projections into the spaces Vd and Wgd ,

respectively.

We initialize the algorithm by defining the projector PVd to satisfy an input-output relationship
given by

x̂
(0)
d

[n] = PVd

�
g
(0)
d

[n]
�
. (5.5.4)

Given the filtered transient data, denote g
(0)
d

[n] = gd [n]. The initial step of this algorithm is
to first estimate the location of d∗ > d decay rates using the overdetermined recovery framework.
Define the mapping D {·} as this procedure. Then the initial step of this algorithm is then given by

�
σ
(0)
k

�

1:d∗
= D

�
g
(0)
d

[n]
�
. (5.5.5)

Using the real decay rates between 0 and 1 from this overdetermined recovery mapping as the
decay rates of an exponential basis, the exponential basis is extended to include d

∗ total real decay
rates. The additional decay rates may be chosen arbitrarily, though a good heuristic is to place a
single decay rate relatively close to each side of the recovered decay rates. The DTT of g(0)

d
[n], is

then computed, and is denoted as

G
(0)
d

[k] = T

�
g
(0)
d

[n]
�
. (5.5.6)

Next, an adaptive transient filter H̄ [k], as discussed in Section 3.3, is defined by

H̄ [k] =





1,

0,

for the largest d peaks of A [k]

otherwise
(5.5.7)

where A [k] is the DTT of the transient filters input. Therefore, the output of the projector PVd is
given by

x̂
(0)
d

[n] = T
−1

�
G

(0)
d

[k] H̄ [k]
�
. (5.5.8)
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This parametric signal contains d real exponentials, which means that it sits in the space of all
d
th-order transient signals, i.e., Vd. However, the passband frequency is not guaranteed to match

the known frequency content of the underlying transient signal. Therefore, in order to enforce this
property, define the input-output relationship of the projector PWgd

by

g
(1)
d

[n] = PWgd

�
x̂
(0)
d

[n]
�
. (5.5.9)

In this projection, the known frequency band is inserted in place of the estimated band while
the out of band estimate is left unmodified. The result of this procedure is denoted G

(1)
d

[k] and is
given by

G
(1)
d

[k] = (1− F [k]) X̂(0)
d

[k] + F

�
g
(0)
d

[n]
�

(5.5.10)

where F {·} denotes the DFT, F [k] represents the lowpass filter, and

X̂
(0)
d

[k] = F

�
x̂
(0)
d

[n]
�
. (5.5.11)

Finally, the first iteration is completed by transforming the signal with correct frequency content
over the passband region, but possibly no longer in Vd, to the sample domain by

g
(1)
d

[n] = F
−1

�
G

(1)
d

[k]
�
. (5.5.12)

The iterative update procedure to update the signal g(t)
d

[n] to g
(t+1)
d

[n] is given in Algorithm 5.1.

Algorithm 5.1 Update procedure for the iterative transient spectral projection algorithm

1. x̂
(t)
d

[n] = PVd

�
g
(t)
d

[n]
�

:

(a)
�
σ
(t)
k

�

1:d∗
= D

�
g
(t)
d

[n]
�

(b) G
(t)
d

[k] = T

�
g
(t)
d

[n]
�

(c) x̂
(t)
d

[n] = T −1
�
G

(t)
d

[k] H̄ [k]
�

2. g
(t+1)
d

[n] = PWgd

�
x̂
(t)
d

[n]
�

:

(a) X̂
(t)
d

[k] = F

�
x̂
(t)
d

[n]
�

(b) G
(t+1)
d

[k] = (1− F [k]) X̂(t)
d

[k] + F

�
g
(0)
d

[n]
�

(c) g
(t+1)
d

[n] = F−1
�
G

(t+1)
d

[k]
�
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Chapter 6

Conclusions and Future Directions

In this thesis, we have considered the recovery of amplitude coefficients and decay rates for
transient structured signals under three stages of recovery. The accurate determination of these
parameters is closely aligned with valuable information in many applications.

In Chapter 3, the first stage of parameter recovery was presented in which we determined the
amplitude coefficients of a transient signal given both samples of the signal and the decay rates
associated with the signal. This process led to the definition of the exponential basis and the concept
of a transient transform. For finite-length signals, the dual exponential basis was derived using two
novel algorithms such that the DTT became computationally feasible. Using these algorithms,
numerical improvements were observed for a commonly solved ill-conditioned system of equations.
The DTT then became the standard procedure to solve for the amplitude coefficients for the second
stage of parameter recovery once the decay rates were recovered.

Chapter 4 extended the generation of the dual exponential basis such that several approximate
dual bases were defined by trading off between properties. For example, the solution to an un-
constrained optimization problem provided a stable approximate dual basis at the cost of reducing
transient resolution. Section 4.4 provided bounds on guaranteed transient resolution for any ap-
proximate dual exponential basis. The use of Inner Product Shaping and orthogonal polynomials
were unsuccessfully considered for creating a meaningful approximate transient spectrum.

The second stage of parameter recovery, for which the decay rates of a transient signal given
samples of the signal, is presented in Appendix B. This appendix provides a tutorial on several
existing parameter recovery algorithms for determining the decay rates. The DTT is then utilized to
accurately determine the amplitude coefficients when desired as an alternative to Shanks Method.

In Chapter 5, the third and final stage of parameter recovery was presented in which we es-
tablished a framework for determining the amplitude coefficients and decay rates of a transient
signal given samples of the lowpass-filtered transient signal. We saw that this framework heavily
relied upon selecting an overdetermined model order to be meaningfully larger than the underlying
transient signals model order with respect to the severity of the LPF. An alternating projection
algorithm was presented in order to recover the transient signal prior to the lowpass filter using
the overdetermined recovery procedure. In order to use this algorithm, a novel model order deter-

99



6.1. FUTURE DIRECTIONS CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

mination algorithm was presented which may be used to identify the number of parameters to be
determined.

6.1 Future Directions

The DTT uses an exponential basis in order to represent a finite-length signal with any set
of decay rates for the exponential basis signals. Research for understanding the effects of different
spacing structures of the decay rates is needed to provide a deeper sense of the conditioning issues of
exponential signals. For example, clustering of the decay rates has a significantly undesirable effect
on the numerical stability of the dual exponential basis. Understanding the consequences of different
spacing structures may lead to improved stability of the DTT. In addition, it has been observed by
simulation that different spacings of the decay rates often has noticeable effects on spectral leakage
and resolution of the approximate DTTs in Chapter 4. Finally, identifying applications that can
take advantage of transient filtering is a potentially rich area for future research encompassing a
broad range of fields.

Another potential area for future research involves utilizing functional composition such that ad-
ditional parameter recovery algorithms become of use. For example, the forward-backward method
of linear prediction exploits the fact that a sample from a periodic time-series is linearly predictable
using either previous or future sample values [15]. This results in recovered parameters which are
guaranteed to be on the unit circle in the z-plane. Borrowing inspiration from this algorithm, it may
be advantageous to utilize the information that the poles are located on the real axis to ensure that
recovered parameters are all on the real axis as well. If the z-domain representation of the transient
signal could be modified in such a way that the real line over (0, 1) was uniquely mapped to the
unit circle, then the forward-backward method would produce pole estimates on the unit circle that
would then be mapped back to the real line. One way of implementing this transformation is to use
the functional composition given by

X̃d(z) = Xd (G (z)) (6.1.1)

=
�

n

xd[n]

�
1

G(z)

�n

(6.1.2)

where Xd (z) is the z-transform of the transient signal xd [n], G(z) is a warping function, and we
denote x̃d [n] as the inverse z-transform of X̃d (z). If G(z) is a rational function in z, then Eq. (6.1.1)
represents a rational composition when both inner and outer functions are ratio’s of polynomials
in z. Table 6.1 lists several potential mapping functions and the image of one of the N

th roots of
unity.

100



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 6.1. FUTURE DIRECTIONS

Warping Function G(z) Image of one of the N
th roots of unity e

2π
N k

G1(z) =
1
2z +

1
2 cos

�
πk

N

�
e
j
πk
N

G2(z) =
1
4(z

−1 + 2 + z) cos2
�
πk

N

�

G3(z) =
1
2(1 +K)z + 1

2(1−K)z−1 cos
�
2πk
N

�
+ j(K) sin

�
2πk
N

�

G4(z) =
K

z+a

K

�
cos

�
2πk
N

�
+a−j sin

�
2πk
N

��

�
cos

�
2πk
N

�
+a

�2
+sin2

�
2πk
N

�

Table 6.1: Warping functions and the image of one of the N
th roots of unity

Figure 6.1.1 depicts the relationship between computing the DFT of the signal x̃d [n] with the
equivalent z-plane evaluation of xd [n] for different warping functions G(z). Note that G3(z) is
shown with a value of K = 1

2 and G4(z) uses K = −1.5 and a = −3.

Figure 6.1.1: Mappings for rational functional composition
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Appendix A

Proof of Uniqueness for �2 Minimization

The uniqueness of the solution for the linearly and decay rates in Eq. (2.5.6) is verified in the
following proposition. In order to see this, we define the space of all dth-order transient structured
signals as

Vd = {xd[n] : xd[n] of the form of Eq. (2.1.2)} .

Proposition. If gd [n] = flp [n] ∗ x [n] and x [n] ∈ Vd, then there exists a unique x [n] that produces

gd [n].

Proof. Let x(1) [n], x(2) [n] ∈ Vd where x(1) [n] �= x
(2) [n]. Denote the DTFTs of x(1) [n] and x

(2) [n] as
X1

�
e
jω
�
=

N1
�
e
jω

�

D1(ejω)
and X2

�
e
jω
�
=

N2
�
e
jω

�

D2(ejω)
, respectively, where each N1

�
e
jω
�
, N2

�
e
jω
�
, D1

�
e
jω
�
,

and D2
�
e
jω
�

are polynomials in e
−jω of maximum order d. Let Gd

�
e
jω
�

be the DTFT of gd [n].
By definition

Gd

�
e
jω
�
=

N1
�
e
jω
�

D1 (ejω)
=

N2
�
e
jω
�

D2 (ejω)
, |ω| < ωc.

Next, define ∆X
�
e
jω
�

as

∆X
�
e
jω
�
=

N1
�
e
jω
�

D1 (ejω)
−

N2
�
e
jω
�

D2 (ejω)

=
N1

�
e
jω
�
D2

�
e
jω
�
−N2

�
e
jω
�
D1

�
e
jω
�

D1 (ejω)D2 (ejω)

=
Ñ

�
e
jω
�

D1 (ejω)D2 (ejω)

= 0

for |ω| < ωc. Therefore Ñ
�
e
jω
�

may be written as a polynomial of maximum order 2d, given by

Ñ
�
e
jω
�
=

2d�

l=0

cle
−jωl

.
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Let ω1, ... ,ω2d+1 be 2d+ 1 distinct samples of ω in [0,ωc). Consider the set of equations

Ñ
�
e
jωi

�
=

2d�

l=0

clγ
l

i, i = 1, ..., 2d+ 1,

where γi = e
−jωi . Expanding this into matrix form yields





Ñ
�
e
jω1

�

Ñ
�
e
jω2

�

...
Ñ

�
e
jω2d+1

�




=





1 γ1 · · · γ
2d
1

1 γ2 · · · γ
2d
2

...
... . . . ...

1 γ2d+1 · · · γ
2d
2d+1









c0

c1
...
c2d




=





0

0
...
0




.

Written in matrix form this is 0 = Γc where Γ is a Vandermonde matrix of full rank and therefore
has only the trivial vector in it’s null-space. The only set of cl that satisfy the above equation are
cl = 0 for 0 ≤ l ≤ 2d. Thus we have that Ñ

�
e
jω
�
= 0 for all ω, which implies

X1
�
e
jω
�
=

N1
�
e
jω
�

D1 (ejω)
=

N2
�
e
jω
�

D2 (ejω)
= X2

�
e
jω
�

Therefore x
(1) [n] = x

(2) [n] which contradicts the original assumption, so the input to produce gd [n]

must be unique.

One result of the above proposition is that Eq. (2.5.8) is simplified to

(α̂, σ̂) = argmin
α,σ

��Gd

�
e
jω
�
−Xd

�
e
jω
�
Flp

�
e
jω
���2

2

as the uniqueness of the solution has been established.
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Appendix B

Parameter Recovery Algorithms

Parameter modeling is a powerful tool with which a set of observed samples is fit to a predefined
model of a specific structure using only a limited number of parameters. Often, the number of
parameters determined is fewer than the number necessary for an exact representation of the data.
Therefore the parametrization results in some form of modeling error. In this case, the model
parameters are determined through minimization of an error function for some definition of error.
Solving this formulation results in the set of model parameters that best represent the observed
samples in some sense. Different error criteria result in different recovery algorithms and solutions.

The general procedure of parameter recovery is summarized into two primary stages: model
selection and parameter determination. First, the structure and order of a parametric model need
to be selected. Once the structure is fixed, the model order must be carefully chosen when it is not
known a priori. Selecting too low an order leads to a poor representation of the data, while selecting
too high an order, in general, leads to over fitting to the observed samples, including fitting to noise.
Generally, if the data does not exactly fit the model assumed, diminishing reductions in modeling
error are obtainable by continually increasing the model order. The order selection process can
be thought of as a tradeoff between parameter parsimony and tolerable modeling error. Chapter
5 proposes an algorithm for estimating model order using insight based upon the transient signal
structure, and where the model order is computed as a function of the available data. Once the
model structure and order are fixed, the recovery algorithm used for determining the model parame-
ters must be selected in order to minimize an error criterion. The assumptions made in formulating
each recovery algorithm are very important in practice when deciding which recovery algorithm is
appropriate for a given application; selecting an algorithm whose inherent assumptions best match
known facts about the source from which the data is obtained often leads to better results. For
the remainder of this chapter the model structure corresponding to the source of data is either the
transient structure in Eq. (2.1.2) or Eq. (2.1.7). Additionally, the model order is assumed to be
fixed to d. The algorithms presented in this appendix are directed at solving the problems stated in
both Definitions 1 and 3 alike.
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B.1 Prony’s Method

After defining Eq. (2.1.5), we saw that directly solving for the set of decay rates, given a
set of observed sample values, requires solving a non-linear system of equations. Prony’s method
reformulates this problem such that the decay rates are found by solving a linear system of equations
instead. This method originates from recognizing that a signal with the structure in Eq. (2.1.2) is
also the structure of the solution to a homogeneous Linear Constant Coefficient Difference Equation
(LCCDE) of order d. [21] Specifically, Prony’s method fits N observed samples to a pre-determined
exponential model, containing d exponentials, through a three stage procedure, outlined as follows:

1. Solve a homogeneous LCCDE of order d for the coefficients {θk}1:d.

2. Use the coefficients found in stage one to form a d
th order polynomial whose roots give the

decay rates {σk}1:d.

3. Use the decay rates found in stage two to solve the linear system of equations in Eq. (2.1.5)
for the amplitude coefficients {αk}1:d.

The algorithms presented in this chapter only describe the recovery process for the decay rates, i.e.,
stages 1 and 2 above. Shanks method then uses these methods to solve stage 3 in a least squares
manner. However, for transient structured signals, this involves solving the ill-conditioned system
of equations in Eq. (2.1.5). Solutions obtained by using the algorithms proposed in Chapter 3 often
have lower numerical error, and thus make an improvement over the stage 3 recovery problem.

To develop the insight used in Prony’s method for stages 1 and 2, define a characteristic poly-
nomial as

Θ(z) =
d�

k=1

(1− σkz
−1) (B.1.1)

=
d�

m=0

θmz
−m = 0, (B.1.2)

where we choose θ0 = 1 without loss of generality. Next, the result of manipulating Eq. (2.1.2) by
delaying by m, multiplying by θm, and summing over m, yields

d�

m=0

θmxd [n−m] =
d�

k=1

αkσ
n

k

d�

m=0

θmσ
−m

k
(B.1.3)

=
d�

k=1

αkσ
n

k
Θ(σk) = 0 (B.1.4)
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for n ≥ d. For notational convenience, define θ = [θ1, · · · , θd]
T
. This equation says that the coeffi-

cients {θk}1:d are exactly the same coefficients found by solving a d
th order homogeneous LCCDE

for θ, starting from n = d. Prony’s method is not restricted to solving for the parameters in Eq.
(2.1.2) for only transient signals, but is also applicable for more general curve fitting with complex
exponentials and complex amplitudes. The LCCDE is defined, over some interval of support, by

xd [n] + θ1xd [n− 1] + θ2xd [n− 2] + · · ·+ θdxd [n− d] = 0. (B.1.5)

Different intervals of support lead to different algorithms and consequently different solutions. The
zeros of the characteristic polynomial Θ(z), i.e., {σk}1:d, are the decay rates in Eq. (2.1.2). There-
fore if the coefficients of the LCCDE are correctly identified, then the decay rates of the signal
xd[n] may be correctly determined. Two intervals of support are considered in the following two
subsections.

B.1.1 Prony’s Original Method

The original formulation of Prony’s method defines the interval of support for Eq. (B.1.5) to be
d ≤ n ≤ N − 1 where N = 2d. As a result, Prony’s original method exactly fits 2d observed sample
values to a linear combination of d exponentials. There is no modeling error either with respect
to representing the data in this method. However, when the data doesn’t exactly fit the transient
structure, e.g., x̄d [n], then modeling error with respect to the transient structure is unavoidable.
Solving for the coefficients θ, in order to form the characteristic polynomial, requires the solution
to the linear system of equations given by

−





xd [d]

xd [d+ 1]
...

xd [2d− 1]




=





xd [d− 1] xd [d− 2] · · · xd [0]

xd [d] xd [d− 1] · · · xd [1]
...

... . . . ...
xd [2d− 2] xd [2d− 3] · · · xd [d− 1]









θ1

θ2
...
θd




. (B.1.6)

The solution {θk}1:d is extended to include θ0 = 1 and is subsequently substituted into Eq.
(B.1.2). Then a polynomial factoring algorithm solves for the zeros of Θ(z). It has been observed
that the first two stages of Prony’s original method perform poorly in estimating the correct values
of {σk}1:d when the observed samples contain additive noise, i.e., {x̄d[n]}0:2d−1. [8] This is attributed
to the fact that this algorithm makes no separate estimates of the noise and the underlying signal,
but fits exactly to the noise included in each sample. As a result, Prony’s original method achieves
successful recovery as in Definition 1 exactly and performs poorly in Definition 3. It is for Definition
3 that the extended Prony’s method makes improvement upon this original formulation.

B.1.2 Extended Prony’s Method

Consider the case where the number of exponentials to be modeled is fixed to d while N > 2d
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samples of a transient signal are available. Prony’s original method cannot utilize any of the
additional N − 2d samples without increasing the model order to d̂ > d. Extending the system of
equations in Eq. (B.1.6) to include all available data while holding the model order fixed results in
an overdetermined system of equations given by

−





xd [d]

xd [d+ 1]
...

xd [N − 1]




=





xd [d− 1] xd [d− 2] · · · xd [0]

xd [d] xd [d− 1] · · · xd [1]
...

... . . . ...
xd [N − 2] xd [N − 3] · · · xd [N − d− 1]









θ1

θ2
...
θd




. (B.1.7)

Eq. (B.1.7) is compactly written as −xd,0 = Xθ, and the least squares solution, i.e., θ̂LS =

−(XT
X)−1

X
T
xd,0, is referred to as the Extended Prony Method solution. [20] The same procedure

for producing the decay rates as the original Prony method is then used here, however the estimates
for the decay rates may be different.

A common interpretation of the least squares solution to Eq (B.1.7) is to select the vector θ that
minimizes �Xθ + xd,0�

2
2 = �e�

2
2 where e [n] is the parametric modeling error, e [n] = xd [n]− x̂d [n],

for 0 ≤ n ≤ N − 1. This method has been observed to outperform the original Prony method in
the presence of noise, such as in the formulation of Definition 3.

B.2 Tufts-Kumaresan Method

The Tufts-Kumaresan method is a natural extension built upon the framework of the stage one
extended Prony method, detailed above. [12] Towards developing this extension, Eq. (B.1.7) is
re-written as

−x̄d,0 = X̄θ (B.2.1)

0 =
�
x̄d,0 | X̄

�
�

1

θ

�
(B.2.2)

where
�
x̄d,0 | X̄

�
is a concatenated Toeplitz matrix and x̄d [n] has been used in place of xd [n] to

emphasize the advantage this method provides when the data contains additive noise. The key
insight exploited in the Tufts-Kumaresan algorithm is to utilize the low rank of the concatenated
data matrix in Eq. (B.2.2) when the samples do not contain additive noise in order to perform a
de-noising like procedure. This is a more realistic formulation than in the extended Prony method
because the sample values that populate x̄d,0 also populate X̄. Previously, error was only assumed
to be present in x̄d,0. This insight suggests an unstructured Total Least Squares (TLS) solution to
Eq. (B.2.2). Systematically, this means solving the system of equations for the coefficients of the
characteristic polynomial while taking into account that there is noise in both the data matrix X̄

as well as the observation vector x̄d,0.
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The advantage of this algorithm becomes apparent by writing Eq. (B.2.2) as

�
x̄d,0 | X̄

�
�

1

θ

�
=





x̄d,0 [d] x̄d [d− 1] x̄d [d− 2] · · · x̄d [0]

x̄d,0 [d+ 1] x̄d [d] x̄d [d− 1] · · · x̄d [1]
...

...
... . . . ...

x̄d,0 [N − 1] x̄d [N − 2] x̄d [N − 3] · · · x̄d [N − d− 1]









1

θ1
...
θd




= 0,

(B.2.3)
and noting that in the noiseless case, i.e., the problem in Definition 1, the observed samples that
populate the concatenated data matrix produce a matrix with a null space of dimension one, i.e.,
dim {N ([xd,0 | X])} = 1. Solving for the non-trivial vector in the null space results in a scalar
multiple of the concatenated vector

�
1 | θT

�T
. Re-scaling of this non-trivial vector, such that the

leading coefficient is 1, is an unnecessary step in forming the characteristic polynomial as the roots
of a polynomial are invariant to scalings of the coefficients by a constant, though appropriate scaling
may help numerical errors when solving for the roots of large polynomials. It is straightforward
to verify that this algorithm yields the same solution as both versions of the Prony method in the
noiseless case.

When the observed samples, {x̄d [n]}0:N−1, contain additive noise, i.e., the problem in Definition
3, the joint matrix

�
x̄d,0 | X̄

�
will have rank d+1 with high probability. Consequently, the only vector

in the null space of this noisy concatenated matrix is the trivial solution, i.e., N
��
x̄d,0 | X̄

��
= 0.

To overcome this, the Tufts-Kumaresan algorithm finds the smallest perturbation matrix, in a
Frobenius norm sense, of the joint matrix which yields a unit rank reduction. The Eckart-Young
Theorem proves that the closest rank reduced matrix is easily obtainable through manipulating the
SVD of the joint matrix. [23] To find the resulting matrix, consider the SVD of the joint matrix,
given by

�
x̄d,0 | X̄

�
=

d+1�

k=1

πkukv
H

k
(B.2.4)

where π1 ≥ · · ·πd ≥ πd+1 > 0. The estimate of the noise is then given by the unit rank matrix
πd+1ud+1v

H.

d+1. The rank 1 reduced matrix,
�
x̄d,0 | X̄

�
d
, is then given by

�
x̄d,0 | X̄

�
d
=

d�

k=1

πkukv
T

k
. (B.2.5)

The smallest singular value is assumed to be due to additive noise and not one of the transient
components in order to interpret this as a de-noising process. Further, the de-noising is guaranteed
to be unique if πd > πd+1.

Reconstructing the de-noised matrix and solving for its null space is unnecessary; the null space
of the rank reduced matrix is v

H

d+1 . Therefore, computing the SVD of the joint matrix in Eq.
(B.2.3) results in the coefficients necessary for the characteristic polynomial to be formed, i.e,
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v
H

d+1 ∝ [1 | θ]T .
This algorithm generally out performs both versions of Prony’s method when noise is present in

the samples. One drawback of this algorithm is that the de-noising process does not consider the
structure known for the joint matrix in the noiseless case. This is demonstrated by noting that, for
all i,j such that

�
x̄d,0 | X̄

�
i,j

=
�
x̄d,0 | X̄

�
i+1,j+1

before the de-noising process, there is no guarantee
that the resulting rank-reduced matrix has the Toeplitz structure, which is a property of the rank d

joint matrix formed by the underlying transient signal structure, i.e., [xd,0 | X]. This is equivalent
to saying that the joint Toeplitz matrix

�
x̄d,0 | X̄

�
is formed by adding the noiseless Toeplitz matrix

[xd,0 | X] and a Toeplitz noise matrix but the de-noising algorithm produces a non-Toeplitz estimate
both the noise and underlying signal.

B.3 Cadzow’s Method

Cadzow’s method builds additionally upon the Tufts-Kumaresan framework by artificially en-
forcing properties that the noiseless transient signal, xd [n], is known to possess. [5] As discussed
in Section B.2, the noiseless joint matrix [xd,0 | X] has two intrinsic attributes which are exploited
in this algorithm: a rank of d and a Toeplitz structure. The algorithm presented in this section
uses an iterative procedure to alternate between enforcing these two attributes. A structured TLS
projection to the closest Toeplitz matrix of rank d is ideally desired, however, enforcing both of
these constraints simultaneously is difficult. The Tufts-Kumaresan method provided a projection of
the noisy joint data matrix to the closest matrix of rank d, in a Frobenius norm sense, without im-
posing any structure on the resulting matrix. Generally, the resulting projection does not have the
Toeplitz structure. The iterative procedure used by Cadzow’s method is presented next, in which a
method for imposing the Toeplitz structure without any constraints on the resulting matrices rank
is presented.

First, define the mapping f as the projection of a noisy rank d + 1 joint data matrix to the
closest rank d matrix in the Frobenius norm sense. Therefore, the base iteration of this algorithm
is given by

�
x̄d,0 | X̄

�(0)
d

= f
��
x̄d,0 | X̄

��
(B.3.1)

=
d�

k=1

πkukv
T

k
. (B.3.2)

Next, in order to impose the Toeplitz structure on
�
x̄d,0 | X̄

�(0)
d

, define the mapping h such that
the resulting matrix has, for each of it’s diagonal entries, the average value from the corresponding
diagonal of the input matrix. This mapping will take any general input matrix and produce a
Toeplitz matrix, e.g.,

h

��
1 2 3

4 5 6

��
=

�
3 4 3

4 3 4

�
. (B.3.3)
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Using these two mappings, the iterative procedure from the n
th iteration to the (n+ 1)st is

given by:

�
x̄d,0 | X̄

�(n)
T

= h(
��

x̄d,0 | X̄
�(n)
d

�
(project to Toeplitz strucutred matrices) (B.3.4)

�
x̄d,0 | X̄

�(n+1)
d

= f

��
x̄d,0 | X̄

�(n)
T

�
(project to rank dmatrices). (B.3.5)

Note that after projecting to the space of Toeplitz structured matrices, the resulting matrix
�
x̄d,0 | X̄

�(n)
T

,
with high probability, has a rank of d+ 1. This iterative procedure has been shown to converge, as
the number of iterations grows large, to a solution which possess both desired attributes, i.e., a rank
of d and a Toeplitz structure. In practice, the number of iterations is often fixed to some number
L. The result of the L

th iteration,
�
x̄d,0 | X̄

�(L)
d

is guaranteed to have a non-trivial null space but
not guaranteed to have a Toeplitz structure. Given this matrix, the same procedure for finding
the decay rates from the Tufts-Kumaresan method is used by computing the null-space. Cadzow’s
iterative method has been shown to work extremely well in practice for problems such as harmonic
retrieval in noise. However this must be balanced with the increased complexity of performing an
iterative alternating projection algorithm.

B.4 Autoregressive Algorithms

An autoregresive model assumes that a time-series current value depends linearly on its previous
values. This section provides the general procedure for computing the stage one solution for the
characteristic polynomial coefficients {θk}1:d by solving different autoregressive models. [15] To
being this exposition, define a d

th order linear predictor, xlp,d [n], as

xlp,d [n] = −

d�

k=1

θkxd [n− k] . (B.4.1)

The structure of this linear predictor is known as the forward or causal predictor because it computes
each sample as a linear combination of strictly previous samples. The error criterion used in linear
prediction is defined to be the sum of squares of elp [n] where

elp [n] = xd [n]− xlp,d [n] = xd [n] +
d�

k=1

θkxd [n− k] . (B.4.2)

B.4.1 The Yule-Walker Method

The Yule-Walker method is an all-pole parameter modeling algorithm based upon a least squares
inverse model. This method is straightforward to derive from the orthogonality principle, and thus
a derivation of the Yule-Walker Equations, or Autocorrelation Normal Equations, is not presented
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here, but can be found in [18]. The linear prediction coefficients, {θk}1:d, of a time-series are found
by solving the system of equations given by





rx̄dx̄d [1]

rx̄dx̄d [2]
...

rx̄dx̄d [d]




=





rx̄dx̄d [0] rx̄dx̄d [1] · · · rx̄dx̄d [d− 1]

rx̄dx̄d [1] rx̄dx̄d [0] · · · rx̄dx̄d [d− 2]
...

... . . . ...
rx̄dx̄d [d− 1] rx̄dx̄d [d− 2] · · · rx̄dx̄d [0]









θ1

θ2
...
θd




, (B.4.3)

where rx̄dx̄d [m] is the true autocorrelation sequence of x̄d [n]. In practice the autocorrelation se-
quence is rarely known, therefore it must be estimated using the finite amount of data available.
One autocorrelation estimator, using the data {x̄d [n]}0:N−1, is defined by

r̂x̄dx̄d [m] =
1

N

N−|m|−1�

n=0

x̄d [n+ |m|] x̄d [n] . (B.4.4)

This estimator is readily shown to be biased with E {r̂x̄dx̄d [m]} =
�
1− |m|

N

�
rx̄dx̄d [m]. For a fixed

lag m, the variance asymptotically approaches zero as the number of samples N grows large. A
second autocorrelation estimator is defined by modifying the biased estimator to form an unbiased
estimator structured as

r̃x̄dx̄d [m] =
1

N − |m|

N−|m|−1�

n=0

x̄d [n+ |m|] x̄d [n] . (B.4.5)

The unbiased auto-correlation estimator yields sequences for which there is increasing statistical
uncertainty at increasingly large lags. When either Eq. (B.4.4) or Eq. (B.4.5) is used, the algorithm
is referred to as the Yule-Walker method of autoregressive parameter recovery using a biased or
unbiased estimator, respectively.

Both of the autocorrelation estimators yield identical values for lag m = 0, i.e., r̂x̄dx̄d [0] =

r̃x̄dx̄d [0]. Despite the estimator in Eq. (B.4.4) being biased, it is often preferred because it produces
an autocorrelation matrix that is guaranteed to be positive semi-definite. This results in a stable
set of estimated pole locations, which can be seen by using the biased estimator to solve for the
k-parameters of a lattice filter, in which the k-parameters are guaranteed to be strictly less than
one. [18] The estimator in Eq. (B.4.5) may yield autocorrelation sequences which are invalid, in
that they violate the the property that rxdxd [0] ≥ rxdxd [1]. For example, consider the sequence
{xd [0] , xd [1] , xd [2]} =

�
1, 2, 32

�
. The resulting unbiased autocorrelation sequence samples are

{r̃xdxd [0] , r̃xdxd [1]} = {2.4167, 2.5}.

B.4.2 Linear Prediction

For each value of n, the linear prediction error is an equation of d unknowns. Immediately, we
have that elp [0] = xd [0] because the input sample at n = 0 has no preceding samples from which
to be predicted. Writing the linear prediction error as a system of equations, over the interval
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0 ≤ n ≤ N + d− 1, yields





e [0]

e [1]
...

e [d]
...

e [N − 1]
...

e [N + d− 1]





=





xd [0] 0 · · · 0

xd [1] xd [0] · · · 0
...

... . . . ...
xd [d] xd [d− 1] · · · x [0]

...
... . . . ...

xd [N − 1] xd [N − 2] · · · xd [N − d− 1]
...

... . . . ...
0 0 · · · xd [N − 1]









1

θ1
...
θd




. (B.4.6)

This equation is compactly denoted as elp = D
(d)

�
1

θ

�
, and the error criterion to be minimized is

simply given by
�
(d)
lp

=
�

n∈Ilp

|elp [n]|
2
. (B.4.7)

Different choices for the interval Ilp result in different linear prediction algorithms. When the
signal xd [n] is only known over the interval 0 ≤ n ≤ N − 1, the zeros present in the upper and
lower anti-diagonals of the data matrix D

(d) above represent an implicit assumption of rectangular
windowing on an infinitely long underlying signal. It is often the case that this assumption, that the
signal takes value 0 for n < 0 and n ≥ N , is unrealistic. However, for transient structured signals,
the trailing zeros are only marginally unrealistic, especially for data sets with large N . Using a
discrete representation transient signals never reach the value 0, but when quantization is taken
into account, noise free digital transient signals typically reach 0 relatively quickly.

The correlation method of linear prediction defines the interval Ilp = {0 ≤ n ≤ N + d− 1}.
It is straightforward to show, from Eq. (B.4.7), that this choice of interval produces the same
solution as if we chose the interval Ilp = {n ∈ (−∞,∞)}. Further, Eq. (B.4.6) uses elp [n] = 0 for
1 ≤ n ≤ N + d− 1. Therefore, the least squares solution is given by

�
1

θ

�
=

��
D

(d)
�T

D
(d)

�−1 �
D

(d)
�T

elp. (B.4.8)

With this form of the solution, we find that
�
D

(d)
�T

D
(d) is structurally equivalent to the same

Toeplitz matrix derived in Eq (B.4.3) when the biased estimator of Eq (B.4.4) is used. Therefore
the Yule-Walker method of autoregressive parameter recovery using a biased estimator is structurally
equivalent to the correlation method of linear prediction.

The covariance method of linear prediction avoids the pre- and post-windowing of the data
which was assumed in the correlation method. [15] The use of the term covariance is misleading;
this technique does not use covariance in the traditional sense, i.e., correlation with the product of
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the means subtracted. The difference between this method and the correlation method comes from
the choice of the region of support for the error term. The interval chosen for minimizing the sum
of squares of the linear prediction error is selected to be Ilp = {d ≤ n ≤ N − 1}. To understand the
consequence of this choice, partition the matrix D

(d) in Eq (B.4.6) as

D
(d) =




L

T

U



 (B.4.9)

where the partitioned matrices are defined by

L
(d) =





xd [0] 0 · · · 0

xd [1] xd [0] · · · 0
...

... . . . ...
xd [d− 1] xd [d− 2] · · · 0




, T

(d) =





xd [d] xd [d− 1] · · · xd [0]
...

... . . . ...
xd [N − 1] xd [N − 2] · · · xd [N − d− 1]



 , and

(B.4.10)

U
(d) =





0 xd [N − 1] · · · xd [N − d− 2]

0 0 · · · xd [N − d− 3]
...

... . . . ...
0 0 · · · xd [N − 1]




.

The windowing of the infinitely long underlying signal is only apparent in the lower triangular
matrix L and the upper triangular matrix U . The intermediate Toeplitz matrix T does not have
any windowing, and thus does not make any assumptions about the signal outside of finite set
known. This gives rise to the following system of equations





0
...
0



 =





xd [d] xd [d− 1] · · · xd [0]
...

... . . . ...
xd [N − 1] xd [N − 2] · · · xd [N − d− 1]









1

θ1
...
θd




. (B.4.11)

This system of equations is denoted in matrix-vector form as ẽlp = T
(d)

�
1

θ

�
. The system of

equations in Eq. (B.4.11) is then re-structured to be equivalent to the system of equations in
Eq. (B.1.7). Therefore the covariance method of linear prediction and the stage one equations of
the extended Prony’s method are structurally equivalent. It is due to this relationship that the
characteristic polynomial defined in Prony’s method is also referred to as the prediction polynomial
as well.
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Epilog

The unique research style within DSPG appears to me to be difficult to characterize, and may
possibly be best described via an example. In the following discussion I have summarized my
personal reflections on the progression of my masters thesis and its supporting research. In it I hope
to convey a different story than one might expect, given the presentation of results in the thesis
itself.

The results in this thesis were initially inspired by a question posed by Al during one of our first
research meetings: “What can wave tunneling teach us about signal processing?” My initial response
was an interesting and enjoyable dive into the literature about wave propagation and quantum
physics, yet I returned to Al with more questions than answers about wave tunnelings relationship
with signal processing. We spent the next several research meetings discussing variations of this
question, which eventually led us to an analogy involving wave tunneling and wide-band signals
passing through narrow-band channels. In essence, we agreed that because a propagating wave
tunnels through an energy barrier by transforming into an evanescent wave within the barrier, it
may be possible for a wide-band signal to use a similar transformation to “tunnel” through a lowpass
channel. In the spirit of the Dr. Seuss cartoon in the DSPG library1, we decided that this idea was
worth pursuit. In doing so, we identified a more refined question that needed to be addressed before
we tackled the wave tunneling question: Assuming we can transform a signal into an evanescent
like signal, if this signal is processed by a lowpass filter is it even possible to recover the signal at
the output of the filter? If the answer was no, then our analogy would have needed modification.
This question clearly played an important part in the development of this thesis, as our starting
point became the recovery of signal parameters post lowpass filtering of linear combination of real,
decaying exponentials.

The remainder of my first year was spent learning the background and supporting material to
similar questions. One of the first papers I read related to the topic of parameter identification
was a 1795 publishing by Gaspard Riche de Prony, whose work laid the foundation for Appendix
B. At this point I felt that a deeper familiarity with parameter modeling and linear prediction
techniques would benefit me, so I began to catch up on the 200+ years of literature that followed
that paper. During this time, at a weekly meeting with Al, we attempted to postulate what a filter
that passes only slowly or quickly decaying exponentials would look like. At that time, I mistakenly

1“ONE plus ONE adds up to TWO if that is all you think it can do... But ONE plus ONE could equal THREE
or anything else you’d like it to be!”
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tried envisioning what characteristics the impulse response of such a system would have. However,
the process of answering this question got me to begin to pull on a string that eventually led to the
Transient Transform and algorithms for generating dual exponential bases. It wasn’t for over an
entire year before I returned to Al with exactly how this system would work.

The summer after my first year I interned at Bose Corporation, and was fortunate enough to
be supervised by a former DSPG member, Steve Isabelle. My primary project at Bose was quite
distant from my thesis research, however the modeling algorithms I had studied were of use in a side
project I collaborated on. In a different context, I developed an overdetermined framework similar
to the one presented in Chapter 5.

During the fall semester of my second year, in various group meetings and personal discussions
with Sefa and Guolong, I developed a healthy curiosity about the applications of functional and/or
polynomial composition to signal processing. As they independently developed results in this area, I
briefly looked where the light was brightest and began thinking about using functional composition
to warp my problem into a well-studied harmonic retrieval problem. I even got as far as some
preliminary simulations before other directions began developing quickly into interesting results. I
hope someone takes the functional composition approach at some point.

At the same time, I had been working on ways to solve the linear system of equations for the
amplitude coefficients of a transient signal when the decay rates are known which result in as little
computational error as possible, compared to built in software routines, e.g., inverse routines in
MATLAB. This work was motivated by simulations I had been running using large synthetic data
sets, in which the recovered amplitude coefficients were far enough from correct to raise concern.
This work solidified the algorithms for dual basis generation proposed in this thesis, which eventually
became the DTTT and the DTT. In discussing my findings with Al, we realized that the algorithms
I developed were more broadly applicable for spectral analysis using a general exponential basis,
making the DTT and the DFT special cases of my algorithms. Following this, several discussions
with Tom eventually led me down an algebraic road which helped me to solidify interpretations
for many of my proposed algorithms as well as provide statements of uniqueness I had otherwise
been neglecting to establish. Towards the end of the fall semester, Al and I continued making
many comparisons between the DTT and Fourier spectral analysis techniques in order to identify
both applications for the DTT as well as understand the issues of transient spectral resolution and
leakage.

As the final semester began, I developed methods for computing stable approximate transient
spectra for large data sets, which led to many of the approximate algorithms and spectral resolution
bounds in Chapter 4. Once these techniques had been developed, I began an intense writing period,
during which discussions with Al significantly assisted with shaping the thesis into its final form. We
had established that the algorithms for dual basis generation also worked for a complex exponential
basis, but it wasn’t until the editing process, only a couple weeks before the document was submitted,
that the proofs and explanations were changed to correspond to a general exponential basis.
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