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Abstract—Signal processing techniques exploiting natural and efficient
representations of a class of signals with an underlying parametric model
have been extensively studied and successfully applied across many
disciplines. In this paper, we focus attention to the representation of
one such class, i.e. transient structured signals. The class of transient
signals in particular often results in computationally ill-conditioned
problems which are further degraded by the presence of noise. We
develop the Discrete Transient Transform, a biorthogonal transform
to a basis parameterized by decay rate, along with algorithms for its
implementation which mitigate these numerical issues and enable a
spectral approach to parameter identification, estimation, and modeling
for signals with transient behavior. The three algorithms developed have
varying degrees of numerical robustness for generating the biorthogonal
transient basis. Issues pertaining to transient spectral leakage and
resolution are characterized and discussed in the context of an example
related to Vandermonde system inversion.

Index Terms—The discrete transient transform, nonlinear filtering,
biorthogonal transform, real exponentials

I. INTRODUCTION

Signals exhibiting exponential behavior play a fundamental role
in both applied and theoretical disciplines, e.g., solutions to a broad
class of differential equations, load envelopes in non-intrusive load
monitoring systems, nuclear decay in quantum theory, primary elec-
tronic component voltage-current characteristics, atmospheric pres-
sure, evanescent acoustic waves, etc. [1][2][3][4][5] An exponential
signal explicitly characterizes a relationship for which a constant
change in the independent variable corresponds to constant propor-
tional change in the dependent variable. For these and additional
reasons, transient signal parameters, namely decay rates and ampli-
tude coefficients, often carry informational significance with respect
to the signals origin; thus establishing a motivation to determine
or estimate them in either a parameter identification or modeling
scenario, respectively.

The identification and estimation of signal parameters for both
exponential and more general signal models using iterative, subspace,
spectral-projection, and curve-fitting techniques has been consid-
ered previously, e.g., Prony’s method and related algorithms, all-
pole modeling, finite rate of innovation, Cadzows method, various
regression techniques, etc. [6][7][8][9] A method which specifically
addresses real, continuous-time exponentials has also been considered
in [10] which makes use of Jacobi polynomial expansions. However,
the application of the general techniques to transient discrete-time
data often results in large numerical errors due in part to the ill-
conditioning of the underlying problem. To address this issue, we pro-
pose a biorthogonal transform enabling a spectral approach to repre-
sentation, identification, estimation, and modeling of transient signal
parameters. An algorithm for specifically generating the biorthogonal
transient basis is developed which exploits the underlying structure of
the transient signal model in order to better control numerical issues
and increase the robustness of analysis as compared with the more
general techniques.
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Digital Signal Processing Group.

A straightforward consequence of the z-transform representation
of a system whose impulse response is an infinitely long causal
transient signal requires all poles of the system to lie strictly on
a bounded interval of the real axis. This observation motivates the
general approach underlying the methodology in this paper: to form
a parameterized spectrum along this interval with respect to decay
rate. Advantages in taking this spectral approach include efficient
and natural representation of transient-like signals which often re-
main dense in other canonical representations, such as with shifted
impulses, sinusoids, and wavelet bases. Interpreting the transient
spectrum with regard to spectral resolution and leakage is analogous
to the interpretation issues of frequency spectra produced by the
Discrete Fourier Transform (DFT).

We proceed as follows: Section II defines the parametric struc-
ture of the class of transient signals considered in this paper and
discusses numerical conditioning, additive noise considerations, and
the shortcomings of well-known noise reduction and model-order
estimation techniques. Section III defines the discrete transient trans-
form and presents three algorithms for its implementation. Finally in
Section IV, through the context of an example, issues of transient
spectral leakage, resolution, and numerical stability are presented.

II. TRANSIENT SIGNAL STRUCTURE

In defining a parametric model for transient structured signals, we
limit our attention to the N -dimensional vector space RN and the
space of finite-energy signals ℓ2, with primary focus on the former.
For these spaces, define the inner product ⟨·, ·⟩ : V × V → R, for
any two vectors v, w ∈ V , as

⟨v, w⟩ =
∑
n

v[n]w[n] (1)

where the limits of summation are determined by the dimensionality
of the vector space V . In the following definition we state the
transient signal structure in the setting of ℓ2 with a natural restriction
via orthogonal projection onto RN to follow.

Definition II-1. The Transient Signal Model.
A transient signal xd[n] is formed as a linear combination of a
finite number d of real decaying exponentials with the structure

xd[n] =

d∑
k=1

αk(ρk)
n, ρk ̸= 0,−1 < ρ1 < · · · < ρd < 1, (2)

for all n ≥ 0.

We proceed utilizing xd[n] restricted to a finite interval of
support, i.e., we focus our treatment from ℓ2 to RN by utilizing
xd[n] only for 0 ≤ n ≤ N − 1. The justification of this restriction
is twofold.

First, consider the relative conditioning of a Vandermonde ma-
trix Φ : Rd → RN defined using a set of distinct real nodes
σ = {σk}dk=1, i.e.

Φi,j = σi−1
j , 1 ≤ i ≤ N, 1 ≤ j ≤ d. (3)



When the nodes σ are chosen to be the decay rates ρ = {ρk}dk=1

and are assumed fixed then Φ has an interpretation as the linear
mapping between the amplitude coefficients α = {αk}dk=1 and the
sequence values xd = {xd[n]}N−1

n=0 . Consider a perturbation from
xd, denoted δxd, produced at the output of the system Φ resulting
from a small perturbation to the amplitude coefficients α, denoted
δα. The corresponding relative conditioning, given by

lim
γ→0

sup
∥δα∥d≤γ

(
∥δxd∥N
∥xd∥N

)(
∥δα∥d
∥α∥d

)−1

, (4)

has been shown [11] to grow exponentially in d and/or N for specific
choices of amplitude coefficients and decay rates where ∥ · ∥d and
∥·∥N are the respective Euclidean norms on the vector spaces Rd and
RN . The behavior of Eq. (4) for closely spaced real nodes illuminates
the conditioning issues pertaining to the transient signal structure and
underlies the instability of analysis algorithms, even for small data
sets and exact arithmetic.

Second, in restricting our treatment to finite-length transient sig-
nals, Definition II-1 and the remaining presentation of the paper may
be extended in a straightforward manner to include exponentially
growing components, i.e., we may allow values of ρk for which
|ρk| > 1 without introducing issues pertaining to convergence.

We next couple the transient signal model with an additive noise
source to account for potential distortion resulting from sampling
hardware and/or the environment, e.g., sampling jitter, thermal noise,
etc. We denote this model by x̄d[n] = xd[n] + η[n] where η [n]
is an additive noise process with finite Fourier spectral density. The
instantaneous signal-to-noise ratio (SNR) of x̄d[n] tends to −∞ as
the interval of support N grows large. For this reason there is an
inherent tradeoff in the choice of the data record length.

We next emphasize a key difficulty in using general model order
identification, noise reduction, and subspace projection methods on
discrete-time transient data by comparing the Singular Value Decom-
position (SVD), which is utilized in a large number of these general
methods, with a structurally similar transient decomposition of the
data, for which a stable algorithm is unknown. Loosely speaking, the
comparison highlights geometrically why SVD based methods have
poor performance in capturing transient signal parameters. Consider
first the SVD of the order d̂ ≥ d Toeplitz matrix X(d̂) given by

X(d̂) =


xd

[
d̂− 1

]
· · · xd [0]

...
. . .

...

xd [N − 1] · · · xd
[
N − d̂

]
 =

d∑
k=1

πkukv
T
k

where {πk}dk=1, {uk}
d
k=1, and {vk}

d
k=1 are the singular values,

orthonormal left-singular vectors and orthonormal right-singular vec-
tors, and consider next the transient decomposition, given by

X(d̂) = F
(
ρ
)
D (α)H

(
ρ
)T (5)

=

d∑
k=1

αkf
ρk
hT
ρk

(6)

where

f
ρk

=
[
1, ρk, · · · , ρN−d̂

k

]T
(7)

hρk
=

[
ρd̂−1
k , ρd̂−2

k , · · · , ρk, 1
]T

(8)

and D(α)ij = αiδi−j . f
ρk

and hρk
respectively represent the

kth columns of F (ρ) and H(ρ). Just as the rank and number
of unit-rank outer products in the SVD of X(d̂) corresponds to

the number of non-zero transient components d, Eq. (6) likewise
describes the number of transient components in terms of d unit-
rank outer products while explicitly exposing the transient parameters.
Although the decomposition in Eq. (6) has poor numerical properties
as compared to the SVD, e.g., the left- and right-singular vectors form
orthonormal systems while F (ρ) and H(ρ) are both Vandermonde
and thus suffer the same conditioning issues as Φ, the singular values
have little significance with respect to the amplitude coefficients.
Consequently, SVD-based noise reduction techniques such as low-
rank matrix approximation, alternating projections between low rank
and Toeplitz spaces, and Tikhonov regularization perform poorly
on transient data. Performance is additionally degraded with X̄(d̂)

defined analogously to X(d̂) with x̄d[n] in place of xd[n] further
justifying the restriction of Definition II-1 to finite data records.

III. THE DISCRETE TRANSIENT TRANSFORM

In preparation of defining a spectral representation parameterized
by decay rate, the following definition describes the parametric
structure of a real exponential basis, henceforth denoted by ϕ,
summarized by the decay parameter σ ∈ RN .

Definition III-1. The Real Exponential Basis.
The real exponential basis is a set of N linearly independent signals
ϕ = {ϕ

k
}Nk=1 = {ϕ

1
, · · · , ϕ

N
} with the geometric structure

ϕk[n] = (σk)
n , 0 ≤ n ≤ N − 1

or equivalently

ϕ
k
=

[
1 σk σ

2
k . . . σN−1

k

]T
defined using an arbitrary set of real, non-zero decay rates
σ = {σk}Nk=1 ordered such that −1 < σ1 < · · · < σN < 1.

The set transform of ϕ, i.e. generating the matrix with columns
corresponding to the elements of ϕ, yields the Vandermonde matrix
Φ in Eq. 3 for d = N . Despite the focus on real-valued decay rates
in this paper, the development of the algorithms in this section avoid
relying upon this restriction in such a way that it is straightforward to
extend the algorithms for arbitrary distinct non-zero complex values
in place of the decay rates, e.g. the the N th roots of unity.

The real exponential basis ϕ, as stated in Definition III-1, is non-
orthogonal under the inner product defined in Eq. (1). In order to
perform a change of basis to ϕ, several approaches may be taken.
For example, using the linear independence of the exponential basis
elements allows an alternative inner product to be defined under
which ϕ is an orthogonal system. Another option is to orthogonalize
the real exponential basis using classical techniques, e.g., Gram-
Schmidt or Householder orthogonalization, Givens rotations, etc. We
may also generate the closest orthonormal basis to ϕ in a least squares
sense using Inner Product Shaping. [12] Another alternative, which
we proceed with in this paper, is to construct a dual basis which is
biorthogonal under the inner product in Eq. (1).

The dual basis of ϕ consists of the set of signals ψ = {ψ
k
}Nk=1

satisfying the biorthogonality conditions, i.e.,

⟨ϕ
i
, ψ

j
⟩ = δi−j , for 1 ≤ i, j ≤ N. (9)

Sections III-A-III-C present three algorithms for generating a dual
exponential basis ψ satisfying Eq. (9). In particular, Section III-A
and III-B present algorithms for generating the dual basis signals
for a general basis while the algorithm proposed in Section III-C is



specific to generating the dual basis to ϕ. As mentioned previously,
that algorithm is not limited to real-valued decay rates.

In the following definition we state the DTT and the inverse
DTT as an invertible transform by which a general finite-length
signal x[n] may be represented using the real exponential basis ϕ.
This signal representation admits filtering in the sense of decay-rate
selective filtering. It is straightforward to show that this form of
filtering does not correspond to the linear convolution of x[n] with
an impulse response, as would be the case for an orthogonal basis.

Definition III-2. The Discrete Transient Transform. [13]
The Discrete Transient Transform (DTT) X[k] and Inverse DTT
(IDTT) of a general length N sequence x[n] are defined as

X [k] =

N−1∑
n=0

x [n]ψk [n] , 1 ≤ k ≤ N (10)

x [n] =

N∑
k=1

X [k]ϕk [n] , 0 ≤ n ≤ N − 1 (11)

where ϕ is a real exponential basis and ψ is the corresponding
dual basis. Eqs. (10) and (11) are the DTT analysis and synthesis
equations, respectively.

The computation of an inner product such as that appearing
in Eq. (10) is often implemented by sampling the convolution of
xd[n] with ψk[−n] at n = 0. Any of the algorithms in the following
three subsections may be used to generate the dual exponential
basis ψ for use in the DTT analysis equation. The uniqueness and
equivalence to linear functionals of a dual basis is well known [14],
confirming that all three algorithms theoretically produce identical
results though in practice the signals that result often differ due to
their algorithmic organizations and numerical properties.

A. Dual Basis Generation - Direct Computation

For a general finite-dimensional basis the corresponding dual basis
may always be generated by solving, either directly or iteratively,
the system of simultaneous linear equations which describe the
biorthogonality conditions as stated in Eq. (9). Specifically, the dual
exponential basis signals under the inner product defined in Eq. (1)
satisfy the system of equations

ΨTΦ = IN (12)

where Φ is defined as in Eq. (3) with d = N and where IN is the
identity operator on RN , and the kth column of Ψ is ψ

k
, 1 ≤ k ≤ N .

We now emphasize two potential disadvantages to directly solving
Eq. (12) for Ψ. First, if generic inversion routines including variations
of Gaussian elimination or Krylov iterative methods are implemented
then the dual basis signals must all be computed simultaneously,
which is inefficient when only specific expansion coefficients are of
interest. Second, the matrix Φ to be inverted is structurally Vander-
monde, whose ill-conditioning was discussed following Eq. (4). The
algorithms in Section III-B and III-C avoid the first disadvantage by
generating the dual basis signals independently.

B. Dual Basis Generation - Orthogonal Projectors

The second algorithm presented for dual basis generation identifies
the corresponding subspace of a particular dual signal ψ

j
, for a

fixed index j, by first identifying any non-zero multiple of the dual
signal of interest followed by appropriate normalization. Denote the
unnormalized dual signal as φ

j
, i.e.

ψj [n] = γjφj [n], γj ∈ R (13)

where γj is the normalization factor. Once the unnormalized dual
signal is available, the normalization constant may be evaluated as

γ−1
j = ⟨ϕ

j
, φ

j
⟩. (14)

Note that Eq. (9) implicitly states that the inner product in Eq. (14)
equals zero if and only if φ

j
= 0, which is excluded by definition

from the dual basis.
In order to generate φ

j
for a particular index j, we decompose the

vector space RN , spanned by the exponential basis {ϕ
k
}Nk=1, into

the direct sum of two subspaces as

RN = Hj ⊕H⊥
j (15)

where the one-dimensional space Hj is the span of ϕ
j

and H⊥
j is

the orthogonal complement of Hj . Note that Eq. (9) constrains the
dual signal ψ

j
to be orthogonal to span({ϕ

k
}k≠j). Consequently, by

defining Φ∼j as any linear map from RN onto H⊥
j , e.g.,

Φ∼j =

 | | | |
ϕ
1

· · · ϕ
j−1

ϕ
j+1

· · · ϕ
N

| | | |

 , (16)

then ψ
j
∈ range⊥ (Φ∼j). By the adjoint equivalence theorems, the

dual signal ψ
j

lies in the null space of the adjoint map, i.e., ψ
j
∈

null
(
Φ∗

∼j

)
, where Φ∗

∼j is the adjoint of Φ∼j .
As an example of this approach, consider generating φ

j
using an

orthogonal projector. Specifically, select the signal h ∈ RN such that
h is partially in the subspace null

(
Φ∗

∼j

)
, e.g., ϕ

j
. Then subtracting

the projection of h onto the space range(Φ∼j) from itself yields φ
j
.

In summary, for any h ∈ RN such that h ̸= PR(Φ∼j)(h)

φ
j
= h−PR(Φ∼j)(h) (17)

where PR(Φ∼j) is an orthogonal projector onto the space R (Φ∼j).
The canonic projector of this type, using the linear map in Eq. (16),
is given by

PR(Φ∼j) = Φ∼j

(
ΦT

∼jΦ∼j

)−1

ΦT
∼j . (18)

C. Dual Exponential Basis Generation - Polynomial Expansion

The third and final algorithm presented in this paper for dual
exponential basis generation makes use of the structural relationship
between polynomials and Vandermonde systems in order to generate
the unnormalized dual signal φ

j
for a fixed index j. Explicitly writing

the N−1 homogeneous biorthogonality constraints corresponding to
ψ

j
, or equivalently writing ψ

j
∈ null

(
Φ∗

∼j

)
using the matrix Φ∼j

in Eq. (16), yields the underdetermined system of equations

N−1∑
n=0

σn
i φj [n] = 0, i ̸= j. (19)

The structure of Eq. (19) implies that the values of φj [n] must belong
to the coefficients of a polynomial with zeros σk, 1 ≤ k ≤ N, k ̸= j,
to within an arbitrary non-zero scaling. Coupling this observation
with the representation of the dual exponential signal as the impulse
response of a system described as a factored z-transform we have a
description of ψj [n] as

Z {ψj [n]} ∝
N∏

k=1, k ̸=j

(
1− (σkz)

−1) (20)



Fig. 1. The signal-flow graph representation of an algorithm which generates
the dual real exponential basis signals ψ using the method described in
Section III-C.

where Z{·} represents the z-transform. Let the inverse z-transform
of each multiplicand in Eq. (20) be denoted by gk[n], a length two
temporal signal of the form

gk[n] = δ[n]− σ−1
k δ[n− 1]. (21)

Then it follows that the dual exponential signal is generated by N−1
successive linear convolutions, i.e.

ψj [n] ∝ g1[n] ∗ · · · ∗ gj−1[n] ∗ gj+1[n] ∗ · · · ∗ gN [n], (22)

followed by appropriate scaling. A signal-flow graph representation
for the system which generates both the unnormalized dual signals via
polynomial expansion and the corresponding normalization constants
is depicted in Figure 1. This algorithm, depending on the parameters
σ and N , tends to have significant numerical advantages as compared
to general inversion routines discussed in Section III-A. Since the
components gk[n] are re-used in Fig. 1, computational recycling is
obtainable via straightforward flowgraph manipulations or by using
a recursive implementation with pole-zero cancellation.

IV. EXAMPLE: SPECTRAL LEAKAGE AND RESOLUTION

In this section we illustrate, by means of computing the DTT or
equivalently inverting a Vandermonde system with real nodes, issues
of transient spectral resolution, leakage, and numerical instability. In
particular, we consider solving the generally ill-conditioned linear
system of equations

xd = Φα (23)

using the algorithms presented in Sections III-A-III-C for three
synthetic transient signals given by, for 0 ≤ n ≤ N − 1,

x
(1)
3 [n] = 4(−0.6)n + 3(0.2)n + 5(0.8)n (24)

x
(2)
3 [n] = 4(−0.62)n + 3(0.2)n + 5(0.8)n (25)

x
(3)
2 [n] = 3(0.2)n + 5(0.8)n. (26)

Figure 2 depicts the corresponding transient spectrum or Vander-
monde expansion coefficients for each of these signals and for
N = 19. For X(1)[k] and X(2)[k] the decay rates σ are equally
spaced in the interval [−0.9, 0.9] and for X(3)[k] the decay rates
are equally spaced in the interval [0.05, 0.95]. The spectrum X(1)[k]
was produced using the algorithm presented in Section III-C, the
spectrum X(2)[k] was produced using the algorithm presented in
Section III-B, and the spectrum X(3)[k] was produced using the
algorithm presented in Section III-A. X(1)[k] and X(3)[k] depict

Fig. 2. The transient spectra generated by solving the linear system of
equations in Eq. 23 for the three synthetic transient signals in Eqs. 24-26
using the algorithms presented in Sections III-A-III-C.

scenarios for which {ρk}3k=1 ⊆ σ and {ρk}2k=1 ⊆ σ, respectively,
i.e., the expansion coefficients theoretically should contain no spectral
leakage since the decay rates appear exactly in the nodes defining Φ.
The spectrum X(2)[k] depicts the case for which {ρk}3k=1 ̸⊆ σ;
the effect of which is manifested as a false spectral peak caused
by spectral leakage appearing at σ7 = −0.3 partially occluding
the true peak at σ12 = 0.2. The spectral leakage in X(3)[k] is a
consequence of the numerical instability of the algorithm used to
generate this spectrum. Although not depicted in Figure 2, solving
for the spectrum X(3)[k] using the algorithm in Section III-C on
the same computational platform results in a spectrum containing no
leakage, i.e. a spectrum consisting of two distinct peaks and zero-
valued coefficients at all other decay rates.
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