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A Karhunen-Loéve-like Expansion for 1/ f
Processes via Wavelets

GREGORY W. WORNELL, STUDENT MEMBER, IEEE

Abstract —While so-called 1/ f or scaling processes emerge regularly
in modeling a wide range of natural phenomena, as yet no entirely
satisfactory framework has been described for the analysis of such
processes. Orthonormal wavelet bases are used to provide a new con-
struction for nearly 1/f processes from a set of uncorrelated random
variables.

I. INTRODUCTION

There are many physical phenomena for which measured
spectra are roughly of the form
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over several frequency decades, where y is some parameter in
the range 0 <y <2 [3]. While these do not constitute valid
power spectra in the theory of stationary processes, a variety of
attempts have been made to explain such spectra through non-
stationary processes and notions of generalized spectra (2], [3],
[5], [6]. However, as yet no universal framework for characteriz-
ing and analyzing 1/ f processes has been found. In this corre-
spondence, we construct nonstationary processes from orthonor-
mal wavelet expansions in terms of uncorrelated random
variables and show how to extend the concept of spectra for
these processes in a manner consistent with measured spectra.
Via this construction we then obtain processes having an ex-
tended spectrum of the general form
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for some 0 < k; < k, <. These may be considered generalized
or nearly 1/f processes, for they retain the basic macroscopic
spectral structure usually associated with 1/f phenomena.

II. REesuLts FROM WAVELET THEORY

We present some results required from the theory of or-
thonormal wavelet expansions. Comprehensive treatments can
be found in Mallat [4] and Daubechies [1].

Orthonormal wavelet expansions of L%(R) functions cmploy
real orthonormal basis functions of the form

1[1,’,"(t)=2’"/21!/(2'"t—n) (3)

where (#) is the basic wavelet and has a band-pass Fourier
transform ¥(w). These expansions have the special property
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that all the basis functions are dilations and translations of each
other, and m,n are the integer dilation and translation indices,
respectively.

Such representations arise rather naturally out of a theory of
multiresolution analysis. A resolution-limited representation of
a function x(¢) that discards details on scales smaller than 2 is
obtained from the partial expansion

M= ¥ Xdy

m<M n

(1) 4
where the coefficients d))' are obtained via projection. In turn,
x"(¢) can be decomposed into the orthonormal expansion

x"(0) = Yoy (1) )

where the ¢.'(¢) are also related by dilations and translations:
& (1) =2"2p(2"t — n). (6)

The scaling function ¢(¢) has a low-pass Fourier transform
P(w) satisfying

[B(w)[<1,  [®(0)|=1. Q)

Note that, for a given m, the ¢} capture the information in
the signal at resolution 2", and the d] capture the new infor-
mation or detail in the signal going from resolution 2™ to
resolution 2 *!. It is possible to construct these multiresolution
representations so that the information sequences are related
through filter-downsample and upsample-filter relations:

o = Y hlk—2nle™", (®)
k

dy =Y glk—2n]ey!, )
k

(10)

ep = ¥ {hln—2k]ef + gln —2k]ap},
k

where h[n] and g[n] are appropriately defined conjugate
quadrature discrete-time filters having Fourier transforms H(w)
and G(w), respectively. These filters satisfy, among other prop-

erties,
Glw)=e¢ *H*(w+7) (11)

and

|H(w)[ +|H(w+m)| =1. (12)

With such a formulation, the scaling function and basic wavelet
are related through

P(w) = H(w/2)P(w/2),
V(w)=G(w/2)P(w/2).

III. 1/f PROCESSES FROM WAVELETS

(13)
(14)

Consider the construction of a random process x(t) from an
orthonormal wavelet basis. Define

x()="¥ Xdyg (1)

mx=M n

(15)
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as the resolution-limited approximation to x(¢) for which infor-
mation at resolutions lower than 2 is discarded, so

x(e)=lim xy(r)= 3 dyg,"(t).
M- —x

m.n

(16)

Suppose that for arbitrary distinct pairs m and m’, the detail
sequences d?' and d!"" are uncorrelated, and suppose that for
each m,d;’ is wide-sense stationary with spectrum P, (w). Then

x,,() is cyclostationary [7] with period 2~ and has the associ-
ated time-averaged spectrum

S(w)= ¥ P(0)|¥(2 ")
m=>=M

17

Since any attempt to measure a spectrum for an x(¢) gener-
ated by this process involves the use of finite-length data records,
information at lower resolutions is invariably lost. Hence, except
at the lower frequencies, (17) is a reasonable representation of a
measured spectrum for x(¢). We can therefore define a limiting
spectrum for the nonstationary x(¢) through

S(@)= lim_Sy(w)= LP(0)¥(2 ")
It m

2

(18)

that is consistent with a measured spectrum corresponding to
arbitrarily long data records.
Next, let us consider the case where for some 0 <y <2 and

m

for each m the sequences d)' are white with

P, (0) =270 (19)

Let us further set o?=1 without any loss of generality. By

substituting (19) into (18) and applying, in order, (14), (11), (12),
and (13), we readily obtain

$(@)=(2" =) L2792 "w)[* (20)
m
where for w # 0 the summation is convergent.

Finally, from (20) we can show that there exist 0 < k, < k, <
such that (2) is valid, i.e., that x(¢) is nearly 1/f, for any wavelet
basis for which ®(w) is continuous at o =0 and |®(w)| decays
at least as fast as 1/ w.

Before proceeding to a proof of this result, it is worth remark-
ing that most reasonable wavelet bases satisfy these require-
ments. These include Daubechies’ class of compactly supported
wavelets [1], and the class of Battle—-Lemarie wavelets derived
by orthogonalizing Nth order spline functions [1]. For the latter
class of wavelets, it has been shown that ¥(w) decays like
1/w". Special cases include the well-known Haar-wavelet basis
for N =1 that has

O<t<l1
1<0,t>1

o0 ={§; 1)

and the sinc-wavelet basis for N — c that has

1, |w|<w

(@) = {o, 22)

|w| > .

It is possible to establish from simple geometric arguments that

the best bounding constants for the sinc-wavelet case are
k=", (23)
ky=(2m)". 24)

It is also possible to attach a special interpretation to the case
y = 1, arguably the most prevalent of the 1/f processes. In this
case, the choice of P,(w)=2"" corresponds to distributing
power equally among the detail signals at all resolution scales,
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since we have for cach m

1 = 2
5o [ Pul@)| Y@ )| do=1. (25)
We turn now to a proof of our main result. From (20) we get,
for any n,

S(w)=2""8(2 "w). (26)

Moreover, given w we can choose m, and w, such that o =
2™, and 1 < |w,| < 2. Hence, from S(w)=2"""5(w,) it fol-
lows that

sup  S(wy)|2"@|7".

I <lwgl<2

inf ()| |07 < S(w) < [

1 < |wyl <2
@n

It suffices, therefore, to find upper and lower bounds for S(w)
on 1 <wy| <2.

Since ®(w) decays at least as fast as 1/w and is bounded,
there exists a C > 1 such that

C
|®(w)|< .

1+ || (28)

Using this with (7) in (20) leads to the upper bound:

S(wg) <27 -1)| ¥ 2+ ¥ 272 | <o (29)

m=0 m=1

Since @ is continuous at 0 and |®(0)| = 1, there exists n, such
that |®(w)} > 1/2 when |w| < 2~". Hence,

|27 0y )| > 1/2 (30)

from which the lower bound
2
S(wy) = (27 = 1)27 70t D@ (27"l )|
= (2" —1)27 7 D=250 (31)

follows. O

As a final remark, it should be noted that the spectrum
constructed in (18) corresponds to an infinite-variance process,
consistent with the fact that processes with spectra of the form
(1) have infinite-variance. For the case 0 <y <1 the problem
arises in the tails of the spectrum, while for the case 1<y <2
the problem arises in a neighborhood of the spectral origin.
With slight modifications to the constructions of this correspon-
dence, it is possible to be more careful in the treatment of these
issues. In particular, recognizing that it is mainly the low-
frequency behavior of 1/f processes that is of interest, we may
omit the finer scales in the construction of (15), and thereby
avoid the problem in the spectral tails. We are then assured that
(17) is a valid spectrum, and, provided 0 <y <1, that the limit-
ing spectrum (18) is valid as well. For 1 <y <2, however, it is
impossible to avoid the limit process having infinite variance.
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Variable-to-Fixed Length Codes are Better than
Fixed-to-Variable Length Codes for Markov Sources

JACOB Z1V, FELLOW, IEEE

Abstract —1t is demonstrated that for finite-alphabet, Kth order er-
godic Markov Sources (i.e., memory of K letters), a variable-to-fixed
code is better than the best fixed-to-variable code (Huffman code). It is
shown how to construct a variable-to-fixed length code for a Kth order
ergodic Markov source, which compresses more effectively than the best
fixed-to-variable code (Huffman code).

I. INTRODUCTION

Consider the class of finite-alphabet, finite-order ergodic
Markov sources, characterized by a probability distribution of
the form

P(X)=EP(XiIX{”) ey

where

X=X|st""~Xn

P(X,|Xi"")=P(X,|X/Z}), foranyixK,

and where

D X/ 2X, X, X0 <,
2) X, is the output of the source at the ith instant, X, € 4,
|4] = a.

A code is an extended alphabet C of M vectors (“words”)

¢, X5, -+, X5, where X¢ € A"D and where /(i) is the length of
the vector X;.

Assume also that any vector x € A' for /> max; (i) has a
prefix X €C for some 1 <i<M, and that for every i and
jli# j)X{ € C is not a prefix of X5 € C (i.c., the code is com-
plete and proper [1]).

Every vector X{ € C is mapped into a unique binary sequence
Y of length L(Y)£ L(i) binary letters. This sequence is called
the “codeword” for the word X{. A fixed-to-variable length
code (FVL) is one for which

I(i)y=1, I<i<M.

(2
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A variable-to-fixed length code (VFL) is one for which
L(i)=1L, l<i<M;
L=[logM] 3)
where logarithms in this correspondence are taken to be of
base 2.

Consider the parsing of X = X|' into a sequence of ¢.(X)
words of C (ignoring end-effects)

X=X" X2 X3 - X/, -, X0 4)
where X/ €C, 1<j<q/(X). Let
q(X)
L(X)= 21 L(j), Q)
j=

where L(j) is the length of Y/, the binary codeword that
corresponds to the jth word in the parsed X. The compression-
ratio for a given code C is defined by

EL.(X)

Pe™ nll:nm nloga ’ (©)
where E(-) denotes expectation.
It is well known [2] that
H
PeZ log & ™

and that there exist a sequence of FVL codes (Huffman codes)
such that

li Y, 8
=—= )
m P foga p(®) (8
where
1
H= lim ——Elog P(X). (9)
now R

Unfortunately, for finite-order Markov sources with memory
(K > 1) and with p(») <1 we have that

p(M) 2 minp. > p() (10)
where the minimization is carried over all codes with M code-
words.

In Theorem 1, we derive lower-bounds on p,, for any code
such that the shortest word in C is no shorter than K. Clearly,
any FVL code with more than a* codewords is included in this
family of codes.

In Theorem 2, we derive upper bounds on p, for a VFL code
and show that it approaches the lower bound of Theorem 1, at
least for sources with large memory (K > 1).

At the same time, the rate of approach of p,. for the best FVL
code (i.e., Huffman code) is slower than that of the VFL code.
Thus, VFL coding takes better advantage of the source memory.

II. DERIVATIONS AND STATEMENT OF RESULTS

The coding of a sequence X was shown to be associated with
parsing the sequence into g .(X) words.

Each word is encoded into one out of M codewords of the
given code C. The selection of the particular codeword is
independent of the past words, without taking advantage of the
memory of the source. Thus, when encoding each of the ¢ (X)
words in X, there is a certain loss in compression. We show that
the accumulated average loss for X is proportional to the
expected number of words Egq.(X), and demonstrate that

0018-9448 /90 /0700-0861$01.00 ©1990 IEEE




