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ABSTRACT

Speaker verification using SVMs has proven successful jfsgaly
using the GSV Kernel [1] with nuisance attribute project{diAP)
[2]. Also, the recent popularity and success of joint factoaly-
sis [3] has led to promising attempts to use speaker factostly

as SVM features [4]. NAP projection and the use of speaker fac

tors with SVMs are methods of handling variability in SVM ager
verification: NAP by removing undesirable nuisance vatigbiand
using the speaker factors by forcing the discrimination ¢opler-
formed based on inter-speaker variability. These sucselaee
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allow for handling inter-speaker variability, as well asd@nporating
both the good and the bad variability simultaneously. We ttis-
cuss a probabilistic interpretation of the algorithm andlfinpresent
experimental results that demonstrate the algorithm’saffi.

2. HANDLING NUISANCE VARIABILITY

Evidence of the importance of handling variability can berfd
in the discrepancy in verification performance between tmee
and eight conversation enrollment tasks for the same SVNésys
Specifically, for the SVM system in [1] performance improfesn

led us to propose a new method we call variability compedsate5.0% EER for one conversation enroliment 2% and 2.6% for

SVM (VCSVM) to handle both inter and intra-speaker varigpil
directly in the SVM optimization. This is done by adding aueg
larized penalty to the optimization that biases the normahé hy-
perplane to be orthogonal to the nuisance subspace oratiteiy
to the complement of the subspace containing the interkspeari-
ability. This bias will attempt to ensure that inter-speakariability
is used in the recognition while intra-speaker variabiiétygnored.
In this paper we present the theory and promising resultsi@ance
compensation.

Index Terms— Support Vector Machines, Speaker Verification,

Variability Compensation

1. INTRODUCTION

In a classification task there are two types of variabilitye good
which reflects the anticipated diversity needed for propassifi-
cation, and the bad which introduces undesirable infolonatihat
confuses the classifier. An ideal classifier should, theegfexploit
the good and mitigate the bad. In the speaker verificatidq taker-
speaker variability is the desired variability and intpeaker, e.g.
channel and language, is the bad or nuisance variabilighriiques
for handling nuisance, such as nuisance attribute proje¢tAP)

[2] and within class covariance normalization (WCCN) [Se @l-
ready used in SVM speaker verification. Recently, state efatt
systems have revolved around joint factor analysis [3],ciwhises
a Bayesian framework to incorporate estimates of subspames
taining nuisance and inter-speaker variability in thefigation task.
In this paper we introduce variability compensated SVM (W08

three and eight, on all trials of the NIST SRE-Eval 06 coredithon.
One explanation for this is that when only one target coratas is
available to enroll a speaker then the orientation of thaisgjmg hy-
perplane is set by the impostor utterances. As more targefment
utterances are provided the orientation of the separatipgrplane
can change drastically, as sketched in Figure 1. The additiofor-
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Fig. 1. Different separating hyperplanes obtained with 1, 3, and 8
conversation enrollment.

mation that the extra enrollment utterances provide isispeaker
variability, due to channel, language, and other nuisaacables.

If an estimate of the principal components of intra-speakeiabil-
ity for a given speaker were available then one could pretteat
SVM from using that variability when choosing a separatiggér-
plane. However, since it is not possible in general to esénrdra-
speaker variability for specific speakers, one could irmsgedostitute
a global estimate obtained from a large number of speakéris.ig

which is a method to handle both gOOd and bad Varlablllty by in the approach taken by NAP, which handles nuisance VaMW

corporating it directly into the SVM optimization. We wilElgin by
motivating and describing our approach in a nuisance cosgtem
framework. Modifications to the algorithm are then preseritat
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estimating a small subspace where the nuisance lives arml/iregn
it completely from the SVM features, i.e. not allowing anyor
mation from the nuisance subspace to affect the SVM decision
handle this variability we propose VCSVM which allows foryiag
the degree to which the nuisance subspace is avoided byabsi-cl
fier, rather than completely removing it.

Assume that the nuisance subspace is spanned by a 9étaof
thonormal eigenvectorfu;, us, ..., un}, and letU be the matrix



whose columns are these eigenvectors. Let the vector noonti@ ~ Examining the kernel presented in (7) we realize fat ¢UUT)
separating hyperplane e. Ideally, if the nuisance was restricted to can be very large. This is of concern since the kernel regise
the subspac#®J then one would require the orthogonal projection of inverse. To circumvent this we use the Matrix Inversion Lea{ifi

w in the nuisance subspace to be zero, [ &TU" w| |2 = 0. This
requirement can be introduced directly into the primal folation
of the SVM optimization:

min J(w, ¢) = ||w||? /2 +§HUUTW(E /2+ C’iei )

subjecttol;(w's; +b) >1—€ & >0, i =0,...,m

where¢ > 0, s; denotes the utterance specific SVM features (su-
pervectors) and; denotes the corresponding labels. Note that the

only difference between (1) and the standard SVM formuteiiahe

addition of the¢ ||[UU" w| ]; term, whereg is a tunable (on some

held out set) parameter that regulates the amount of bidsedesf

& = oo then this formulation becomes similar to NAP compensation,
and if¢ = 0 then we obtain the standard SVM formulation. Figure

2 sketches the separating hyperplane obtained for diffeednes of
£ . We can rewrite the additional term in (1) as follows:

Capturing Intra—speaker
variability
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Fig. 2. Sketch of the separating hyperplane for different values of £.

HUUTsz (UUTw)T(UUTw) = w'UUTUUTw (2)

(©)

where the final equality follows from the eigenvectors beorg
thonormal UTU = I). SinceUUTY is a positive semi-definite
matrix we can follow the recipe presented in [6] to re-intetghis

= wTUUTw,

reformulation as a standard SVM with the bias absorbed imo t

kernel. We begin by rewriting (w, ¢) in (1) as:

wi(I+£UUN)w/2+C> e,

i=1

J(w,e) = 4)

and sincgI + £UU7) is a positive definite symmetric matrix, then

wTBTBw/2 + C’X:ei7

=1

J(w,e) = ®)

andUTU = I to obtain:

I+¢uun)t = 1-/cua+¢uTu)teu”
= I-¢Uula+o1 U’
_ . & T
= I-— +£UU ) (8)
The kernel can therefore be rewritten as:
K(si,s;) = s (I — %%UUT)SJ. ©)

Examining (9) we notice that whej= 0 we recover the standard
linear kernel, and more importantly whénr= co we recover exactly
the kernel suggested in [2] for performing NAP channel canspe
tion. An advantage of this formulation over NAP is that it dowt
make a hard decision to completely remove dimensions franm th
SVM features but instead leaves that decision to the SVMopé-
tion.

It is of practical importance to note that (9) can be writtsradin-
ear combination of two kernels, and definirg = U7s; to be the
channel factors:

g £ .1

T+¢ 1+£xi x;. (10)
This allows for a less costly implementation, because theker-
nels need not be recomputed for each valug afid relatively little
computation is required to obtain the second kernel, siheef's
are typically low dimensional.

K(si,s5) =s;sj — s; UU"s; =s;s; —

2.1. Should All Nuisance be Treated Equally?

As the choice of nuisance subspace gets larger one may fimobrts
appropriate to handle directions within that subspace wagg for
example we might want to avoid using larger nuisance divastin
discrimination more than we would smaller ones. One way tihido
can be to use the eigenvalues corresponding to the diffatesdnce
directions. Therefore, we allow the eigenvectors spantiiegU
matrix to be orthogonal but not orthonormal, specifically:
U'U=A, (12)
where A is a diagonal matrix whose elements are the eigenvalues
corresponding to the columns &f. We can now follow a formula-
tion similar to that of the previous section, the differemdk appear
in the kernel when the matrix inversion lemma is applied:

K(si,s5) = s?(I + §UUT)7lsj

s{ (I-/EU(I+¢UTU) 1 /EeuT)s;
= s; (I—-€EUI+¢A U )s;.

(12)

(13)

whereB can be chosen to be real and symmetric and is invertible. A

change of variabless = Bw ands = B~ s allows us to rewrite
the optimization in (1) as

J(w,e) =||Wll3 /2 + CX%, e
subjectto I;(w7s; +b)>1—¢ & ¢ >0, i=0,...

minimize (6)
,m
which is then the standard SVM formulation with the follogiker-
nel:

K(si,s;) =s;i B'B Ts; =s! (I4+¢UUT) 's;. 7

An extreme example of this is where the whole SVM space isidens
ered to contain nuisance information (i®U7 is full rank), which
results in a formulation very similar to that of WCCN nornzaliion
[5]. WCCN proposes using inverse of the intra-speaker ¢anae
matrix (i.e. full rankUU7) as a kernel:
K(si,s;) =s; (UU")'s;. (14)
However, in practicdJU7 is ill-conditioned due to the noisy es-
timate and directions of very small nuisance variabilityerefore



smoothing is applied to the intra-speaker covariance mainnake
inversion possible, and the WCCN suggested kernel becomes:

K(si,s;) =s; (1 —a)Il+aUUT) 's; (15)

Comparing (15) with (12) we see that they are similar. We khou
however, mention that whelU” spans the full SVM space the
¢ (in our implementation) andv (in the WCCN implementation)
no longer set the amount of bias desired, instead they etisatre
the kernel does not over-amplify directions with small amtsuof
nuisance variability.

0<a<l.

3. USING INTER-SPEAKER VARIABILITY

Joint factor analysis [3] has been highly successful in theaker
verification task. Joint factor analysis estimates a “speakub-
space, that captures good variability and is spanned byduencis

of V, and a “channel” subspace, that captures the nuisance and is

spanned by the columns &. An utterances; is represented as a
linear combination of a contribution from the speaRéy;;, and one
from the channellUx;, and a residual; wherg; are the speaker fac-

This kernel suggests that when one chooses to performfatasisin
using only the inter-speaker subspace the resultant kst an
inner-product between the speaker factors.

4. INCORPORATING ALL VARIABILITY

A natural followup is to combine the previous sections in&irgle
SVM formulation that attempts to handle all of the variatiom
this section we will choose to treat all nuisance directiegaally,
however this can easily be extended to the setup in SectlorTRis
has to be done with some care since there is an overlap betiveen
U subspace and the complement toYasubspace. Specificalll]
lies in the complement o¥. With this in mind the resultant SVM
formulation is as follows:

minimize||w]|3 /2 + ¢ | |UUTwH§ (20)

|- VVT - U w224+ C0X" @
subjecttol;(wTs; +b)>1—¢ & >0, i=0,...,m.

tors andx; are the channel factors. Recently, promising results have

been obtained by using just the speaker factors as featueeSVM

When¢ = ~ we obtain the inter-speaker result of Section 3 and if

speaker verification system. Based on this, we propose a WCSV v = 0 we obtain the intra-speaker result of Section 2. Recasting i

formulation similar to the one presented in the previougisedo

bias the SVM towards mostly using the data present in the-inte

speaker variability space.
Assume that the inter-speaker subspace is spanned by a/debof
thonormal eigenvectors (eigenvoic€s):, va, ..., v}, and letV

be the matrix whose columns are these eigenvectors. Letete v

tor normal to the separating hyperplane we Ideally if V cap-
tured all inter-speaker variability then we would watto live in

the V subspace and therefore be orthogonal to its complement, i.

1= vV )wl[; v to th , |
quirement can be introduced directly into the primal foratiain of
the SVM optimization:

min J(w, ¢) = ||w||? /2 +7H(1 - VVT)sz /2+ Ciei (16)

subject tol;(w's; +b) >1—¢; & € >0, i=0,...,m

as a standard SVM formulation yields the following kernel:

€ pur

g T _ TY\g.
TrE 1-vvT —uu?))s,.

K(si,s;) =s; (I— -
(sirsj) =si ( T+

5. PROBABILISTIC INTERPRETATION

o ) ) ) % [6], the author makes a connection between the suggesteelk
= 0. Similar to the previous section this re- and the probabilistic interpretation of SVMs proposed ih [Bhe

SVM problem can be thought of as one of maximization of the-lik
lihood of w given the training data{é;, [;} pairs) by writing it as

max [(w|{si,l;}) = —w w/2 - C Y h(li(w"si +b)), (21)

i=1

wherevy > 0 is a tunable (on some held out set) parameter that enwhere k() is the hinge loss. In this formulation the SVM can be

forces the amount of bias desired.+If= oo then this formulation
becomes similar to just using the speaker factors, and=f0 then
we obtain the standard SVM formulation. Note that siheeVV7”

is a projection into the complement & then we can replace it by

though of as just computing the MAP estimatewfjiven the train-
ing data, where thev’ w term is essentially a Gaussiai (0, I))
prior and the second term is the log-likelihood of the tnagndata
givenw. This Gaussian prior ow in the standard SVM does not

QQ7, whereQ is a matrix whose columns are the orthonormal bias the angle ofv in any direction since the componentswfin

eigenvectors that span the complement. With this subistitwe
obtain a formulation that is almost equivalent to that in, ignce
following the recipe in the previous section we see againmash
the bias into the kernel of a standard SVM formulation. Then&k
in this case is

2
K (si,s5) = S;‘F(I — mQQT)S]‘. a7)
By substituting baclQ = I — VVT we can rewrite (17) as:
K(si,s;) =sl(I— ——(1-VVT))s,. 18
(sir8) =T (1= 17— s 1)

Note that we do not have to explicitly compute the orthondivasis
Q, which can be rather large. When= oo the kernel becomes an
inner-product between the speaker factprs= V7s;:

K(si,s;) = s VV's; =yly;. 19

the prior are independent. In VCSVM, when we introduce tlgs bi
to handle the variability this only affects the first term R} and
therefore changes the prior enin the MAP estimation interpreta-
tion (we will focus on nuisance variability):

—w (I+¢UU)w/2

—C > h(li(wTsi +b)).

max [(w|{s;,l;}) =

(22)

The prior on the MAP estimate of is still a GaussianV (0, (I +
£UUT) 1) but with its principal components orthogonal to the nui-
sance subspace and the variance along the principle comisoset
by €. Hence, the prior is biasing to be orthogonal to the nuisance
subspace. A similar connection can be made for the full sptap
posed in Section 4.



6. EXPERIMENTAL RESULTS

We have chosen to demonstrate VCSVM in two scenarios, the 1°§
is as an alternative to NAP to handle nuisance in the GSV syst<
presented in [1], and the second to handle nuisance in ansys&
sented in [4] where SVM speaker verification is performedagsi
low-dimensional speaker factors. The goal of this sectionat to
compare the performance of these two systems, but rathéiote s

that VCSVM is applicable to both.

We begin with the speaker verification system proposed in [

—VCSVM EQUAL CORANK 50
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QVCSVM &= (NAP) CORANK 50

X VCSVM &=e0 (NAP) CORANK 100
—\VCSVM NON-EQUAL CORANK 50
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Fig. 3. Results on English trials of the NIST SRE-Eval 06 core task
with speaker factor SYM system: EER vs ¢ for equal and non-equal
weighting of nuisance subspace, and various subspace sizes.

which represents each utterance using a vect@00fspeaker fac-
tors from the joint factor analysis system in [9]. The sped&etor
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Fig. 5. Detection error plotson all trials of NIST Eval 08 core task.

with ¢ = 22 and corank of 256. We see that even in a large dimen-
sional space such as this, it is preferable to not complegghove
the nuisance subspace.

7. CONCLUSION

This paper presents variability compensated SVM (VCSVM), a
method for handling both good and bad variability directiythe
SVM optimization. This is accomplished by introducing irtte
minimization a regularized penalty, which biases the di@ssto
avoid nuisance directions and use directions of interiggreaari-
ability. With regard to nuisance compensation, an advaniaig

our proposed method is that it does not make a hard decision on

vectors are normalized to have unif-horm and used as features in removing nuisance directions, rather it decides accorttirgerfor-
a SVM speaker verification system. Figure 3 shows how thelequanance on a held out set. Another benefit is that it allows fequal

error rate (EER) changes as a functior¢ afn our development set,

the English trials of the NIST SRE-Eval 06 core task,f0rand100

dimensional nuisance subspaces when equal and non-egjghitwe
ing of the nuisance dimensions are used. The figure showsdhat
equal weighting of the nuisance directions yields more ifabte re-
sults than equal weighting. It also shows that VCSVM allowrs f
nuisance compensation in such a small space, while NAP rpesfo
poorly since it completely removes the estimated nuisamtent
sions which are a large percentage of the total dimenstgn8iased
on the development results we chogse- 3 and a corank of 50 for
the VCSVM system and present results on all trials of the B&al

core task in Figure 5 (a).

weighting of the estimated nuisance directions, e.g. aliagrto
their associated eigenvalues. This flexibility allows fomproved
performance over NAP, increased robustness with regaittie ize
of the estimated nuisance subspace, and successful nelisanc
pensation in small SVM spaces. Future work will focus on gsin
this method for handling inter-speaker variability andvaltiability
simultaneously.

8. ACKNOWLEDGMENTS

The authors would like to thank the members of the “RobustkgeRecog-
nition Over Varying Channels” team at the JHU Summer Worksb®, for
the invaluable discussions and stimulating environment.

9. REFERENCES

Next, we present the performance of VCSVM using a GSV systenh] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Suppeettor ma-

“"VCSVM EQUAL CORANK 64 £
«#VCSVM EQUAL CORANK 128
—\VCSVM EQUAL CORANK 256
OVCSVM E=c (NAP) CORANK 64
“+VCSVM E=c (NAP) CORANK 128
X VCSVM E=c0 (NAP) CORANK 256 x
#VCSVM E=co (NAP) CORANK 512
+: VCSVM NON-EQUAL CORANK 64
+'VCSVM NON-EQUAL CORANK 128|
—VCSVM NON-EQUAL CORANK 256
VCSVM NON-EQUAL CORANK 512

60

Fig. 4. Results on all trials of the NIST SRE-Eval 06 core task with
GSV system: EER vs ¢ for equal and non-equal weighting of nui-
sance subspace, and various subspace sizes.

[1] with 512 mixture GMMs and 38 dimensional, 19 cepstral and
deltas, RASTA compensated feature vectors. Figure 4 piesen
sults on the development set, all trials of the NIST SRE-Béatore
condition, of how the EER changes as a functiorg oforank, and
whether equal or non-equal weighting was used. Again thosvsh
that non-equal weighting of the nuisance directions isgredfle over

equal weighting. It also shows that non-equally weightedSY®

is fairly stable with regards to varyingand the corank, which is not

the case with NAP. Based on these development results weazemp

in Figure 5 (b), no nuisance compensation to the best-paifgy
NAP system, with a corank of 64, and the best VCSVM system,

chines using GMM supervectors for speaker verificatiditEE Sgnal
Processing Letters, 2005.

[2] Alex Solomonoff, W. M. Campbell, and I. Boardman, “Adws in
channel compensation for SVM speaker recognition Priaceedings of
ICASSP, 2005.

[3] P.Kenny, P.Ouellet, N. Dehak, V. Gupta, and P. Dumouchestudy of
inter-speaker variability in speaker verificatiodZEE Trans. on Audio,
Foeech, and Language Processing, vol. 16, no. 5, pp. 980-988, 2008.

[4] Najim Dehak, Patrick Kenny, Reda Dehak, Ondrej GlemPBéyre Du-
mouchel, Lukas Burget, Valiantsina Hubeika, and Fabio &dst “Sup-
port vector machines and joint factor analysis for speakeifigation,”
in submitted to ICASSP, 2009.

[5] Andrew O. Hatch, Sachin Kajarekar, and Andreas Stolcke/ithin-
class covariance normalization for svm-based speakegnéamn,” in
Proceedings of Interspeech, 2006.

[6] Luciana Ferrer, Kemal Sonmez, and Elizabeth Shribefgsrhoothing
kernel for spatially related features and its applicatiospgeaker verifi-
cation,” in Proceedings of Interspeech, 2007.

[7] Mike  Brookes, “The matrix reference  manual,”
http://www.ee.ic.ac.uk/hp/staff/www/matrix/introrht

[8] P.Sallich, “Probabilistic interpretation and bayesiaethods for support
vector machines,” ifProceedings of ICANN, 1999.

[9] P. Matejka et al., “BUT system for the NIST 2008 speakeoghition

evaluation,” submitted to ICASSP, 2009.



