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ABSTRACT

Speaker verification using SVMs has proven successful, specifically
using the GSV Kernel [1] with nuisance attribute projection(NAP)
[2]. Also, the recent popularity and success of joint factoranaly-
sis [3] has led to promising attempts to use speaker factors directly
as SVM features [4]. NAP projection and the use of speaker fac-
tors with SVMs are methods of handling variability in SVM speaker
verification: NAP by removing undesirable nuisance variability, and
using the speaker factors by forcing the discrimination to be per-
formed based on inter-speaker variability. These successes have
led us to propose a new method we call variability compensated
SVM (VCSVM) to handle both inter and intra-speaker variability
directly in the SVM optimization. This is done by adding a regu-
larized penalty to the optimization that biases the normal to the hy-
perplane to be orthogonal to the nuisance subspace or alternatively
to the complement of the subspace containing the inter-speaker vari-
ability. This bias will attempt to ensure that inter-speaker variability
is used in the recognition while intra-speaker variabilityis ignored.
In this paper we present the theory and promising results on nuisance
compensation.

Index Terms— Support Vector Machines, Speaker Verification,
Variability Compensation

1. INTRODUCTION

In a classification task there are two types of variability: the good
which reflects the anticipated diversity needed for proper classifi-
cation, and the bad which introduces undesirable information that
confuses the classifier. An ideal classifier should, therefore, exploit
the good and mitigate the bad. In the speaker verification task, inter-
speaker variability is the desired variability and intra-speaker, e.g.
channel and language, is the bad or nuisance variability. Techniques
for handling nuisance, such as nuisance attribute projection (NAP)
[2] and within class covariance normalization (WCCN) [5], are al-
ready used in SVM speaker verification. Recently, state of the art
systems have revolved around joint factor analysis [3], which uses
a Bayesian framework to incorporate estimates of subspacescon-
taining nuisance and inter-speaker variability in the verification task.
In this paper we introduce variability compensated SVM (VCSVM)
which is a method to handle both good and bad variability by in-
corporating it directly into the SVM optimization. We will begin by
motivating and describing our approach in a nuisance compensation
framework. Modifications to the algorithm are then presented that
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allow for handling inter-speaker variability, as well as incorporating
both the good and the bad variability simultaneously. We then dis-
cuss a probabilistic interpretation of the algorithm and finally present
experimental results that demonstrate the algorithm’s efficacy.

2. HANDLING NUISANCE VARIABILITY

Evidence of the importance of handling variability can be found
in the discrepancy in verification performance between one,three
and eight conversation enrollment tasks for the same SVM system.
Specifically, for the SVM system in [1] performance improvesfrom
5.0% EER for one conversation enrollment to2.9% and2.6% for
three and eight, on all trials of the NIST SRE-Eval 06 core condition.
One explanation for this is that when only one target conversation is
available to enroll a speaker then the orientation of the separating hy-
perplane is set by the impostor utterances. As more target enrollment
utterances are provided the orientation of the separating hyperplane
can change drastically, as sketched in Figure 1. The additional infor-
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Fig. 1. Different separating hyperplanes obtained with 1, 3, and 8
conversation enrollment.

mation that the extra enrollment utterances provide is intra-speaker
variability, due to channel, language, and other nuisance variables.
If an estimate of the principal components of intra-speakervariabil-
ity for a given speaker were available then one could preventthe
SVM from using that variability when choosing a separating hyper-
plane. However, since it is not possible in general to estimate intra-
speaker variability for specific speakers, one could instead substitute
a global estimate obtained from a large number of speakers. This is
the approach taken by NAP, which handles nuisance variability by
estimating a small subspace where the nuisance lives and removing
it completely from the SVM features, i.e. not allowing any infor-
mation from the nuisance subspace to affect the SVM decision. To
handle this variability we propose VCSVM which allows for varying
the degree to which the nuisance subspace is avoided by the classi-
fier, rather than completely removing it.
Assume that the nuisance subspace is spanned by a set ofN or-
thonormal eigenvectors{u1,u2, . . . ,uN}, and letU be the matrix



whose columns are these eigenvectors. Let the vector normalto the
separating hyperplane bew. Ideally, if the nuisance was restricted to
the subspaceU then one would require the orthogonal projection of
w in the nuisance subspace to be zero, i.e.
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requirement can be introduced directly into the primal formulation
of the SVM optimization:

min J(w, ǫ) = ||w||2
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subject toli(w
T
si + b) ≥ 1 − ǫi & ǫi ≥ 0, i = 0, . . . , m

whereξ ≥ 0, si denotes the utterance specific SVM features (su-
pervectors) andli denotes the corresponding labels. Note that the
only difference between (1) and the standard SVM formulation is the
addition of theξ
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term, whereξ is a tunable (on some

held out set) parameter that regulates the amount of bias desired. If
ξ = ∞ then this formulation becomes similar to NAP compensation,
and if ξ = 0 then we obtain the standard SVM formulation. Figure
2 sketches the separating hyperplane obtained for different values of
ξ . We can rewrite the additional term in (1) as follows:
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Fig. 2. Sketch of the separating hyperplane for different values of ξ.
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= (UUT w)T (UUT w) = wT UUT UUT w (2)

= wT UUT w, (3)

where the final equality follows from the eigenvectors beingor-
thonormal (UT U = I). SinceUUT is a positive semi-definite
matrix we can follow the recipe presented in [6] to re-interpret this
reformulation as a standard SVM with the bias absorbed into the
kernel. We begin by rewritingJ(w, ǫ) in (1) as:

J(w, ǫ) = w
T (I + ξUU

T )w/2 + C
m

X

i=1

ǫi, (4)

and since(I + ξUUT ) is a positive definite symmetric matrix, then

J(w, ǫ) = w
T
B

T
Bw/2 + C

m
X
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ǫi, (5)

whereB can be chosen to be real and symmetric and is invertible. A
change of variables̃w = Bw and s̃ = B−T s allows us to rewrite
the optimization in (1) as

minimize J(w, ǫ) = ||w̃||2
2
/2 + C

Pm

i=1
ǫi (6)

subject to li(w̃
T s̃i + b) ≥ 1 − ǫi & ǫi ≥ 0, i = 0, . . . , m

which is then the standard SVM formulation with the following ker-
nel:

K(si, sj) = s
T
i B
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B

−T
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T )−1
sj . (7)

Examining the kernel presented in (7) we realize that(I + ξUUT )
can be very large. This is of concern since the kernel requires its
inverse. To circumvent this we use the Matrix Inversion Lemma [7]
andUT U = I to obtain:
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The kernel can therefore be rewritten as:

K(si, sj) = s
T
i (I −

ξ

1 + ξ
UU

T )sj . (9)

Examining (9) we notice that whenξ = 0 we recover the standard
linear kernel, and more importantly whenξ = ∞ we recover exactly
the kernel suggested in [2] for performing NAP channel compensa-
tion. An advantage of this formulation over NAP is that it does not
make a hard decision to completely remove dimensions from the
SVM features but instead leaves that decision to the SVM optimiza-
tion.
It is of practical importance to note that (9) can be written as a lin-
ear combination of two kernels, and definingxi = UT si to be the
channel factors:
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x

T
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This allows for a less costly implementation, because the two ker-
nels need not be recomputed for each value ofξ and relatively little
computation is required to obtain the second kernel, since thexi’s
are typically low dimensional.

2.1. Should All Nuisance be Treated Equally?

As the choice of nuisance subspace gets larger one may find itsmore
appropriate to handle directions within that subspace unequally, for
example we might want to avoid using larger nuisance directions in
discrimination more than we would smaller ones. One way to dothis
can be to use the eigenvalues corresponding to the differentnuisance
directions. Therefore, we allow the eigenvectors spanningthe U

matrix to be orthogonal but not orthonormal, specifically:

U
T
U = Λ, (11)

whereΛ is a diagonal matrix whose elements are the eigenvalues
corresponding to the columns ofU. We can now follow a formula-
tion similar to that of the previous section, the differencewill appear
in the kernel when the matrix inversion lemma is applied:
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An extreme example of this is where the whole SVM space is consid-
ered to contain nuisance information (i.e.UUT is full rank), which
results in a formulation very similar to that of WCCN normalization
[5]. WCCN proposes using inverse of the intra-speaker covariance
matrix (i.e. full rankUUT ) as a kernel:

K(si, sj) = s
T
i (UU

T )−1
sj . (14)

However, in practiceUUT is ill-conditioned due to the noisy es-
timate and directions of very small nuisance variability, therefore



smoothing is applied to the intra-speaker covariance matrix to make
inversion possible, and the WCCN suggested kernel becomes:

K(si, sj) = s
T
i ((1 − α)I + αUU

T )−1
sj 0 ≤ α < 1. (15)

Comparing (15) with (12) we see that they are similar. We should,
however, mention that whenUUT spans the full SVM space the
ξ (in our implementation) andα (in the WCCN implementation)
no longer set the amount of bias desired, instead they ensurethat
the kernel does not over-amplify directions with small amounts of
nuisance variability.

3. USING INTER-SPEAKER VARIABILITY

Joint factor analysis [3] has been highly successful in the speaker
verification task. Joint factor analysis estimates a “speaker” sub-
space, that captures good variability and is spanned by the columns
of V, and a “channel” subspace, that captures the nuisance and is
spanned by the columns ofU. An utterancesi is represented as a
linear combination of a contribution from the speaker,Vyi, and one
from the channel,Uxi, and a residual; whereyi are the speaker fac-
tors andxi are the channel factors. Recently, promising results have
been obtained by using just the speaker factors as features in a SVM
speaker verification system. Based on this, we propose a VCSVM
formulation similar to the one presented in the previous section to
bias the SVM towards mostly using the data present in the inter-
speaker variability space.
Assume that the inter-speaker subspace is spanned by a set ofM or-
thonormal eigenvectors (eigenvoices){v1,v2, . . . ,vM}, and letV
be the matrix whose columns are these eigenvectors. Let the vec-
tor normal to the separating hyperplane bew. Ideally if V cap-
tured all inter-speaker variability then we would wantw to live in
theV subspace and therefore be orthogonal to its complement, i.e.
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= 0. Similar to the previous section this re-

quirement can be introduced directly into the primal formulation of
the SVM optimization:

min J(w, ǫ) = ||w||2
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whereγ ≥ 0 is a tunable (on some held out set) parameter that en-
forces the amount of bias desired. Ifγ = ∞ then this formulation
becomes similar to just using the speaker factors, and ifγ = 0 then
we obtain the standard SVM formulation. Note that sinceI−VVT

is a projection into the complement ofV then we can replace it by
QQT , whereQ is a matrix whose columns are the orthonormal
eigenvectors that span the complement. With this substitution we
obtain a formulation that is almost equivalent to that in (1), hence
following the recipe in the previous section we see again canpush
the bias into the kernel of a standard SVM formulation. The kernel
in this case is

K(si, sj) = s
T
i (I−

γ

1 + γ
QQ

T )sj . (17)

By substituting backQ = I − VVT we can rewrite (17) as:

K(si, sj) = s
T
i (I−

γ

1 + γ
(I− VV

T ))sj . (18)

Note that we do not have to explicitly compute the orthonormal basis
Q, which can be rather large. Whenγ = ∞ the kernel becomes an
inner-product between the speaker factorsyi = VT si:

K(si, sj) = sT
i VVT sj = yT

i yj . (19)

This kernel suggests that when one chooses to perform classification
using only the inter-speaker subspace the resultant kernelis just an
inner-product between the speaker factors.

4. INCORPORATING ALL VARIABILITY

A natural followup is to combine the previous sections into asingle
SVM formulation that attempts to handle all of the variation. In
this section we will choose to treat all nuisance directionsequally,
however this can easily be extended to the setup in Section 2.1. This
has to be done with some care since there is an overlap betweenthe
U subspace and the complement to theV subspace. Specifically,U
lies in the complement ofV. With this in mind the resultant SVM
formulation is as follows:
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Whenξ = γ we obtain the inter-speaker result of Section 3 and if
γ = 0 we obtain the intra-speaker result of Section 2. Recasting it
as a standard SVM formulation yields the following kernel:

K(si, sj) = s
T
i (I−

ξ

1 + ξ
UU
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γ

1 + γ
(I− VV

T − UU
T ))sj .

5. PROBABILISTIC INTERPRETATION

In [6], the author makes a connection between the suggested kernel
and the probabilistic interpretation of SVMs proposed in [8]. The
SVM problem can be thought of as one of maximization of the like-
lihood ofw given the training data ({si, li} pairs) by writing it as

max l(w|{si, li}) = −w
T
w/2 − C

m
X

i=1

h(li(w
T
si + b)), (21)

whereh() is the hinge loss. In this formulation the SVM can be
though of as just computing the MAP estimate ofw given the train-
ing data, where thewT w term is essentially a Gaussian (N(0, I))
prior and the second term is the log-likelihood of the training data
givenw. This Gaussian prior onw in the standard SVM does not
bias the angle ofw in any direction since the components ofw in
the prior are independent. In VCSVM, when we introduce the bias
to handle the variability this only affects the first term in (21) and
therefore changes the prior onw in the MAP estimation interpreta-
tion (we will focus on nuisance variability):

max l(w|{si, li}) = −w
T (I + ξUU

T )w/2

−C
m

X

i=1

h(li(w
T
si + b)). (22)

The prior on the MAP estimate ofw is still a GaussianN(0, (I +
ξUUT )−1) but with its principal components orthogonal to the nui-
sance subspace and the variance along the principle components set
by ξ. Hence, the prior is biasingw to be orthogonal to the nuisance
subspace. A similar connection can be made for the full setuppro-
posed in Section 4.



6. EXPERIMENTAL RESULTS

We have chosen to demonstrate VCSVM in two scenarios, the first
is as an alternative to NAP to handle nuisance in the GSV system
presented in [1], and the second to handle nuisance in a system pre-
sented in [4] where SVM speaker verification is performed using
low-dimensional speaker factors. The goal of this section is not to
compare the performance of these two systems, but rather to show
that VCSVM is applicable to both.

We begin with the speaker verification system proposed in [4],
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Fig. 3. Results on English trials of the NIST SRE-Eval 06 core task
with speaker factor SVM system: EER vs ξ for equal and non-equal
weighting of nuisance subspace, and various subspace sizes.

which represents each utterance using a vector of300 speaker fac-
tors from the joint factor analysis system in [9]. The speaker factor
vectors are normalized to have unit L2-norm and used as features in
a SVM speaker verification system. Figure 3 shows how the equal
error rate (EER) changes as a function ofξ on our development set,
the English trials of the NIST SRE-Eval 06 core task, for50 and100
dimensional nuisance subspaces when equal and non-equal weight-
ing of the nuisance dimensions are used. The figure shows thatnon-
equal weighting of the nuisance directions yields more favorable re-
sults than equal weighting. It also shows that VCSVM allows for
nuisance compensation in such a small space, while NAP performs
poorly since it completely removes the estimated nuisance dimen-
sions which are a large percentage of the total dimensionality. Based
on the development results we chooseξ = 3 and a corank of 50 for
the VCSVM system and present results on all trials of the Eval08
core task in Figure 5 (a).
Next, we present the performance of VCSVM using a GSV system
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Fig. 4. Results on all trials of the NIST SRE-Eval 06 core task with
GSV system: EER vs ξ for equal and non-equal weighting of nui-
sance subspace, and various subspace sizes.

[1] with 512 mixture GMMs and 38 dimensional, 19 cepstral and
deltas, RASTA compensated feature vectors. Figure 4 presents re-
sults on the development set, all trials of the NIST SRE-Eval06 core
condition, of how the EER changes as a function ofξ, corank, and
whether equal or non-equal weighting was used. Again this shows
that non-equal weighting of the nuisance directions is preferable over
equal weighting. It also shows that non-equally weighted VCSVM
is fairly stable with regards to varyingξ and the corank, which is not
the case with NAP. Based on these development results we compare,
in Figure 5 (b), no nuisance compensation to the best-performing
NAP system, with a corank of 64, and the best VCSVM system,
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Fig. 5. Detection error plots on all trials of NIST Eval 08 core task.

with ξ = 22 and corank of 256. We see that even in a large dimen-
sional space such as this, it is preferable to not completelyremove
the nuisance subspace.

7. CONCLUSION
This paper presents variability compensated SVM (VCSVM), a
method for handling both good and bad variability directly in the
SVM optimization. This is accomplished by introducing intothe
minimization a regularized penalty, which biases the classifier to
avoid nuisance directions and use directions of inter-speaker vari-
ability. With regard to nuisance compensation, an advantage of
our proposed method is that it does not make a hard decision on
removing nuisance directions, rather it decides accordingto perfor-
mance on a held out set. Another benefit is that it allows for unequal
weighting of the estimated nuisance directions, e.g. according to
their associated eigenvalues. This flexibility allows for improved
performance over NAP, increased robustness with regards tothe size
of the estimated nuisance subspace, and successful nuisance com-
pensation in small SVM spaces. Future work will focus on using
this method for handling inter-speaker variability and allvariability
simultaneously.

8. ACKNOWLEDGMENTS

The authors would like to thank the members of the “Robust Speaker Recog-
nition Over Varying Channels” team at the JHU Summer Workshop 08, for
the invaluable discussions and stimulating environment.

9. REFERENCES

[1] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Supportvector ma-
chines using GMM supervectors for speaker verification,”IEEE Signal
Processing Letters, 2005.

[2] Alex Solomonoff, W. M. Campbell, and I. Boardman, “Advances in
channel compensation for SVM speaker recognition,” inProceedings of
ICASSP, 2005.

[3] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study of
inter-speaker variability in speaker verification,”IEEE Trans. on Audio,
Speech, and Language Processing, vol. 16, no. 5, pp. 980–988, 2008.

[4] Najim Dehak, Patrick Kenny, Reda Dehak, Ondrej Glember,Pierre Du-
mouchel, Lukas Burget, Valiantsina Hubeika, and Fabio Castaldo, “Sup-
port vector machines and joint factor analysis for speaker verification,”
in submitted to ICASSP, 2009.

[5] Andrew O. Hatch, Sachin Kajarekar, and Andreas Stolcke,“Within-
class covariance normalization for svm-based speaker recognition,” in
Proceedings of Interspeech, 2006.

[6] Luciana Ferrer, Kemal Sonmez, and Elizabeth Shriberg, “A smoothing
kernel for spatially related features and its application to speaker verifi-
cation,” inProceedings of Interspeech, 2007.

[7] Mike Brookes, “The matrix reference manual,”
http://www.ee.ic.ac.uk/hp/staff/www/matrix/intro.html.

[8] P. Sollich, “Probabilistic interpretation and bayesian methods for support
vector machines,” inProceedings of ICANN, 1999.

[9] P. Matejka et al., “BUT system for the NIST 2008 speaker recognition
evaluation,”submitted to ICASSP, 2009.


