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Abstract

Normal mode theory provides an efficient description of signals which propagate axially in
the SOFAR channel and are detectable at long ranges. Mode amplitudes and their second
order statistics are useful in studies of long-range acoustic propagation and for applications
such as Matched Mode Processing (MMP) and Matched Field Tomography (MFT). The
purpose of this research is to investigate techniques for estimating the average power in the
modes of a signal given pressure measurements from a vertical line array.

This thesis develops the problem of mode estimation within a general array processing
framework which includes both deterministic and stochastic characterizations of the modal
structure. A review of conventional modal beamforming indicates that these methods pro-
vide poor resolution in low signal-to-noise ratio environments. This is not surprising since
standard estimation techniques rely on minimizing a squared error criterion without regard
to the ambient noise. The primary contribution of this thesis is an adaptive estimator for
coherent modes that is based on a method suggested by Ferrara and Parks for array pro-
cessing using diversely-polarized antennas. Two formulations of the adaptive method are
investigated using a combination of analytical techniques and numerical simulations. The
performance evaluation considers the following issues: (i) power level of the noise, (ii) or-
thogonality of the sampled modeshapes, (iii) number of data snapshots, and (iv) coherence
of the signal. The new approach is fundamentally different from other modal estimators
such as those used in MMP because it is data-adaptive and maximizes the received power
instead of minimizing the squared error. As a result, the new methods perform significantly
better than least squares in high noise environments. Specifically, the Ferrara/Parks formu-
lations are able to maintain nulls in the modal spectrum since they do not suffer the bias
error that significantly affects the least squares processor.

A second contribution of the thesis is an extension of the coherent estimator to facilitate
estimation of phase-randomized modes. Although the results of this work are preliminary,
the extended formulation appears to offer several advantages over least squares in certain
cases.

Thesis Supervisor: Arthur B. Baggeroer
Title: Ford Professor of Electrical and Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation

The ocean is an extremely efficient channel which is capable of transmitting low frequency

sound over long distances. Sound waves refract towards regions of lower velocity, therefore

a minimum in sound speed creates an acoustic channel. For example, sound propagating

downward from a source bends back toward the channel axis (depth of minimum sound

speed). Once it passes through the axis on an upward path, it begins to bend away from

the surface. In this fashion, sound is effectively trapped in a duct and can propagate from

a source to a receiver hundreds or even thousands of kilometers away. In the deep ocean

a minimum sound speed (occurring at approximately 1 km below the surface) defines the

ocean acoustic waveguide which is also known as the SOund Fixing And Ranging (SOFAR)

channel [1].

Normal mode theory provides an efficient description of low frequency sound traveling

along refracted paths in the SOFAR channel. Coherent interference of a family of rays that

share the same phase speed creates a standing wave (or mode) in depth. The modes form

a complete set of orthogonal basis functions in the vertical. As a result, the sound pressure

at any receiver point in the waveguide consists of a weighted sum of normal modes. The

phase speed specifies the turning depths of the rays and determines the vertical extent of

each corresponding mode. High order modes have low phase speeds and are associated

with families of rays that intersect the surface or bottom boundaries. Since these modes

suffer severe losses, the lower order or axial modes contain most of the signal energy at long

ranges. The normal mode representation is efficient because only a subset of modes are
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required to describe a signal at a significant distance from its source.

Normal mode theory offers more than just a convenient description of acoustic signals.

Since the modes span different vertical sections of the water column, they each provide

specific information about the sound source and the propagation path. Consequently, the

normal mode decomposition is useful in several applications such as source localization and

acoustic tomography. For example, recent papers indicate that source range and depth

information may be obtained through matched field beamforming using the modal coeffi-

cients (or weights) [2, 3, 4]. In the literature this technique is known as Matched Mode

Processing (MMP).1 In another application, acoustic tomography is used to measure the

speed of sound in the ocean. Normal modes are useful in this regard since modal group

delays depend on the sound speed. Provided the mode arrivals can be reliably tracked, re-

searchers can obtain estimates of the sound speed. In turn, these estimates provide valuable

information about the channel. Note that one of the fundamental problems associated with

both of the aforementioned applications is the detection and estimation of the modes in an

acoustic signal. The purpose of this research is to explore techniques for modal estimation.

Receivers capable of extracting the underlying modal structure typically consist of ver-

tical arrays of sensors. One characteristic of acoustic propagation is that modes travel with

different group velocities. Note that the group delays associated with the higher order

modes may permit resolution on the basis of arrival time.2 Temporal resolution of the lower

order modes, however, is not usually possible since their group delays are almost identical.

Instead, an array can resolve these axial modes based on differences in their spatial distri-

butions. This thesis focuses on array processing algorithms for estimation of the low order

modes because they remain the most energetic at long ranges from the source.

The success of the applications described above depends on accurate modeling of acous-

tic propagation. Many issues concerning transmissions over long distances in the ocean

remain unresolved. Two of these issues, mode coherence and mode coupling, are particu-

larly relevant to this thesis since they affect the mode estimation problem.

Mode coherence refers to the relative phasing between the modes of an acoustic signal.

Coherent propagation means that the modes remain phase-locked as they travel. Incoherent

propagation implies that the phase fluctuations in the signal vary from mode to mode.

1Baggeroer et. al. provide a comprehensive review of matched field techniques [5].
2In this case it is usually easier to track the ray arrivals associated with the higher order modes.
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Although coherent signal models appear to be fairly accurate over moderate distances,

recent experimental evidence suggests that transmission over megameter ranges results in

incoherent signals [6]. More experiments are required before accurate predictions of signal

coherence are possible. Since the characteristics of a channel may not be known a priori, it

is important to analyze the effects of coherence on modal estimation algorithms.

Mode coupling is the second major issue to consider. Models for slowly range-varying

environments typically assume that the propagation is adiabatic, therefore no energy is

transferred between modes. This simplifying assumption is not realistic over long ranges.

Travel time analysis using modal arrivals requires a knowledge of the coupling character-

istics. In practice it is often necessary to measure the coupling by examining the modal

content of signals from a known source. The need for this type of experiment motivates the

development of high resolution mode estimation algorithms.

This thesis considers mode estimation in a general context, but it is useful to mention a

specific practical application in order to highlight several important aspects of the problem.

Over the past several years, researchers have endeavored to exploit the efficiency of the

ocean waveguide to study global environmental change. The fundamental idea behind these

experiments is that changes in water temperature may be inferred from changes in the travel

time of acoustic signals since the speed of sound depends on temperature. Because of the

large local variability inherent in the ocean environment, this type of acoustic tomography

requires long transmission paths in order to obtain reliable measurements of average water

temperature. Accurate estimation of travel times and subsequent inversions for temperature

depend on a thorough understanding of acoustic propagation over ranges on the order of

10,000 to 20,000 km (10-20 megameters). Two experiments have been designed to study

global-scale propagation [7]. The first of these is the Heard Island Feasibility Test (HIFT)

which took place over a 5-day period in January of 1991. HIFT demonstrated that coded

low frequency signals can be received at megameter distances from a source. The Acoustic

Thermometry of Ocean Climate (ATOC) project is a follow-up to Heard Island which

is intended to show that the techniques developed with HIFT can be extended to study

propagation paths and characteristics over several seasons. Both projects have emphasized

the importance of using vertical line arrays (VLA's) to resolve the modal structure of

received signals.

The nature of long-range propagation imposes some design requirements on the array

12



processing for the VLA's. First of all, the algorithms must be able to extract the modal

arrivals from a relatively high noise background. Low signal-to-noise ratios are unavoidable

in global acoustics research because of restricted source levels and large transmission losses.

Environmental impact concerns and technical limitations constrain the source power output.

Also, transmission losses over ranges of 10 to 20 megameters are quite significant. A second

design requirement is that the estimators provide an accurate indication of which modes

are truly present in the received signal. Obviously this is always a desirable property, but it

is especially important for global experiments since adequate models for propagation over

megameter distances do not exist. For example, if the output of the array processing is to be

used to study mode coupling, then it is essential that nulls in the modal power distribution

be maintained.

This section has indicated the importance of the normal mode decomposition for acoustic

signals, thereby motivating the study of array processing methods for modal estimation.

An example has been given to illustrate some of the relevant design constraints. The next

section briefly reviews conventional methods and outlines the objectives of this thesis.

1.2 Objectives

The relative distribution of power among the modes of a signal provides valuable insights

about mode coherence and coupling and is useful in detecting the modal arrivals for time

delay estimation. Consequently, the goal of this thesis is to estimate the modal power

spectrum given a set of measurements from a vertical line array.

Recent research in this area has concentrated on modal beamforming algorithms which

produce time series of modal amplitudes [8, 9]. These algorithms, which have been developed

primarily for MMP applications, rely on least squares estimation theory. Least squares

methods minimize a squared error criterion without regard to the noise contained in the

signal. Naturally, a strategy that ignores noise components is not expected to perform well

in low SNR environments. This motivates the search for a fundamentally new approach to

mode estimation.

This thesis has three primary objectives:

1. To develop the modal estimation problem within a general array processing frame-

work which includes both deterministic and stochastic characterizations of the modal

13



structure.

2. To formulate a fundamentally new approach to the modal estimation problem.

3. To evaluate the performance of the new algorithms with respect to conventional esti-

mation techniques.

Four criteria are used in evaluating the new approach: (i) power level of the noise, (ii)

orthogonality of the sampled modeshapes, (iii) number of data snapshots, and (iv) coherence

of the signal.

1.3 Organization

The remainder of this thesis consists of five chapters. Chapter 2 develops relevant back-

ground material and formulates the modal estimation problem. In addition, the simulation

environment used for the numerical examples throughout the thesis is described. Chapter 3

reviews the conventional approach to modal analysis. Chapter 4 develops a new estimator

for coherent modes and analyzes it with respect to the criteria mentioned above. Two for-

mulations of the new method are considered, and a set of numerical examples are used to

draw comparisons between the new and the conventional approaches. Chapter 5 presents

an extension of the coherent mode estimation algorithm to the more general case of random

or incoherent modes. Finally, Chapter 6 provides a summary and indicates future directions

for research.
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Chapter 2

Background

The purpose of this chapter is to define clearly the acoustic mode estimation problem

within an array processing framework. The first section describes a basic model of an ocean

waveguide which contains an acoustic source and a set of receivers. Section 2.2 reviews

the normal mode representation of signals in both range-independent and range-varying

waveguides. This section is intended as a brief overview of modal propagation. More com-

prehensive treatments of normal mode theory are found in the classic text by Brekhovskikh

and Lysanov [10] and in more recent books by Frisk [11] and Jensen, et. al. [12]. Sec-

tion 2.3 formulates the general mode estimation problem and highlights the importance of

two special cases: (i) coherent modes and (ii) incoherent modes. The remainder of the chap-

ter discusses important issues related to the signal processing and introduces performance

measures for modal estimation algorithms. Over the course of the chapter, a deep water

simulation environment is developed. This waveguide is used for the numerical examples

throughout the thesis.1

2.1 Ocean Acoustic Waveguide

Figure 2-1 depicts a model of an ocean environment containing a narrowband source, several

types of noise sources, and a receiving array. The density and sound speed profiles along with

a set of boundary conditions for the surface, sediment and basement layer interfaces specify

'For the purposes of this thesis, scalar quantities are denoted by italics, column vectors by lowercase
bold letters and matrices by uppercase bold letters. The superscript t represents the complex conjugate
transpose operation and £ is the expected value operator.
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the propagation characteristics of the medium. A cylindrical coordinate system with range

r and depth (positive-downward) z describes the waveguide. For the purposes of this thesis,

the environment is assumed to be independent of azimuthal angle. The model shown in the

figure is range-invariant, but this is obviously not true for real ocean waveguides. Acoustic

propagation using both range-independent and range-dependent models is discussed below.

Distributed Noise Sources
r r * A A

-Fr

z

Arbitrary
Sound
Speed
Profile

Sediment 
Layers

Basement
Layer

- -m ~ IM IM 

* N-element
Narrowband receiving

Source array
TC

A
Discrete Noise Source

-~~~ 

Figure 2-1: Model of an ocean environment

The source is a narrowband point source operating at a frequency . Propagation

studies typically use low frequency tonal sources because higher frequencies are attenuated

rapidly by the ocean's intrinsic absorptive processes. Several noise sources are indicated

in the figure. Surface noise sources generate spatially correlated noise that has a structure

which is strongly influenced by the propagation environment. Discrete noise sources are

modeled as narrowband point sources with temporal and spatial characteristics similar to

that of the signal source. The spatial structure of the noise is explored in more detail in

Section 2.4.

The receiving array and the associated data acquisition system are responsible for tem-

poral and spatial sampling of the ambient wave field. Vertical deployment, as shown in

Figure 2-1, is common for mode resolving arrays. Figure 2-2 shows a typical data acqui-

sition and pre-processing system. Standard pre-processing of the antenna outputs consists

of temporal sampling followed by demodulation at the frequency of the source. The re-

sult is a vector time series, p(l), of quadrature components representing the pressure field.
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Most processors include filters to improve input signal-to-noise ratio. The rest of this thesis

implicitly assumes that these basic pre-processing steps have been taken.

Ambient Field:
Signal+Noise

Pre-Processing System
Vector of

Quadrature
("_mnrnnantfc

te index I

P (t)1

P2(1)

PN( )

Figure 2-2: Data acquisition and pre-processing

The ocean model used in this research consists of a horizontally-stratified medium with

arbitrary sound speed and density profiles in the vertical which is bounded from above and

below by semi-infinite halfspaces. The upper halfspace above the water's surface is modeled

as a vacuum, and the lower halfspace has characteristics similar to the sediment layers.

Range dependencies may be incorporated into the model by propagating signals through a

cascade of range-independent sections.

2.2 Normal Mode Representation of Narrowband Signals

The acoustic wave equation, with parameters and boundary conditions derived from the

environment, describes the propagation of sound in a horizontally-stratified waveguide.

The sound pressure field generated by a narrowband source is conveniently characterized

by Fourier transforming the wave equation to obtain the Helmholtz equation. Normal mode

solutions to the Helmholtz equation are the focus of this section. The frequency dependence

(w = 27rf) of the narrowband signal is suppressed in the following development.
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2.2.1 Modal Propagation in a Range-Independent Waveguide

In this section the environment is assumed to be range-independent and is characterized by

the sound speed profile c(z) and the density profile p(z) which vary with depth. Let p(r, z)

be the sound pressure for a narrowband source and the Helmholtz equation becomes

2 ~~~~~2 (z) = c2z) (21rd- rd + p(z) p(-z) dp + k(z)p(r, z) = F(r,z) k () (2.1)r dr \dr/ pWzaz '' c2 z

where k is the wavenumber associated with the medium. F(r, z) is the forcing function asso-

ciated with the acoustic point source. Consider the idealized range-independent waveguide

shown in Figure 2-3. The waveguide is of depth H with a pressure release boundary at the

surface (z = 0) and a perfectly rigid boundary at the bottom (z = H). An arbitrary depth-

dependent sound speed profile is assumed. The rigid (non-propagating) bottom boundary

condition simplifies this initial development; a brief discussion of the implications of more

realistic bottom conditions follows.

Sound Speed r=O r
_- m, 

z=O

z=H

w

Pressure Release Surface (p=O)

Rigid Bottom (P= O)
i , , , , , , > ,~~d

7/////////////

zZ

Figure 2-3: Idealized range-independent waveguide

The separation of variables technique yields solutions to the unforced (F = 0) Helmholtz

equation of the form [10]

p(r, z) = H(1) (kmr)qOm(z) (2.2)

The range-dependent portion of the solution, H(1)(kmr) is a zero-order Hankel function of
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the first kind. The depth function qbm satisfies the following eigenvalue problem

d2tbmr
dz20 + [k 2 (z) -k]m = 0 (2.3)dz 2 qk(z 

For the simple boundary conditions described above, this equation is a classical Sturm-

Liouville problem where the depth functions (modes) form a complete orthonormal (CON)

set. Thus, the solution to Equation 2.1 for a point source consists of a weighted sum of the

normal modes

p(r,z) = wmH(l)(kmr),m (z). (2.4)
m

When the forcing function F is known, the orthogonality of the modes may be exploited to

determine the weights, win. In the case of a unit-normalized point source at depth zs and

range r = 0, the pressure at depth z and range r becomes

-i~r/4 eikmr
p(r, z) = e E'4 Z m(zs)Om(z) (2.5)

p(zs) V8 7 rr m

An asymptotic approximation for the Hankel function has been used to derive this result.

As shown in Equation 2.5 the source excites each mode at a level proportional to the value

of the mode function Okm at the source depth z. While the sum is infinite, only a finite

number of modes actually propagate in the waveguide. Higher than a certain mode number

m, the horizontal wavenumbers are imaginary, therefore contributions from these modes

are exponentially decaying with range. Modes with imaginary km are called evanescent and

do not affect the modal sum if the point of interest is at any significant distance from the

source.

Although the essential features of the normal mode decomposition are revealed in the

idealized waveguide example, practical models require more realistic bottom conditions.

Jensen et. al. [12] provide a clear generalized derivation which incorporates arbitrary bottom

boundary conditions. The additional mathematical rigor offers few new insights, however.

Suffice it to say that at long ranges away from the source, the signal may always be written

as a weighted sum of the propagating modes.

Consider the following example of a realistic waveguide. This simulation environment

is used for all of the numerical examples in the later chapters.
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Deep Water Simulation Environment

The channel is 4000 meters deep and is characterized by a Munk profile [13]. This profile

is a canonical deep water sound speed profile with a single minimum. In this case the min-

imum sound speed is 1480 m/s at an axis depth of 1000 meters. Water density is assumed

to be 1.0 g/cm3 . The left side of Figure 2-4 shows the sound speed profile for the simulation

environment. A 70 Hz narrowband source is used for all the numerical examples. The right

Profile Modeshapes (70 Hz)
U

-1000

E

c -2000
0

-3000

-Annn

1480 1500 0 2 4 6 8 10 12 14 16
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Figure 2-4: Sound speed profile and modeshapes for the deep water waveguide

side of Figure 2-4 is a plot of the modeshapes for the first 16 modes associated with the

source. Note that the vertical extent of these modes effectively defines a channel in which

low-angle rays can propagate outward from a source on the axis. The modeshapes were

computed using a normal mode code developed by Baggeroer [14].

Consider sampling the wave field generated by a point source using a receiving array.

Assuming that the field is composed of a subset of M discrete modes, the sum in Equa-

tion 2.5 is most conveniently written using linear algebra notation. The vector of pressures

measured by an N-element vertical array is defined as follows

p = bEPx (2.6)

where

* b is a complex Gaussian random variable that models the phase uncertainty inherent
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in the signal processing,

{ Ibj2 = 2
*~~~ j f b 

* E is an N x M matrix of sampled modeshapes,

01 (Z) 2 (Z1)

E = 014(Z2) 02(Z2)

01 (ZN) 2 (ZN)

... OM(Zi)

... OM(Z2)

... M(ZN)

* P is an M x M diagonal propagation matrix,

0
eikmr

0

0

0 (2.9)

* x is a vector of mode depth amplitudes containing the source excitation,

1 (Zs)

02 (Zs)

OM(Zs) 

Equation 2.6 provides a compact representation of modal propagation in a range-independent

waveguide. The matrix P transforms the initial excitation of the modes at the source (rep-

resented by x) to the excitation levels at the receiver. The diagonal structure of the propa-

gation matrix P reflects the fact that there is no transfer of energy among the modes. Note

that the matrix E requires a slight modification to account for phase difference across the

array if all sensors are not at the same range, i.e., if the array is tilted. The inclusion of

b in the model implies that the received pressures are contained in a zero-mean Gaussian

random vector.
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2.2.2 Modal Propagation in a Range-Dependent Waveguide

As previously indicated, models of range-dependent channels typically consist of a cascade

of range-independent sections. A partial separation of variables solution leads to a set

of mode depth functions and horizontal wavenumbers for each section. Regardless of the

range-dependence of the waveguide, the signal at a receiving array may be written as a

weighted sum of the "local" modes, i.e.,

p = bEPx

where E is a matrix of sampled modeshapes for the segment containing the receiver. As

defined in Section 2.2.1, and x represent the inherent phase uncertainty and the initial

modal excitation, respectively. Modifications to the matrix P account for the range depen-

dent nature of the propagation.

In general, range dependencies in a channel lead to transfers of energy among the modes.

As a result of this coupling, P is no longer a diagonal matrix. Full coupled mode theory

usually requires numerical solution of the range equations for each segment in order to

obtain the coupling parameters.

For mildly range-dependent environments, however, the adiabatic approximation leads

to an analytically-tractable range solution. Adiabatic normal mode theory assumes that the

range dependence is gradual enough that an individual propagating mode adapts with range

but does not transfer energy into the other modes. In other words, the modeshapes and

wavenumbers vary with range, but the modes do not couple or scatter into each other. The

adiabatic approach results in the following summation for the pressure at a single receiver

i e -i~r/4 eik mr,
p(r, z) = e k m (Z)O(Z) (2.11)

p(zs>v/8r m s krn-mr

where the range-averaged wavenumber is defined as

km = 1 km(r')dr', (2.12)

and /bm(z) and q3ra(Z) represent the modeshapes at the source and receiver locations, respec-

tively. The km(r') are the horizontal wavenumbers for each range segment in the channel.
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For an adiabatic model, the P matrix is the same as in Equation 2.9 provided that the

range-averaged wavenumber km is substituted for km.

2.2.3 Modal Propagation in a Random Waveguide

The models discussed in the previous sections assume that the ocean is a deterministic

medium, however experimental evidence indicates the presence of internal wave fields which

can perturb the local sound speed profile. These perturbations introduce fluctuations in

acoustic signals which can be simulated using stochastic propagation models. The literature

contains many references to wave propagation in random media. In particular, Dozier and

Tappert have presented a statistical theory of modal propagation in a random ocean [15, 16].

Baggeroer and Kuperman propose a paradigm for matched field processing in a stochastic

channel [17].

The framework of Equation 2.6 still applies for a random ocean, provided that the

definitions of b and P are modified accordingly. The propagation term P becomes a matrix

of zero-mean Gaussian random variables. The zero-mean and Gaussian assumptions again

reflect the phase uncertainty inherent in the signal processing. The source scaling term, b,

is a constant that is retained for consistency with the models described in the two previous

sections (b[ 2 = a 2). For the random case a channel is specified in terms of the second order

statistics of the modal excitation, i.e., £ {PxxtPt}.

Baggeroer and Kuperman offer several examples of random channels [17]. The one that

is relevant for later examples in this thesis corresponds to an adiabatic channel with internal

waves. For this channel the second order statistics are shown below

£ {PxxtPt} (1 - 'y)diag [xoxt] + xoxt where O < y < 1. (2.13)

The operator diag indicates that only the diagonal terms are used; the off-diagonals are set

to zero. The vector x represents the modal amplitude at the receiver for a deterministic

adiabatic channel. Coherence of the signal is determined by the parameter -y. When y is

equal to 1, the modes are phase locked; the propagation characteristics correspond to those

of a deterministic adiabatic channel. At the other extreme, when -y is equal to 0, the modes

are phase random; this implies a totally incoherent signal. The structure in Equation 2.13

ensures that there is no energy exchanged among the modes, hence the adiabatic assumption
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is satisfied.

2.3 Problem Formulation

As indicated in Chapter 1, the average power in the normal modes provides valuable in-

formation about the propagation environment. The objective of the algorithms discussed

in this thesis is to estimate the power in each mode given a set of pressure measurements

from an array of sensors. Since high order modes are less energetic at long ranges and can

be resolved temporally, subsequent discussions focus on estimating the power spectrum of

the low order modes.

Regardless of the characteristics of the waveguide, the signal measured by a receiver

may be written as a weighted sum of the local modes

p = Ea (2.14)

where E is a matrix of local modeshapes and a is a vector of coefficients associated with

the modes. The vector a contains the relative levels of each mode, as determined by the

initial source excitation and the propagation characteristics of the medium, i.e.,

a = Px. (2.15)

From the definitions of b, P, and x used in each of the previous sections, a is a zero-mean,

Gaussian random vector with the M x M correlation matrix SM defined below,

SM = {aat} = £ { b2PxxtPt} = u2f {pxxtPt} (2.16)

The diagonal terms of SM are the average powers in the modes and the off-diagonal terms

indicate correlation among the modes. Clearly the propagation environment, represented by

P, determines the structure of the mode correlation matrix. In general SM is an arbitrary

positive semi-definite M x M matrix, but two special cases are worth mentioning.

Coherent Modes

Recall from Chapter 1 that a signal is coherent when phase variations affecting one mode

24



do not occur independently of phase variations for any other mode. Deterministic, time-

invariant channels are always coherent; random or time-varying channels may or may not

be coherent depending on the statistics of the propagation matrix P. Most matched field

processing (MFP) algorithms rely on coherent signal models to generate replica vectors.

Coherency is a reasonable assumption for transmission over moderate distances within an

ocean basin. For example, Polcari has shown that the Arctic Ocean is a stable, highly

coherent channel [9].

When the modes are perfectly correlated, the SM matrix has rank 1 (only one non-zero

eigenvalue). As a result, two parameters completely specify the correlation structure, i.e.,

= PT [aTafl. *(2.17)

PT represents the total power in the signal and aT is a normalized (ataT = 1) vector

containing the relative modal power distribution. Note that PT is the non-zero eigenvalue

of SM and aT is the corresponding eigenvector. This formulation is useful in analyzing the

coherent mode estimators developed in Chapter 4.

Incoherent Modes

A signal is totally incoherent when the modes are phase random with respect to one an-

other. For example, data taken with one of the HIFT vertical line arrays indicates that

a signal which was transmitted over an 18,000 km path consisted of an incoherent sum of

modes [6]. Phase coherence of the normal modes is an aspect of global propation that is

not well-understood. Signal randomization is more often considered in the context of rays.

Theory predicts that signals traveling along different ray paths are uncorrelated at long

ranges. Brekhovskikh and Lysanov [10] provide a useful discussion of this topic.

Incoherent modes are uncorrelated, thus SM is a diagonal matrix,

2(a2) 0 ... 0

SM = 0 (a2) (2.18)
0: . " , 0

0 ... 0 9(a)

Note that for an incoherent signal containing M modes, the mode correlation matrix has

25



rank M.

The goal of this thesis is to investigate new methods for estimating the modal power

distribution from sound pressure measurements made with a vertical line array. In a realistic

ocean environment, the measured pressure consists of the modal signal plus noise

p = Ea+ n. (2.19)

The signal and the noise are independent vector random processes, therefore a statistical

description of the received field is useful. The modal signal is a zero-mean process with

covarinace

Ss = E {EaatEt} = ESMEt. (2.20)

Ambient noise in the waveguide is assumed to be zero-mean with covariance SN. The

structure of SN is discussed in Section 2.4.1. The above assumptions imply that p is a

zero-mean random vector with the covariance given below

S = SS + SN. (2.21)

S is an N x N matrix referred to as the sensor covariance matrix. The algorithms described

in the remaining chapters attempt to extract the average modal powers (diagonal terms

of SM) from the pressure field characterized by S. In the case of a partially incoherent or

random channel, the off-diagonal of SM terms contain valuable information, but a thorough

study of their estimation is beyond the scope of this thesis.

2.4 Important Considerations in Modal Array Processing

The purpose of this section is to highlight important signal processing issues that arise in us-

ing vertical line arrays to sample modal fields. Later chapters characterize the performance

of estimators in terms of the four criteria discussed below.

26



2.4.1 Ambient Noise

Ambient noise in the waveguide is described by SN, the noise covariance among the array

elements at a specific frequency. Ocean noise can be divided into three general categories:

1. Sensor noise: Spatially-correlated noise with the covariance matrix Sw = c2, I where I

is the identity matrix. The sensor noise level cr2 may depend on the source frequency.

2. Distributed noise: Correlated noise with the covariance matrix Sc whose structure

is determined by the propagation environment. One example of distributed noise is

surface-generated noise.

3. Discrete noise sources: Noise sources that have signal-like qualities and contribute

to the far-field effects that are described by the discrete modes. The covariance of

discrete noise is denoted by

SD = EddtEt (2.22)

where d is the vector of mode amplitudes for the discrete noise source.

The total noise covariance is

SN = SW + SC + SD (2.23)

Since the propagation environment is inhomogeneous in the vertical, the signal-to-noise

ratio (SNR) differs from sensor to sensor on the array. It is sometimes convenient to define

the SNR at the input to an N-element array as the geometric mean of the SNR's at each

array element i.e.,

SNR = [(SNR1 )(SNR 2)... (SNRN)]k (2.24)

or in dB
1 N

SNR= H 10 log 10 (SNRnZ) (2.25)
n=1

In a homogeneous environment where the SNR is identical at all elements, the above equa-

tion reduces to

SNR = 10 log 10(SNRn) (2.26)

Chapter 1 notes the prevalence of low SNR environments in global propagation studies.

For example, input SNR's (before pre-processing) for the HIFT Monterey vertical line array

were approximately -10 to -15 dB on a single hydrophone [18]. Since low SNR's can adversely
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affect performance, it is important to consider the impact of noise on mode estimation

algorithms.

2.4.2 Modal Orthogonality

The second major issue in modal estimation concerns the array's ability to sample the

pressure field. In principle, a filled array which spans the water column can resolve a

complete set of orthonormal modes. In practice however, arrays consist of discrete elements

spanning a limited aperture. As a result, the sampled mode shapes may not be orthogonal,

even though the true modes form a CON set. Realistically, an array can spatially resolve

only that finite set of modes which are adequately sampled by its sensors.

One way of measuring the orthogonality of the sampled modes is to examine the mode-

shape correlation matrix EtE. If the sampled modes are orthogonal, this matrix is diagonal.

(For the purpose of this thesis, it is convenient to assume that the modeshapes are scaled

equally such that orthogonal modes correspond to an EIE matrix that is a mulitple of the

identity matrix. This assumption simplifies bookeeping somewhat, but is not a necessary

condition for orthogonality.) If the sampled modes are not orthogonal, the matrix contains

non-zero off-diagonal terms which represent the "cross-talk" between the modes. As an

example, consider sampling the deep water environment with an array. The array geometry

described below is used for numerical examples in the rest of the thesis.

Simulation Array

The array consists of 40 elements with 35 meter sensor spacing and spans almost 1400

meters. Figure 2-5 shows the first 10 modeshapes in relation to the position of the array.

The top sensor is located at a depth of 475m, resulting in 40 percent of the elements being

positioned above the channel axis. The array is designed to adequately sample the first 10

modes.

Figure 2-6 is a plot of the modeshape correlation using the first 16 modes of the wave-

guide for the 70 Hz frequency band. The plot shows the elements of the correlation matrix

on a log scale (10 log1 0 EtE), normalized such that the maximum element corresponds to

0 dB. Note that above mode 11, the off-diagonal terms become significant. This is expected

since the array is designed to sample the lowest 10 modes.

One useful scalar measure of orthogonality is the effective degrees of freedom of the
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Figure 2-5: Simulation array for the deep water waveguide

modeshape correlation matrix, defined as

DOFeff = (t4 i)(2.27)

where the ,U are the eigenvalues of EtE. DOFeff is identically equal to 1 when M = 1,

i.e., when only one mode is included in E. For M > 1, the effective degrees of freedom

is a measure of how many linearly independent vectors are contained in E. If the modes

are orthogonal, then the number of effective degrees of freedom is approximately equal to

M. As the modes lose orthogonality, DOFeff decreases. The plot in Figure 2-7 shows the

effective degrees of freedom vs. number of modes included in E. The dashed line corresponds

to DOFeff for an ideal filled array that completely spans the water column. The solid line

represents the degrees of freedom for the simulation array. Based on the figure, the array

samples at least the first 11 modes adequately, but begins to lose degrees of freedom when

12 or more modes are included. Note that DOFeff is a useful measure of orthogonality for

the lowest order modes. Due to aliasing, if only a subset of higher order modes are included

in E, then the degrees of freedom measurement might be misleading.

The location of the array and the spacing of the sensors determines the orthogonality

of the sampled modeshapes. The number of modes which can be accurately estimated by

an array is limited by the orthogonality, but is also influenced by the estimation method.

Determining the number of modes to estimate is usually an ad hoc procedure. Analysis of

estimation algorithms must address this issue.
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Figure 2-6: Modeshape correlation for the deep water waveguide

2.4.3 Estimation of the Covariance Matrix

Many mode estimation algorithms require the sensor covariance matrix S which contains

the second order statistics of the sound field. In practice this matrix must be estimated from

the vector time series of pressure measurements taken by the array. The sample covariance

is defined as the average of outer products of the data snapshots,

l t
S : = L iE pip- (2.28)
i=1

If the field is zero-mean, then S is an unbiased estimate of the true covariance. In addition,

if the field is Gaussian (e.g., the model defined in Section 2.3), then Equation 2.28 generates

a maximum likelihood estimate of the covariance [19]. The statistics of the sensor covariance

estimate are important, especially for adaptive array processing. Goodman has shown that

the sample covariance follows a complex Wishart distribution of order N with L degrees of

freedom, where N is the number of sensors and L is the number of data snapshots [20]. Many

multivariate statistics textbooks, such as the one by Muirhead [21], discuss the Wishart

distribution and its relation to the sample covariance. Steinhardt [19] provides an excellent

review of the subject with a focus on array processing applications. The properties of
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Figure 2-7: Degrees of freedom for the simulation array

the complex Wishart distribution can be used to derive analytical results concerning the

statistics of estimates. For example, Capon and Goodman have demonstrated that using

a finite number of snapshots in the average leads to bias in algorithms which require the

inverse of the sample covariance matrix [22]. Many adaptive algorithms are affected by the

number of snapshots used to estimate the covariance. The analysis in the later chapters

evaluates the performance of estimators with respect to the number of data snapshots

available.

2.4.4 Signal Coherence

Signal coherence is another major issue to consider. As discussed in Section 2.3, coherent

modes lead to a rank one signal covariance matrix Ss. As coherence is lost, the rank of Ss

increases. Many adaptive algorithms, e.g., those used in matched field processing, exploit

the coherence of signals in order to accurately estimate the desired parameters. Since mode

coherence is not guaranteed at long ranges, it is important to analyze the effects of coherence

on modal estimation strategies.
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2.4.5 Performance Measures

This section defines several empirical measures of performance which are useful in analyzing

the issues presented in the preceding sections. Since the thesis is primarily concerned with

estimating the average powers in the modes, an error vector is defined as follows

e = diag { SM-SM|} . (2.29)

A hat distinguishes the estimated mode correlation from its true value. The diag operator

indicates that the vector consists of the diagonal elements of the error matrix.

Mode estimates are random variables, thus the error statistics are useful performance

measures. The expected error or bias indicates how close the estimates are to the actual

parameters on average. Error variance provides a measure of the spread of an estimate

around its mean. Note that the error variance is equal to the variance of the estimate. Low

variance is a desirable characteristic for an estimator. The Cramer-Rao bound provides a

useful lower bound on the variance of an unbiased estimate [23]. Derivation of this limit

requires only a knowledge of the conditional probability density of the observations given

the true parameters. The bound on the variance of the average power estimates is expressed

in terms of the elements of the Fisher information matrix J, e.g., for the ith mode power

estimate

var {[§M]iij} > [J']ii. (2.30)

The Fisher information matrix for the mode power estimation problem is derived in Ap-

pendix A. Therrien notes that a correction to the bound is available for the case of a biased

estimator [23]. The correction term involves the gradient of the bias with respect to the

desired parameter vector. Thus, the correction is unnecessary if the bias is due to noise

which is independent of the modal signal.

Sometimes a scalar measure of the error is useful. The total error is defined as the trace

of the error matrix, i.e.,

Total Error = TR {SM-SM }. (2.31)
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2.5 Summary

This chapter has presented a general mathematical model for mode propagation in an ocean

waveguide. Both deterministic and random channels fit into the same framework, provided

that the propagation parameters are specified appropriately. Section 2.3 has defined the

acoustic mode estimation problem in an array processing context. The final section has

outlined important issues which will be used in the performance analysis of the estimators

developed in the following chapters. In addition this chapter has described a deep water

environment and an array geometry for numerical simulations.
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Chapter 3

Least Squares Methods

The previous two chapters have motivated and defined the modal estimation problem. In

particular, Chapter 2 developed the necessary background and stressed the importance of

different aspects of the signal processing. The purpose of this chapter is to review standard

methods for estimating the modal powers.

In theory the orthogonality of the normal modes permits the use of spatial matched fil-

ters. For example, Ferris [24] determines the weight associated with each mode by "match-

ing" the received signal to the sampled modeshape. This method relies on the orthogonality

of the sampled modeshapes, which is not always a valid assumption in practice. Recall from

Chapter 2 that the orthogonality of the modes depends on the sensor spacing and position

of the array. Since logistics and funding often limit the number of sensors that can be

deployed, the desired modes are not always orthogonal. If the sampled modeshapes are not

orthogonal, power from one mode can leak into estimates of the adjacent modes. Conven-

tional approaches often apply Least Squares (LS) estimation theory to reduce the effects of

non-orthogonal modeshapes. LS techniques compute a set of weights which minimize the

total squared error between the measured and estimated modal fields.

Many researchers have addressed the problem of estimating the modes in an acoustic

signal. Clay was the first to recognize the important link between the modal decomposition

and array processing [25]. Hinich developed a maximum likelihood method for depth local-

ization using the normal modes [26]. Since that time, a class of matched field processing

algorithms based on normal mode theory has been developed. A survey of the current lit-

erature indicates that Matched Mode Processing (MMP) applications generate most of the
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mode estimation research [2, 3, 4, 27]. All of the standard estimation techniques used for

MMP are based on minimizing a squared error criterion. A review article by Voronovich et.

al. compares five modal estimators using numerical simulations and experimental data [8].

Two recent theses have addressed the modal estimation problem. Polcari provides a thor-

ough overview of conventional modal beamforming, including a practical application to a

coherent Arctic channel [9]. Sperry discusses the use of least squares modal filtering in the

context of a long-range propagation experiment [28].

This chapter is organized as follows. Section 3.1 develops the standard least squares

estimator and analyzes it using a few numerical examples. The performance evaluation ad-

dresses the main issues outlined in Chapter 2: ambient noise, mode orthogonality, estimated

covariances, and signal coherence. Finally, Section 3.2 summarizes the characteristics of the

LS estimator, thereby motivating the search for a new approach.

3.1 Standard Least Squares

Standard modal estimation algorithms produce time series using a least squares approach to

generate the mode amplitudes for each data snaphsot. For a single pressure vector p, the LS

technique minimizes a squared error criterion in order to estimate the mode amplitudes, i.e.,

alsi = min Ip - Eaj 2 . (3.1)

This method implicitly assumes that the received pressure consists only of the modal sig-

nal Ea and ignores the noise components. The minimization problem stated above has a

well-known solution [29, 30, 31],

i= (EtE)-lEtp. (3.2)

Consider the case where the received pressure consists of the modal signal only. It is trivial

to show that ais is equal to the true mode amplitudes, provided that (EtE)-1 exists and

the number of modes in the estimate is greater than the number of modes in the signal.

Now suppose that additive noise corrupts the pressure measurements. The linearity of the

LS processor implies that the noise corrupts the resulting mode estimates as well. For

least squares methods to be effective, the SNR must be high enough so that the signal
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components dominate the noise.

Note that if the modes are orthogonal then (EtE)- 1 is a multiple of the identity matrix,

and the least squares solution corresponds to Ferris' matched filtering approach. If the

modes are not orthogonal, then the inverse in Equation 3.2 is usually computed using the

Singular Value Decomposition (SVD).

Recall that the desired parameters to estimate are the average powers in the modes, i.e.,

the diagonal terms of the modal correlation matrix. Polcari [9] suggests that the second

order modal statistics, can be obtained from the time series as an average of outer products

1 L ala
SMLS = L a (3.3)

i=1

where L is the number of data snapshots available. Since the least squares processor is

linear, Equation 3.3 is obviously equivalent to

SMLS = (EtE)-Et { LEPiP/ E(EtE)-l = (EtE)-'Et9E(EtE)-1 (3.4)

where S is the estimated sensor covariance matrix.

The following example illustrates the basic characteristics of the least squares estimator.

Subsequent sections examine specific aspects of the estimator's performance in more detail.

Deep Water Example

The simulation environment is the deep water waveguide described in Chapter 2. Figure 2-

4 shows the modeshapes for the 70 Hz narrowband source used in the following examples.

It is convenient to define a standard test signal for use throughout the thesis. The signal

consists of a coherent sum of the lowest 8 modes: the odd modes (1, 3, 5, 7) are excited at

a reference level of 0 dB and the even modes (2, 4, 6, 8) are excited at -10 dB. Modes 9 and

higher are not present in the signal.' Additive noise in the environment consists of white

sensor noise only. The power level of the white noise controls the effective signal-to-noise

ratio for each example. As defined in Section 2.4.1, the input SNR is the geometric mean

of the SNR's at each sensor in the array. The 40-element simulation array, described in

'Parameters of the test signal are somewhat arbitrary. The alternating pattern in the first 8 modes is for
visualization purposes. The absence of modes 9 and higher is useful in determining how well the processing
handles nulls in the modal power spectrum.
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Section 2.4.2, samples the water column. Least squares processing attempts to resolve the

power in the first 10 modes of the waveguide.

First consider the case where the sensor covariance is known exactly and does not have

to be estimated from snapshot data. While this is clearly not a practical assumption, the

ideal covariance case indicates the best possible performance of the estimator. Figure 3-1

shows the ideal LS estimates of the power in the first 10 modes for three different signal-

to-noise ratios: 10 dB, 0 dB, and -10 dB. Circles denote the true power distribution and
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Figure 3-1: Least squares power estimates for the deep water example

asterisks represent the LS mode estimates. The dashed line which interpolates the LS results

is for viewing purposes; the estimate only exists for integer mode numbers. The top plot
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shows the estimates for the 10 dB SNR case. The alternating pattern of the distribution

for modes 1-8 is clear, and the estimates of the null modes (9 and 10) are more than 20 dB

down from the reference level. In the 0 dB SNR case (middle plot) the LS estimates for

modes 1-8 are biased, with errors more pronounced in the lower power modes. Ideally the

estimator should show nulls in the spectrum for modes 9 and 10, but at 0 dB SNR the LS

estimate of these modes is on the order of -10 dB (the level of the even modes). Bias errors

are the most severe in the -10 dB SNR case where the LS processor indicates that modes 9

and 10 are almost as energetic as the rest of the modes.

In order to understand the behavior shown in Figure 3-1, consider analytical results for

the ideal least squares estimate. For a model including a signal plus white sensor noise, the

sensor covariance S is given below

S = EtSME + a2 I. (3.5)

Assuming that the number of modes in the estimate is greater than or equal to the number

of modes in the signal, the ideal least squares estimate, becomes2

SMLS = SM + c2 (EtE)- 1. (3.6)

According to Eq. 3.6, the power in each mode is biased by a constant term which depends

on the white noise level and the inverse of the modeshape correlation matrix. If the modes

are orthogonal and scaled equally, then (EtE)- ' is a multiple of the identity matrix and all

modes are biased by the same amount. As orthogonality is lost due to inadequate sampling,

the processor may bias some modes more than others.

Figure 3-2 shows the error in the LS power estimates for the deep water example. Recall

from Equation 2.29 that the error vector e is defined as the absolute value of the differences

in the true powers and the estimated powers. The three plots show the errors on a log

scale (10 log10 ei) for the SNR levels used in the deep water example. As expected, errors

increase as SNR decreases. The plots reveal that the bias is roughly constant across the

modes. This is reasonable since the array adequately samples the first 10 modes (see the

2 Notation: In the rest of the thesis a hat is used to distinguish sample covariance results from ideal

covariance results, e.g., SMLS represents the ideal LS estimate of the mode correlation matrix and SM-LS is

the corresponding sample covariance estimate.

38



SNR: 10.0 dB

1 ~ ~~ ~~~~ 2 3 4 I 
_1 2 3 4 5 6

Mode Number

SNR: 0.0 dB

1 2 3 4 5 6
Mode Number

SNR: -10.0 dB

1 2 3 4 5 6
Mode Number

7 8 9 10

7 8 9 10

7 8 9 10

Figure 3-2: Error in least squares power estimates for the deep water example

discussion in Section 2.4.2).

Several factors influence the error in the least squares estimate. The purpose of the

following sections is to consider each of these factors separately. The next section describes

the error as a function of the noise. Section 3.1.2 focuses on mode orthogonality and deter-

mination of the number of modes to estimate. Next, Section 3.1.3 examines the practical

issues associated with estimating the sensor covariance matrix from the data. Finally, Sec-

tion 3.1.4 addresses the issue of signal coherence.

3.1.1 Ambient Noise

An important aspect of the performance evaluation is to examine the effects of noise on

the modal power estimates. Least squares techniques minimize the squared error without

regard to the ambient noise conditions. As a result, the LS processor relies on the powers

associated with the modal signal being larger than the noise components in order to generate
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accurate estimates.

Based on Equation 3.6, the error in mode j is proportional to the white noise power, i.e.,

ej = , [(EtE)-l] (3.7)

According to Equation 3.7, the error is a linear function of the noise power and is indepen-

dent of the true power in the mode. Consider an example. The parameters are identical to

the deep water scenario described above with the exception that the white noise power is

adjusted so that the SNR varies from -20 dB to 20 dB.3 Figure 3-3 shows the log of the error

versus SNR for modes 1, 2, and 10. The plots indicate that the error is a linear function

of the SNR which verifies that the error is also linear function of the noise power. Note

Mode 1 Mode 2 Mode 10
IV

0 \

- \ \

L-20 "2

-30 \

Iu

0
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-30
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-20
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-20 0 20 -20 0 20 -20 0 20
SNR (dB) SNR (dB) SNR (dB)

Figure 3-3: Error vs. SNR for modes 1, 2, and 10 of the deep water waveguide. Ambient
noise consists of white sensor noise only.

that the errors for all three modes appear to be identical. This is expected since the array

adequately samples 10 modes, therefore [(EtE)- '] is approximately constant for all j.
JJ

The effect of non-orthogonal sampled modeshapes is discussed in the next section.

Consider the case where a discrete noise source with the same narrowband frequency

as the signal is added to the environment. The noise source is uncorrelated with the signal

and has a modal correlation matrix, SMD. In this case the LS estimate of the correlation

becomes

SMLS = SM + SMD + a2 (EtE)- 1, (3.8)
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leading to the following expression for the error in mode j

ej = [SM+1jj + u, [(EtE)1]... (3.9)

A powerful discrete source can overwhelm the true signal, resulting in large errors. The

least squares processor is clearly incapable of resolving multiple discrete sources.

3.1.2 Modal Orthogonality

For a fixed noise level, the main issue to consider is the number of modes which can be reli-

ably estimated using the least squares technique. Based on the discussion in Section 2.4.2,

the orthogonality of the sampled modeshapes directly affects the accuracy of the estimate.

The [(EtE)-I]jj term in Equation 3.7 contains the effects of modal orthogonality on the LS

error. If the modes are perfectly orthogonal, then EtE is a multiple of the identity matrix

and the resulting error is constant. If the sampled modeshapes are not orthogonal, then

EtE is not a multiple of the identity and the error is a function of the mode number j. As

more non-orthogonal modes are included in the estimate, EtE approaches rank deficiency

and the errors increase. In the limit as EtE becomes singular (i.e., has a zero eigenvalue),

the error becomes unbounded. Recall that the effective degrees of freedom (DOFeff) is

often a useful measure of the orthogonality of the sampled modeshapes.

As an extreme example, consider using the simulation array to estimate the power levels

in the lowest 16 modes of the deep water waveguide. Figure 2-7 indicates that there are only

14 effective degrees of freedom for the 16-mode case; clearly the sampled modeshapes are

not orthogonal. Assume that the input signal consists of an alternating pattern of the first

16 modes: the odd modes are excited at 0 dB and the even modes are excited at -10 dB.

The white noise level is fixed so that the average SNR is 0 dB. Ideal covariance matrices

are used in the simulation. Figure 3-4 shows the resulting error vector (10 logl 0 ej) for the

16-mode estimate. The error curve is constant at around -10 dB for the low order modes,

but increases dramatically above mode 9. This is due to the fact that the higher order

modes are not adequately sampled by the array. Based on this simulation the errors in

the higher order modes are significant when EtE has lost 2 degrees of freedom. The next

example examines how the error varies as a function of the number of modes included in

the estimate.
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Figure 3-4: Error vector for the 16-mode example using the deep water waveguide

The parameters of this example are identical to the first deep water example used in

this chapter, i.e., the test signal consists of the lowest 8 modes in an alternating 0/-10 dB

pattern. The number of modes to estimate is varied from 8 (the number of modes in

the signal) up to 16. A useful scalar measure of performance is the total error defined in

Chapter 2, e.g. for the LS estimator,

Total Error = TR { SIMS - SM|}. (3.10)

If the modes are orthogonal and scaled equally, then the modeshape correlation matrix is

a multiple of the identity matrix, i.e., EtE = S3I. Under these assumptions the total error

(using equations 3.6 and 3.10) is shown below 2

Total Error-th = M* - (3.11)
·

where M is the number of modes estimated. In other words given a set of orthogonal sampled

modeshapes, the total error is a linear function of M.4 In the case of non-orthogonal modes,

the total error should exceed the amount in Eq. 3.11. Figure 3-5 verifies this assertion. The

plot shows the total error vs. number of modes to estimate. The solid line is the total error

associated with a set of perfectly orthogonal modes. The asterisks represent the actual

total error (using ideal covariances) for the modes of the deep water waveguide which are

sampled using the 40-element simulation array.

4This argument implicitly assumes that M is greater than or equal to the number of modes actually
present in the signal.

42



SNR: 0.0 dB
0

5

4

3

m 2

LM 

0
.- 0-o

-1

-2

-3

-A
7 8 9 10 11 12 13 14 15 16 17

Number of Modes to Estimate

Figure 3-5: Total error vs. number of modes to estimate for the deep water example

A comparison of Figures 2-7 and 3-5 reveals that DOFeff is a useful measure of the

number of lower order modes that can be accurately estimated using a particular array

configuration. As the effective degrees of freedom deviate from the ideal, the total error in

the estimate grows. Note that the errors increase rapidly once a whole degree of freedom is

lost. The solution to this problem is to include only an approximately orthogonal subset of

modes in the estimate. Of course, if the higher order modes (which are not being estimated)

are present in the signal, the power from those modes biases the results.

Consider the difficulty of estimating a set of modes which is larger than the subset

adequately sampled by the array. There are several ways to address this problem. One

method is to use diagonal loading to stabilize the matrix inverse. The geophysical literature

refers to this general approach as damped least squares. See the texts by Menke [30] or Aki

and Richards [31] for more details. Sperry discusses the use of damped least squares in the

specific context of an acoustic mode estimation problem [28]. A second approach to the

problem is to use the subspace reduction method suggested by Yang [4]. The comparative

study by Voronovich et. al. [8] includes both of these methods.
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3.1.3 Estimated Covariance Issues

The preceding examples have used an ideal sensor covariance to compute the estimates,

but in practice the LS processor uses the sample covariance matrix, S. As a result the

modal power estimates are random variables that can be characterized by their second order

statistics. Appendix B derives the mean and variance of the least squares power estimates

using known characteristics of the sample covariance matrix. Results are summarized below.

Assuming zero-mean data, S is an unbiased estimate of S, therefore the expected value

of the LS estimate is equal to the ideal covariance result. For the case of only white noise,

the expected power in mode j can be written

& {Ej s} }-Pj i s = P, + ot [(EtE)1]jj (3.12)

where Pj is the true power in the mode. Note that the least squares bias depends only on

the white noise level and is unaffected by the number of data snapshots available.

It can be shown that the power estimate for each mode is a scaled chi-squared random

variable with L degrees of freedom, where L is the number of snaphsots used to form the

sample covariance matrix. Using this fact, the variance for the power estimate for mode j

becomes

Va~r I jl}= L (3.13)

The variance is inversely proportional to the number of snapshots. According to Sec-

tion 2.4.5 and Appendix A, the Cramer Rao bound has the same 1/L dependence.

Based on Equations 3.12 and 3.13, it is possible to predict bias and variance for the

least squares estimates. The following example contrasts the predictions with the results of

a Monte Carlo simulation. The parameters of the simulation are identical to the deep water

example using the test signal. Each data point is the result of averaging over 1000 indepen-

dent trials. Figure 3-6 shows the error vs. the number of snapshots for mode 1. Predicted

error is shown along with the Monte Carlo results. The error is constant (associated with

the white noise bias) as predicted by Eq. 3.12. Figure 3-7 shows the estimator variance

vs. number of snapshots. The predicted and Monte Carlo values are shown, along with the

Cramer Rao bound (calculated in Appendix A). Both the predicted and Monte Carlo values

basically agree with the Cramer Rao bound, meaning that the estimate is approximately
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Figure 3-6: Bias error vs. number of snapshots for mode 1. Predicted and Monte Carlo
results for the LS estimator are shown.

efficient.

3.1.4 Signal Coherence

A useful property of the least squares formulation is that it does not depend on the corre-

lation structure of the incident signal. For any SM, the expected value of SMLS is always

equal to the true correlation matrix plus a noise term. Thus, the error remains constant as

a function of coherence, provided that all other signal parameters are fixed. Since channel

characteristics are not always available a priori, this is clearly an advantage of the least

squares processor.

3.2 Summary

This chapter has reviewed conventional mode estimation algorithms, in particular the stan-

dard least squares processor. The primary drawback of the LS estimator is that it relies

on the acoustic signal being much louder than the ambient noise. This is not always the

case in practice, especially for long-range experiments. In addition the orthogonality of

the sampled modeshapes significantly affects the accuracy of the estimates. It was shown

that the effective degrees of freedom in the modeshape correlation matrix is a useful mea-

sure of orthogonality. The LS estimator does have two advantages: it is relatively easy to

implement and a priori knowledge of the coherence structure is not necessary.
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Figure 3-7: Variance vs. number of snapshots for mode 1. Predicted and Monte Carlo
results for the LS estimator are shown along with the Cramer Rao bound.
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Chapter 4

Adaptive Estimation of Coherent

Modes

As demonstrated in the previous chapter, the orthogonality of the sampled mode shapes

and the signal-to-noise ratio strongly influence the performance of modal estimators. The

methods discussed in Chapter 3 are based on minimizing a squared error criterion. Least

squares methods perform poorly when the sampled modes are not orthogonal and the SNR

is low. In this chapter an alternative modal estimation technique is introduced which

maximizes received signal power rather than minimizing a squared error criterion. The

following discussion focuses on the coherent mode case. Chapter 5 presents an extension of

these techniques to a more general family of signals.

The purpose of this chapter is to develop methods for estimating the power distribution

in a spatial signal consisting of a coherent sum of modes. Power spectral estimation is a

well-known problem which is addressed in numerous reference texts [32, 33, 23, 34]. In

particular, Johnson and Dudgeon provide a good introduction to the estimation of spatial

power spectra using arrays [34]. There are three basic approaches to this array processing

problem. Conventional methods apply deterministic weightings to the data vectors to form

spectral estimates. These deterministic weight vectors do not change to account for different

noise backgrounds. A second category of spectral estimators is data-adaptive because the

algorithms use weight vectors which are derived from the statistics of the incident field. An

example of this type of algorithm is the Minimum Variance (MV) method of Capon [35].

Eigenanalysis methods such as MUltiple SIgnal Classification (MUSIC) [36] and Estimation
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of Signal Parameters Via Rotational Invariance Techniques (ESPRIT) [37] represent the

third type of estimator. These techniques rely on separating the data into signal and noise

subspaces. They are also adaptive in the sense that they use information from a model of

the field to reduce the effects of noise on the estimate.

The methods listed above have one thing in common. They all assume that the spatial

structure of the received signal is known, e.g., a planewave. For this research the planewave

assumption is not valid. Instead, the received signal consists of a weighted coherent sum of

modes. The weights indicate the relative distribution of power among the normal modes.

According to Section 2.3, the coherent mode estimation problem involves determining pa-

rameter estimates for the signal power, PT, and the relative modal distribution, aT. One

reasonable method for determining an estimate for aT is to choose the distribution which

maximizes the received power. This is equivalent to doing direction-finding with an array

of sensors by locating the peaks in the power spectrum.

Locating the spectral peak involves solving a multidimensional optimization problem.

The straightforward method of computing the spectrum for all possible values of the dis-

tribution aT is impractical, especially when the desired number of modes to estimate is

large. Fortunately, an efficient method exists for finding the peaks in certain types of power

spectra. A recent paper describes a similar problem for direction-finding with an array of

diversely polarized antennas [38]. In this paper Ferrara and Parks compute an angle-of-

arrival spectrum by maximizing a spectrum parameterized on angle and polarization over

all possible polarizations. They note that the optimization problem reduces to an eigenvalue

problem which is relatively easy to solve. A similar method solves the optimization problem

for modal estimation.

This chapter develops two modal estimators based on the minimum variance and MUSIC

formulations considered by Ferrara and Parks. The following section contains the derivation

and analysis for the minimum variance estimator. Section 4.2 presents the MUSIC modal

estimator. The performance analysis for each algorithm addresses the four main issues

outlined in Chapter 2: ambient noise, mode orthogonality, estimated covariance, and signal

coherence. The numerical examples used are consistent with those in Chapter 3 to permit

a comparative study of the algorithms.
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4.1 Minimum Variance Modal Estimator

The minimum variance processor is the result of a constrained optimization problem. The

output of the processor is computed as a weighted linear combination of the received signal

at each sensor. Let g represent an ideal signal or "replica" incident on the array. The weight

vector w applied to the vector of sensor outputs p should emphasize any signal that looks

like the replica and suppress all other signals. Minimizing the output power of the processor

subject to a unity gain constraint effectively suppresses signals which do not resemble the

ideal while passing the ideal signal with unity gain. Thus the minimum variance weight

vector is the solution to the following problem

min£ {Iwtp!2} subject to {gtw} = 1 (4.1)

The weight vector is easily obtained using standard constrained optimization techniques

S-lg9
Wmv = ts 1lg. (4.2)

The output power of the minimum variance processor is given below

Pmv - 1 (4.3)

gtS-lg

The minimum variance technique is also known in the literature as Capon's method, the

Maximum Likelihood Method (MLM), or the Minimum Variance Beamformer (MVBF).

Capon introduced the minimum variance estimator in 1969. Since that time it has found

wide application in both spectral estimation (for time series data) and array processing.

The terminology associated with this estimator is often confusing since the weight vector

is not the maximum likelihood solution for any known estimation problem. When the

input signal can be characterized as a zero-mean random vector, the average output power

minimized above is the variance; hence the name minimum variance. For a rank one signal

covariance, Steinhardt [19] notes that the minimum variance weight vector also maximizes

the signal-to-noise ratio at the processor output.

Ferrara and Parks have used the minimum variance formulation to estimate an angle-of-

arrival power spectrum using an array of diversely-polarized antennas. For their algorithm
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the replica vector is a function of angle-of-arrival and the polarization parameters. They

maximize the minimum variance power spectrum over all possible polarizations to obtain

the power at each angle of interest. The optimization is done efficiently by formulating it

as an eigenvalue problem.

In mode estimation the desired parameters are the relative distribution aT, which deter-

mines the spatial structure of the received signal, and the power PT in the received signal.

These can be estimated using the Ferrara/Parks method. The relative weights of the modes

are determined by choosing the set of weights which maximize the minimum variance power

estimate. The estimate of the signal power corresponds to the maximum power. Again, the

optimization is done by solving an eigenvalue problem.

The replica vector for the modal signal in the coherent case is

g = Ea. (4.4)

where a is defined as a unit-length vector. The resulting minimum variance power spectrum

is
1

Pmv a (4.5)
atEtS'lEa(

Using the criterion suggested by Ferrara and Parks, the estimated modal distribution aMV

is chosen as the vector a which maximizes Pmv. This leads to the optimization problem

shown below

dmv = max { 'Pmv} max subject to ata= 1. (4.6)a a atEtS-lEa

The constraint eliminates the trivial solution where aMy is equal to the zero vector. Note

that iamv is an estimate of the relative weights, normalized by aimtvimv = 1; the true scaling

associated with the signal must be obtained from the power estimate. Equation 4.6 is a

well-known quadratic optimization problem [39, 40]. 1 The following eigenvalue equation

determines the stationary points of Pmv,

EtS-'Ey = vy. (4.7)

1 Most linear algebra texts discuss this problem in the context of the Rayleigh quotient. The same results

can be obtained using the concept of matrix pencils. See the development by Gantmacher [40].
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The eigenvectors, y, are normalized to have unit length. The maximum value of Pmv

corresponds to vm n and the maximizing distribution a is the eigenvector Ymin. According

to Section 2.3, these two parameters completely describe the correlation matrix for coherent

modes: (1) Pmv represents an estimate of the total power in the signal, and (2) amv contains

the relative power distribution (See Eq. 2.17). Therefore the minimum variance estimate of

SM becomes

SMMV = YminYmin (4.8)
Vmin

In order to illustrate the basic characteristics of the minimum variance modal estimator,

it is useful to revisit the first deep water example given in Chapter 3. A detailed perfor-

mance analysis for the MV method follows in Sections 4.1.1-4.1.4.

Deep Water Example

The simulation environment is the deep water waveguide that is sampled with the 40-

element vertical array described in Chapter 2. Measured pressure consists of the test signal

(defined on page 36) plus white sensor noise. Ideal sensor covariance matrices are used in

this example. The processing attempts to resolve the power in the first 10 modes. Each

plot includes the least squares results for comparison purposes.

Figure 4-1 shows the ideal MV estimates of the modal powers for three different signal-

to-noise ratios: 10 dB, 0 dB, and -10 dB. Circles denote the true power distribution which is

an alternating pattern (0 dB to -10 dB) for modes 1-8. Modes 9 and 10 are not included in

the test signal. At 10 dB SNR (top plot), the LS and MV estimates are virtually identical for

the lowest 8 modes. However, the estimates for modes 9 and 10 indicate that the minimum

variance processor has a significant advantage over least squares in maintaining nulls in the

modal power spectrum. The MV estimates for these modes are down more than 90 dB

from the reference level, while the LS estimates are down only 20 dB. For the lower SNR's

shown in the bottom two plots, the minimum variance estimator keeps the nulls although

the estimated levels increase slightly. In addition for modes 1-8, the MV processor exhibits

very little of the bias error that corrupts the LS estimate at 0 dB and -10 dB SNR.

In order to understand the behavior shown in Fig. 4-1, consider the eigenvalues and

eigenvectors of EtS-1E for the ideal covariance case. The environmental model for the

deep water example includes a coherent modal signal plus white sensor noise. In this case

51



0

-20
m

-40
3
0
o. -60

-80

SNR: 10.0dB

o TRUE
X LS
+ MV

1 2 3 4 5 6 7 8 9 10
Mode Number

SNR: 0.0 dB

o TRUE
* LS
+ MV

1 2 3 4 5 6 7 8 9 10
Mode Number

SNR: -10.0 dB

o TRUE
LS

+ MV

1 2 3 4 5 6 7 8 9 10
Mode Number

Figure 4-1: Minimum variance power estimates for the deep water example

the sensor covariance matrix is given by

S = PTEaTatEt + o2I. (4.9)

The minimum variance method requires the inverse of S which can be determined using the

Woodbury identity (or matrix inversion lemma) [41],

- - ( + ( PT/ E a ) EaTatEt]. (4.10)

aw - 1 + (PT/C2)(4EiEaT)
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Substituting Eq. 4.10 into Eq. 4.7, the MV eigenvalue problem becomes

4- [t-(1 + PT2) (4EtEaT)) EtEaTaEtE] y = vy. (4.11)

Since the general form of Eq. 4.11 does not lead to an analytically tractable solution, the

following development assumes that the sampled modeshapes are orthogonal. In this case,

the modeshape correlation matrix is a multiple of the identity matrix i.e.,2

EtE = 3I. (4.12)

This simplifying assumption permits an analytical solution which provides significant in-

sights about the minimum variance processor. For the deep water example, this assumption

is relatively justified because the 10 estimated modes are adequately sampled by the simu-

lation array (refer to Fig. 2-6). Section 4.1.2 addresses the issue of non-orthogonal modes.

Assuming that the sampled modes are orthogonal, Eq. 4.11 becomes,

I-[ ( PT/2) a, y = vy. (4.13)

From this equation it is trivial to show that aT is an eigenvector of EtS-lE with the

corresponding eigenvalue = - l+T/2 . Using the property that eigenvectors of

symmetric matrices are orthonormal, it can be shown that all other eigenvalues of EtS-1E

are equal to .-. Thus, the eigenvalue corresponding to aT is the minimum eigenvalue. This

leads to the ideal power and modal distribution estimates shown below

Pmv = vmn = PT + (4.14)

and

amv = Ymin = aT. (4.15)

The minimum variance power estimate is obviously biased due to the white noise incident

on the array. A reasonable way to eliminate this bias might be to subtract the inverse of the

maximum eigenvalue (max = a2w/3) from Pmv. In the ideal-covariance, orthogonal-mode

2This argument implicitly assumes that the modes are scaled equally. Note that is a scale factor that
depends on the number of sensors: 0 < 3 < 1.
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case, the bias correction is clearly justified. When the covariance matrix must be estimated

from snapshot data or when the modes are not orthogonal, the eigenstructure of EtS-1E

is more complicated. In these cases bias correction is not feasible. For this reason, the rest

of the MV analysis concerns the biased power estimate.

Based on Equations 4.14 and 4.15, the minimum variance estimate of the mode corre-

lation in the ideal case is3

SMMV = (PT + )aT4a = SM + aT4a- (4.16)

According to the above equation, the MV processor biases the power in each mode by a

constant term which depends on the white noise level and the true power in the mode.

As a result, modes which are not present in the signal should not be biased. The plots in

Figure 4-1 support this conclusion since the MV estimates of modes 9 and 10 show very

little bias.

Figure 4-2 shows the error in the MV power estimates for the deep water example. The

error vector e is defined as the absolute value of the differences in the true powers and the

estimated powers (see Eq. 2.29). The figure shows errors on a log scale (10 log10 ej) for the

three SNR levels used in the example. The plots reveal that the MV errors are proportional

to the true powers, as predicted by Eq. 4.16. (Recall that modes 1-8 alternate between 0 dB

and -10 dB and that modes 9 and 10 are not present.) An increase in the noise power (2),

which is reflected as a decrease in SNR, merely shifts the error curves up by a constant

amount. Note that the errors for minimum variance are always lower than the constant

errors for the least squares estimate.

Based on this example, the minimum variance estimator has several favorable charac-

teristics which merit further research. In particular, the ability of the estimator to maintain

nulls in the spectrum is especially useful in circumstances where there is little a priori

knowledge of the power distribution. The rest of this section focuses on analysis of the

MV estimator with respect to the issues outlined in Section 2.3. Each subsection draws

appropriate comparisons between the performance of the LS and MV methods.

3 Reminder: SMMV is the ideal covariance result and SM_MV is the estimated covariance result.
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Figure 4-2: Error in minimum variance power estimates for the deep water example

4.1.1 Ambient Noise

The first issue to consider in the performance evaluation is the effects of ambient noise on

the estimates. Instead of ignoring the noise, as LS algorithms do, the MV formulation uses

an adaptive method to reduce its effects.

Based on Equation 4.16, the error in mode j for the MV estimator is proportional to

the white noise power and the relative power in the mode, i.e.,

ej= - aT ] (4.17)

Note that the above expression for the error depends on the modes being orthogonal
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(i.e., EtE = ,3I). According to Equation 4.17, the MV error is a linear function of the

noise and is scaled by the true power in the mode.

Consider an example. The salient parameters are identical to the deep water environ-

ment described above with the exception that the white noise power is adjusted so that

the SNR varies from -20 dB to 20 dB. Ideal sensor covariances are used to generate the

results. Figure 4-3 shows the log of the error vs. SNR for modes 1, 2, and 10. The MV

Mode 1 Mode 2 Mode 10

0
SNR (dB) SNR (dB)

0

-50

-100

0 -20 0 20
SNR (dB)

--- LS - MV

Figure 4-3: Error vs. SNR for modes 1, 2, and 10 of the deep water waveguide. Ambient
noise consists of white sensor noise only. Both MV and LS errors are shown for the ideal
covariance case. Note that the vertical scale for mode 10 is different than for modes 1 and 2.

errors for modes 1 and 2 are linear functions of the SNR, and the error for mode 2 is lower

than for mode 1. These results agree with the predicted errors since modes and 2 are

excited at levels of 0 dB and -10 dB, respectively. Recall that mode 10 is not contained

in the test signal, therefore according to Equation 4.17 the error for mode 10 should be

zero (-co dB). While the figure indicates that the error for mode 10 is significantly lower

than the other errors, it is clearly not zero. This deviation from predicted behavior can

be attributed to the fact that the sampled modeshapes are not perfectly orthogonal. Note

that the performance of the Ferrara/Parks estimator is always better than least squares. In

the worst case (mode 1), the MV estimation error is consistently 8 dB lower than the LS

error. In the best case (mode 10), the difference in the MV and LS errors is on the order of

40 dB. (A different vertical scale is used in the error plot for mode 10.)

Recall from Chapter 3 that the least squares processor is incapable of resolving multiple

modal signals. It is worthwhile to note that the Ferrara/Parks formulation has the potential
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to estimate the powers associated with several sources. The basic idea is that multiple

discrete sources are associated with multiple peaks in the power spectrum, therefore the

modal signals can be separated. This aspect of the Ferrara/Parks processor is an interesting

area for further research.

4.1.2 Modal Orthogonality

Since the analysis of the MV algorithm depends on the orthogonality of the sampled mode-

shapes, it is imperative to clarify the number of modes that can be accurately estimated

using the Ferrara/Parks minimum variance technique.

Consider using the 40-element simulation array to estimate the average powers in the

first 16 modes of the deep water waveguide. The sampled modeshapes for these modes are

not orthogonal. One indication of the loss of orthogonality is that DOFeff is only equal

to 14 when E includes 16 modes. Assume that the input signal consists of an alternating

pattern of the first 16 modes: odd modes are excited at 0 dB and even modes excited at

-10 dB. The white noise level is fixed so that the average SNR is 0 dB for this example. The

number of data snapshots is not an issue since ideal sensor covariances are used. Figure 4-

4 shows the error vector (101 og 10 ej) for the 16-mode estimate. The loss of two degrees

SNR: 0.0 dB

O0 .... ........... ........... ........... ........... .......... ....... .. ;. -.X ...:...:.,

__ LS
+ MV

o -20
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... .... ... .... ... .... . . ... .... ... . ... .... .... . .... ...i

2 4 6 8 10 12 14 16
Mode Number

Figure 4-4: Error vector for the 16-mode example using the deep water waveguide

of freedom in EtE clearly has an effect on the results. While the MV error for modes 1-8

follows the expected alternating pattern, the errors for the higher order modes do not follow

a predictable pattern. Note that the MV estimation error is always below the LS error.

Next, consider how the error varies as a function of the number of modes included

in the estimate. The parameters of this example are identical to the first deep water
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example of this chapter, i.e., the test signal consists of the lowest 8 modes in an alternating

0/-10 dB pattern. The number of modes to estimate is varied from 8 up to 16. Recall that

a useful scalar performance measure is the total error defined in Chapter 2, e.g., for the MV

estimator

Total Error = TR{ |SM-MV -SM1 } (4.18)

Figure 4-5 shows total error vs. number of modes to estimate for two different signal-to-noise

ratios. The least squares results are shown for comparison purposes. For the 0 dB SNR

SNR: 0.0 dB

m 10

w 0

-10

LS
+ MV

7 8 9 10 11 12 13 14 15 16
Number of Modes to Estimate

SNR: -10.0 dB
20 . .. .

. . . .... ... ... ... ... ... ..... .. .... ... .. ... ... ...~~~~~m *0 -3> -3,0· LS
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(U O 0 . . . ..................... .......... ................

-10 -10 .... -........... ... .. ..... .. ... .... ... .... ... ... .... . ... ..... ... ... . . ... ....

7 8 9 10 11 12 13 14 15 16
Number of Modes to Estimate

Figure 4-5: Total error vs. number of modes to estimate for the deep water example. Two
cases are shown: the top plot displays the 0 dB SNR results and the bottom plot displays
the -10 dB SNR results.

case, the MV error is constant, implying that the loss of degrees of freedom in EtE has

little effect on this formulation. At -10 dB SNR, however, the MV error is constant until

the number of modes reaches 15 when it jumps to a value close to the LS result. Note that

for 15 modes, EtE has lost more than one degree of freedom (see Figure 2-7). From this

example it appears that low orthogonality combined with low SNR has adverse effects on

the accuracy of the MV estimates.
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It is interesting to examine what happens to the MV estimate for the 15-mode case at

-10 dB SNR. The solid line in Figure 4-6 represents the MV estimate of the powers in the

first 15 modes of the deep water waveguide. In other words, the solid line corresponds to

the eigenvector associated with the maximum peak in the MV spectrum. The dashed line

represents the eigenvector corresponding to the second highest power (i.e., second smallest

eigenvalue). It appears that the MV algorithm has essentially chosen the wrong peak since

the second eigenvector is actually a better approximation to the true modal power spectrum

(denoted by circles). Figure 4-7 is a plot of the stationary points of the MV spectrum (i.e.,

the inverse of the eigenvalues) for both 0 dB and -10 dB SNR. In the 0 dB case the second

highest power is on the order of 10 dB lower than the peak. For the -10 dB case, however,

the two highest peaks are with approximately 3 dB of each other. In theory there should be

only one peak corresponding to the signal and a set of constant values that are proportional

to the white noise. The purpose of this example is to illustrate that a combination of

low SNR and decreased orthogonality can lead to a global localization problem for the MV

estimator. Note that it is not always possible to obtain a more accurate estimate by looking

at the other eigenvectors associated with the stationary points of the power spectrum. The

eigenvalue spectrum, however, is a valuable indicator of potential localization errors. If

the stationary points show one dominant peak, then the estimator has probably located

the correct vector of relative mode amplitudes. If not, there are two possibilities. First,

the noise and decreased orthogonality are severely corrupting the estimates. One solution

to this problem is to reduce the number of modes included in the estimate. A second

possibility is that the signal is not coherent; recall that the derivation of the Ferrara/Parks

MV algorithm specifically assumes a coherent signal model. Chapter 5 proposes a method

for dealing with incoherent modes.

4.1.3 Estimated Covariance Issues

The preceding examples have used ideal sensor covariance matrices for the simulated data,

but in practice the MV processor must use the sample covariance matrix S. As a result

the MV modal power estimates are actually random variables and can be characterized by

their second order statistics. Appendix C derives the mean and variance of the MV power

estimates using known characteristics of S and the minimum variance spectral estimator.

The results are summarized below.
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An assumption is necessary in order to derive simple expressions for the bias and variance

associated with the MV estimates. Specifically, the following development assumes that the

optimization in the Ferrara/Parks formulation introduces no errors, i.e., that the estimate

of the relative modal distribution amv is correct. In this case the only errors in the MV

results are due to the power estimate Pmv. Without this simplification, the calculations are

difficult because they require a thorough analysis of the eigenvalue problem in Eq. 4.7 with

respect to estimatated covariance issues.

Consider the case of a modal signal plus white sensor noise. Based on work by Capon

and Goodman [22], the standard minimum variance power estimate has a bias associated

with the number of data snapshots. As discussed in Appendix C, a correction for the

snapshot bias is feasible. The results of this section assume that the correction has been

implemented. In this case the expected power in mode j can be written

&f{k.m} _ Pjm.mv = P + [aTal (4.19)

where Pj is the true power in mode j. As derived in the appendix, the variance for the MV

power estimate for mode j is shown below

(P A) 2

{r nv _ I N±=- +l(4.20)

L is the number of data snapshots and N is the number of array elements.

Based on these two equations, it is possible to predict bias and variance for the MV

estimates. The following example contrasts the predictions with the results of a Monte Carlo

simulation. This is useful in determining the validity of the assumption used to derive the

bias and variance. The parameters of the simulation are identical to the deep water example

using the test signal. Each data point is the result of averaging over 1000 independent

trials. Figure 4-8 shows the mode error vs. the number of snapshots. Both predicted

and Monte Carlo errors for the MV and LS processors are shown. The MV estimator is

clearly affected by the number of snapshots available to estimate the covariance. In fact

the average error in the MV estimate for mode does not fall below the LS result until

the number of data snapshots exceeds 230. Note that the predicted error for the minimum

variance estimate is constant. The difference between the predicted and Monte Carlo errors
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Figure 4-8: Bias error vs. number of snapshots for mode 1. Predicted and Monte Carlo
results are shown.

can be attributed to the fact that the estimates of the relative modal distribution (i.e., the

minimum eigenvector) improve as the estimate of the sensor covariance gets more accurate.

(Recall that the derivation of the predicted error assumes that amv is always estimated

correctly.)

Figure 4-9 shows the variance vs. number of snapshots for the MV estimator. The

predicted and Monte Carlo simulation values are shown, along with the Cramer Rao bound.

Based on Appendix A, the Cramer Rao bound on the variance goes as , whereas the

MV estimator variance is a function of L-N+1 These differences are obvious from the
L-N+l'

plot. Note that the simulation results indicate a slightly higher variance than the predicted

values. This is due to the fact that the derivation of the MV variance does not account for

the uncertainties associated with the eigenvalue problem.

62



-14

-16

-18

M -20

0

Z6-22

-24

-26

Mode 1 Variance: 0 dB SNR

100 150 200 250 300 350 400 450 500
Number of Snapshots

Figure 4-9: Variance vs. number of snapshots for the MV estimator. Predicted and Monte
Carlo simulation values are shown. The Cramer Rao bound is given for reference.

4.1.4 Signal Coherence

The derivation of the MV Ferrara/Parks processor explicitly assumes that the modal signal

is coherent. As a result, performance degrades significantly if the incident signal loses

coherence. A simple example illustrates this point.

The signal model is based on the adiabatic channel with internal waves described in

Chapter 2. The form of the mode correlation matrix is shown below

SM = (1 - y)diag [xox + Xxox o:<ŽY<l. (4.21)

Recall that the vector x0 contains the deterministic mode amplitudes and -Y is the coherence

parameter. For -y = 0 the signal consists of a totally incoherent sum of modes and for -Y = 1

the sum is perfectly coherent.

For this example the simulation environment is the deep water waveguide. The signal

has the same modal content as the test signal used earlier, but the coherence level is varied

from 0 to 1. Again, additive noise in the environment consists of white sensor noise only.
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The noise power is set so that the input SNR is equal to 0 dB. The 40-element simulation

array samples the pressure field. The purpose of the processing is to resolve the first 10

modes of the waveguide. Ideal sensor covariance matrices are used in this example, therefore

the number of data snapshots is not an issue.

Figure 4-10 shows the total error in the MV estimate as a function of coherence. Least

squares results are shown for comparison. Recall that one of the advantages of the LS

SNR = 0 dB
10

5 I I C c (LS
+ :MV

.3 0 

c t w rsetoy....A.xetd.h.Vagrtmprom.oryweh........e
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Figure 4-10: Total error vs. coherence for the Ferrara/Parks MV formulation

estimator is that it does not rely on the coherence of the signal, hence the LS error is

constant with respect to yf. As expected, the MV algorithm performs poorly when the

signal is not perfectly coherent. At 0 dB SNR it appears that the Ferrara/Parks approach

incurs larger errors than the conventional method unless 'Y > 0.8. The new adaptive MV

processor introduced in this section is designed specifically for coherent modes and is not

useful when signal coherence is reduced.
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4.2 MUSIC Modal Estimator

MUltiple SIgnal Classification, commonly known as MUSIC, is one of a family of algorithms

referred to as subspace methods. The purpose of these methods is to resolve the discrete

components of the power spectrum. For time series analysis this consists of estimating

the frequency and power of complex exponentials in additive noise. In array processing

these algorithms ae most often used to estimate the angle-of-arrival (AOA) of a coherent

signal against a noisy background. The work of Pisarenko [42] on estimation of complex

exponentials in white noise stimulated the development of subspace methods. R.O. Schmidt

introduced the MUSIC algorithm in 1981 [36]. The technique has gained broad acceptance,

and as a result the literature is full of variations and improvements, e.g., ESPRIT [37].

Subspace methods rely on separating data into signal and noise subspaces using an

eigenvector decomposition of the covariance matrix,

Ns N

S= Aiviv + ivivi (4.22)
i=1 i=Ns+l

signal subspace noise subspace

For array processing applications, Equation 4.22 assumes an N-element array with Ns

separate signals impinging on it. To understand why this decomposition is useful, consider

the case of a signal plus white noise. Let g be the normalized (gig = 1) replica vector

associated with the signal. The sensor covariance is

S = 'gggi + I (4.23)

where P9 and ao2, are the signal and noise powers, respectively. It is trivial to show that g

is an eigenvector of S, corresponding to the eigenvalue A = Pg + oa2 . Since the eigenvectors

of a symmetric matrix (such as S) form an orthonormal basis, all other eigenvectors are

orthogonal to g and have eigenvalues equal to a2. Thus, the decomposition in Eq. 4.22

becomes
N

s=(-g + 2 g gt + E a2 vv i (4.24)
i=2

where v/tg = 0 for i $ 1. The maximum eigenvalue and eigenvector completely describe

the signal subspace.
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MUSIC uses a general form of the eigenvector decomposition in which Vs is the matrix of

signal space vectors and Vn is the matrix of noise eigenvectors. Assuming Ns signals in white

noise, the vectors in Vn correspond to the N-Ns smallest eigenvalues which are equal to the

white noise power a2. If the noise is correlated, then the MUSIC algorithm typically includes

a whitening transformation before computing the covariance. The orthogonality of the signal

and noise subspaces lead to the following definition of the MUSIC pseudospectrum,

1
Pmusic =- (4.25)

gt VVng

Whenever the steering vector g is equal to a signal contained in Vs, the denominator of

Equation 4.25 goes to zero, yielding a (theoretically infinite) peak in the spectrum. P5music

is a "pseudospectrum" because it contains no information about the signal power. Once

the steering vectors associated with the signals have been identified, the powers can be

estimated from the corresponding signal eigenvalues.

In order to determine the signal and noise subspaces, MUSIC requires knowledge of the

number of signals incident on the array. If this information is not available, it must be

estimated from the data. Numerous papers in the literature address this problem [43, 44].

The following discussion derives a MUSIC formulation of the Ferrara/Parks modal es-

timator. As in Section 4.1, the replica vector for a coherent modal signal is

g = Ea (4.26)

where a is a unit length vector. The resulting MUSIC pseudospectrum is

1
Pmusic = 1 (4.27)

atEtVnVntEa.

The signal and noise subspaces are determined from the eigenvalue problem shown below

Sv = Av. (4.28)

The convention used in this thesis is to number the eigenvalues in descending order, i.e.,

A1 > A2 ... > AN. Since the modal signal is coherent, the signal subspace contains only one

(un-normalized) eigenvector Ea that is associated with the maximum eigenvalue A1. For
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one modal signal against a background of white noise, the signal space eigenvalue is shown

below

A1 = PT (atEtEa) + cw. (4.29)

In this case Vn is an N x (N - 1) matrix, and the resulting MUSIC pseudospectrum is

- ~1
Pmusic = (4.30)

atEtVnVlEa.

Applying the Ferrara/Parks method to the MUSIC algorithm leads to the following con-

strained optimization problem

amusic = maX{Pmusic} = max subject to ata = 1. (4.31)
a a atEtVnVntEaJ

The purpose of the constraint is to eliminate the trivial solution. This optimization is

basically identical to the optimization required for the MV derivation. Stationary points of

the MUSIC pseudospectrum are defined by an eigenvalue equation

EtVnVtEY = vy. (4.32)

The strongest peak in Pmusic is associated with vmin, and therefore the maximizing modal

distribution is Ymin, i.e.,

amusic = Ymin- (4.33)

As noted above, the MUSIC pseudospectrum is not a proper power spectrum, thus vm;n does

not provide an estimate of the signal power. Instead MUSIC derives the power estimate

Pmusic from the signal space eigenvalue A as follows

Pmusic= A5 cmsc (4.34)

a~us, EtEimusic

Based on Equations 4.33 and 4.34, the MUSIC estimate of the mode correlation matrix is

defined to be

SMMUSIC = (t ) YminYmin. (4.35)

The deep water example (previously used in Sections 3.1 and 4.1) illustrates the key
The deep water example (previously used in Sections 3.1 and 4.1) illustrates the key
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aspects of the MUSIC estimator. Sections 4.2.1-4.2.4 discuss MUSIC's performance with

respect to the issues of noise, mode orthogonality, snapshots and signal coherence.

Deep Water Example

The salient parameters of the simulation environment are given in Section 4.1 (see page 51).

The processing attempts to resolve the first 10 modes of the waveguide using ideal sensor

covariance matrices. All plots show the least squares and minimum variance results for

comparison purposes.

Figure 4-11 is a plot of the ideal MUSIC estimates of the average modal powers for

three different signal-to-noise ratios: 10 dB, 0 dB, and -10 dB. At each SNR level, the MV

and MUSIC estimates for modes 1-8 are indistinguishable. Neither of the Ferrara/Parks

processors exhibit the bias error that plagues the LS estimator at low signal-to-noise ratios.

The key difference between the minimum variance and MUSIC algorithms is shown in the

estimates of modes 9 and 10. The MUSIC estimate is effectively 0 (-oo dB) for each of

these modes, while the MV estimate is in the -70 to -50 dB range for the 0 dB and -10 dB

signal-to-noise ratios, respectively. Both MV and MUSIC offer significant improvements

over the LS estimate of modes 9 and 10.

In order to understand the MUSIC estimator's behavior, consider the eigenvalues and

eigenvectors of EtVVntE where Vn is determined from the ideal sensor covariance matrix.

Recall that the received signal for the deep water example includes a coherent modal signal

plus white noise. Equation 4.9 gives the ideal sensor covariance for this example. Because

of the orthogonality of the subspaces, VnV t can be written as follows

VnVt = I- VsVt = I _ (EaT)(EaT)t (4.36)
EaTh12

where the j[EaTj[ term is included to ensure that the signal eigenvector is properly normal-

ized. Using Equation 4.36 the eigenvalue problem for MUSIC is

[EtE- (4 )EtEaTa4EtE y = vy. (4.37)

The assumption of orthogonal sampled modeshapes permits an analytical solution of this
The assumption of orthogonal sampled modeshapes permits an analytical solution of this
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Figure 4-11: MUSIC power estimates for the deep water example

eigenvalue problem. Assuming that E t E = /31I, Equation 4.37 becomes

3 [-aTa9] y = vy- (4.38)

From this equation, it is trivial to show that aT is an eigenvector of EtV~VnE corresponding

to a zero eigenvalue. All the other eigenvalues are equal to /3. Thus aT is the minimum

eigenvector. These calculations also illustrate the point that Pmusic is not a proper power

spectrum since vmiln is clearly infinite. Based on Equation 4.34, the MUSIC estimates for
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the power and relative distribution in the ideal case are shown below

Pmusic - PT + -Eta ='P + )3 (4.39)
4EtEaT

and

amusic = Ymin = aT. (4.40)

The MUSIC power estimate is biased by the same amount as the MV estimate. As discussed

in Section 4.1, the bias can be subtracted off in the ideal case, but this correction is usually

unrealistic in practice. Biased power estimates are used throughout the rest of this section.

According to the derivation above, the MUSIC estimate of the mode correlation in the

ideal covariance case is identical to the MV estimate

( $ ) p ~~~~~~~~~~(4.41)2\ ~ 2 tSMMUSIC = PT + - aTaT = SM + -waTa (4.41)

The plot in Figure 4-11 seems to support this conclusion, especially for modes 1-8.

A plot of the error vector (10 log 10 ej) is shown in Figure 4-12 for the three SNR levels

used in the deep water example. At 10 dB SNR, the MUSIC error curve is approximately

20 dB lower than the MV curve, but both are consistently lower than the LS error. For 0 dB

and -10 dB SNR the MV and MUSIC errors for modes 1-8 are identical. MUSIC always has

less error in the null modes (9 and 10) than the minimum variance formulation. Although

according to Equations 4.16 and 4.41 the two Ferrara/Parks estimators are identical, the

error plots indicate several differences. To understand these differences, recall that the

simplifying assumption of orthogonal modes was used to derive the expressions for the

ideal covariance results, SMMV and SMMUSIC. For the deep water example, EtE is only

approximately a scaled identity matrix. The differences in the MV and MUSIC estimates

can be attributed to the ways in which each processor handles perturbations from the

perfectly orthogonal mode structure. From this example MUSIC appears to be slightly

more robust with respect to the orthogonality of the sampled modeshapes.

Based on the results described above, MUSIC appears to perform better than the min-

imum variance method in certain situations. The rest of this section contains the perfor-

mance analysis of the MUSIC estimator with respect to the issues of ambient noise, modal

orthogonality, estimated covariances, and signal coherence. Each subsection draws appro-
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Figure 4-12: Error in MUSIC power estimates for the deep water example

priate comparisons between both Ferrara/Parks formulations and the conventional least

squares formulation.

4.2.1 Ambient Noise

Section 4.1.1 indicates that the Ferrara/Parks minimum variance formulation performs

much better than least squares methods with respect to ambient noise conditions. Since

the MUSIC algorithm uses a subspace decomposition to reduce the effects of noise on the

power estimates, it is expected to have similar advantages. The purpose of this section is

to examine error as a function of SNR for the MUSIC formulation.
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As shown above, the MV and MUSIC estimates are identical in the ideal covariance

case, provided that the sampled modeshapes are orthogonal. As a result, the MUSIC error

is given by Equation 4.17; this implies that the error for each mode is a function of the

noise power and the relative amplitude.

It is useful to revisit the example given in Section 4.1.1. The parameters are the same

as the deep water example given above, with the exception that the noise power is varied

so that the SNR varies from -20 dB to 20 dB. Figure 4-13 shows a plot of error vs. SNR for

modes 1, 2, and 10. For low SNR's the MV and MUSIC errors are almost identical, lending

Mode I Mode 2 Mode 10

-2

t,0

LfL-4

-6

0

-100

-200

-300

-20 0 20 -20 0 20 -20 0 20
SNR (dB) SNR (dB) SNR (dB)

--- LS MV .- - MUSIC

Figure 4-13: Error vs. SNR for modes 1, 2, and 10 of the deep water waveguide. Ambient
noise consists of white sensor noise only. MUSIC, MV, and LS error curves are shown for
the ideal covariance case. Note that the vertical scale for mode 10 differs from the one used
for modes and 2.

some credibility to the model derived above. The key difference in the MV and MUSIC

estimates is for mode 10. Recall that mode 10 is not present in the test signal, thus the

error should be zero according to Eq. 4.17. While the error for the MUSIC estimator agrees

with this prediction, the MV error does not. The discussion in Section 4.1.1 attributes the

non-zero MV error to the fact that the sampled modes are not perfectly orthogonal. Again,

this is an indication that MUSIC is more robust than minimum variance with respect to the

orthogonality of the sampled modeshapes. Note that the MUSIC error curves for modes 1

and 2 dip sharply at 10 dB and then appears to level off. The simplified model of the

error, derived assuming orthogonal modes, cannot account for this anomaly. If the MUSIC

formulation is used in a high SNR environment, further research is necessary in order to
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explain this behavior.

4.2.2 Modal Orthogonality

From the preceding examples it appears that the MUSIC estimator is more tolerant of non-

orthogonal modeshapes than the MV or LS algorithms. This section addresses the modal

orthogonality issue directly using the two examples developed for Sections 3.1.2 and 4.1.2.

Suppose that it is necessary to estimate the power in the first 16 modes of the deep

water waveguide using the 40-element array. In this case the sampled modeshapes are not

orthogonal (DOFeff = 14). Assume an input signal consisting of all 16 modes: the odd

modes are excited at 0 dB and the even modes are excited at -10 dB. The average SNR is

fixed at 0 dB, and the ideal sensor covariance is used to generate the estimates. Figure 4-

14 shows the 16-mode error vector (10 log10 ej) for the MUSIC, MV, and LS algorithms.

Although LS and MV suffer large errors for the highest order modes, the MUSIC error

SNR: 0.0 dB

o3 '. ..... .. .... . .. . ... .... . .... ... . .. ... .... . . ... ...
0'

. ... . ... ... )K LS
+ MV

0 4 12 14 16

Mode Number

Figure 4-14: Error vector for the 16-mode example using the deep water waveguide. MUSIC,
MV, and LS results are shown.

follows the expected alternating pattern for modes 1 through 16. The loss of two degrees

of freedom in EtE appears to have little effect on the Ferrara/Parks MUSIC formulation.

Consider a second example. The parameters are identical to the first deep water example

in this section, but the number of modes to estimate is varied from 8 up to 16. Recall that

the test signal consists of the first 8 modes in an alternating 0 dB/-10 dB pattern. The
...~ ~ ~~ ~~ ~~ ~~~~~ ~ ........ ......... ....... ... .. . .... : .........

-30 '-........i . . . . . i.....i.....

2 4 6 8 10 12 14 16
Mode Number

simulation uses ideal sensor covariance matrices. Figure -15 is a plot of the deeptotal error waveguide. MUSIC,MV, and LS results are shown.follows the expected alternating pattern for modes 1 through 16. The loss of two degreesof freedom in EE appears to have little effect on the Ferrara/Parks MUSIC formulation.Consider a second example. The parameters are identical to the first deep water example

in this section, but the number of modes to estimate is varied from 8 up to 16. Recall that

the test signal consists of the first 8 modes in an alternating 0 dB/-10 dB pattern. The

simulation uses ideal sensor covariance matrices. Figure 4-15 is a plot of the total error

vs. number of modes to estimate for two different input SNR's: 0 dB and -10 dB.4 At 0 dB

4Recall that the total error is defined as TR { SM-MUSIC- SM I}.
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Figure 4-15: Total error vs. number of modes to estimate for the deep water example.
Results for two input SNR's (0 dB and -10 dB) are shown.

SNR the results for both of the Ferrara/Parks formulations are identical. The errors are

constant regardless of the number of modes included in the estimate (up to mode 16). The

-10 dB SNR case differentiates the MV and MUSIC estimates. For 15 and 16 modes in

the estimate, the minimum variance method has extreme difficulty and displays error levels

close to that of the least squares method. On the other hand, MUSIC maintains a constant

error for the 15 and 16 mode cases.

These two examples illustrate a favorable characteristic of the MUSIC modal estimator,

namely robustness with respect to orthogonality of the sampled modes. This property of the

estimate offers advantages since practical arrays often do not guarantee the orthogonality

of the desired subset of modes.

4.2.3 Estimated Covariance Issues

It is very important to consider the effects of using estimated instead of ideal covariances on

adaptive estimators such as MUSIC. Appendix D derives the mean and variance associated
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with the MUSIC power estimates using known characteristics of the sample covariance

matrix S.

A simplifying assumption is required in order to derive an expression for the first and

second order statistics of the estimates. Specifically, the following discussion assumes that

MUSIC can exactly determine the relative modal distribution, therefore any errors are

associated solely with the signal power estimate. Under this assumption, the expected

power in mode j (assuming white noise only) is given below

E {A..xnusic} -Phj~musiC = Pj + p paTaT] (4.42)_music -P_music-Pj'~

The variance, also derived in Appendix D, is shown below

(P2usic2

Var {Pjmusic = L (4.43)L

Based on these two equations, it is possible to predict bias and variance for the MV esti-

mates. The following example contrasts the predictions with the results of a Monte Carlo

simulation. This is useful in determining the validity of the assumption used to derive the

bias and variance. The parameters of the simulation are identical to the deep water exam-

ple using the test signal. Each data point is the result of averaging over 1000 independent

trials.

Figure 4-16 is a plot of the error vs. the number of snapshots for mode 1. The predicted

and Monte Carlo errors are shown for all three estimators: MUSIC, MV, and LS. MUSIC

has lower errors than either of the other two estimates for any number of snapshots. In

addition, the MUSIC results agree with the predictions.

Figure 4-17 shows the variance vs. number of snapshots. The predicted and Monte Carlo

values are shown, along with the Cramer Rao bound. According to Appendix A, the C-R

bound is a function of , and Eq. 4.43 indicates that the MUSIC estimate has the same

dependence on L. Note that the figure shows that the predicted variance is actually below

the C-R bound. This is probably due to the fact that the prediction only includes the effects

of the MUSIC power estimate and not the eigenvector estimate.
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Figure 4-16: Error vs. number of snapshots for mode 1. Predicted and Monte Carlo results
are shown for all three estimators.

4.2.4 Signal Coherence

The Ferrara/Parks approach outlined in this chapter relies on a coherent signal model. As

indicated in Section 4.1.4, the MV processor has more severe estimation errors than the

least squares processor if the signal is not coherent. Similar results are expected for the

MUSIC formulation.

Consider repeating the coherence example that is described in Section 4.1.4 (see page 63).

Figure 4-18 shows the total error vs. coherence for the MUSIC, MV, and LS estimators.

The MV and MUSIC error curves are virtually identical for this example. This is reasonable

since modal orthogonality and number of snapshots are not critical issues for the example.

Clearly neither of the Ferrara/Parks formulations offer any advantages over least squares

for partially or totally incoherent signals.
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Figure 4-17: Variance vs. number of snapshots for the MUSIC estimator.

4.3 Summary

This chapter has developed an adaptive modal estimator based on the earlier work of Ferrara

and Parks concerning array processing using diversely-polarized antenna arrays. The new

approach is fundamentally different from least squares because it relies on maximizing the

received signal power. Minimum variance and MUSIC formulations have been presented and

analyzed. Results for both of the Ferrara/Parks methods are favorable, but it appears that

MUSIC is more robust with respect to mode orthogonality. One important characteristic

of both new formulations is that they have much greater potential for maintaining nulls in

the modal spectrum than the conventional methods. The primary drawback of the MV and

MUSIC algorithms discussed in this chapter is that they rely on a coherent signal model.

As indicated in Sections 4.1.4 and 4.2.4, the performance of these estimators degrades

significantly as signal coherence is lost.
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Figure 4-18: Total error vs. coherence for the Ferrara/Parks MUSIC formulation
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Chapter 5

Adaptive Estimation of

Incoherent Modes

The previous chapter has demonstrated the advantages of the Ferrara/Parks approach to

the mode estimation problem. While the new method is a useful tool for coherent modes,

Chapter 4 indicates that performance degrades rapidly as signal coherence is lost. This

is a significant issue because coherent signals ae not guaranteed at long ranges from the

source; inhomogeneities in the environment can randomize the phases of the modes as they

propagate. The purpose of this chapter is to propose a modification to the Ferrara/Parks

method which facilitates the estimation of random modes. A thorough study of the modified

approach is outside the scope of this thesis. Instead, Section 5.1 derives the modified mini-

mum variance processor and offers a simple example to illustrate its potential advantages.

The limitations of the modified Ferrara/Parks algorithm are briefly discussed. Section 5.2

summarizes and indicates several directions for further research.

5.1 Modified Minimum Variance Formulation

This section modifies the minimum variance processor, developed in Section 4.1, to permit

the estimation of modal powers in phase-randomized signals. As a starting point, consider

the eigenvector decomposition of the mode correlation matrix

K

SM = X tti* = T Tt (5.1)
i=1
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where K is the rank of SM. For coherent modes SM is a rank one matrix. The total signal

power PT is the eigenvalue 41, and the relative modal distribution aT is the corresponding

eigenvector t1 . Using a maximum power criterion, the Ferrara/Parks method produces an

estimate of the modal distribution and the signal power. In other words, the method of

Chapter 4 provides estimates of t and ~1. For the general case, the mode correlation matrix

has K eigenvalue-eigenvector pairs which must be estimated. Since SM is a symmetric ma-

trix, the eigenvectors form an orthogonal basis. A simple modification to the Ferrara/Parks

method exploits this property in order to generate estimates of the set of K eigenvectors.

As derived in Chapter 4, the eigenvalue problem stated below determines the stationary

points of the minimum variance power spectrum, Pmv,

EtS-1Eyi = viyi. (5.2)

Recall that the convention in this thesis is to order the eigenvalues as follows:

vl1 > v2 > -.. > VM. Given this ordering, routine matrix algebra leads to bounds on

Pmv [39]
1 1
-< Pmv <m (5.3)

Vl1 YM

The Ferrara/Parks estimate of the first eigenvector, t, corresponds to the vector that

maximizes Pmv; the inverse of the associated eigenvalue is the maximum power. This

implies that t1 = YM and ~l = VM1. Based on the orthogonality property mentioned above,

a reasonable choice for the second eigenvector is the vector which maximizes Pmv subject

to the constraint that it is orthogonal to t1 . Since the eigenvectors defined by Equation 5.2

form an orthonormal set, the vector which maximizes Pmv and is orthogonal to tl is YM-1.

Thus, t 2 = YM-1 and ~2 = VM_ 1. A simple extension of this argument leads to estimates for

the remaining eigenvectors and eigenvalues. Thus, the modified Ferrara/Parks MV estimate

of the mode correlation matrix is shown below

M
SMMV.-iod V M YiY - (5.4)

i=M-K+1

Note that the derivation assumes that the rank of SM is known. In practice K is not

usually known and must be estimated from the data. Estimation of the rank is probably

the most challenging aspect of the modified processing scheme. One approach is to set K
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equal to the number of "significant" peaks in the power spectrum. A reasonable measure

of the number of peaks is the effective degrees of freedom associated with the eigenvalue

problem in Equation 5.2. Since the largest peaks correspond to the smallest eigenvalues,

the DOFeff is computed using the inverse of the eigenvalues, i.e.,

The [F-1 operator rounds the enclosed quantity up to the nearest integer. The estimate for

K given in Equation 5.5 is used in all of the examples in this chapter. Section 5.2 suggests

several alternate methods for estimating the rank of SM.

A simple example illustrates the basic characteristics of the modified MV processor.

Deep Water Example: Partially Incoherent Modes

The signal model is based on the adiabatic channel with internal waves described in Chap-

ter 2. The form of the mode correlation matrix is shown below

SM = (1- y)diag xt] + xxO. (5.6)

Recall that the vector x0 contains the deterministic mode amplitudes and y is the coherence

parameter. For y = 0 the signal consists of a totally incoherent sum of modes and for -y = 1

the sum is perfectly coherent.

The simulation environment used for the example is the deep water waveguide. The

signal consists of 8 modes: the odd modes (1, 3, 5, 7) are excited at a reference level of 0 dB

and the even modes (2, 4, 6, 8) are excited at a level of-10 dB. The coherence level 'y is equal

to 0.5. Additive noise in the environment consists of white sensor noise only. The noise

power is set so that the input SNR (geometric mean of the SNR's at each sensor) is equal to

0 dB. The 40-element simulation array (described in Chapter 2) samples the pressure field.

The processing attempts to resolve the first 10 modes of the waveguide. Ideal covariance

matrices are used to generate this example.

Figure 5-1 shows the error in the modified MV power estimates for the deep water

example; errors for the LS processor are shown for comparison purposes. Recall that the

least squares method does not rely on a coherent signal model, therefore no modifications
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to the LS processor are necessary. The error vector e is defined (see Equation 2.29) as the

Gamma = 0.50

1 2 3 4 5 6 7 8 9 10
Mode Number

Figure 5-1: Estimation Error for Partially Incoherent Mode Example

absolute value of the differences in the true and estimated powers. The plot displays the

error on a log scale (10 log 0l ej). For the modes that are present in the signal (i.e., 1-8),

the modified MV algorithm incurs approximately the same error as the LS processor. For

modes 9 and 10 (not contained in the signal), the extended Ferrara/Parks formulation has

much smaller errors than the least squares method. As noted in Chapter 3, LS has difficulty

maintaining nulls in the spectrum due to bias error. The modified MV formulation does

not appear to have this problem.

In order to understand the behavior of the modified minimum variance estimator, it is

useful to derive analytical expressions for the eigenvalues and eigenvectors of EtS-lE. For

an incoherent signal plus additive white noise, the ideal sensor covariance is shown below

(5.7)

Application of the Woodbury identity to Equation 5.7 yields the following expression for
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the inverse of S

S- 1 = [I- ETDTtEt] (5.8)

where D is a diagonal matrix

D - ' ..... (5.9)

{M
N3M+OW

Using Equation 5.8, the matrix EtS-'E becomes

EtS-1E = [EtE - EtETDTtEtE]. (5.10)

Finding an analytical form for the eigenvalues and eigenvectors of the above matrix requires

a simplifying assumption identical to the one made in the analysis of the coherent MV

estimator. Specifically, assume that the sampled modeshapes are orthogonal and that the

modes are scaled equally, i.e., EtE = /I. After some tedious matrix algebra, Equation 5.10

reduces to a form which explicitly gives the desired eigenvector decomposition

1

EtS-1E = T .. Tt. (5.11)

1

Under the aforementioned assumption, the eigenvectors of EtS-E correspond to the true

eigenvectors of the mode correlation matrix. The eigenvalues of EtS-E are a function of

both the eigenvalues of SM and the white noise power: i = /. The Ferrara/Parks

estimate shown in Equation 5.4 uses the K smallest values of vi which, based on the observa-

tion above, are associated with the K largest eigenvalues of (i. Substituting this information

into Equation 5.4 results in an expression for the modified MV estimate of SM,

5 MJ~vmod = t 2 K

SMVmod = ltit t + E titt . (5.12)
i= 1 i=1

SM noise terms

The above expression provides valuable insights into the behavior of the modified estimator.
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First, note that Equation 5.12 assumes that K has been estimated correctly. In practice,

the summation indices range from 1 to K. If the estimate of K is less than the true value,

then part of the signal is lost. Accurate estimation of the rank of SM is clearly essential

for the success of the modified formulation. A second property of the modified estimator is

that the noise terms only span the basis of the signal. This explains the processor's ability

to maintain nulls in the modal spectrum.

It is useful to contrast the result in Equation 5.12 with the LS estimator. From Chapter 2

the LS estimate of SM (using the ideal sensor covariance) is shown below

SMLS = SM + 2 (EtE)1. (5.13)

Assuming that the modeshapes are orthogonal (EtE = fI), the second term on the right-

hand side of Equation 5.13 is a multiple of the identity matrix. Expanding I in terms of

the orthonormal basis defined by the eigenvectors of SM leads to the following expression

for SMLS
M .L2 M

SMLS = jitti + 7 titt (5.14)
i-1 i:1

SM noise terms

where M is the number of modes to estimate. The key difference between the LS method

and the modified MV method is in the number of eigenvectors to include in the summation.

The least squares formulation always includes M vectors in the sum, hence all of the modes

are biased. If K < M, then the modified minimum variance method provides some reduction

of the noise. Note that if SM is full rank (K = M), then the least squares and modified

minimum variance formulations are equivalent. Recall that this equivalence depends on one

key assumption: the orthogonality of the sampled modeshapes.

Now consider the performance of the modified algorithm as the coherence level changes.

The simulation environment is identical to the previous example, with the exception that

-y varies from 0 to 1. Figure 5-2 is a plot of the total error versus for the modified MV

algorithm. The total error is defined (see Chapter 2) as TR {ISM- SMI}. Error curves

associated with the LS and the coherent MV formulations are displayed for the purpose of

comparison. According to the plot, the total error for the modified MV algorithm is always

below the constant error associated with the LS estimator, regardless of the coherence level.

This is expected since the signal used in the example contains fewer modes than are being
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Figure 5-2: Total Error vs. Coherence for the Modified MV Algorithm. SNR=O dB.estimated. As derived above, the subspace decomposition used in the modified MV method 

offers gain over LS, provided that the true SM is not full rank. The coherent MV algorithm

becomes useful only when y exceeds 0.9. Note that the error for the modified MV algorithm

is larger than the coherent MV error for y = 1. This is due to the fact that the number

of vectors to include in the estimate (K) is estimated incorrectly for this point. Based on

this plot, the modified minimum variance formulation appears to be useful for estimating: : X~~~~~~~~~~~~~~:

-1 0 , , , , .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

~~~~incoherence Level (gamma)odes.

In order to avoid seeming overly optimistic about the odified MV Algorithm, howeverSNR dB.

conestimated. As derived above, the subspae decomposimulation usenvironment is identical; the only dified MV methodrence is

offthat the noise lever LS, providuced so that the average SM is now 10 dB. A plot of the coherent MV algorithm

becomes useful only when r exceeds 0.9. Notefor this case is shown in Figure 5-3. As expectedrror for the modified MV algorithm

performs bettlarger than the coherent MV error for mula 1. This is due to the constant therror associated withe number

the least squares processor is always below the errors for both Ferrara/Parks methods unlessof vectoreeds 0.95. This example demo in the estimate (K) is estimated incorrectly for higher SNR's, the added complexity of

this ploting the modified Ferrminimum vara/Parks algorithm does not necessarily result into bett useful for estimatesingincoherent modes.

In order to avoid seeming overly optimistic about the modified algorithm, however,

consider another example. The simulation environment is identical; the only difference is

that the noise level is reduced so that the average SNR is now 10 dB. A plot of the total

error vs. coherence for this case is shown in Figure 5-3. As expected the modified algorithm

performs better than the coherent MV formulation, but the constant error associated with

the least squares processor is always below the errors for both Ferrara/Parks methods unless

'7 exceeds 0.95. This example demonstrates that for higher SNR's, the added complexity of

using the modified Ferrara/Parks algorithm does not necessarily result in better estimates.
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Figure 5-3: Total Error vs. Coherence for the Modified MV Algorithm. SNR=10 dB.

Further study is necessary to thoroughly evaluate the potential of the modified scheme. The

next section indicates several directions for future research.

5.2 Summary

This chapter has outlined a method for extending the Ferrara/Parks technique to the more

general problem of random mode estimation. Specifically, a modified minimum variance

processor has been derived. The preliminary analysis suggests that the modified MV algo-

rithm can reduce the effects of noise by implementing a subspace decomposition of the mode

correlation matrix. A simple example has shown that the new method has some advantages

over the conventional least squares formulation, but many issues remain unresolved.

Further research is necessary to assess the effects of noise and modal orthogonality on

the estimates. In addition note that the examples of Section 5.1 were generated using

ideal covariance matrices. The snapshot issues surrounding the estimation of the sensor

covariance matrix may affect the performance of the algorithm significantly. In particular,
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the number of data snapshots available may affect the estimate of K. As indicated in

the previous section, accurate estimation of the rank of SM is essential for the modified

MV method. It may be worthwhile to consider using an information theoretic measure

such as Akaike Information Criterion (AIC) or the Minimum Description Length (MDL)

criterion in estimating K [43]. Future studies of the extended Ferrara/Parks method should

also include a MUSIC formulation for comparison. Also, while this thesis is primarily

concerned with power estimation (diagonal terms of SM), the off-diagonal terms provide

valuable information about the signal. In theory the extended version of the Ferrara/Parks

algorithm generates estimates of these terms, but the accuracy of these estimates has not

been investigated.

87



Chapter 6

Conclusion

6.1 Summary

This thesis has examined the problem of estimating powers in the normal modes of an

acoustic signal. The research focuses on array processing methods for the low order modes

because they are the most useful at long ranges from the source. Vertical line arrays can

resolve these modes based on differences in their spatial distributions.

Chapter 2 reviewed modal propagation in deterministic and random channnels and

defined the mode estimation problem within a general framework. Four important issues

in modal array processing were discussed: (i) ambient noise, (ii) modal orthogonality, (iii)

data snapshots, and (iv) signal coherence.

Chapter 3 considered conventional mode estimation techniques. Most standard methods

compute the mode amplitudes by minimizing a squared error criterion. Since least squares

theory essentially ignores the noise components in the received signal, these methods per-

form poorly in low SNR environments. A numerical example demonstrated that bias errors

can severely affect the accuracy of the LS estimator in high noise environments. The ef-

fects of mode orthogonality were studied, and it was shown that the degrees of freedom in

the modeshape correlation matrix is a useful measure of the number of modes that can be

estimated using least squares. Bias in the LS estimate is not affected by the number of

data snapshots (L), but the variance is a function of . Signal coherence is not a issue for

conventional estimators.

The poor performance of the least squares methods in noisy environments motivated the

search for a new algorithm. Chapter 4 developed a new approach to the mode estimation
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problem based on a method proposed by Ferrara and Parks. Several examples showed that

both Ferrara/Parks formulations, minimum variance and MUSIC, offer significant improve-

ments over the least squares algorithm. In particular, it was shown that the new methods

do not suffer the bias error that plagues the LS estimator at low SNR. Also the adaptive

estimators appeared to be less sensitive to modal orthogonality than conventional meth-

ods. It was indicated that, after a correction, the MV estimator bias is independent of the

number of data snapshots available. To first order, the MUSIC estimator bias does not

depend on the number of snapshots either. The variances associated with MV and MUSIC

are functions of L-N1 and 1, respectively.L-N+1 ~,setvly

Although the results for the new algorithms are quite favorable, they depend on the

coherence of the received signal. It was shown that performance degrades significantly

as signal coherence is lost. Chapter 5 presented an extension of the Ferrara/Parks method

which addresses this problem. Two examples and a brief analysis indicated that the modified

algorithm may have some advantages.

6.2 Suggestions for Further Research

This thesis has developed a new adaptive modal estimator and has demonstrated some of

its advantages, but much work remains to be done. First, it would be useful to obtain

an analytical form for the eigenvalues and eigenvectors used in the Ferrara/Parks estimate

for the case where the modes are not assumed to be orthogonal. Having analytical results

might lend insight into the global localization problem exhibited by the MV estimator. In

addition, it would allow for more accurate bias and variance predictions.

With respect to the estimation of random modes, the work presented in Chapter 5 is

clearly preliminary. A thorough study of the modified Ferrara/Parks algorithm is necessary

to determine whether it is a viable solution. The estimation the number of eigenvectors

in the modal signal subspace is a problem that has not been adequately addressed yet.

In addition, it is important to weigh the added complexity of the Ferrara/Parks method

against its advantages to see if this approach is practical.

Finally there is the issue of resolving multiple modal sources. Recall from Chapter 3

that estimating the power distribution for multiple sources is not possible with conventional

techniques. The Ferrara/Parks adaptive estimator has the potential to solve this problem
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since multiple sources (with non-identical power distributions) should correspond to multiple

peaks in the received power spectrum. This is an interesting area for research because of

the potential applications for multiple source localization using MMP.
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Appendix A

Fisher Information Matrix for

Modal Estimation

The Cramer Rao bound expresses a limit on an estimator's error variance in terms of the

inverse of the Fisher information matrix. The purpose of this appendix is to derive the

Fisher information matrix J for the mode estimation problem. This discussion follows the

developement by Baggeroer et. al. [45]. The elements of J are defined as follows

Ji = - {gg lnfrig(RIG) (A.1),9gigj)

where g is the vector of parameters to estimate, r is the vector of observations, and frlg

is the conditional probability density for the observations. Assuming that the observations

are the output of a zero-mean Gaussian process with covariance K(g), Baggeroer et.al.

determine the following expression for the elements of the Fisher information matrix, 1

Jij = TR K-1 (g) gi Kl(g)Kg } (A.2)

'Due to a misprint in the paper, Baggeroer has a minus sign in the formula, but Equation A.2 is correct.
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where TR is the matrix trace operator. For modal array processing the vector of observables

contains L data snapshots, partitioned as follows,

P1

P2
r =

PL

Since the snapshots are independent, the covariance K is a block diagonal matrix,

S 
K =

0

0

S

(A.3)

(A.4)

where S is the sensor covariance matrix. Thus Eq. A.2 becomes

(A.5)

The average mode powers are the desired parameters to estimate in this thesis. In other

words the vector g contains the diagonal terms of the SM matrix. For coherent mode

estimation gi = 7PTa2 and routine math leads to a relatively simple expression for the

derivative matrix, e.g., for gl = PTa21

as=PTE
Ogl1

aTM
2aT1

1

aT 2

2aTX

aT 2

_ 2aT,

-T2-

2aT0

0...

0...

0

0

Et (A.6)
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Appendix B

Mean and Variance of the Least

Squares Power Estimates

The purpose of this appendix is to compute the mean and variance of the least squares

modal power estimates. The discussion below assumes that the incident field consists of the

modal signal plus white noise and that the number of modes estimated is greater than the

highest mode present in the signal.

Consider the least squares estimate of the mode correlation matrix based on the sample

covariance matrix S

SMLS = (EtE)-1Et§E(EtE)- 1. (B.1)

Assuming zero-mean data, S is an unbiased estimate of S, therefore the expected value

of the LS estimate is identical to the ideal covariance result. This leads to the following

expression for the expected power in mode j in terms of the true power Pj

~~~~WI- -2{.s~} jjS~ = P, + [(EtEY]3 (B.2)

The LS bias depends only on the white noise and the modeshape correlation; it is unaffected

by the number of snapshots used to form S.

The statistics of the sample covariance matrix determine the variance of the least squares

power estimate. According to Goodman [20], the matrix LS follows a Complex Wishart

distribution of order N with L degrees of freedom, where N is the number of sensors and

L is the number of snapshots. This is often abbreviated: LS - CW(L, N; S). S is the ideal
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(true) N x N sensor covariance matrix. The variance derivation makes use of the following

theorem, due to Muirhead. [21]

Theorem 1 If B is a K x N matrix with rank K and A is CW(L, N; S), then C = BABt

is CW(L,K;BSBt).

Based on Theorem 1, LSMLS is CW (L,M; (EtE)-1EtSE(EtE)-l), provided that E has

M linearly independent columns where M is equal to number of modes estimated. Suppose

that Bj is a 1 x M vector with a one in the jth column and zeros everywhere else e.g.,

B 1 = [ 1 0 ... 0 ]. This leads to the distribution shown below

LPjAs- Bj (LSMLS) Bt CW(L, 1; Pjs) (B.3)

Recall that Pjs is the ideal covariance estimate of the power in mode j. According to

the definition of the Wishart distribution, CW(L, 1; PjlS) denotes a multiple of a complex

chi-squared random variable. The PDF for a complex chi-squared random variable y with

L degrees of freedom is given below

yL-le-Y

Y ) ((L- 1)!

Integration by parts reveals that both the mean and variance of y are equal to L. The least

squares estimate of the power in mode j is a multiple of a chi-squared random variable

PJ = XL (B.5)

Therefore, the variance of the LS estimate becomes

Va~r Is} L = -(-P L (B.6)
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Appendix C

Mean and Variance of the MV

Power Estimates

This appendix contains the mean and variance calculations for the minimum variance modal

power estimates. According to Chapter 4, the MV method uses estimates of the relative

modal distribution and the associated signal power to form the mode correlation matrix

SMMV = Pmvamv4v - (C.1)

Determining an exact distribution for the modal powers (diagonal elements of SM.MV)

requires a thorough analysis of the optimization problem used in the Ferrara/Parks ap-

proach. In general, this is a difficult task because of the complicated interaction of noise,

orthogonality, and snapshot issues. Fortunately, a simplifying assumption leads to a useful

approximation for the distribution. The discussion below assumes that Amv corresponds to

the true mode coefficient vector aT, therefore any fluctuations in the estimate are due to

Pmv. Recall from Chapter 4 that this is a reasonable assumption provided that the sampled

modeshapes are relatively orthogonal.

The statistics of the minimum variance power estimate are well-understood [22, 19].1

According to Capon and Goodman [22], Pmv is a multiple of a complex chi-squared random

'Steinhardt [19] provides an excellent review of this topic.
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variable with L - N + 1 degrees of freedom, i.e.,

Pmv ' Pmv ( ) XL-N+- (C.2)

L is the number of data snapshots used to estimate the covariance matrix, S, and N is

the number of sensors in the array. Pmv is the power estimate based on the ideal sensor

covariance. See Appendix B for the probability density function of a complex chi-squared

random variable. Based on the PDF, the mean and variance of XLN+1 are both equal to

L - N + 1. As a result the MV power estimate is biased

{ mv} (L-N+1) p (C.3)

Although the estimate is asymptotically unbiased, the number of snapshots must be large

in order to make the bias negligible. For this reason, some MV formulations correct the

estimate by multiplying the Pmv by LL The rest of this development and the results
L-N+-1'

in Chapter 4 assume that this bias correction has been implemented.

Consider an incident field consisting of a modal signal plus white noise. The ideal MV

power estimate is shown below
2

-PmV = PT + $1 (C.4)

assuming that the mode correlation matrix is equal to /31I. This leads to an expression for

the expected power in mode j

£ {Pnv} Pjmxnv = Pj + [aTa4] (C.5)

where Pj is the true power in mode j.

Accounting for the bias correction, the variance of the power estimate for mode j be-

comes

Var{Pjmv} =L- t 1 (C.6)
L - N + (C.
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Appendix D

Mean and Variance of the MUSIC

Power Estimates

This appendix derives the mean and variance associated with the MUSIC modal power

estimator shown below

SMMUSIC = Pmusicamusicamusic' (D.1)

As in Appendix C, a simplifying assumption facilitates these calculations. Specifically, the

following development assumes that amusic corresponds to the true modal distribution, aT.

This is equivalent to assuming that the algorithm locates the correct peak, thus any errors

are due to the estimate of the signal power, Pmusic. The assumption is reasonable, provided

that the sampled modeshapes are approximately orthogonal.

The MUSIC power estimate is based on the maximum eigenvalue of the sample covari-

ance matrix i.e.,

-Pmusic = 1(D.2)
amusic EtEmusic

The sample covariance matrix S, formed from L snapshots, follows a complex Wishart

distribution: CW(L, N; S). According to Kaveh and Wang [46] and references cited therein,

the eigenvalues of a complex Wishart matrix with L degrees of freedom have the mean and

variance shown below

£ {A} = + O{L- 1} (D.3)
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and

Var {Ai} = +O{L 2}. (D.4)

Ignoring the O{L- '} term, the expected value of Pmusic is identical to the ideal covariance

result derived in Equation 4.41. Thus, for a signal plus white noise, the expected power in

mode j is given below

{Pj-nusic} _Pj-nusic = P-' + [a T a] (D.5)

where Pj is the true power. The above expression implicitly assumes that the number of

modes in the estimate exceeds the highest mode present in the signal.

Ignoring the O{L- 2} term, the variance expression reduces to a simple form, e.g., for

mode j,

Val {Pnusic} = L(D.6)
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