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Abstract

Chaotic systems provide a rich mechanism for signal design and generation, with potential
applications to communications and signal processing. Because chaotic signals are typically
broadband, noise-like, and difficult to predict, they can be used in various contexts, e.g., as
masks for information-bearing waveforms and as modulating waveforms in spread spectrum
systems. Of practical significance are chaotic systems that possess the self-synchronization
property. This property allows two identical chaotic systems to synchronize when the second
system (receiver) is driven by the first (transmitter). A potential drawback to utilizing self-
synchronizing chaotic systems in applications is that the analysis and synthesis of these
systems is not well-understood due to their highly nonlinear nature. This thesis focuses on
both of these critical areas.

In this thesis, we develop a systematic approach for analyzing the self-synchronization
properties of general nonlinear systems. To further conceptualize the self-synchronization
property, we exploit an identified equivalence between seif-synchronization and stable error
dynamics between the transmitter and receiver systems. We use this conceptualization to
prove that self-synchronization in the Lorenz system is a result of globally stable error dy-
namics. We then address robustness of self-synchronizing chaotic systems and develop an
approximate analytical error model that quantifies and explains the sensitivity of synchro-
nization in the Lorenz system to perturbation of the drive signal.

The ability to synthesize new chaotic systems enhances their usefulness for practical
applications. We develop and illustrate several systematic procedures for synthesizing new
classes of high-dimensional dissipative chaotic systems that possess the self-synchronization
property. The procedures vary in the number of drive signals required for synchronization
and the resulting complexity of the system dynarnics. Finally, the practical implications of
this work are explored. Two techniques for embedding an information-bearing waveform in
a chaotic carrier signal and for recovering the information at the receiver are developed and
demonstrated using a Lorenz-based transmitter and receiver circuit.

Thesis Supervisor: Alan V. Oppenheim
Title: Distinguished Professor of Electrical Engineering
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Chapter 1

Introduction

For many years, there has been tremendous interest in the study of nonlinear dynam-
ical systems that exhibit chaotic behavior. It is now well-understood that chaotic
solutions of purely deterministic systems are an inherent feature of many nonlinear
systems. Chaotic behavior has been reported in a broad range of scientific disciplines,
including astronomy, biology, chemistry, ecology, engineering, and physics. Much of
this research has focused on dissipative chaotic systems. Such systems are character-
ized by limiting trajectories that are attracted to a region in state space that has zero
volume and fractional dimension. Trajectories on this limiting set are locally unsta-
ble, yet remain bounded within some region of state space. These sets are termed
strange attractors and exhibit a sensitive dependence on initial conditions in the sense
that any two arbitrarily close initial conditions will lead to trajectories that rapidly
diverge. This inherent instability makes long term predictability of chaotic signals
difficult because small uncertainties in the initial state will be exponentially amplified.

Synchronization of dynamical systems possessing these properties would seem to
be counter-intuitive. In 1990, however, it was discovered that a certain class of
dissipative chaotic systems possess a self-synchronization property (1, 2, 3]. This
property allowed two identical chaotic systems to synchronize when the second system
was driven by the first. In certain communication contexts, the first system can be
viewed as the transmitter and the second system as the receiver.

The phenomenon of synchronization has been of longstanding interest and studied
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extensively. However, these studies had typically focused on the complex interactions
among mutually coupled oscillator systems. The best known example is the motion
of the earth and moon. Other more recent examplcs include: spatially distributed
nonlinear systems such as coupled lasers (4], phase-locked loops [5], neural networks
[6], and biological systems [7, 8]. There is, however, a fundamental difference between
synchronization in mutually coupled systems and self-synchronizing systems. For the
latter systems the coupling is one-way, t.e., only from the transmitter to the receiver.

The concepts of self-synchronization and chaos from purely deterministic systems
suggest some potential applications - - one of the main motivating forces behind
this thesis. Because chaotic signals are typically broadband, noise-like, and diffi-
cult to predict, we have proposed their use in various contexts, e.g., as masks for
information-bearing waveforms and as modulating waveforms in spread spectrum sys-
tems [9, 10]. These proposed applications exploit the self-synchronization property
to faithfully recover the information at the receiver. A major drawback to utilizing
self-synchronizing chaotic systems in communication applications is that the analysis
and synthesis of these systems is not well-understood due to their highly nenlinear
nature. This thesis focuses on both of these critical areas.

With respect to analysis, we first develop a systematic approach for examining the
self-synchronization properties of general nonlinear systems. Although this approach
provides a valuable analysis tool, it does not provide much insight for understand-
ing the mechanism underlying the self-synchronization property. To overcome this
limitation, we reformulate our analysis approach from the viewpoint of nonlinear
stability theory. This approach enables us to identify an equivalence between self-
synchronization in chaotic systems and asymptotically stable error dynamics between
the transmitter and receiver systems. We then prove the global self-sy'nchronization
property of the Lorenz systern and provide a clear mathematical framework for our
subsequent analysis and synthesis techniques.

To utilize the Lorenz system in applications, it is important to examine the sen-
sitivity of synchronization when a perturbation signal is added to the synchronizing

drive signal. We establish an analogy between synchronization in chaotic systems,
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nonlinear observers for deterministic systems, and state estimation in probabilistic
systems. Then we show numerically that the performance of the Lorenz receiver
as a nonlinear observer compares favorably with two well-known extended Kalman
filter algorithms when the perturbation is white noise. The normalized error in syn-
chronization of each state variable is significantly less than the normalized error in
the drive signal, provided that the input chaos-to-perturbation ratio (CPR) is larger
than some critical value. We use stochastic calculus to determine the exact first and
second moments of the synchronization error signals when the perturbation is white
noise. This analysis explains the observed threshold effect at low input CPRs. In ad-
dition, the development of an equivalent linear time-invariant error model quantifies
the sensitivity of synchronization in terms of the spectral characteristics of the per-
turbation signal. This model explains why the synchronization is robust to wideband
perturbations, and why low-level speech signals or other narrowband perturbations
can be accurately recovered at the receiver even though the synchronization error is
comparable in power to the message itself.

We next turn our attention to the synthesis problem. In [11], it was demon-
strated that it is possible to create a five-dimensional chaotic system by augmenting
the Lorenz system with additional states. That approach, however, involves consid-
erable trial and error. In this thesis, we develop several systematic procedures for
synthesizing new classes of high-dimensional dissipative chaotic systems that possess
the self-synchronization property. The first class of systems that we introduce are
referred to as linear feedback chaotic systems (LFBCSs). LFBCSs are composed of
a low-dimensional chaotic system and a linear feedback system. We focus on LF-
BCSs that utilize the Lorenz system as the chaotic system component and develop
systematic synthesis procedures for this type of LEBCS. A second class of systems
generalizes the LFBCS concept by allowing for multiple Lorenz systems and a linear
system to be combined into a chaotic array. A systematic procedure for synthesizing
this class of systems is also developed. The third class of systems represent a further
generalization of these concepts; they eliminate the necessity of the linear system and,

therefore, consist of an entirely nonlinear system. A systematic synthesis capability
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is provided which allows high-dimensional non-Lorenz self-synchronizing chaotic sys-
tems to be designed. The synthesis techniques vary in the number of drive signals
required for synchronization and the resulting complexity of the system dynamics.
The flexibility afforded by the various synthesis techniques enhances the usefulness
of synchronized chaotic systems for communications and signal processing.

Having a strong theoretical understanding of the concept of self-synchronization
in chaotic systems, we next consider some applied aspects of these systems. First, we
show that the Lorenz transmitter and receiver systems can be implemented as sim-
ple analog circuits using commercially available hardware. The performance of these
circuits is shown to be in excellent agreement with numerical and theoretical predic-
tions. The desire to utilize the Lorenz circuits for private communications led us to
develop two techniques for embedding an information-bearing waveform in the chaotic
drive signal, and for recovering the information with the synchronizing receiver. With
the first approach, we show that low-level speech signals can be privately transmitted
and recovered with the receiver circuit. The second approach allows binary-valued bit
streams to privately transmitted and recovered. While these two approaches do not
represent the ultimate in privacy or practicality, they do mark an important starting

point for the field.

1.1 Outline of the Thesis

The thesis is organized as follows. In Chapter 2, we summarize some relevant topics
in nonlinear dynamics and chaos, and establish the notation used throughout the
thesis. The emphasis of this summary is on the local stability analysis of equilibrium
points, Lyapunov’s direct method for examining global stability, and the concepts
of Lyapunov exponents and attractor dimension for chaotic systems. Each of these
topics plays a useful role throughout the thesis and the inclusion of this chapter makes
the thesis self-contained. The reader can, however, omit this chapter without loss of
continuity.

In Chapter 3, we generalize the ideas of chaotic system decomposition and self-
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synchronization, and develop a systematic approach for determining all of the stable
subsystems of general nonlinear systems. We then identify an equivalence between
self-synchronization and stable error dynamics. This equivalence allows us to prove
the global self-synchronization property of the Lorenz system and forms the basis for
our analysis and synthesis techniques discussed in subsequent chapters.

In Chapter 4, we perform numerical experiments that quantify the sensitivity of
synchronization in the Lorenz system when white noise is added to the drive signal.
To calibrate the performance of the Lorenz receiver, we compare its performance
against two well-known extended Kalman filter algorithms.

In Chapter 5, we perform a theoretical analysis of self-synchronization robustness
and signal recovery in the Lorenz system. We use stochastic calculus to determine the
exact first and second moments of the synchronization error signals when the drive
signal is perturbed by white noise. An approximate analytical error model explains
both the robustness of synchronization to wideband perturbations and why speech or
other narrowband perturbations can be faithfully recovered at the receiver.

In Chapter 6, we synthesize a new class of chaotic systems called linear feedback
chaotic systems (LFBCSs). The LFBCSr that we consider are composed of the Lorenz
system and an N-dimensional linear feedback system. Our primary theoretical results
include the development of self-synchronization and global stability conditions for
this class of systems. Linear stability analysis leads to an approach for estimating the
critical value of the bifurcation parameter at the onset of chaotic behavior. We also
suggest a systematic procedure for synthesizing new LFBCSs.

In Chapter 7, we develop an approach for synthesizing chaotic arrays that consist
of an arbitrary number of Lorenz oscillators and an N-dimensional linear system. The
theoretical results include: (i) the development of self-synchronization conditions for
this class of systems, (i) the development of global stability conditions for this class
of systems, and (ii1) a systematic synthesis procedure.

In Chapter 8, we develop an approach for synthesizing a general class of self-
synchronizing chaotic systems. A systematic synthesis procedure is used to show that

the Lorenz system is only one member of a more general class of three-dimensional
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chaotic systems which possess the self-synchronization property. To further illus-
trate the simplicity and generality of the synthesis procedure, the design of higher
dimensional chaotic systems is performed.

In Chapter 9, an analog circuit implementation of the Lorenz system is used to
demonstrate two potential approaches to private communications based on synchro-
nized chaotic signals and systems.

Chapter 10 summarizes the main contributions of this thesis and suggests some

directions for future research.
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Chapter 2

Nonlinear Dynamics and Chaos

In the main part of the thesis, we will need to utilize various well-known analysis
techniques in nonlinear dynamics and chaos. In particular, local stability analysis,
Lyapunov’s direct method, and the concepts of Lyapunov exponents and attractor
dimension play key roles throughout the thesis. This chapter summarizes each of
these topics, with emphasis on nonlinear systems represented by a set of first-order
ordinary differential equations. While the inclusion of this chapter makes the thesis
self-contained, the reader can, however, omit this chapter without loss of continuity.

We begin by discussing the local stability analysis of nonlinear systems near the
equilibrium points. This analysis proves useful in later chapters where it is necessary
to find conditions on the system’s parameters such that all of the equilibrium points
will be unstable. We then discuss Lyapunov’s direct method. This method is useful
for examining the global stability of nonlinear systems and for determining trapping
regions for a dissipative chaotic flow. Finally, we discuss some useful measures of
chaotic behavior, in particular, the notions of Lyapunov exponents and attractor
dimension. These measures are useful for confirming and comparing chaotic behavior

for the various nonlinear systems that we consider.
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2.1 [Equilibrium Points and Local Stability

Throughout this thesis, we will focus our analysis and synthesis efforts on nonlinear

systems which are representable by a set of ordinary differential equations of the form
x=f(x), xeRN . (2.1)

For simplicity, we will always assume that f(x) is a smooth function so that the basic
existence-uniqueness theorems for ordinary differential equations apply to (2.1).

A typical starting point for the analysis of (2.1) is to determine the equilibrium
(fixed) points and to perform a local stability analysis. The fixed points, xo, satisfy
f(xo) = 0. Unfortunately, the determination of the zeros of a nonlinear function is of-
ten not analytically tractable. There are, however, well-known numerical techniques,
such as the Newton-Raphson method, which are well-suited to this problem.

For the purpose of discussion, let us assume that the fixed points of (2.1) have
been determined. The behavior of solutions near x, can be examined by linearizing

(2.1) at xo. The linearized system is given by
6x = Df(xp)éx, bx € RV , (2.2)

where dx = x — xo and where Df = [3f;/dz;| is the system’s Jacobian matrix.
Because equation (2.2) is linear in dx, the local stability of this system can be easily
determined from the eigenvalues of the Jacobian matrix. Moreover, if Df(x,) has no
zero or purely imaginary eigenvalues, then the local stability of solutions to (2.1) near
Xo is determined by the linearization [12]. This result is particularly useful in later
chapters where it is necessary to determine the critical parameter values for which the
fixed points of a nonlinear system undergo an abrupt change in stability. To illustrate
these concepts, the fixed points of the chaotic Lorenz system are determined and a
local stability analysis is performed.

The Lorenz equations, first introduced by E. N. Lorenz as a simplified model of
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fluid convection [13], are given by

t = o(y—1z)
Yy = TT—Yy—7T2 (2.3)
z = zy—bz ,

where 0,7, and b are positive parameters. By varying r, the qualitative behavior of
solutions to (2.3) can change abruptly. Abrupt changes in the qualitative behavior
of a dynamical system are referred to as bifurcations and, in the case of the Lorenz
system, 7 is commonly referred to as the bifurcation parameter. The critical values
of r for which local bifurcations occur can be determined through linear stability
analysis.

The first step is to determine the fixed points of the Lorenz system - - the origin is
clearly a fixed point for all parameter values. Additionally, a pair of nontrivial fixed
points exists when r > 1. The state space location of these fixed points is given by

Xp = (:I:‘/b(r -1), d:\/b(r —1),(r — 1)). The Jacobian matrix of the Lorenz system

evaluated at the origin (xo, = 0) is given by

-0 o 0
Df(0) = r -1 0
0 0 -b

The eigenvalue at —b represents a stable mode since b > 0. The characteristic poly-

nomial for the upper 2 x 2 block is given by
Mi(o+DA+o(l-1)=0.

The two roots of this characteristic polynomial are in the left-half plane for r < 1.
For r > 1, one root is in the right-half plane and represents an unstable mode at
the origin. Thus, r is a bifurcation parameter for the Lorenz system because a slight
variation in r can abruptly alter the system'’s local stability.

The Jacobian matrix of the Lorenz system evaluated at the fixed point pair (xo =
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Xp) is given by

-0 o 0

1 -1 Fy/b(r —1)
+/b(r —1) */b(r — 1) -b

The characteristic polynomial of Df(x,) is given by

Df(x,) =

M+(@+b+1)A+b(o+r)A+2bo(r—1) = 0 . (2.4)

The critical value of r, when a root of (2.4) crosses from the left-half plane to the
right-half plane, can be determined by applying the Routh-Hurwitz criterion. This

critical value, r., is given by

_ o(c+b+3)
e = ——3°7 - (2.5)

As 7 is varied, a local bifurcation occurs when r = r.. For r > r, the fixed point
pair is unstable. Thus, for r > maz(1,r.) all fixed points of the Lorenz equations
are unstable. Assuming that the trajectories remain bounded, either limit cycles or
a chaotic attractor will exist. In Section 2.2, we utilize Lyapunov’s direct method
to show that all trajectories of the Lorenz system remain bounded for all positive
parameter values. The interested reader may consult {12, 13, 14] for a more in-depth

analysis of the Lorenz equations.

2.2 Lyapunov’s Direct Method

Lyapunov’s direct method involves determining a family of closed curves (N = 2)
or closed surfaces (N > 2) in state space such that the general behavior of nearby
trajectories of a dynamical system can be examined. The best way to show how this

works is by example.
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Figure 2-1: Iltustration of Lyapunov’s Direct Method.

Example (Jordan and Smith [15])

In this example, consider the global stability of the origin for the system

P = —y-2%, 9§ = -9 .

To solve this problem, consider the family of closed curves V(z,y) = 2 + y® = k,
where k is a positive scalalz. For each fixed k > 0, V(z,y) defines a circle enclosing
the origin in the zy-plane as illustrated in figure 2-1. We wish to show that for any
point on any of these circles, the state space trajectory through this point is directed
toward the interior of the circle. If this property holds for all k¥ > 0, then the origin is
globally asymptotically stable. To show that this property holds, the total derivative
of V(z,y) is evaluated along trajectories. Specifically,

dV(z(t),y(2)) _ 3_V B_V o .4
pm = 6zz+6yy = =2(c"+y%) .

Since V/(z,y) is negative for all (z,y) # 0, the trajectories move continuously to
smaller and smaller circles and eventually approach the origin. This shows that the
origin is globally asymptotically stable.

In highef dimensional problems, V(x) is a positive definite scalar function of N

components (z1,...,Zy). By evaluating the total derivative of V(x), we can examine
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Figure 2-2: Positive Definite Functions.

the behavior of trajectories in high-dimensional state spaces. Specifically, the total
derivative of V(x) along trajectories is given by

dv(x(t) Lov
dt - Z;a_x'ft(x) ’

where f;(x) is the component of the vector field associated with the i** state equation
of the nonlinear system. If V(x) is a negative definite function, then the origin in
state space is globally asymptotically stable. In general, positive definite functions
may have multiple extrema as illustrated in figure 2-2(a). If, however, V(x) is negative
definite, then V (x) exhibits a single global minimum at the origin as illustrated in
figure 2-2(b). Functions V(x) with this property are called Lyapunov functions. In
later chapters, we will find Lyapunov functions particularly useful for examining the
global stability of nonlinear systems.

In probiems of a more general nature, it is often the case that stable fixed points
do not exist, yet all trajectories remain bounded in state space. To examine the
global behavior of trajectories in these systems, we consider quadratic positive definite

functions of the form

V(x) = %(x—c)TP(x—c) _— (2.6)
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where P is a symmetric N x N positive definite matrix and k is a positive scalar.
Geometrically, (2.6) represents a family of ellipsoids in state space with c defining
the location of its center. Of particular importance for global stability analysis is
the determination of a closed surface S for which V(x) = 0. If V(x) < 0 for all x
outside S, then any ellipsoid T from the family (2.6) that contains S will suffice as a
global trapping region for the N-dimensional flow. This means that all trajectories
will eventually enter T and remain in T for all time thereafter. Finding a trapping
region may be a difficult task; however, if one can be found then it can be used to
prove that all trajectories remain bounded for all £ > 0.

It is well-known that the Lorenz system provides an example of a nenlinear system
for which an ellipsoidal trapping region can be analytically determined. As we show

below, an ellipsoid from the family

V() = (r:z:2 +oy® +o(z — 21')2) = k, k>0 (2.7)

N =

will determine a trapping region for the Lorenz flow for k sufficiently large.

The total derivative of V(x) is given by
V(x) = —orz’>—oy’ —o(z—r)2+obr? .

By setting V{x) = 0 and rearranging terms, we obtain

2

8

P Al S (2.8)

+ =

v
br2

T

Equation (2.8) represents an ellipsoid in state space. This ellipscid plays the role of
the closed surface S. Since V < 0 for all x outside of S, any ellipsoid T from the family
{(2.7) which contains S will suffice as a trapping region for thc Lorenz flow. Figure
2-3 illustrates the trapping region T and the V(x) = 0 ellipsoid S.

Another key feature of the Lorenz flow is that it is highly dissipative. This can

be shown by computing the divergence of the vector field for the Lorenz equations as
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Figure 2-3: A Trapping Region for the Lorenz Flow.

follows,

V:x = @_l__aﬂ _ai

p ay+6z —(c+1+b) .

Since the divergence is a negative constant, it follows that any volume in state space
will contract exponentially fast [14]. The use of the divergence operator will be shown
in Chapters 6-8 to be important for ensuring that our synthesis procedures produce
chaotic systems which are dissipative.

In summary, linear stability analysis of the Lorenz system (Section 2.1) showed
that for r > maz(1,r.) all of the fixed points are unstable and therefore the motion
is non-triviai. Lyapunov’s direct method was then used to illustrate that the Lorenz
flow is confined to an ellipsoidal region in state space for all positive parameter values.
Furthermore, invariant tori are not possible in the Lorenz systern, because the diver-
gence of the vector field is a negative constant. This property ensures that the Lorenz
system is dissipative with exponentially fast volume contraction. This analysis alone
does not guarantee the existence of chaotic behavior since the possibility for limit
cycles exists. A dynamical system which behaves chaotically must exhibit a positive

Lyapunov exponent. This issue is discussed in the next section.
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2.3 Quantifying Chaotic Behavior

In this section, we discuss the concepts of Lyapunov exponents and attractor dimen-
sion for dissipative chaotic systems. These concepts are used to measure and quantify
the chaotic behavior of the various nonlinear systems that we consider in subsequent

chapters of this thesis.

2.3.1 Lyapunov Exponents

Lyapunov exponents are the average exponential rates of divergence or convergence of
nearby trajectories in a dynamical system. Positive Lyapunov exponents correspond
to diverging trajectories in state space and set the time scale for reliable prediction
of future states. Negative Lyapunov exponents correspond to cor.verging trajectories
in state space and set the time scale on which transient motion will decay [16]. In
between these two extremes are the zero Lyapunov exponents which correspond to
flow along the trajectory. If at least one Lyapunov exponent of a dynamical system
is positive, then a volume element in staie space will expand in some direction and
nearby trajectories will diverge. The exponential expansion of a chaotic flow implies
that diverging trajectories must experience a repeated folding process in order for
the motion to remain bounded. Loosely speaking, each positive Lyapunov exponent
reflects a “direction” for which the folding process takes place and trajectories become
decorrelated. This dynamical behavior leads to a sensitive dependence on initial
conditions and is a primary feature of every chaotic system.

Lyapunov exponents are most easily understood by considering a one-dimensional

discrete-time map of the form
Inyl = f(zn)a T€ER .

Suppose that the initial state of this system is given by zy = z¢ + dzo, where dz
g 0

represents an infinitesimal error in the true initial state zo. The error in specifying
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x, is given by

02, = z, -2z, = f"(zp) = f"(z0)

~ Df"(z¢)bzy ,

where f" denotes the n-fold composition, f* = fo---o f. Applying the chain rule

for differentiation we can write

DfYzo) = Df(zn-1)Df(zn-2)--Df(z0) ,

and therefore, the average rate of exponential growth of dz,, is given by

020
61‘0

= T Ipfa) = e .

1=0

The Lyapunov exponent, A, can then be expressed as

n—1
A = Jim © Y loglDf (e

'Lyapunov exponents can also be interpreted in information-theoretic terms [17].
Specifically, the positive exponents reflect the average rate at which predictive ability
is lost, or equivalently, the average rate of information gained by observing the current
state of the system. The well-known Hénon map [18], for example, exhibits a positive
exponent equal to 0.4. If the initial condition is known to a precision of 16 bits, then
the ability to predict beyond approximately 40 iterations is lost.

The concept of Lyapunov exponents also applies to continuous-time dynamical
systems. To illustrate this, we denote the general solution of the dynamical system
i(t) = f(z(t)), = € R, by z(t) = ¢,(z(0)). Analogous to the discrete-time case, the
initial state of the system is assumed to be given by z'(0) = z(0) + §z(0), with the

resulting error at time ¢ given by
6z(t) = a'(t) -=z(t) = ¢(z'(0)) — d(z(0)) =~ Dgr(z(0))6z(0) .
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By periodicall; sampling the linearized flow, D¢,, the Lyapunov exponents for a
continuous-time system can be defined as those of a discrete-time system generated
by the mapping D¢,r = Df".

Several notable properties of continuous-time chaotic systems are:

e all continuous-time chaotic systems have at least one zero Lyapunov exponent

ccrresponding to the direction tangent to the fiow;

e the sum of the Lyapunov exponents is equal to the time averaged divergence of

the vector field;

e any continuous-time dissipative chaotic system has at least one negative expo-
nent, the sum of the exponents is negative, and the limiting trajectories evolve

on an attracting set having zero volume in state space; and
e the minimum dimension of a continuous-time chaotic system is three.

Using a symbolic notation, the spectrum of Lyapunov exponents for a three-dimensional
chaotic system has the unique representation (+,0,—), whereas in four-dimensions
there are three possible types, with representations given by (+,0,—, =), (+,0,0, -)
and (+,+,0,—).

In dynamical systems with the state space dimension greater than one, the ex-
istence and computation of Lyapunov exponents relies or: the multiplicative ergodic

theorem of Oseledec [19]. This theorem states that if a matrix product is defined as
Df"(x) = Df(f*"!(x)) - - - Df(f(x)) Df(x) ,
then under some general ergodicity conditions, the following limit exists
.1 T
Jim ——log ([DE"(®[DF*(x)]) = A ,

where A is a diagonal N x N matrix. Furthermore, the Lyapunov exponents corre-

spond to the diagonal elements of A.
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Unfortunately, a direct application of the multiplicative ergodic theorem is nu-
merically unstable, especially when positive Lyapunov exponents exist. This diffi-
culty has been overcome by the QR decomposition approach suggested by Eckmann
and Ruelle {20], which is based on decomposing the matrix product Df"(x) into
triangular factors. Th~ir approach begins by defining Df(x) = Q,R,, where Q, is
an orthogonal matrix and R, is an upper triangular matrix. For j > 1, the matri-
ces T7(x) = Df(f7~!(x))Q;-, are successively defined and decomposed according to
T¥(x) = Q;R;. It is straightforward to show that Df*(x) = Q. R, --- R,. It can also
be shown that the diagonal elements /\f:‘ ) of the triangular matrix product R, --- R,

obtained from this algorithm satisfy
lim —1 log)\‘f’) = X
n—oo 7 r t

where A; corresponds to the i** largest Lyapunov exponent.

The QR method provides a numerically stable approach for computing the Lya-
punov exponents of a dynamical system defined by a set of state equations. Using
the QR method, we show in figure 2-4 the computed Lyapunov exponents for the
Lorenz system. For this case, the parameter values 0 = 16 and b = 4 were fixed,
and the parameter r was varied over the range 20 < r < 10J. Note that the onset
of chaotic behavior occurs near r = 34 as evidenced by the existence of a positive
Lyapunov exponent. The large negative exponent is due to the highly dissipative
nature of the Lorenz chaotic attractor and, as expected, a zero Lyapunov exponent
is also apparent. Note also that equation (2.5) determines that all of the fixed points
wii be unstable for 7 > 33.5. From figure 2-4, we see that this critical value closely

predicts when chaotic motion will occur.

2.3.2 Attractor Dimension

Long term chaotic motion in dissipative systems is confined to a strange attractor
whose geometric structure is invariant to the evolution of the dynamics. Typically, a

strange attractor is a fractal object and, consequently, there are many possible notions
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Figure 2-4: Lyapunov Ezponents of the Lorenz System.

of dimension for strange attractors. In this section, we discuss some well-known and
widely accepted definitions of attractor dimension. We also discuss a simple relation-
ship to Lyapunov exponents and provide a numerical example to further emphasize
some useful aspects of these concepts.

Dissipative chaotic systems are typically ergodic. All initial conditions within the
system’s basin of attraction lead to a chaotic attractor in state space which can be
associated with a time-invariant probability measure, p(x). Intuitively, the dimension
of the chaotic attractor should reflect the amount of information required to specify
a location on the attractor with a certain precision. This intuition is formalized by

defining the information dimension, dimyp, of the chaotic attractor as

e—0 log € ’

where p[Bx(€)] denotes the mass of the measure p contained in a ball of radius e,

centered at the point x in state space [20, 21]. Information dimension is important
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from an experimental viewpoint because it is straightforward to estimate. The mass,

p{Bx(€)], can be estimated by

AB) ~ 7 LU~ =) |

where U(-) is the unit step function. In typical experiments, the state vectors x are
estimated from a time delay embedding of an observed time series [22].

Information dimension will, in general, depend on the particular point x in state
space being considered. Grassberger and Procaccia’s approach [23] eliminates this

dependence by defining the quantity

1 M M
CE) = EL L UC-ls—x) |

i=1j=1
and then defining the correlation dimension, dim¢ p, as

. . log C(e)
dlmcp = ll_r'r(l)——log—e .

In practice, one usually plots log C(¢) as a function of log ¢ and then measures the
slope of the curve to obtain an estimate of dimcp. It is often the case that dimyp
and dimgp are approximately equal.

There is also a meaningful relationship between information dimension and Lya-
punov exponents for chaotic systems (21, 24, 25]. If A,,...,An are the Lyapunov

exponents of a chaotic system, then the Lyapunov dimension, dimgp, is defined as

AL+ A

[Aks1 (29)

dimpp = k+

where k = maz{i: A\, +---+\; > 0}. Equation (2.9) suggests that only the first k+1
Lyapunov exponents are important for specifying the dimensionality of the chaotic
attractor. Kaplan et al. [24, 25] conjecture that dimgyp = dimpp in “almost” all
cases. Clearly, if this is correct then equation (2.9) provides a straightforward way to

estimate the attractor dimension when the dynamical eqnations of motion are known.
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Figure 2-5: Lyapunov Dimension of the Lorenz System.

In figure 2-5, we show the computed Lyapunov dimension of the Lorenz attractor
as the parameter r is varied over the range 20 < r < 100. Note that for r > 34, the
Lyapunov dimension is nearly constant with an average value of approximately 2.06.
This value is consistent with the correlation dimension of the Lorenz attractor given
in [26]. Similar numerical experiments with the Hénon, Réssler, and double scroil
[27] systems show a similar consistency. Since dimpp is relatively straightforward
to determine, we will use this approach throughout the thesis to obtain meaningful

estimates of the attractor dimension for thc various chaotic systems that we consider.
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Chapter 3

Self-Synchronization in Chaotic

Systems

The concept of chaotic synchronization is intriguing, and until recently, had not re-

ceived much attention. It is now well-known that dissipative chaotic systems of a
certain class possess a self-synchronization property. This property allows two iden-
tical chaotic systems to synchronize when the second system is driven by the first,
The ability to synchronize remote chaotic systems by linking them with a common
drive signal suggests new and potentially interesting approaches to private communi-
cations. Some applied aspects of synchronized chaotic systems will be discussed and
demonstrated in Chapter 9.

Self-synchronization in chaotic systems is not well-understood due to the highly
nonlinear nature of these systems. The analysis presented in this chapter provides a
major step toward further understanding this remarkable property, and is organized
as follows. In Section 3.1, we discuss the concept of chaotic system decomposition and
demonstrate the self-synchronization property of the Lorenz system. In Section 3.2,
we formalize this concept and develop a systematic approach for examining the self-
synchronization properties of general nonlinear systems. In Section 3.3, we establish
an equivalence between self-synchronization in chaotic systems and asymptotically
stable error dynamics. We then use Lyapunov functions to provide an analytical

explanation of self-synchronization in a class of chaotic systems.
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3.1 Decomposing Chaotic Systems into Drive and
Response Subsystems

In 1990, Pecora and Carroll [1, 2] reported that certain chaotic systems could be
decomposed into drive and response subsystems that synchronize when coupled by a

common drive signal. Specifically, they decomposed a nonlinear system of the form
x=f(x), xe RV |
into subsystems, i.e., expressed it as

d, = Dy(d,,d,), d, € RV ™ (3.1)
A2 = Dg(dl,dz), d; e R™ . (3.2)

This decomposition can be performed by simply partitioning the state variables into
two groups, one associated with D, and the other with D,. However, only certain
partitions of the state variables will produce a stable D, subsystem in the sense
that all of the conditional Lyapunov ezponents associated with D, are negative. If a
stable decomposition is achieved, then a stable response subsystem can be formed by
duplicating D, and replacing the state variables d; by new state variables r. This

leads to a response subsystem of the form
r = D,(d;,r), re R™ . (3.3)

Viewed as a single system, equations (3.1) and (3.2) can be interpreted as a transmit-
ter or drive system with (3.3) forming a receiver or response subsystem that is driven
by d,. Figure 3-1 illustrates the approach.

In [1, 2], it was shown numerically that if the conditional Lvapunov exponents
associated with D, are all negative, then the state variables r will synchronize to the
state variables d;. The term conditional is applied to emphasize that the dynamics of

D, depend on the drive variable d,. In typical cases, an analytical determination of
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Figure 3-1: Decomposing a Chaotic System into Drive and Response Subsystems.

the conditional Lyapunov exponents is not possible and numerical approaches, such
as the QR decomposition method (Section 2.3), are necessary to calculate them.
The Lorenz system (2.3) provides an example of a chaotic system for which stable

decompositions are possible. For example, a stable (y,, z;) response subsystem can
be defined by
h = rz(t) - —z(t)a

(3.4)
Hh = z(t)y - bz
and a stable (z, 2;) response subsystem by
£ = o(y(t) - z2) (3.5)

zy = zoy(t) — bzy .
Equations (3.4) and (3.5) represent dynamical response systems which are driven
by the transmitter signals z(t) and y(t) respectively. It can be shown numerically
that the conditional Lyapunov exponents of the (3, 21) response subsystem are both
negative and thus |y, — y| and |z, — z| = 0 as t = oo [1, 3]. Also, the eigenvalues of
the Jacobian matrix for the (z,2;) response subsystem are both negative and thus
|z2 — z| and |z, — z| = 0 as t — oo.

The two response subsystems can be cascaded to regenerate the full-dimensional
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dynamics which are evolving at the transmitter [9, 10, 28, 29]. If the input signal
to the (y1,2,) subsystem is z(t), then the output y,(t) can be used to drive the
(z2, z2) subsystem. This subsequently generates a “new” z(t) in addition to having
obtainzad, through synchronization, y(t) and 2(t). It is also possible to regenerate the
full-dimensional dynamics of the transmitter by reversing the order of the response
subsystems and using y(t) as the drive signal. The advantage of using z(t) as the
drive signal is that the two response subsystems given by equations (3.4) and (3.5) can
be combined into a single system having a three-dimensional state space [30, 31, 32].

This produces a full-dimensional receiver system given by

z, = a(yr - .'L',-)
o = rz(t) — yr — z(t)2, (3.6)
3, = z(t)y, — bz, .

An interesting feature of the receiver equations (3.6) is that they are algebraically
similar to the transmitter equations (2.3), except that the drive signal z(t) replaces
z,(t) in the second and third equations.

In figure 3-2(a), (b), and (c), we show the decomposed, cascade, and combined rep-
resentations respectively, for a receiver system that can regenerate the full-dimensional
dynamics of the Lorenz system. Note that the receiver depicted in figure 3-2(a) is
fouf-dimensional and requires that two drive signals be communicated. The receiver
depicted in figure 3-2(b) eliminates the need for two drive signals but is also four-
dimensional. In an analog circuit implementation of the receiver systems, the state
space dimension corresponds to the number of integrators and is, therefore, related to
system complexity. The combined representation (figure 3-2(c)) requires the fewest
integrators and is preferable in certain applications. For the remainder of the thesis,
we will refer to the combined representation as the Lorenz receiver in light of the
potential applications.

To illustrate the self-synchronization property of the Lorenz receiver, we show in
figure 3-3(a) a comparison between the transmitter signal z(t) (dashed line) and the

corresponding receiver signal z,(t) (solid line), when the receiver is initialized fromn the
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Figure 3-2: Lorenz Synchronizing Receiver Representations: (a) Decomposed Form.
(b) Cascade Form. (c) Combined (3-D) Form.
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zero-state. Figures 3-3(b) and (c) show a similar comparison between the y(t) and
z(t) transmitter and receiver signals, respectively. Synchronization is clearly rapid
and maintained. Furthermore, the synchronization of the transmitter and receiver is
global, i.e., the receiver can be initialized in any state and the synchronization still
occurs. This important result will be proven analytically in Section 3.3.

The ability to decomnpose the Lorenz equations into cascading subsystems that
regenerate the full-dimensional transmitter dynamics suggests an interesting approach
for studying the self-synchronization properties of general nonlinear systems. This
approach relies on determining the stzble response subsystems for general nonlinear

systems and is discussed in Section 3.2.

3.2 Determining the Stable Response Subsystems
for General Nonlinear Systems

The first step is to formalize the concepts of chaotic system decomposition and self-
synchronization. We can then develop a systematic approach for determining all
of the stable response subsystems for general nonlinear systems and show how to
cascade these subsystems in an optimal way. While this analysis is presented using a
continuous-time framework, the approach also applies to discrete-time systems.

The class of nonlinear systems that we consider is represented by a set of N

first-order ordinary differential equaticns of the form

T = fi(z,...,zN)
(3.7)

j:N = fN(mI)'-')xN)

The functions fi, ..., fy map RN — R! and are assumed to be smooth, In our subse-
quent analysis of chaotic system decomposition and self-synchronization, the following

definition of driven subsystems will be useful.
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Figure 3-3: Synchronization of Transmitter and Receiver Signals in the Lorenz Sys-
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Definition 3.1 For any positive integer N, let Jy be the set whose elements are
the integers, 1,2,..., N. Fix a proper subset j C Jy. Let z; denote the set of state
variables with indices that range over the elements of j. We say that a state z;, for
i € Jy, drives a subsystem composed of states z;j if and only if

Applying Definition 3.1 to the Lorenz equations (2.3), we can conclude that:

e y drives the z subsystem, but that z does not drive the y subsystem because

the equation for 3 also depends on the state z;
e neither z nor y alone drive the z subsystem by the same definition; and

e every two-dimencional subsystem of (2.3) satisfies Definition 3.1. Specifically,
z drives the (y, z) subsystem, y drives the (z,z) subsystem, and z drives the

(z,y) subsystem.

In fact, any system of the form (3.7) can be drive decomposed into subsystems,
where each subsystem is driven by a single state variable. As discussed above, we
see that exactly four driven subsystems exist for the Lorenz system. They are listed

below.
1. z drives (y, 2).
2. y drives (z, 2).
3. z drives (z,y).
4. y drives z.

This approach to drive decomposition can be readily extended to N-dimensional
systems. There are exactly N possible one-dimensional subsystems in the single drive

variable case, i.e., one subsystem corresponding to each state variable. Equivalently,
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the number of one-dimensional subsystems S; is given by the combination,

s — [N) = N
Tl ) -

= N .

In general, the number of m-dimensional subsystems S,, is given by

N

m

Sm =

The total number of subsystems S of any order is obtained by summing S,,, for
m=1,.,N-1,
N-1

S = Y S = 2V-2,

m=1

Observe that S has an exponential dependence on N. For N = 3, thire are at most
6 subsystems, and for N = 10, there are at most 1022. However, the number of
subsystems which satisfy Definition 3.1 is usually much less because some of the state
equations may depend on only a few state variables. A simple approach for identifying
the various subsystems which satisfy Definition 3.1 is discussed below.

The number of unique N-bit binary words, excluding the zero-string and one-
string, is exactly 2V — 2. Therefore, a two-dimensional subsystem that is composed

of states z;, for j = {1,2}, can be represented by the binary word B(z;) given by
B(z;) = (1,1,0,...,0) .

In this case, the 1’s accur in the two leftmost bit positions, corresponding to the z;
and z, states respectively. The binary representation makes it clear why the zero-
string and one-string are omitted. The former would correspond to a zero-dimensional
subsystem and the latter would correspond to an N-dimensional subsystem. Both of
these cases are excluded by Definition 3.1.

The binary representation is an orderly way of identifying the various subsystems
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Response | Drive Satisfy
B(z;) |x y =z | Def. 3.17 | Stable?
(001) [1 I 0] No No
(010) |1 0 1| No No
(011) (1 0 O Yes Yes
(1o0) [0 1 0 Yes Yes
(to1) [0 1 0 Yes Yes
(110) |0 0 1 Yes No

Table 3.1: Drive Decomposition of the Lorenz System.

for a general system of differential or difference equations. In table 3.1, we show the
drive decomposition table for the Lorenz system. This table is constructed by assigning
each drive variable to a column, and every possible subsystem to a row. The rows
follow the standard binary ordering. Since table 3.1 represents a three-dimensional
system, it has 6 rows. An N-dimensional system would have a table with (2V —2) rows.
A “1” entry in the table indicates that the corresponding drive variable couples into
the subsystem and that the drive variable is not a state variable of that subsystem.
)J\ “0” entry in the table indicates that the corresponding subsystem is not driven
by that drive variable. The table also indicates which subsystems satisfy Definition
3.1. These are the response subsystems and they will be represented notationally by
conditioning them with respect to the drive variable. For example, if z drives the
(v, 2) response subsystem then it will be denoted by (y, 2|z).

The drive decomposition table provides a systematic approach for identifying the
response subsystems from the algebraic structure of the transmitter equations. State
variables which belong to stable response subsystems (SRSs) can be regenerated by
a self-synchronizing receiver and those belonging to unstable subsystems can not.
Table 3.1 shows that the Lorenz system contains exactly four response subsystems,
as expected. Three of these are two-dimensional and oune is one-dimensional. Of these
four response subsystems, only the (y, z|z), (z, z|y) and (z|y) are stable in the sense
of having a complete set of negative conditional Lyapunov exponents. The stable

response subsystems are indicated in the last column of table 3.1.
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The SRSs are of primary interest in our subsequent analysis because they can be
used in cascade to regenerate the transmitter dynamics. One way of regenerating the

three-dimensional dynamics of the Lorenz system is to use the cascade
z — (y,zz) — (zly) .

With z(t) as the drive signal, the (y, z|z) response subsystem allows y(t) and z(t)
to be reconstructed through synchronization. Subsequent use of y(t) to drive the
(z|y) response subsystem allows z(t) to be regenerated. A systematic approach for
determining an appropriate cascade of SRSs can be obtained by using trees. A brief
description of trees as used in this context is given below.

To describe trees, we first introduce some terminology. A tree consists of nodes
and branches, where each node represents a SRS. Every branch has exactly two nodes
associated with it. The upper node corresponds to the [** level of the tree and the
lower node to the (! + 1)* level of the iree. A path consists of an interconnection of
branches arranged from the highest node of the tree to the lowest node of the tree.
The lowest level node of any path is called a terminal node.

To construct an SRS tree, we begin by listing each state variable, z,,...,zy, at
the top level of the tree. Then we treat the state variable z, as the drive variable and
locate the “1” entries in column 1 of the drive decomposition table which correspond
to SRSs. Each of these SRSs becomes a level 2 node and a branch is drawn connecting
it to z;. This procedure is repeated for state variables z,,...,zy by considering
columns 2 through N, respectively. If no SRSs correspond to the “1” entries in a
given column of the drive decomposition table then the corresponding drive variable
is terminal. At level 2 of the tree, we treat the SRS state variables as drive variables
and repeat the above procedure. In general, the SRS state variables at the {** level of
the tree become drive variables for the (1 + 1)* level SRSs. From this construction, it
is clear that every SRS is driven by a state variable from the previous level. We say

that a [** level state variable is terminal if:

1. it is also a state variable of some SRS at a higher level of the tree along the

same path, or
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Figure 3-4: SRS Tree for the Lorenz System.

2. it was terminated at some higher level node of the tree.

The tree construction is complete when every path reaches a terminal node. A node

is terminal if:

1. all of the SRS state variables are terminal, or

2. the union of the SRS state variables along the same path comprise a complete

set of state variables (also called the home path).

In figure 3-4, we show the complete SRS tree for the Lorenz system. The SRS

tree clearly indicates which transmitter states are recoverable through synchronization

and which SRSs to use to recover those states. In this figure, we see that there are

exactly three cascades of SRSs which can be used to regenerate the full-dimensional

transmitter dynamics. These cascades correspond to the three “home” paths and are

listed below.
.z — (y,2]z) — (z]y)
2.z — (y,2]z) — (z,2|y)

3.y — (z,2ly) — (y,2[z)

It is possible that several cascades of SRSs may correspond to a home path. To

help choose 2n optimal cascade, we define the path length as the overall dimensionality
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of the SRSs representing that path. In an analog circuit realization of the SRSs, the
path length corresponds to the total number of integrators and is therefore related
to eystem complexity. It is advantageous from an implementation viewpoint to select
the cascade corresponding to the shortest path length. For the case of the Lorenz
system, cascade 1 has a length of three whereas cascades 2 and 3 have a length of four.
Therefore, cascade 1 represents the minimum length. If more than one home path
shares the minimum length, we can further distinguish between these home paths by
choosing the cascade which minimizes a certain cost function. In the context of state
estimation, each home path can be viewed as a full-dimensional observer, and we can
base our optimization approach on a cost function which reflects the overall stability
of the observer. One such cost function is based on the sum of the largest conditional
Lyapunov exponents of each SRS in the cascade. We denote this cost function by

Jmaez and define it as
Jmaz = y_maz {CL(SRS;)} , (3.8)

where CL(-) denotes the conditional Lyapunov exponents.
In the Lorenz system with parameters ¢ = 16,7 = 45.6, and b = 4, the conditional

Lyapunov exponents of the three SRSs are given by

CLaly) = (-16) ,
CL(z,2ly) = (-16,-4) , (3.9)
CL(y,z|z) = (-2.5,-25) .

Evaluating J,,.. for cascades 1, 2, and 3, we obtain -18.5, -6.5, and -6.5, respectively.
In this case, cascade 1 minimizes J,,z and also has the minimum length. Cascade 1
would be the optimal choice based on these criteria.

We observe that the SRS tree constriuction procedure must terminate after, at
most, N levels. These ‘N levels correspond to N SRSs which can be used in cascade

as a full-dimensional observer. This result is summarized in Theorem 3.1.
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Response | Drive Satisfy
B(z;) |x y =z |Def 3.17 | Stable?
(001) |0 1 0 Yes No
(010) (1 0 1 No No
(011) (1 0 0 Yes Yes
(1o00) [0 1 O Yes Yes
(1o1) [0 1 0 Yes No
(110) |0 0 1 Yes No

Table 3.2: Drive Decomposition of the Double Scroll System.

Theorem 3.1 If a stable decomposition of an N-dimensional system produces a full-
dimensional observer, then the observer consists of a cascade of, at most, N single-

input stable response subsystems.

As a second example of drive decomposition, consider the double scroll equations
[27]
£ = afy- h(z))
y = z-y+z (3.10)
z = -y,

where h(z) is a piecewise linear function

% + (ag — a1) z>1
h(z) = < aoz -1<z<1
a1z — (ap — ay) r<-1

The drive decomposition table for this system is given in table 3.2. For the param-
eter values that we have chosen, a = 9,8 = 100/7,ap = —1/7, and a; = 2/7, the

conditional Lyapunov exponents for the SRSs are given by

CL(zly) = (-10),
CL(y,ZI:B) = (—'5,_'5) :

(3.11)

In figure 3-5, we show the complete SRS tree for the double scroll system. Note

that there are two ways to regenerate the full-dimensional dynamics of this system.
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Figure 3-5: SRS Tree for the Double Scroll System.

Response | Drive Satisfy
B(z;) |x y z|Def 3.17 | Stable?
(001) (1 0 O Yes Yes
(010) (1 0 O Yes No
(011) (1 0 O Yes No
(100) [0 1 1| No No
(to1) (0 1 O Yes Yes
(110) [0 0 1 Yes No

Table 3.3: Drive Decomposition of the Rossler System.

Because the two home paths represent a re-ordering of the SRSs, our optimality
criteria will not distinguish between them.

The Rassler system, given by

I = —y—2
y = z+ay (3.12)
2 = b+2z2(z-c) ,

provides an example of a chaotic system for which the full-dimensional dynamics can
not be regenerated by a cascade of single-input SRSs. The drive decomposition table
for this system is given in table 3.3. For the parameter values that we have chosen,

a =.2,b= .2, and ¢ = 11, the conditional Lyapunov exponents for the SRSs are given
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Figure 3-6: SRS Tree for the Rossler System.

CL(zlz) = (-109) ,

(3.13)
CL(z,z]y) = (—.04,-10.9) .

In figure 3-6, we show the complete SRS tree for the Réssler system. The (z, z|y)
response subsystem allows z(t) and z(t) to be regenerated with y(t) as the drive
signal. The (z|z) response subsystem allows z(t) to be regenerated with z(t) as the
drive signal. This figure suggests, however, that it is not possible to regenerate the
full-dimensional dynamics of the Réssler system with this approach.

It should be emphasized that drive decomposition tables and SRS trees are par-
ticularly useful for examining the self-synchronizing properties of higher dimensional
systems. The relatively low-order systems discussed in this section were chosen to
illustrate the approach, rather than to suggest limitations. Two potential drawbacks

of this approach are:

e it requires considerable computation to determine the conditional Lyapunov

exponents of each response subsystem; and

o the approach does not provide much insight for understanding the self-synchronization
property. It also does not suggest a systematic procedure for synthesizing new

chaotic systems which possess the self-synchronization property.

In Section 3.3, we analyze self-synchronization from the viewpoint of nonlinear
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stability theory. A major advantage of this approach is that it provides a clear math-
ematical framework for analyzing and synthesizing a large class of self-synchronizing

chaotic systems.

3.3 Equivalence Between Self-Synchronization and
Asymptotic Stability

The main theme of this section is the relatibnship between self-synchronization and
asymptotic stability. We will focus our attention on chaotic systems which‘possess
the complete self-synchronization property, i.e., systems for which it is possible to
regenerate all of the transmitter signals. For simplicity, we also assume that the
transmitter and receiver systems have the same state space dimension, as was the
case for the combined representation of the Lorenz receiver (Section 3.1). In Chapters
6-8, we develop synthesis techniques for this class of systems and in Chapter 9 we
discuss some applied aspects.

Below, we give a mathematical definition of self-synchronization which is useful

in our subsequent analysis.

Definition 3.2 Two dynamical systems, a transmitter X = f(x) and a receiver
%, = f(x,x,), where x and X, € RV, and f : R¥Y — RM, are said to possess the
self-synchronization property if there exists a domain € in RV such that if x(0) and
x,(0) € €, then ||x(t) — x,(t)]]| = 0 as t = oo. The self-synchronization is termed
global if Q spans RV,

Definition 3.2 in effect states that the concept of self-synchronization is equivalent
to the concept of asymptotically stable error dynamics between the transmitter an.J
receiver systems. If we define the synchronization errors by e(t) = x(t) — x,(t), then
Definition 3.2 implies that ||e(t)]] = 0 as ¢ = oo. This is equivalent to our definition
of asymptotically stable error dynamics.

In Section 2.2, we showed that Lyapunov’s direct method is useful for examining
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the asymptotic stability of general nonlinear systems. When the error system is linear,

we can restrict our attention to quadratic Lyapunov functions of the form
E = EeTRe ’

where e denotes any vector in the errov svstem’s state space, and where R is a
symmetric N x N positive definite matrix. Geometrically, E represents an ellipsoid
in the error system’s state space with the center of the ellipsoid located at the origin.
If E is negative definite, then Lyapunov’s theorem (Theorem 10.2 in [15]) ensures
that the origin is globally asymptotically stable. Thus, the transmitter and receiver
systems will synchronize regardless of the initial conditions.

To show that self-synchronization in the Lorenz system is a result of stable error

dynamics, we first define the error signals as

ex(t) = z(t) — z(t)
ex(t) = y(t) — v (t)
e(t) = 2z(t) — 2(t) .

Assuming that the Lorenz transmitter and receiver parameters are identical, a set of

equations which govern their error dynamics is given by

é: = ole,—ez)
ey = —ey—z(tle, (3.14)
é; = z(t)ey, —be, .

Using a more concise notation, these error equations can be written as a linear time-

dependent system of the form

e = Aft)e ,

where e = (e;,e,,€e;). A sufficient condition for the error equations to be globally
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asymptotically stable at the origin can be determined by considering a Lyapunov

function of the form
1,1, 2
E(e) = 5(‘;6,4"6”4'62) ;

Note that E(e) is positive definite provided that ¢ > 0. The time rate of change of

E(e) along trajectories is given by

. 1 . . .
E(e) = Sexés + eyéy + €€,

= —(ez—=e,)% - %ez — be? .

Provided that b > 0, E(e) is negative definite. Since o and b in the Lorenz equations
are both assumed to be positive, E is positive definite and E is negative definite.
It then follows from Lyapunov’s theorem that e(t) — 0 as ¢ — oo. Therefore,
synchronization occurs as t — oo regardless of the initial conditions imposed on the
transmitter and receiver systems.

Note also that the Lorenz transmitter and receiver systems do not have to operate
chaotically for synchronization to occur. By appropriately choosing the parameters
o,r, and b, the motion can, in principle, be confined to limit cycles and yet synchro-
nization between the transmitter and receiver will still occur. This shows that the
self-synchronization property exhibited by certain chaotic systems does not depend
on chaoﬁic behavioi'; rather it should be viewed as a result of stable error dynamics
between the transmitter and receiver systems.

A drawback of the Lyapunov approach for analysis problems is that it is usually
difficult to define an appropriate Lyapunov function for examining the stability of
general nonlinear systems. For synthesis problems, however, we can assume that a
suitable Lyapunov function exists, and determine the constraints that this assumption
places on the system’s algebraic structure. In Chapters 6-8 we use this approach
to propose several systematic procedures for synthesizing self-synchronizing chaotic

systems.
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Figure 3-7: Block Diagram of the Lorenz Synchronizing Receiver.

Another issue concerns the sensitivity of the synchronization when a p=rturbation
signal p(t) is added to the synchronizing drive signal z(t). Clearly, this an important
practical issue for realistic systems that utilize chaotic synchronization. As a step to-
ward further addressing this issue, Chapter 4 establishes an analogy between synchro-
nization in chaotic systems and nonlinear state estimation in probabilistic systems.
This analogy is possible because synchronized chaotic systems can be viewed as per-
forming the role of a nonlinear observer. For example, consider figure 3-7 which shows
a block diagram representation of the Lorenz receiver equations (3.6). The Lorenz
receiver can be viewed as an open-loop nonlinear observer. It would seem that this
system would not make a highly robust observer because of the open-loop structure.
Chapter 4 addresses this issue by comparing the performance of the Lorenz receiver
to two well-known extended Kalman filter algorithms when white noise is added to

the transmitter’s drive signal.

56



Chapter 4

Self-Synchronization and

Nonlinear State Estimation

In Chapter 3, we showed that synchronization in the Lorenz system is a result of sta-
ble error dynamics between the transmitter and receiver systerﬁs. In effect the Lorenz
receiver is a type of nonlinear state estimator. This interpretation suggests an anal-
ogy between self-synchronization in chaotic systems and nonlinear state estimation
in probabilistic systems using extended Kalman filters (EKFs). The performance of
EKFs in state estimation problems is well-doqumented, whereas studies of the sensi-
tivity of synchronization in chaotic systems has only recently been explored (33, 34].

In this chapter, we numerically examine the sensitivity of synchronization in the
Lorenz system when a white noise perturbation signal p(t) is added to the synchro-

nizing drive signal z(t). In this case, the Lorenz receiver equations are given by

T, = a(yr - .'L',-)
9 = rs(t) -y, — s(t)z, (4.1)
z = s(t)y, — bz .

The received drive signal s(t) is given by

s(t) = =(t) +p(t) .
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With s(t) equal to the transmitter signal z(t), the receiver state variables z,,y,, and 2,
will asymptotically synchronize to the transmitter variables z,y, and z. The receiver
variables, however, will not exactly synchronize to the transmitter variables when
p(t) is non-zero. To calibrate the performance of the Lorenz receiver as a nonlinear
state estimator, we will compare its performance to the well-known continuous and
linearized EKF algorithms.

In Section 4.1, we discuss the implementation of the EKFs for the Lorenz system.

In Section 4.2, we present the numerical experiments and performance comparisons.

4.1 State Estimation of the Lorenz System

Probabilistic state estimates of the Lorenz system can be obtained by expressing the

Lorenz system dynamics and received signal as a dynamical system of the form

x(t) = f£(x(t)) + w(t)

(4.2)
s(t) = Hx(t)+p(t) .

The vector x denotes the Lorenz state variables, i.e., x = (z,y,2). The process
noise w(t) and measurement noise p(t) are assumed to be zero-mean, white, and
uncorrclated. We denote by Q(¢) and a;‘,’ the spectral densities of w(t) and p(t),
respectively. Because the received signal is given by s(t) = z(t)+p(t), the observation
matrix H is equivalent to the row vector (1,0, 0).

In Section 4.1.1, we discuss the continuous EKF algorithm for obtaining state
estimates of the Lorenz system. In Section 4.1.2, we discuss an alternative state
estimation approach, the linearized EKF algorithm. In Section 4.1.3, we determine

an appropriate spectral density Q(t) for use in the EKF algorithms.
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4.1.1 Continuous EKF

The continuous EKF state estimation equation corresponding to the dynamical sys-

tem model represented by (4.2) is given by
x(t) = f(x(t))+ K(t)[s(t) — Hx(t)] . (4.3)

The Kalman gain K(t) is determined by linearizing (4.2) about the current state

estimate, i.e., by expressing x(t) as
x(t) = %x(t) +ox(t) .
The linearized system, which is valid for small x(t), is given by

ox(t) = DFf(x(t))ox(t) + w(t)

(4.4)
v(t) = s(t)— Hx(t) = Hox(t)+p(t) .

The time-dependent matrix Df(%(t)) corresponds to the Jacobian matrix of the
Lorenz system evaluated at the current state estimate. Since equation (4.4) repre-
sents a linear time-dependent system, the Kalman filter error covariance matrix P(t)

and Kalman gain K (t) are governed by the matrix Riccati equation given below.

7 P(t HTHP(t) (4.5)

P(t) = Df(x(t)P(t) + P(t)DIT(x(t)) + Q(2)
—a7P(0)
K(t) = sPMHT

Equations (4.3) and (4.5) determine the continuous EKF state estimates for the
Lorenz system. In figure 4-1, we show a block diagram of the continuous EKF. In
comparison with the block diagram of the Lorenz receiver (figure 3-7), we see that
the EKF has a closed-loop structure whereas the Lorenz receiver has an open-loop
structure.

Although the state estimation equation (4.3) captures the exact nonlinear dynam-

ics of the Lorenz system, the state estimates will diverge if K (¢) becomes small. This
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Figure 4-1: Block Diagram of the Continuous EKF for the Lorenz System.
follows from the fact that chaotic systems are sensitive to initial conditions and any
error in the current state estimate will increase exponentially fast if K (t) is small. To
avoid the filter divergence, the spectral density Q(t) must be appropriately adjusted.

This issue is discussed further in Section 4.1.3. We next discuss the linearized EKF

algorithm for obtaining state estimates of the Lorenz system.

4.1.2 Linearized EKF

The linearized EKF algorithm is based on the assumption that the actual system

state is given by
x(t) = x(t) +ox(t) , (4.6)

where the nominal trajectory x(t) is assumed to be known. The quality of the lin-
earized EKF’s state estimates depends on having an accurate nominal trajectory. In

many applications, however, an accurate nominal trajectory inay not be available.
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Figure 4-2: Block Diagram of the Linecrized EKF.

For the Lorenz system, our approach for obtaining the nominal trajectory “on-line”
is to use the state estimates from the Lorenz receiver. This approach is illustrated in
figure 4-2.

The dynamics governing dx(t) are determined by substituting equation (4.6) into
(4.2) and expanding f(x(t)) in a Taylor series through linear terms. The resulting

linearized system is given by

§x(t) = DE(x())dx(t) +w(2)

(4.7)
v(t) = s(t)— Hx(t) = Hx(t)+p(t) .
The Kalman filter for estimating x(t) is given by
6x(t) = Df(x(t))ox(t) + K(t)[v(t) — Hox(t)] . (4.8)

The error covariance matrix P(t) and Kalman gain K (t) are governed by the matrix

Riccati equation given below.

P(t) Df(x(t))P(t) + P(t)DET(x(t)) + Q(t)
-5 P()HTHP(t) (4.9)

K@) = LP@t)HT

p
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A useful 1eature of the Riccati equation is that the Jacobian matrix Df(%(t))
depends on the nominal trajectory rather than the current state estimate, as was the
case for the continuous EKF. Since the nominal trajectory is assumed to be known a

priori, the Kalman gain and error covariance matrix can be computed “off-line.”

4.1.3 Process Noise

Determining an appropriate spectral density Q(t) of the process noise w(t) is an
important issue. One might conclude that Q(t) should be very small due to our
complete knowledge of the system model that we wish to simulate. However, rapid
filter divergence occurs in this case. The local instability of chaotic systems creates
“new” uncertainties about the eventual evolution of the system state which must
be accounted for by appropriately adjusting Q(t). If Q(t) is too small, then the
Kalman filter rejects the received data and favors the model, thus leading to rapid
filter divergence.

One approach to identifying a good first estimate of Q(t) for the Lorenz sys-
tem is by observing that Q(¢) and Lyapunov exponents have the same units (s71).
Intuitively, positive Lyapunov exponents affect the evolution of future states in a de-
terministic system in much the same way that Q(t) affects the uncertainty of future
states in a probabilistic system. It seems plausible that Q(t) could be, in some sense,
related to Lyapunov exponents. A simple argument to support this intuition is given
below.

Over short time intervals the exponential divergence of nearby trajectories in a
chaotic system is dominated by the largest positive Lyapunov exponent ... If §2(0)
represents a small perturbation from z(z) at ¢t = 0, then the trajectories diverge at a

rate given by

|92(2)]
|62(0)]

et 21+ Apagt - (4.10)

This divergence creates uncertainty in the current state of the chaotic system. Now

consider the situation of a first-order integrator driven by white noise. The dynamical
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system is represented by

i(t) = w() , (4.11)

where w(t) has a constant spectral density equal to . The Lyapunov equation

governing the uncertainty in the current state of (4.11) is given by

P1) = Q. (4.12)

Equation (4.12) has the solution P(t) = P(0) + Qt. For P(0) =1 and Q = Apaz, the
evolution of uncertainty in the first-order integrator is equivalent to the evolution of
uncertainty in the chaotic system. This argument suggests a connection between
and the largest positive Lyapunov exponent.

The largest Lyapunov exponent for the Lorenz system, with parameter values
o = 16,7 = 45.6, and b = 4, is approximately 1.5. Using Q(t) = 1.5Ic, where I is
the 3 x 3 identity matrix and c is a positive scalar, extensive simulations of both the
continuous and linearized EKFs were run. We determined that a small range for ¢
exists which produces acceptable performance for both EKFs. We selected a value
near the middle of this range, specifically ¢ = 2.

In the next section, a set of experiments is conducted to evaluate the performance

of the Lorenz receiver and EKFs when the perturbation p(t) is Gaussian white noise.

4.2 Performance Comparisons

In this set of experiments, we denote by 02,02,02, and o2 the average power in
z(t), y(t), 2(t), and p(t), respectively. The input chaos-to-perturbation ratio (CPR)

reflects the perturbation in the drive signal and is given by

2
Input CPR = 10log;, [Z—;l
P
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The output chaos-to-error ratio (CER) associated with z(t) reflects the error between

z(t) and z,(t) and is defined as
o2
Output CER, = 10log,, [0—2”]
The output CER for the state variables y(t) and z(t) are similarly defined as

2
Output CER, = 10log, [:—:] )

ey

2
Output CER, = 10log,, [g—;] .

In figure 4-3, we illustrate the numerical experiment used to evaluaie the output
CER of the Lorenz receiver and EKF's as a function of the input CPR. Each state
estimator receives the identical input sample values, i.e., the received signal s(t) is
simultaneously observed by the Lorenz receiver and EKFs. An initial rest condition is
imposed on the Lorenz receiver while the EKFs are initialized using the true state of
the transmitter at ¢ = 0. State estimates were computed for several seconds and the
first few seconds of output data were discarded to eliminate start-up transients. The
output CER was then computed for the state estimates from the remaining output
data.

In figure 4-4, we compare the performance of the Lorenz receiver (solid curves) and
the continuous EKF (dashed curves). The performance of these two state estimators
is similar over a wide range of input CPRs. Near -10 dB input CPR, the Lorenz
receiver exhibits a sharp threshold effect. However, above this threshold, the Lorenz
receiver achieves an output CER which is approximately 10 dB greater than the input
CPR. We should emphasize that the performance of the Lorenz receiver is insensitive
to initial conditions. The EKF, on the other hand, requires accurate initial conditions
or the state estimates may rapidly diverge. The EKF also has a disadvantage at high
input CPRs. Because the EKF algorithm inverts the noise density aﬁ, a lower bound

was placed on o?

» in order to avoid numerical problems at high input CPRs. This

limits the quality of the EKF state estimates at high input CPRs.
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Figure 4-3: Numerical Ezperiment to Evaluate the Output CER vs. Input CPR.

In figure 4-5, we show the performance curves for the Lorenz receiver and linearized
EKF. Although the performance of these two state estimators is very similar, the
linearized EKF has an important advantage over the continuous EKF. The linearized
EKF can be initialized with a wide range of initial conditions and not diverge, which
was not the case for the continuous EKF. The linearized EKF’s insensitivity to initial
conditions is due to the ability of the Lorenz receiver to provide meaningful state
estimates even at low input CPRs. These state estimates provide an accurate nominal
trajectory for the linearized EKF.

In an informal experiment, we numerically evaluated the sensitivity of the Lorenz
receiver and continuous EKF to parameter modeling errors at the receiver. The trans-
mitter parameters were fixed at their nominal values while each receiver parameter
was treated as a uniformly distributed random variable. The mean value of the re-
ceiver parameters equaled the value of the corresponding transmitter parameter. The
variance of the receiver parameters reflected the percent modeling error being tested,

where modeling error was defined as the ratio of the standard deviation to the mean
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value of the receiver parameters. A wide range of modeling errors was tested, with the
input CPR fixed at 10 dB throughout the experiment. In figure 4-6, we summarize
the results of the experiment. The performance curves were averaged over several
independent trials. The slopes of these curves indicate that the sensitivity of the
Lorenz receiver and EKF are comparable over the range of modeling errors tested.
In summary, the performance of the Lorenz receiver for obtaining state estimates of
the Lorenz system is comparable to the corresponding continuous and linearized EKF
algorithms when white noise is added to the drive signal. Two notable characteristics

of the output CER vs. input CPR curves for the Lorenz receiver are:

e a threshold effect is evident at a critical value of input CPR; and

e above the threshold, the normalized error in synchronization of each state vari-

able is significantly smaller than the perturbation.

In Chapter 5, these characteristics are explored in greater detail.
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Chapter 5

Robustness and Signal Recovery

in a Synchronized Chaotic System

In Chapter 4, we showed that the Lorenz receiver produces robust state estimates
when the drive signal is perturbed by additive white noise. The normalized error in
synchronization of each state variable is approximately 10 dB less than the normalized
error in the drive signal, provided that the input CPR is larger than some critical
value. These observations pose the question of whether the synchronization is also
robust to speech or other narrowband pcrturbations. This chapter is motivated by

the desire to answer this question as well as the related questions listed below.

— Why does the Lorenz receiver exhibit a threshold effect av low input CPRs?

— Are the synchronization errors correlated, and if so, is it a linear or nonlinear
dependency?

— Does the sensitivity of the synchronization depend on the spectral characteristics
of the perturbation signal? If so, can it be explained?

— Suppose that the received signal consists of the sum of a low-level speech signal,
or other narrowband message, and the synchronizing drive signal. Can the
message be accurately recovered by subtracting the regenerated drive signal at
the receiver from the received signal? Why or why not?

When a message or other perturbation is added to the chaotic drive signal, the

receiver does not regenerate a perfect replica of the drive; there is always some syn-
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chronization error }y subtracting the regenerated drive signal from the received sig-
nal, successful i.iessage recovery would result if the synchronization error was small
relative to the perturbation itself. One of the main results presented in this chap-
ter is that for the Lorenz system, the synchronization error is not small compared
to a narrowband perturbation; nevertheless, the message can be recovered because
the synchronization error turns out to be nearly coherent with the message. We will
present experimental evidence for this effect, along with an explanation in terms of
an approximate analytical model.

In Section 5.1, we present the results of several experiments which demonstrate the
robustness of synchronization to white noise perturbations and the ability to recover
speech perturbations. In Section 5.2, we use stochastic calculus to determine the
first and second moments of the synchronization error signals when the perturbation
is white noise. A dynamical system interpretation of the second moment equation
explains the threshold effect observed at low input CPRs. This equation also provides
an analytical means for quantifying the correlation between the error signals. In
Section 5.3, we develop an approximate analytical model that quantifies and explains
the sensitivity of the synchronization in terms of the spectral characteristics of the
perturbation. We also explain why speech and other narrowband perturbations can
be recovered faithfully, even though the synchronization error is comparable in power
to the message itself. In Section 5.4, we summarize the primary contributions of this

chapter.

5.1 Experiments to Demonstrate Robustness and
Signal Recovery

In this section, we conduct a series of experiments to demonstrate the robustness
of synchronization to white noise perturbations and the ability to recover speech

perturbations. These experiments focus on the synchronizing properties of the Lorenz
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transmitter equations,

t = o(y- 1)
y = TT — Y — T2 (5.1)
z = zy—bz ,

and the corresponding receiver equations,

z, = oy —z,)
B = rs) - v — s (52)
z, = s(t)y, — bz, .

Previously, we showed that with s(¢) equai to the transmitter signal z(t), the signals
Z.,Yr, and z, will asymptotically synchronize to z,y, and z, respectively.

In cur notation for the transmitter and receiver equations, we have established
the convention that ,y, and 2 denote dz/dr,dy/dr, and dz/dt respectively where
T = t/T is normalized time and T is a time scale factor. This convention provides the
flexibility for adjusting the time scale of the signals. It is also convenient to define
the normalized frequency w = QT, where 2 denotes thc angular frequency in units
of rad/s. The parameter values used in our experiments are ¢ = 16,r = 45.6, and

= 4. For the experiments which use a speech segment as the perturbation signal,
the value of T is 400 usec, otherwise T = 1 sec.

The use of the Lorenz system for practical applications requires that the receiver
approximately synchronizes when a perturbation p(t) is added to z(t), i.e., when s(t)

is given by

s(t) = z(t) +p(t) .

In Section 5.1.1, we experimentally examine the error between the state variables
z,y, and z in the transmitter, and the state variables z,,y,, and z, in the receiver

when p(t) is white noise. The corresponding errors will be denoted as e, e,, and e,
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respectively, i.e.,

e(t) = z(t) —z.(t)
ey(t) = y(t) —u:(2)
e(t) = z(t) —2() .

By subtracting the regenerated drive signal z.(t) from the received signal s(t), the

recovered message is

B(t) = s(t)—z:(t) = »p()+[z(t) —=z(2)] .

In this context, e(t) corresponds directly to the error in the recovered message. In

Section 5.1.2, we experimentally examine this error when p(t) is a speech signal.

5.1.1 Sensitivity of Synchrenization to Additive White Noise

In figure 5-1, we plot the output chaos-to-error ratio (CER) for each state variable
as the input chaos-to-perturbation ratio (CPR) is varied over a wide range. Two
relevant characteristics of the output CER curves are: (%) a threshold effect is evident
at low input CPRs, and (i) above the threshold the normalized synchronization error
of each of the state variables is approximately 10 dB less than the normalized error
in the drive signal z(t). We analytically determine an exact moment equation which
closely predicts both of these characteristics later in Section 5.2.

In figure 5-2, we plot the message and error spectra for each of the three state
variables vs. normalized frequency w. Note that at relatively low frequencies, the
error in reconstructing z(t) slightly exceeds the perturbation of the drive but that for
normalized frequencies above 20 the situation quickly reverses. The analytical model
developed in Section 5.3 closely predicts and explains this behavior. These figures
suggest that the sensitivity of synchronization depends on the spectral characteristics
of the perturbation signal. For signals which are bandlimited to the frequency range

0 < w < 10, we would expect that the synchronization errors will be larger than
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Figure 5-1: Output CER,;,CER,, and CER, vs. Input CPR for the Lorenz Syn-
chronizing Receiver.

the perturbation itself. This turns out to be the case, although the next experiment

shows there are additional interesting characteristics as well.

5.1.2 Sensitivity of Synchronization to Additive Speech

In this experiment, p(t) is a low-level speech signal (the message to be transmitted
and recovered). The normalizing time parameter is 400 usec and the speech signal
is bandlimited to 4 kHz or, equivalently, to a normalized frequency w of 10. Figure
5-3 shows the power spectrum of a representative speech signal and the chaotic signal
z(t). The overall CPR in this experiment is approximately 20 dB.

To recover the message, we subtract the regenerated drive signal at the receiver
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from the received signal. In this case, the recovered message is

p(t) p(t) + ex(t)

It would be expected that successful message recovery would result if e,(t) was small
relative to the perturbation signal. For the Lorenz system, however, we will show
that although the synchronization error is not small compared to the perturbation,
the message can be recovered because e;(t) is nearly coherent with the message.

Experimental evidence for this effect is presented below and an explanation in terms
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of an approximate analytical model is presented in Section 5.3.

In figure 5-4, we show the spectrum of 5(t) for this same example. Notice that p(t)
includes considerable energy beyond the bandwidth of the speech. Furthermore, 5(t)
resembles a scaled version of the message at low frequencies. Later, we show that these
observations are consistent with the synchronization error e, (t) being nearly coherent
with the message at low frequencies and noise-like at high frequencies. Consequently,
the speech reccvery can be improved by lowpass filtering 5(¢). We denote the lowpass
filtered version of p(t) by ps(t). In figure 5-5(a)-(c), we show p(t),s(t), and py(t)
respectively. With this lowpass filtering, the message-to-error ratio is approximately
10 dB.

5.2 Determining the Synchronization Error Mo-

ment Equations

In this section, we analytically determine the first and second moments of the syn-
chronization error signals when the perturbation is white noise to help explain the
threshold effect observed at low input CPRs. We start with an approximate approach
(Section 5.2.1) and then use stochastic calculus to obtain an exact result (Section

5.2.2).
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5.2.1 Approximate Approach

By subtracting the receiver equations (5.2) from the transmitter equations (5.1), the

following set of error equations is obtained.

-0 0 0 0
€ = | 0 -1 —s@t)|e+]|20t)-r|p(t) (5.3)
0 s(t) -b —y(t)

These error equations represent a linear time-dependent system of the form
e = A(s(t)e+b(t)p(t) . (5.4)

If we assume that the perturbation p(t) is small, then we can approximate (5.4) by a

linear time-dependent system of the form
¢ = A(z(t)e+b(t)p(t) . (5.5)

By using augmented state models, it is possible to analyze the statistical properties
of (5.5) when p(t) is temporally correlated. We will assume, however, that p(t) is
a zero-mean white noise process with covariance function Ky(t,7) = 026(t — 7) to

simplify the presentation of our error analysis approach.

76



1 i A

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
(@) TIME (sec)

0 0.2 04 0.6 08 1 1.2 1.4 1.6 1.8 2
(©) TIME (sec)

Figure 5-5: (a) Original Speech. (b) Received Signal. (c) Recovered Speech.

77



From (5.5), the first moment of e(t) is governed by a differential equation of the

form
ne(t) = A(z(t))me(t) (5.6)

Previously, we showed that equations of this form are asymptotically stable at the
origin (see equation (3.14)). Thus, 7.(t) — 0 as t — 0o. This shows that the Lorenz
receiver produces unbiased state estimates of z,y, and z when p(t) is a small zero-
mean white noise process. We show later that this result holds even when p(t) is not
small.

The error covariance matrix P.(t) corresponding to (5.5) is governed by the matrix

Lyapunov equation
P(t) = A((t))P.(t) + P.(t) AT (x(2)) + oZb(t)b"(t) . (5.7)

- This equation shows that P.(t) depends linearly on the noise intensity af,. For small
aﬁ (large input CPRs), the numerical estimates of output CER vs. input CPR,
shown in figure 5-1, are consistent with this observation. However, due to the linear
dependence on o2, equation (5.7) does not predict the threshold effect observed at low
input CPRs. In the threshold region, 03 is relatively large and equation (5.7) is no
longer a valid approximation of the true error covariance matrix. In the next section,
we use stochastic calculus to determine exact moment equations which overcome this

limitation.
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5.2.2 Exact Approach via Stochastic Calculus

The exact error equations (5.3) can be represented by a bilinear system having a

four-dimensional state space. Specifically, we define the augmented vector ¢ by

.ez,
¢ = |
€z
- 1 -
and determine the dynamics of ¢ below.
([-¢ o o00] oo o o |
0 -1 —-z(t) 0 0 0 -1 2(t)-r
¢ = < + pt) ¢ (58)
0 z(t) —b 0 01 0 -y
| 0 0 oof (00 O 0 | )

Equation (5.8) has the form ¢ = {Ag(t) + A;(t)p(t)}C, i.e., it represents a bilinear
system which is driven by the stochastic process p(t). Methods based on the theory of
stochastic differential equations and Lie algebras have been developed for the analysis
of this class of systems [36, 37, 38]. As shown below, we can utilize these theories to
determine the first and second moments of e(t). We will also assess the stochastic
stability of these moments.

The Ito differential equation corresponding to (5.8) is given by
d¢ = {Ao(t)dt + Ai(t)opdw(t)}C (5.9)

where the stochastic process w(t) is the integral of white noise, i.e., w(t) is a Brow-
nian motion or Wiener process. Ito equations are particularly useful for computing
expectations. They are awkward, however, for performing differential computations
because the rules of Ito calculus do not conform to the rules of ordinary calculus.

On the other hand, Stratonovich equations obey the rules of ordinary calculus but
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expectations are more difficult to calculate. A common approach is to convert the Ito
equation to Stratonovich form, perform the necessary differential calculations, and
convert back to Ito form.

The Stratonovich equation corresponding to (5.9) is given by
o2
d¢ = {[Ao(t) - ?”Af(t)]dt + A1 (t)opd,w(t)}C . (5.10)
Following Willsky and Marcus [38), the “n'*-power” of (5.10) is given by
2
n o n n n
d(" = {[A0) ~ ZAA@"dt + AV Dopdiw ()}, (5.11)

where the vector ¢! consists of the elements

4
n n—ny n—my—--—"n;
ezle;zegalm’ Zni = n,
3] N9 n, i=1

ordered lexicographically. Converting (5.11) back to Ito form, we obtain

dc = {[A%"’(t)—%%(A%(t)l"l—A‘{"(t)?]dt+AE"‘(t)apdw(t»c‘"’ . (512)

The moment equations for ([ are obtained by taking expected values of (5.12). The

result of this calculation is given by
2
S} = (AP0 - 20N - AP@NECT) . (513)
For n = 1, equation (5.13) reduces to

dBicw) = AWECO) (5.14)

We now utilize the following definition to assess the stochastic stability of (5.14).
Definition 5.1 (Willsky and Marcus [38]) A vector random process, &, is n'"-order
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asymptotically stable if

lim E{¢M(#)} = o .

t—oo0

Applying this definition to equation (5.14) we see that the Lorenz error dynamics
are first-order asymptotically stable, i.e., E{e(t)} — 0 as t — oco. Equivalently, the

Lorenz receiver produces state estimates with the following property.

Theorem 5.1 The Lorenz receiver produces unbiased state estimates when zero-mean

white noise of arbitrary intensity is added to the drive signal z(t).

While Theorem 5.1 is an important property from certain state estimation perspec-
tives, it does not explain the threshold effect observed at low input CPRs. To further
investigate this effect, we will determine the second moment of ¢.

Evaluating the moment equation (5.13) for n = 2 we obtain

([e2 1) [ 20 20 0 0 0 o | ([e
ezey 0 -1-0 -2z(t) o 0 0 ez,
eze 0 z(t -b-0 O o 0 ez€,

%E« EY = (® E{
e2 0 0 0 -2 —2z(t) o2 el
eye; 0 0 0 x(t) -b-1-02 —x(t) eye;

L e ] |0 0 0 o 2x(2) -2b | || €

3 . ;
0
0
+ af,
(2(t) - 1)?
~y(t)(2(t) - 7)
y(®)?

This six-dimensional system can be represented by a cascade of two three-dimensional
subsystems as illustrated in figure 5-6. The dynamical equations defining these sub-

systems are given below.
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4 e -2 —=2z(t) o2 e (2(t) — r)?
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€€, 0 z(t) —-b-o €€, ey€;

It is important to recognize that subsystem 2 does not depend on 03, and its

stability can be assessed by considering the positive definite function’,

ezef)

171 —
E, = 5 (%622 + 6_-,;6112 +

Evaluating the time rate of change of E,, we obtain

. — 1 LE: _

E, = - (63 - Eeze,,) - (Z + a) ee,” — (b+o)eze;” .
Because E, is positive definite and F, is negative definite, it follows from Lyapunov’s
theorem that subsystem 2 is globally asymptotically stable. For any bounded input,
subsystem 2 produces bounded outputs.

Subsystem 1 clearly depends on aﬁ and is stable for a;‘,’ less than some critical value.

'In our subsequent notation, the overbars will denote statistical averages.

82



This critical value can be determined by considering the positive definite function,

—2 —2
E, = (eg + 2eye,2 + e2 )

N =

Evaluating the time rate of change of E,, we obtain

. _ g2_\? ot\
E = -2(eg-§e3) —2(b+1+a§)ey—e,2—2( ——42)63 .

Observe that E, is negative definite if the following condition is satisfied.

ba4>0
4

This condition shows that subsystem 1 is stable for values of aﬁ that satisfy the
inequality

2 < Vb = 7. (5.15)

Equation (5.15) identifies a threshold -y for which subsystem 1 is stable; thus, the
second moment equations produce bounded outputs. For values of orf;’ which exceed
this threshold, subsystem 1 will loose stability and cause the second moment equations
to be unstable.

Before confirming this analysis by numerical experiment, it is useful to write the

second moment equations in the form
Po(t) = A(z(t))Pe(t) + P.(t)AT(z(t)) + o2b(t)bT (t) + 02SP.(t)ST , (5.16)

where S is a constant skew-symmetric matrix given by

0 00
S =10 01
0 -10
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Equation (5.16) is a type of Lyapunov equation that is similar to the approximate
version given by equation (5.7). The only difference is that (5.16) contains the higher
order term g2SP.(t)ST. This term destabilizes (5.16) at low input CPRs. The results

of our second moment analysis are summarized below.

Theorem 5.2 The ezact synchronization error covariarice matriz P,(t) of the Lorenz

recetver is governed by the matriz Lyapuncv equation
P(t) = A(z(t)Pe(t) + P.(t) AT(z(2)) + o2b(t)b7 () + a2SP.(t)ST |

when zero-mean white noise of intensity o is added to the drive signal z(t). Moreover,

P,(t) is bounded for o? < 2v/b.

In figure 5-1, we showed a plot of output CER for each state variable as the input
CPR is varied over a wide range. In figure 5-7 we reproduce these curves (dashed
lines) together with a plot of the output CER as predicted by the Lyapunov equation
(5.16) (solid curves). The analytical predictions are in excellent agreement with the
numerical results.

In figure 5-8(a), we show a plot of the synchronization error variances (diagonal

2

elements of Pe(t)) vs. o3. For small o2, the error variances depend linearly on

o
o} as expected. For o2 > 4 (2vb = 4), the error variances become unbounded.
This critical value of instability is in excellent agreement with the value predicted by
equation (5.15). This analysis confiims that the threshold effect is due to an inherent,
instability of the second moment equation at low input CPRs.

In figure 5-8(b), we show a plot of the synchronization error correlation coefficients
vs. af, . The correlation coefficient p,, reflects the correlation between e, and ¢, and
is defined by

Oezey

Py = ’
OexOey

where 0., denotes the covariance of e, and e,. An analogous definition is used for p,,

and py,. The coefficient p;, suggests a strong linear dependence between e, and e,
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Figure 5-7: Prediction of the Output CER From the Second Moment Equation.

This dependence is consistent with the exact error equations (5.3) which indicate that
e; is the result of processing e, with a lowpass filter having a cutoff frequency w equal
to 0. The coefficients p;, and p,, indicate that both e, and e, are nearly uncorrelated
with e,. This may not be obvious from the exact error equations, however, in Section
5.3 we develop an approximate error model which provides further insight into why
this is the case.

It is also of interest to determine whether the robustness of synchronization in the
Lorenz system is sensitive to the parameter values used in the implementation of the
transmitter and receiver equations. One way to measure the sensitivity is by defining

the perturbation-to-error ratio (PER) for each state variable. The PER. associated
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Figure 5-8: (a) Prediction of the Synchronization Error Variances From the Second
Moment Equation. (b) Synchronization Error Correlation Coefficients.
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with z(t) is defined by
PER, = Output CER, — Input CPR .

The PER associated with () and 2(t) is defined analogously. An informal experiment,
was run in which the Lorenz parameter r is held fixed while ¢ and b are varied
individually, and the input CPR is fixed at 10 dB. The Lyapunov equation (5.16) was
then used to provide analytical predictions of the output CER for each state variable.

In figure 5-9(a), we show a plot of the PER for each state variable vs. 0. A small
improvement in PER; and PER,, is obtained by decreasing o from its nominal value of
16. This is consistent with the lowpass filtering interpretation of the error equations;
reducing o narrows the passband of the lowpass filter. A small improvement in PER,
is obtained by increasing o. In figure 5-9(b) we show a plot of the PER for each state
variable vs. b. Variations in the b parameter have little affect on the PER of each
state variable. This experiment suggests that the robustness of synchronization in

the Lorenz system is not sensitive to the parameters tested.

5.3 Development of an Approximate Synchroniza-

tion Error Model

In Section 5.1.1, we showed numerically that when the perturbation is white noise,
the normalized error in each state variable is approximately 10 dB less than the
normalized error in the drive signal. Also, the error in reconstructing the state vari-
ables slightly exceeds the perturbation of the drive signal at low frequencies, but
for normalized frequencies above 20 the situation quickly reverses. In Section 5.1.2,
we demonstrated that a low-level speech signal could be added to the drive signal<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>