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Recent papers have demonstrated that synchronization in the Lorenz system is highly robust

to additive perturbation of the drive signal.

This property has led to a concept known as

chaotic signal masking and recovery. This paper presents experiments and an approximate
analytical model that quantify and explain the observed robustness of synchronization in the
Lorenz system. In particular, we explain why speech and other narrowband perturbations can
be recovered faithfully, even though the synchronization error is comparable in power to the

message itself.

1. Introduction

Chaotic signals are typically broadband, noise-like,
and difficult to predict. These properties have
led to the proposal that chaotic signals might
be potentially useful in certain private communica-
tions contexts, e.g. as masks for information-bearing
waveforms, and as modulating waveforms in spread
spectrum systems [Oppenheim et al, 1992].
These proposed approaches exploit the self-
synchronization property of certain chaotic systems
[Pecora & Carroll, 1990, 1991; Carroll & Pecora,
1991]. Synchronization, however, is not sufficient;
the proposed applications also inherently require
the robustness of the synchronization to perturba-
tions of the synchronizing drive signal. Specifically,
additive signal masking and recovery as described
in Oppenheim et al., [1992] relies on adding a low-
level message signal to the synchronizing drive sig-
nal, and using this perturbed drive signal at the re-
ceiver to regenerate a clean drive signal. Through
subtraction, the message is then recovered. The

successful use of the Lorenz system for masking of
speech signals has been previously demonstrated
and reported, both as a simulation and as an ana-
log circuit realization [Cuomo & Oppenheim, 1993;
Cuomo et al., 1993]. An analog circuit implementa-
tion of masking of a narrowband signal has also sep-
arately been demonstrated [Kocarev et al., 1992].
This paper was motivated by a desire to un-
derstand the mechanism underlying the robustness.
When a message or other perturbation is added to
the chaotic drive signal, the receiver does not regen-
erate a perfect replica of the drive; there is always
some synchronization error. Successful message re-
covery would result if the synchronization error was
small relative to the perturbation itself. Omne of
our main results is that for the Lorenz system, the
synchronization error is not small compared to the
perturbation; nevertheless, the message can be re-
covered because the synchronization error turns out
to be nearly coherent with the message. We will
present experimental evidence for this effect, along
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with an explanation in terms of an approximate
analytical model.

In Sec. 2, we summarize the use of the Lorenz
system for signal masking and recovery. In Sec. 3,
we describe the results of several experiments which
demonstrate and evaluate the sensitivity of the syn-
chronization. In Sec. 4, we present an approximate
analytical error model which is consistent with and
predicts the experimental results in Sec. 3. In Sec. 5,
we compare the performance of the model to the
experimental results.

2. Background

The Lorenz equations are given by

:i?ZG'(y—:B),
§=re—y—az, (1)

z=zy—bz,

where o, r, and b are parameters. The equations
representing the synchronizing receiver are given by

i"f' = U(yr - 5‘31') ]
Yr =T18(t) — yr — s(t)2r (2)
zr = s(t)yr — bz,

where s(t) is the received drive signal. With s(%)
equal to the transmitter signal z(t), the signals ,,
yr, and z will asymptotically synchronize to z, y,
and z, respectively [Cuomo & Oppenheim, 1993].

In signal processing applications it is typically
of interest to adjust the time scale of the signals.
This is accomplished in a straightforward way by
establishing the convention that #, ¥, and 2z de-
note dz/dr, dy/dr, and dz/dr respectively where
7 = t/T is normalized time and T is a time scale
factor. It is also convenient to define the normalized
frequency w = QT', where (2 denotes the angular
frequency in units of rad/s. In the implementation
reported in Cuomo & Oppenheim [1993] and the
circuit experiments presented in this paper, the pa-
rameter values used where T = 400 usec, o = 16,
r =45.6, and b = 4.

Practical applications of the principle of syn-
chronization require a certain robustness, i.e. the
ability of the receiver to synchronize even when s(t)
differs slightly from (), either unintentionally due
to transmission effects or intentionally as in signal
masking. Specifically, the use of this system for
signal masking relies on the ability of the receiver

signal z,.(t) to approximately synchronize to the
transmitter signal z(¢) when a perturbation p(t) is
added to z(t), i.e. when s(t) is given by

s(t) = z(t) + p(t) ,

where p(t) is the desired message to be transmit-
ted and recovered. In this context, the recovered
message is

B(t) = s(t) — z(t) = p(t) + [2(t) — =, (2)] .

In the following sections we examine the error
between the state variables z, y, and z in the trans-
mitter and the state variables xr, yr, and 2, in the
receiver. The corresponding errors will be denoted
as ey, ey, and e, respectively, i.e.

ex(t) = z(t) — z(t),
By(t) = y(t) — Yr (t) ) (3)
ex(t) = z(t) — z-(t) ..

In the specific application of signal masking, e,(t)
corresponds directly to the error in the recovered
message. In the next section, we present experi-
mental results on the synchronization error when
p(t) is white noise and when p(t) is a speech signal.

3. Experimental Demonstrations
of Robustness

3.1. Sensitivity of synchronization
to additive white noise

In this set of experiments, the perturbation p(t) is
Gaussian white noise. We denote by o2, og, o2,
and o2 the average power in z(t), y(t), 2(t), and
p(t) respectively. The input chaos-to-perturbation
ratio (CPR) reflects the perturbation in the drive

signal and is given by

2
Input CPR = 10 logyg {%] . (4)
p

The output chaos-to-error ratio (CER) associated
with x(¢) reflects the error between z(t) and z,(t)
and is defined as

2
Output CER,; = 10 log;q [O%@-] : (5)

exr
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) — ' The output CER for the state variables y(t) and
gorenz . z(t) are similarly defined as
| System
sl ;
ol b=4 em . Output CER, = 10 log,, [o—é;] ,
s 0 CER i 1
5 utput » = 10 logy, Lr_gj ;
.§- i Figure 1 shows a plot of output CER for each
o state variable as the input CPR is varied over a wide
range. These data were generated by numerically
| integrating the transmitter and receiver equations
or and computing the error signals from Egs. (3). Note
that a threshold effect is evident at low input CPRs.
22 However, above the threshold the behavior of the
T [ Second. Moments Become Unstable receiver appears to be robust. In particular above
HEEG 0 10 20 30 40 the threshold, and with p(t) as wideband noise,
Input CPR the normalized error in synchronization of each
Fig. 1. Output CER., CER,, and CER. vs. Input CPR for ~ Of the state variables is approximately 10 dB less

the Lorenz synchronizing receiver.

than the normalized error in the drive signal z(?).
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In Fig. 2, we plot the message and error spectra
for each of the three state variables vs. normalized
frequency w. We note that at relatively low frequen-
cies, the error in reconstructing z(t) slightly exceeds
the perturbation of the drive but that for normal-
ized frequencies above 20 the situation quickly re-
verses. The analytical model developed in Sec. 4
closely predicts this behavior.

3.2. Sensitivity of synchronization

to additive speech

In this set of experiments, the analog circuit im-
plementation of the Lorenz equations described in
Cuomo & Oppenheim [1993] is used to demonstrate
the robustness of the synchronization when p(t) is
a speech signal. The normalizing time parameter
T is 400 psec and the speech signal p(t) is band-
limited to 4 kHz or equivalently to a normalized
frequency w of 10. Figure 3 shows the power spec-
trum of a representative speech signal p(¢) and the
chaotic masking signal z(¢). The overall CPR in
this experiment is approximately 20 dB.

In Fig. 4 we show the spectrum of p(t) for this
same example. Notice that p(t) includes consider-
able energy beyond the bandwidth of the speech.
The model discussed in Sec. 4 suggests why this is

or Chaotic Masking Spectrum

u
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Fig. 3. Power spectra of z(t) and p(t) when the perturbation
is a speech signal.

/Recovered Speech Spectrum

Power Spectrum (dB)
%
=

_4gj Speech Spectrum
—60
0 5 i0 15

Normalized Frequency (o)

Fig. 4. Power spectra of p(t) and p(t) when the perturbation
is a speech signal.

0 0z 04 06 08 I 12 14 16 18 2
© TIME (sec)

Fig. 5. (a) Original speech.
(c) Recovered speech.

(b) Transmitted signal.

the case. Consequently the speech recovery can be
improved by lowpass filtering p(t). We denote the
lowpass filtered version of p(t) by ps(t). In Fig. 5
we show p(t), s(t), and py(t). With this lowpass fil-
tering, the message-to-error ratio is approximately
10 dB.

4. Synchronization Error Model

In this section, we develop an approximate syn-
chronization error model which provides some
conceptual understanding of the numerical and
experimental results presented in Sec. 3.

By subtracting the receiver equations (2) from
the transmitter equations (1), the following error
equations are obtained.

-0 0o 0 0
e=|0 -1 —s()|e+ |2(t)—r]pk)
0 s(t) —b —y(?)

This system of equations represents a linear time-
dependent system of the form & = A(t)e + b(t)p(t).
In Cuomo & Oppenheim [1993], we showed analyt-
ically that the error system is asymptotically stable
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at the origin provided that o, b > 0 and p(¢) = 0.
Clearly, this is not true for p(t) # 0, because the
error system is driven by the perturbation p(t) in
this case.

It is useful in our subsequent analysis to rewrite
the error equations in the form

- o 0 0
ée=|0 -1 0 |e+ |—e.]|s(?)
0 0 —b ey
0
+ |v(t)+Zz2—71|p(t), (6)
—y(t)
where

v(t) =z(t) —Z.

The constant Z denotes the mean value of z(t). For
the parameter values that we have chosen, the value
of zZ =2 39.

Our approach to analyzing the error system (6)
is to assume that:

e the perturbation p(t) is small, i.e. ag Ll

e v(t) is white noise; and

e z(t) and y(t) can be approximated by binary-
valued functions with random transition times.

The first assumption is straightforward and allows
us to approximate s(¢) by z(t) in Eq. (6). The
second assumption is justified by numerical experi-
ment. While the third assumption may seem to be a
very crude approximation, it is nevertheless a help-
ful heuristic. To make it more plausible, consider
a sample function of z(¢) and y(t) as illustrated in
Figs. 6(a) and 6(b) respectively. A notable char-
acteristic of these signals is that z(¢) resembles a
scaled and slightly delayed version of y(¢). This sim-
ilarity is consistent with the Lorenz equations (1)
which indicate that z(t) is the result of processing
y(t) with a lowpass filter having a cutoff frequency
w equal to . The binary-valued functions (dashed
lines) in Figs. 6(a) and 6(b) emphasize the bipo-
lar nature of these signals. The amplitude of these
functions is scaled to reflect the standard deviation
while the transition times occur at the zero cross-
ings of the underlying waveform. The zero crossings
of z(t) and y(t) appear to be randomly distributed
and nearly coincide with each other. This suggests
that we can approximate z(t) and y(t) by

z(t) ~ ozw(t),
y(t) = oyu(t),

4
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Fig. 6. (a) A sample function of z(t). (b) A sample function
of y(t). (c) Power spectra of z(t) and the piecewise constant

approximation of z(t).

where w(t) = £1 with randomly distributed tran-
sition times. The power spectrum of w(t) is broad-
band because of the random transition times and,
as depicted in Fig. 6(c), reasonably approximates
the power spectrum of the underlying waveforms.
Because w(t) is broadband, modulation of a nar-
rowband signal with w(¢) will significantly increase
the bandwidth of the narrowband signal. On the
other hand, since w?(t) = 1, the original narrow-
band signal can be exactly recovered by modulating
with w(t) a second time.
With these assumptions, Eq. (6) becomes

o 0 0
é= 0 -1 0 e+ | —e, | o w(t)
O nalaiem ey
v(t +z—r|p(t). (7)
—oyw(t)
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Fig. 7. Spread spectrum model of the Lorenz error
dynamics.
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In the context of spread spectrum communications,
we refer to w(t) as a “spreading function.” The re-
sulting error model, which we refer to as the “spread
spectrum” error model, is illustrated in Fig. 7.
Hi(s), Hz(s), and H3(s) denote the transfer func-
tions of linear time-invariant systems and are given
by

1 1 o

o+1 )=y Bl =g

Hl(s) =

An essential feature of this model is that it is driven
by the scaled perturbation (2 — r)p(t) and a white
noise signal n(t) = v(t)p(t) having an intensity that
depends on p(t). We are now going to make a
plausibility argument that ss(t) contains the
message p(t). First, observe that the modulated
signals —o,w(t)p(t) and o,w(t)ey(t) are also broad-
band because p(t) and ey(t) are modulated by the
broadband spreading function w(t). If these mod-
ulated signals were directly modulated by w(t) a
second time, then it would be possible to exactly
recover p(t) and ey(t) respectively. In Fig. 7, we
see that e,(t) is the result of lowpass filtering the
sum —o,w(t)p(t)+ozw(t)ey(t) with Ha(s). It seems
reasonable that the feedback signal sg(t) =
—o,w(t)e,(t) will approximate a weighted sum of
p(t) and ey(t). This heuristic argument is consis-
tent with numerical experiments and allows the er-
ror signals e, (t) and e;(t) to be viewed as consisting
of the sum of a noise component due to lowpass fil-
tering n(t) and a component due to lowpass filtering
the perturbation p(t). As we show below, this in-
terpretation of the error signals can be made more
rigorous by adding an additional constraint.

In our subsequent analysis, it is useful to view
Eq. (7) as two subsystems:

6z = o(ey —ez), (8)

and

gp| ] =4 —ow(t) | | ey
o] Lo 5°N[2]
n(t)+(2—r)p(t)]_

—oyw(t)p(t)

(9)

The first subsystem (8) is a linear time-invariant
system. The second subsystem (9) is also linear
but has a time-dependent coefficient w(t). Exploit-
ing the linearity of these subsystems, we can write
the solution to (8) and (9) in terms of their free and
forced response (more precisely, their zero-input and
zero-state response). We are now going to argue
that e, (t) and e;(t) are dominated by their forced
response, and that these responses are not affected
by setting w(t) = 1 for all time.

Inspection of Eq. (9) shows that the forced re-
sponse of e, (t) does not depend on the sign of w(t).
The same is true for e;(t), because e;(t) is the out-
put of a linear time-invariant system which is driven
by ey(t). Only the free responses of these error sig-
nals depend on the sign of w(t). The contribution
of the free response to the overall solution, however,
is relatively small. This follows from the observa-
tion that the free response of e, (t) and e, (t) consists
of brief transients; a new transient is induced each
time w(t) changes sign. Since the average time be-
tween sign changes of w(t) is long compared to the
decay time of the transients, the forced response
dominates the overall solution. The corresponding
argument for e,(¢) is more difficult. However, our
numerical experiments will clearly show that the
constraint w(t) = 1 leads to an error model which
is consistent with the exact error equations.

With w(t) = 1, the forced solution to (7) is
given by

ez(s) = Ha(s)ey(s),
ey(s) = Hy1(s)P(s) + Hi2(s)N(s), (10)

e;(s) = HQ]_(S)P(S) + Has(s)N(s),
where e(s), P(s), and N(s) denote the Laplace

transforms of e(t), p(t), and n(t) respectively. The
transfer functions Hj;(s), for ¢, j = 1, 2, correspond
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to linear time-invariant systems and are given by

_ (2=r)(5+b)+ 020y

H =
u(s) 2+ (b+1)s+b+o2’
s+b
sl =
12(8) 2+ (b+1)s+b+to2’
ox(Z—71) —oy(s+1)
Bl =
21(s) 2+ (b+1)s+b+o2’
.
Hgg(s) = =

2+ (b+1s+b+oZ’

Equation (10) represents an equivalent linear time-
invariant error model which is driven by the pertur-
bation p(t) and white noise n(t). A block diagram
representation of (10) is shown in Fig. 8. This sys-
tem clearly shows that e,(t) and e;(t) can be viewed
as consisting of the sum of a noise component due
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Fig. 8. Equivalent linear time-invariant model of the Lorenz
error dynamics.

to lowpass filtering n(t) and a component due to
lowpass filtering the perturbation p(%).

For signal masking and recovery, we are mainly
interested in the properties of Hy1(s) and Hia(s).
In Figs. 9(a) and 9(b), we show pole-zero plots for
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Hi1(s) and Hyz(s) respectively. These transfer func-
tions represent second-order lowpass filters having
a cutoff frequency w approximately equal to 13.
The magnitude and phase response of these filters
is shown in Figs. 9(c) and 9(d) respectively. Note
that Hi1(s) amplifies signal components within its
passband 0 < w < 13, whereas Hjs(s) attenuates
signal components in this frequency range. For mes-
sages which are bandlimited to this frequency range,
such as the speech sample illustrated in Fig. 3,
the error signals ey(t) and e,(t) will resemble a
slightly amplified and noise-corrupted version of
the message. Furthermore, these error signals will
be nearly coherent with the message because both
Hj1(s) and H;3(s) exhibit a small group delay in
this frequency range.

5. Error Model Performance

In this section, we compare the performance pre-
dicted by the error model in Fig. 8 with experimen-
tal results. In Sec. 5.1 we consider the case of a
perturbation p(t) which is white noise. In Sec. 5.2
we consider p(t) as a speech signal.

5.1. Additive white noise

In Fig. 2 we showed the power spectrum of each of
the error components as compared with the spec-
trum of the perturbation and noted that most of
the error power is contained in the low frequencies.
The error model as depicted in Fig. 8 clearly in-
dicates that each of the error components is the
output of a lowpass filter. In Fig. 10 we reproduce

102 10
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. . ectrum = Spectrum
10° o g 10°F it X *
— —
:?; 1072 & 15 X
1 w
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Fig. 10. True and estimated power spectra of the error signals: (a) Ez(w). (b) Ey(w). (c) E.(w).
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Fig. 2 and include the power spectrum of the error
components as predicted by the model of Fig. 8.
As we see, there is excellent agreement between the
true results and the results predicted by the model.

5.2. Additive speech waveform

In Fig. 11 we show a block diagram representa-
tion of the message recovery process. The recov-
ered message p(t) consists of two components, one
corresponding directly to the message p(¢) and the
other corresponding to the error signal e;(t). We
know from the experimental results in Sec. 3 that
p(t) represents a faithful recovery of p(t). Clearly, if
ex(t) is small relative to p(t), then p(t) =~ p(t). How-
ever, the assumption that e;(t) is small is not cor-
rect because the low frequency components in p(t)
will produce a significant synchronization error. In-
stead, the explanation is that e.(t) is not small but
is coherent with p(¢). This is plausible from Fig. 11
which indicates that e, (t) consists of the sum of a
noise component due to n(t) and a component due
to p(t). Because p(t) is relatively low frequency,
it can pass through Hji(s) and Hgz(s) with little
phase shift whereas the noise component will be sig-
nificantly attenuated. Therefore, e;(t) will resem-
ble a scaled version of p(t) at low frequencies and
be noise-like at higher frequencies. This analysis is
verified below by numerical experiment.

In Fig. 12(a) we show a comparison of the
true and estimated power spectrum of e;(t). These
spectra are consistent and resemble the message
spectrum in the frequency range 0 < w < 3. In

p(t) B —\ . @ e (1) l
A o8 ) ML
H(s) pt)
H,(s)
H,(s)
}92 () Prlt)
n(t) H,(s)

Fig. 11. Dynamical system representation of the message
recovery process.
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Fig. 12. (a) Power spectrum of p(t) and the true and esti-

mated power spectrum of e (t). (b) Power spectrum of p(t)
and the true and estimated power spectrum of $(t).

Fig. 12(b) we show a comparison of the true and
estimated power spectrum of p(t). These spectra
are also consistent and closely resemble the mes-
sage spectrum in the frequency range 0 < w < 3.
Although the synchronization error e.(t) is larger
than the message p(t), the recovered message p(t)
resembles a scaled version of p(t) because the
message and error are nearly coherent at these
frequencies.

To improve the message-to-error ratio of p(t),
an additional lowpass filter with a transfer function
given by

1

— 0<w<3rad,
Hlp(w)z{ 2

0 w>3rad,

can be used to process p(t). Applying this filter
to both the true and estimated p(¢), we obtain the
recovered speech waveforms shown in Fig. 13(a) and
Fig. 13(b) respectively. The model estimate is in
excellent agreement with the true result.
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Fig. 13. Speech waveforms: (a) True recovered message.
(b) Recovered message using the equivalent linear time-
invariant model.

6. Conclusions

This paper examined the question of synchroniza-
tion robustness in the Lorenz system to additive
perturbation of the drive signal. For wideband per-
turbations, the Lorenz receiver can be viewed as
a type of lowpass filter. For perturbations having
a lowpass characteristic, such as speech signals, the
receiver’s synchronization error is coherent with the
message at low frequencies. Thus, the receiver’s
own synchronization error reinforces the original
message to allow an accurate recovery of the origi-
nal message. Experimental evidence for this effect
was presented, along with an explanation in terms
of an approximate analytical model. These results
provide a better understanding of our chaotic signal
masking and recovery system.
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