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A systematic approach is developed for synthesizing dissipative chaotic arrays that possess the
self-synchronization property. The ability to synthesize high-dimensional chaotic arrays further
enhances the usefulness of synchronized chaotic systems for communications, signal processing,

and modeling of physical processes.

1. Introduction

Self-synchronization of chaotic systems is an
intriguing concept, and recently, has received
considerable attention. This property allows two
identical chaotic systems to synchronize when the
second system (receiver) is driven by the first (trans-
mitter) [Pecora & Carroll, 1990 & 1991; Carroll &
Pecora, 1991]. The ability to synchronize remote
chaotic systems by linking them with a common
drive signal(s) suggests new and potentially useful
approaches to private communications [Oppenheim
et al., 1992; Kocarev et al., 1992; Parlitz et al., 1992;
Halle et al., 1993; Cuomo et al., 1993].

To further enhance the applicability of synchro-
nized chaotic systems for communications, a sys-
tematic approach was needed for creating these
types of systems. This issue was addressed in
Cuomo [1993a], where Lyapunov’s direct method
was used to develop a systematic procedure for syn-
thesizing a class of high-dimensional dissipative
chaotic systems that possess the self-synchronization
property. While those systems appear to be very
promising, they seem to exhibit only a single pos-
itive Lyapunov exponent. This limitation imposes
a constraint on the complexity of the chaotic dy-
namics, which may be undesirable in certain private
communication applications.
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The potential for creating more complex chaotic
systems motivates our current study of mutually
coupled chaotic systems. Such systems are of great
interest and have been studied extensively.
Kowalski et al. [1990], for example, has investi-
gated the complex interactions among as ensem-
ble of mean-field coupled Lorenz oscillators [Lorenz,
1963]. Complex chaotic behavior has also been in-
vestigated in arrays of Rossler oscillators [Waller &
Kapral, 1984; Klevecz et al., 1992], laser systems
[Winful & Rahman, 1990], neural networks [Hansel
& Sompolinsky, 1992], Selkov models [Badola et al.,
1991], and electronic circuits [Rulkov et al., 1992].
Although significant progress has been made
toward understanding these -systems, systematic
synthesis procedures for self-synchronizing chaotic
arrays have not been developed.

In this paper, we utilize Lyapunov functions to
develop a systematic synthesis capability for a class
of chaotic arrays which possess the self-synchroniza-
tion property. These arrays offer considerable flexi-
bility in the design of complex chaotic systems; they
may contain an unlimited number of Lorenz oscil-
lators and an N-dimensional linear system. The
linear system provides for both integrated and di-
rect coupling between each Lorenz oscillator. The
advantages of linearly coupling several Lorenz
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oscillators are that the resulting chaotic arrays are
analytically tractable and have a modular structure
which makes them straightforward to implement.

Figure 1 illustrates a communication scenario in
which the transmitter array conveys a set of drive
signals to an identical receiver array. These drive
signals provide a means for establishing and main-
taining synchronization between the transmitter
and receiver arrays. Although the transmitter and
receiver arrays can exhibit very complex dynam-
ics, they will be completely synchronized if certain
conditions, to be determined later, are satisfied.
A potential drawback of this approach for com-
munication applications is that the synchronization
requires that more than one drive signal be commu-
nicated — one drive signal for each Lorenz oscilla-
tor. This requirement increases the complexity of
the communication system. There are, however, po-
tential advantages to this approach. The utilization
of several drive signals could make it more difficult
for an unintended listener to obtain synchroniza-
tion with the transmitter. Chaotic arrays are also
highly modular and easy to modify. Increasing the
complexity of the chaotic dynamics can be achieved
by simply adding additional oscillators to the trans-
mitter and receiver.

Our first goal in this paper is to develop suf-
ficient conditions for which the transmitter array
satisfies two requirements: (i) there exists an al-
gebraically similar receiver system which possesses
the global self-synchronization property, and (ii) the
transmitter system is globally stable. These re-
quirements are satisfied in Secs. 2.1 and 2.2, re-
spectively. In Sec. 2.3, we summarize the various
self-synchronization and global stability conditions
for this class of systems and suggest a systematic
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Communicating with chaotic arrays.

procedure for synthesizing chaotic arrays. In Sec. 3,
we design a low-order chaotic array and demon-
strate its nonlinear dynamical behavior with several
numerical experiments. Section 4 summarizes the
main results of the paper.

2. Theory

There are several ways to linearly couple a set of
Lorenz oscillators. With our approach, the chaotic
signals z(t) from each Lorenz oscillator drive the
linear system, and the resultant outputs are added
to the appropriate oscillator’s equation for 2. This
type of array can be represented by a set of state
equations of the form

= o3lyy — )

Ui = Ti%i — Yi — TiZ,

% = Ty — bizi + 0;, (1)
1= Al+ Bz,
o=C1+ Dz,

where the subscript ¢ = 1,..., K denotes the indi-
vidual Lorenz oscillators. The vectors

I 21 o1

denote the state variables, inputs, and outputs of
the linear system, respectively.

In (1), the linear system is /N-dimensional with
K inputs and K outputs. Therefore, the matrices
A, B, C, and D have dimension N x N, N x K,
K x N, and K x K respectively. For notational
simplicity, we will denote the state variables in (1)



collectively by the vector v = (z1, 31, 21,..., ZK,
YK, 2K, 1) when convenient. Below, we determine
constraints on the free parameters of the transmit-
ter array which guarantees that it possesses the
global self-synchronization property.

2.1. Conditions for global
self-synchronization

From certain theoretical and practical viewpoints,
it is advantageous for the receiver array to have the
same algebraic structure as the transmitter array.
The self-synchronization properties of the Lorenz
system, discussed in Cuomo & Oppenheim [1993],
suggest a receiver system of the form

B Jé(yi'r = mir) s

Yir = 1% (t) — Yir — 2:(t) 2,

Zip = i(t)yir — biZir + 0ir (2)
ir = Allr + Bz‘l" 1
Oy — Clr + -Dz‘r .

Algebraically, the receiver system (2) is obtained
from the transmitter (1) by renaming variables v —
v, and substituting the drive signals z;(t) for z;-(¢)
in the equations for ¢ and Zi,.

We can study the self-synchronization proper-
ties of the transmitter and receiver arrays by form-
ing the error system. The error system is derived
by defining the error variables

ezi(t) = zi(t) — zir (1),
eyi(t) = yi(t) — vir(2)
exi(t) =w(t) — 2 (t)
& (t) =1(t) - 1.(2),

and subtracting (2) from (1) to obtain

ens = osleys — ex) ;
éyg = _eyw; == .’Bg(t)ezg 3
€, = zi(t)ey — biei + Cie1 + Dse,

(3)

é; = Ae; + Be, .

In (3), we denote the K rows of C' by C; and the
K rows of D by D;. The error vector e, denotes

Synthesizing Self-Synchronizing Chaotic Arrays 729

the K error variables corresponding to e, (t), i.e.,
e, = (ezls vy ezK)-

A set of sufficient conditions for the error sys-
tem to be globally asymtotically stable at the origin
can be derived by considering a Lyapunov function
of the form

| idts 71
F = 5 (Z (O'_éei': + eii —}—egi) + e;‘nRe;) :

i=1

where R is a symmetric N x N positive definite ma-
trix. The time rate of change of E along trajectories
is given by

£l 17 L)

SHEINE @

where the matrix T is given by

~-1(BTR+C)
~Y(RA+ ATR)| "

b=

Ay — 3(D + D7)

T= [ —3(RB +C7T)

Notice that 7' contains the diagonal matrix Ay =
diag(by,...,bx). The diagonal elements of Ay cor-
respond to the set of b parameters for the ensemble
of Lorenz oscillators.

Observe that E is negative definite if 7" is pos-
itive definite. A sufficient set of conditions for T to
be positive definite are given below.

e RB+CT = 0, for some N x N symmetric positive
definite matrix R.

e RA+ ATR is negative definite.

o Ay — 3(D + D7) is positive definite.

The first condition provides a constraint between
the allowable B and C matrices. The second condi-
tion can always be satisfied if A is a stable matrix.!
The third condition provides a bound on D. If these
conditions are satisfied, then the transmitter and
receiver arrays are guaranteed to synchronize re-
gardless of their initial conditions. It should also
be noted that these conditions are not unique. We
have chosen the obvious conditions that block di-
agonalize T into positive definite blocks; however,
there are many other possibilities.

'The term “stable matrix” used here refers to a matrix having
all of its eigenvalues in the left-half plane.
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2.2. Conditions for global stability

A set of sufficient conditions for which all trajec-
tories of the transmitter equations remain bounded
can be determined by defining a family of ellipsoids

V(v) = %(xTA,.x +yT Aoy
+(z-20)TAs(z—2r) +1ITPD) =k, (5)

where P is a symmetric N x N positive definite
matrix and k is a positive scalar. The vectors x, vy,
and z in (5) denote the state variables of the Lorenz
oscillators and are given by

gl n z]
TK YK RK

The diagonal matrices A, = diag(ry,...,r7x) and
A, = diag(o1,...,0K) in (5) contain the set of r
and o parameters for the ensemble of Lorenz os-
cillators, respectively. The vector r = (r1,...,7x)
contains the set of » parameters for each oscillator
(the same parameters that correspond to the diag-
onal elements of A,).

If we impose the restrictions PB + CTA, = 0
and A, D = DTA,, then V(v) can be written in the
form

T
V(v)= —xTAoA,.x—yTAay—[ T__;] M [T__;J +c,

where the matrix M is given by

- [Aa(Ab - D) 0 ] |

0 —2(PA+ ATP)
Also, the scalar ¢ is given by

T
c=r"A,(Ay — D)r — qT(P—A—J;A—P)q,

and the vector q is given by
q=—(PA+ ATP)"{(PB— CTA,)r.

If M is positive definite and ¢ > 0, then V(v) = 0
determines an ellipsoid in state space. Sufficient
conditions for M to be positive definite and for
¢ > 0 are given below.

PB+CTA, =0.

AsD = DTA,.

PA + AT P is negative definite.
As(Ay — D) is positive definite.

The first and second conditions are simply the im-
posed restrictions. The third condition can be sat-
isfied by choosing a stable A matrix such that PA+
AT P is negative definite. The fourth condition pro-
vides a bound on D.

If these conditions are satisfied, then V = 0
determines an ellipsoid of the form

T T p 1L o
xAgArx+y Agy_i_l{z r} M[Z r]:l,
c c g L1—qg l-q
(6)

Since V < 0 for all v outside of the ellipsoid (6),
any ellipsoid from the family (5) which contains (6)
will suffice as a trapping region for the flow.

It is also important to determine the appropri-
ate conditions which ensure that the transmitter
equations are dissipative. The divergence of the
transmitter’s vector field is given by

Ll 0x; O 04 ol;
VA o e Bl e
— —(tx(Ao) + K + (A — D) — tr(4)).

The divergence is a negative constant if the
condition

tr(Ag) + K + tr(Ap — D) — tr(A4) > 0,

is satisfied. This condition alone ensures that the
transmitter equations are dissipative with exponen-
tially fast volume contraction. Below, we summa-
rize the various self-synchronization and global
stability conditions and suggest a straightforward
synthesis procedure.

2.3. A systematic synthesis procedure

Sections 2.1 and 2.2 give sufficient conditions for the
transmitter array to be dissipative and globally sta-
ble and for the receiver array to possess the global
self-synchronization property. These conditions are
summarized below.
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RB + CT =0, for some N x N positive definite matrix R.
RA + ATR is negative definite.
Ay — (D + D7) is positive definite.

PB+ CTA, =0, for some N x N positive definite matrix P.

Global Stability

PA + AT P is negative definite.

As(Ap — D) is positive definite.

Dissipative {

Although satisfying each of these conditions
may seem to be a formidable task, the conditions
can be significantly reduced by making two simpli-
fying assumptions.

If we choose P = oR and A, = oI, where I
denotes the K x K identity matrix, then conditions
1 and 4 and conditions 2 and 6 are equivalent. Fur-
thermore, condition 5 will then imply that D is sym-
metric, and thus, conditions 3 and 7 are equivalent.
Also, conditions 2 and 6 imply that A is stable. In
this case, condition 8 will be automatically satis-
fied. As a result of A being stable, there exists a
positive definite solution R to the matrix Lyapunov
equation

RA+ATR+Q=0, Q>0.

By choosing any stable A matrix and any symmetric
positive definite () matrix, conditions 2 and 6 can
always be satisfied. In light of these simplifications,
the following synthesis procedure is suggested.

Synthesis Procedure

1. Choose any stable A matrix and any N x N sym-
metric positive definite matrix Q.

2. Solve RA+ AT R+Q = 0 for the positive definite

solution R.

Choose any N x K matrix B and set C = —BTR.

4. Choose any K x K symmetric matrix D such that
Ay — D is positive definite.

&

The local stability of the equilibrium points
should also be addressed. In Cuomo [1993b], a
detailed linear stability analysis of a chaotic ar-
ray consisting of two Lorenz oscillators and an N-
dimensional linear system was performed. This
analysis determined regions in (ry, 72) parameter
space for which all of the equilibrium points are
unstable. Choosing 1 and r, within these regions
of parameter space will ensure that the transmit-
ter array exhibits nontrivial motion. In the next

1
2
3
4
5. AyD is symmetric.
6
i
8.

tr(As) + K + tr(Ay — D) — tr(A4) > 0.

section, a numerical example demonstrates the non-
linear dynamical behavior of a typical low-order
chaotic array.

3. Synthesis Example with
Numerical Experiments

For the purpose of demonstration, consider the
following 7-dimensional transmitter array.

&1 =o0(y1 — 1),
Y1 =T1%1— Y — 121,
Z1 =my — bz +o1,
&g = o(y2 — z2),
Yo = T2 — Yo — Tozaz,

Zo = ways — baza + 02,

[=—-1+[-36 .97] [zlJ ,
z2
[Olj] _ li 36J£+ [ 87 —.10] [Zl:l
(2] —.97 -.10 .66 Z2 ’

This array consists of two Lorenz oscillators and a
one-dimensional linear system. Following the syn-
thesis procedure outlined in Sec. 2.3, we chose A =
—1, @ = 2, and randomly selected the elements
of B and D from the normal distribution N(0, 1).
We then set C = —BT and verified that A, — D
is positive definite. For the numerical experiments
presented below, the Lorenz parameters ¢ = 16,
by = 4, and bs = 4 are fixed while the bifurcation
parameters 1 and rp are varied.

In Fig. 2, we show the stability diagram for this
system. The stability diagram illustrates several re-
gions in (71, o) parameter space where the chaotic
array exhibits qualitatively different behavior. For
example, the line segments (p, ¢) and (p/, ¢') cor-

respond to the boundaries where an abrupt change
in the local stability of the array occurs. The
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linear stability analysis performed in Cuomo [1993b]
provides an exact mathematical representation of
these boundaries. The shaded regions of the stabil-
ity diagram indicate where chaotic motion occurs.
The array exhibits a single positive Lyapunov ex-
ponent in the regions denoted “CHAOS,” whereas
two positive Lyapunov exponents exist in the re-
gions denoted “HYPERCHAOS.”

40

¥, (10

I(z)

40

X5(1)

Fig. 5. Chaotic attractor projections for a 7-dimensional chaotic array.
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To visualize the dependence of the Lyapunov
exponents on ry, we show in Fig. 3 the Lyapunov
spectrum as 7y is varied over the range 20 < r; <
80. The parameter 73 in this experiment is held
fixed at the value 72 = 60. For r1 > 33, two
positive exponents exist (hyperchaos region);
one corresponds to oscillator 1 and the other cor--
responds to oscillator 2. Several other important

70
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22(5) 50
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—40 0 40
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features of the Lyapunov spectrum are listed
below.

¢ An exponent equal to —1 is apparent. This expo-
nent corresponds to the pole of the linear system.

e Two large negative exponents are apparent.
These exponents are due to the highly dissipative
nature of the chaotic array.

e Two zero exponents are apparent. These expo-
nents correspond to motion tangent to the flow.

For comparison purposes, the computed Lyapunov
exponents for a single Lorenz oscillator (dashed
lines) are also shown in this figure. Comparing
these exponents with the corresponding exponents
for the chaotic array suggests a close relationship
among them. When an individual Lorenz oscillator
is linearly coupled to a second Lorenz oscillator, the
Lyapunov exponents show little change.

In Fig. 4, we show the computed Lyapunov di-
mension as 7 is varied over the range 20 < r; < 80.
The Lyapunov dimension, Dy, is defined by

Dy ns A
|An+1|

where My > Ao > ... > A, are the size-ordered
Lyapunov exponents of an m-dimensional chaotic
system, and where n = max{j : A1+ A2+ +X; >
0}. The Lyapunov dimension provides a useful mea-
sure of the fractional dimension of a chaotic attrac-
tor [Frederickson et al, 1983]. Note that there is
an abrupt increase in the Lyapunov dimension as
the chaotic array enters the hyperchaotic region.
As 7; is increased further, the Lyapunov dimension
remains nearly constant at a value approximately
equal to 5.06. This relatively large value suggests
that the two oscillators in the transmitter array
are not synchronized. A numerical calculation of
mutual information [Fraser & Swinney, 1986] also
suggests that the oscillators are operating nearly in-
dependent of each other. The Lyapunov dimension
of the chaotic array could be increased by adding
additional states to the linear system or by adding
additional Lorenz oscillators. Using more oscilla-
tors has the advantage of introducing additional
positive Lyapunov exponents and significantly in-
creasing the complexity of the dynamics, although
the implementation would also be more complex.
In Fig. 5, we show several projections of the
chaotic array’s attractor when operating in the

foo

Both Drive Links Established

Time (s)

Fig. 6.
array.

Self-synchronization in a T7-dimensional chaotic

hyperchaotic region (r; = 45.6, ro = 60). The
(z1, y1) and (x1, 21) projections are similar to the
corresponding projections for an independent
Lorenz oscillator. This is also the case for the
(z2, y2) and (x2, z2) projections. The (x, ) and
(z2, 1) projections are very complex and suggest
that the trajectories evolve on a high-dimensional
attractor in state space.

In Fig. 6, we demonstrate that the transmitter
and receiver arrays rapidly synchronize when the
receiver is driven by the transmitter signals z;(%)
and z3(t). The curve measures the distance in state
space between the transmitter and receiver trajec-
tory when the receiver is initialized in the zero state.
In an informal experiment, the transmitter and re-
ceiver arrays did not synchronize when only one of
the drive links was established.

4. Conclusions

The development of a systematic procedure for syn-
thesizing self-synchronizing chaotic arrays may
serve a useful purpose for future communication ap-
plications. The methods and results of this paper,
however, could have wider potential. Many physical
processes can be modeled by large groups of mutu-
ally coupled oscillators [Strogatz & Stewart, 1993].
The dynamics within a group can be very complex
while the group as a whole can synchronize with
other similar groups. The Lorenz-based chaotic ar-
rays investigated in this paper may lead to mod-
els useful for helping us to better understand these



processes. Some conjectures and insights gained
from this work are listed below.

e The individual Lorenz oscillators in a typical
chaotic array operate nearly independent of each
other. This conjecture is supported by the
Lyapunov spectrum, Lyapunov dimension, and
mutual information for a low-order chaotic
array.

e It seems plausible that an array consisting of
K Lorenz oscillators can exhibit K positive
Lyapunov exponents. This conjecture is based
on limited numerical experiments with low-order
chaotic arrays.

e If communicating multiple drive signals is not an
issue, then the recommended approach for
synthesizing a complex transmitter and receiver
array is to use as many Lorenz oscillators are pos-
sible and to couple them with a first-order lin-
ear system. This will produce an array with the
most complex dynamics for a given state space
dimension.

e If communicating multiple drive signals is a prob-
lem, then the dynamics of the transmitter and re-
ceiver arrays can be made more complex by using
a larger linear system.

e Hardware implementations of chaotic arrays
should be straightforward because of their mod-
ular structure.

The synthesis procedure provides the potential
for designing high-dimensional self-synchronizing
chaotic arrays which could be implemented in hard-
ware and used in various private communication ap-
plications. We are currently exploring the applied
aspects of these systems.
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