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Generalized Frequency Modulation

Wade P. Torres, Alan V. Oppenheim, and Rodolfo Ruben Rosales

Abstract—A generalization of frequency modulation is devel- examples of demodulation are given for the cases in which the
oped in which state trajectories of dynamical systems are used as ynderlying dynamical systems are the Van der Pol oscillator and
carrier waves. Our focus is on the design and analysis of modu- yha chagtic Lorenz system. In Section VI, some experimental re-

lators and demodulators for such generalized frequency modula- It ted that d trate th bust in th
tion systems. In particular, we show that for a class of dynamical Sults are presente at demonstrate the robustness in the pres-

systems, among which are certain chaotic systems, it is possible to€nce of additive noise. Section VIl describes a hardware imple-
develop a general approach to demodulation. This approach to de- mentation of a modulator and demodulator based on the chaotic
modulation results in a systematic procedure for demodulator con- | orenz system.

struction that depends on the underlying dynamical system in a

simple manner.
[I. MODULATION
Index Terms—Chaos, communications, frequency modulation, i . . ) )
nonlinear oscillators. An information signalmn(¢), is modulated onto a carrier wave

by modulating the rate at which a dynamical system evolves.

The dynamical system is represented in state-space form as
|. INTRODUCTION

HIS paper presents an approach to information transmis-

sion that can be viewed as a generalization of frequency
modulation. The approach is based on modulating the rate of
evolution of a dynamical system that has a periodic, almost pgherex = [£1 2o --- zx]7 is anN-dimensional vector and
riodic or chaotic trajectory and has a known exponentially cothe transmitted signaj;, is chosen as a scalar function of the

vergent observer. Volkovskii [1] also noted that a chaotic systestate variables. The corresponding modulation system is
can be modulated by varying the time-constant of the system. In

that work, the method of demodulation considered phase-locks x = (we + Pm(t))f(x)

by adjusting the time-constant according to phase differences in _ 2
. . e y = h(x) 2

Poincare crossings. Our demodulator capitalizes on the charac-

teristics of the observer and is based on a perturbation eXpa”Wrewc is thecarrier rate and 3 is themodulation gainWe

of the observer error. _ assume throughout thatis chosen such th@m(t)| < w. for
Among the dynamical systems to which our approach can gg ;.

applied are those with sinusoidal solutions, and as we show, apTq see the effect of introducing modulation, 3g4,..,(¢) rep-

plying our modulation scheme to these systems produces Wan€sent a solution to the nominal system given in (1)=nga(t)

forms identical to those found in traditional FM systems. Afyapresent a solution to the modulated system given in (2). The
other class are chaotic systems that have the self-synchronizigg so|utions are related by

property [2]. More generally, our approach can be applied to

chaotic dynamical systems for which the observer may not be a t

self-synchronizing replica system. Xmod(t) = Xnom <“’ct +5 / m(T) dT) : ®3)
The next section of this paper describes the modulation pro- 0

cedure and its relation to traditional FM. Sections Ill, 1V, and@his relationship can be validated by first differentiating both

V focus on a general approach to constructing demodulatosgles of (3) with respect th which gives

In particular, we develop an approach to demodulator construc-

tion that is independent of the underlying dynamical system, . o /t
yielding a systematic demodulator design procedure. Specificx““"l = (we ot AmE)E | Xnom | wet + /3 o m(r)dr
= (we + Am(t)f(Xmod)- (4)

f(x
h(x) 1)

< AW
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m(t) p C = X(®) f x(t) h(x) | u® As depicted in the figure, the rate estimator has as inputs the
transmitted signay(¢), and the observer’s state estimatelhe
entire modulation/demodulation system is represented as

We
Modulator: { = (we + fm)f(x)
£(x) = h(x)
Demodulator{ (°ch + oi)i(z,9) 9)
Fig. 1. A block diagram of the modulator. - ( )

whereg is the operator that represents the rate estimator.

t . ~ _ .
u(t) Rate m(t) | Low-Pass | (t) B. Rate Estimator Design Based on a “Backward”
Estimator Filter Perturbation Expansion
z(t) We begin by assuming that the modulating signal is an un-
known constant, i.esn(t) = mo. If the demodulator con-
Observer verges to both the transmitter state and to the constant modu-

lating signal, then we assume that as longrd$) varies suffi-

Fig. 2. A block diagram of the basic demodulator structure. The sigitais ~ Ciently slowly, the demodulator will track a time-varyimg(t).

the transmitted signali:(¢) is the estimate of the modulating signal, as{d) To make the system shown in Fig. 2 converge to bo#nd

is the estimate of state variables of the transmitter system. mo, We use a novel technique we refer to as a “backward” per-
turbation expansion. In the expansion, we express the modu-

When one of the state-space solutians,of (1) follows a si- lator statex, as a perturbation expansion about the demodulator

nusoidal trajectory and that component is the transmitted sigrétate z, in terms of the rate erroe,,, = 7 — mg. Although ex-

it follows from (3) that panding the drive system in terms of the response system may

seem unusual, it is the key step in determining a rate estimator

) = o(8) = uin <wct N /.t ey dr + 90> (6) System thatresults in a convergent demodulator system.
0 The perturbation expansion has the form

which is the same type of signal transmitted in traditional FM. X =& Femé Ry (20)

To show that this expansion is valid and ti§gt= z, we first
differentiate both sides of (10), resulting in

One of the requirements we impose on the dynamical system,
is that it have a known exponentially convergent observer. Ex- 8o+ Cmgl +eméy +

I1l. D EMODULATION

ploiting this condition, we develop a systematic procedure for = (w. + Bmo)f(x )
constructing demodulators. = (we + Bmo)f (€ + em€y + 2 &y +.. 0 y)
= (we + B0 — em))E (&0 + em&y + €&+ .. y) .

A. Demodulator Structure (11)
The basic demodulator structure is shown in Fig. 2. The ob-

server is assumed to be known. The rate estimator is desigiedil1), we have used (2) and the fact i) = f(x,y) ac-
so that its interconnection with the observer, as depicted in therding (8). Expanding(-, -) in a Taylor series gives

figure, results in an overall system that demodulates the trans-

mitted signal to recovein(t). The low-pass filter removes any €0+ emby + éméy +

spectral energy known to be absent from the original modulating  _ (we + /sm)f‘(go,y) +(we + /3m) (50’ Y)eméy
signal,m(t). Since this filter does not affect the convergence 2
properties of the demodulator, it is not included in the analysis — /3%(50’ Y)em + . (12)

of this section. o
The observer is represented by the dynamical state equati$f¢ NOW assume tha,, is of the form

ém = —Kr(&y,&1)em (13)

_ ~ wherer(-,-) : R?N — R. Equating terms of equal power i,
wherey is the output of (1). We assume that the observer is €xnd neglecting terms of higher order than first, we are left with
ponentlally Convergent, l.e., the state Vemconverges expo- two equationS, Specifica”y

nentially to the statex, of the nominal system in (1). It is worth | o
noting and useful shortly that & = (we + B)E(&o, y) (14)

N and
f(x) = f(x,y). (8)

, . ) él = <(wc + /3m)a (&0, ) + K7’(£07£1)> & - /3f(£07y)~
This follows from the fact that it = x, then the observer is and €o
remains synchronized, in which case= x. (15)

2 =f(z,y) @)
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Note that (14) implies thaf, = z. The perturbation expansionwhere g( -) is a real-valued function that has the property
is valid if £, is bounded. We next show that the assumption thafn(g(a)) = sgn(a), i.e., g(-) has the same sign as its
the observer is exponentially convergent leads to a boufided argument. This gives, to first-order,

The error equation for the transmitter/observer coupling for

the case in which there is no modulation is =K <8h( )- §1> <ah( )- §1>
&, = we(f(e, +x,9) — f(x,)) . oh Oh .
= we(f(z,y) — F(z — es, ). (16) M=~ <a() §> < ()gd(m_”m) (24)

The assumption that the observer is exponentially stableTis clarify the behavior of:, we write its equation of motion as
equivalent to (16) having an exponentially stable equilibrium .

point ate,, = 0. A nonlinear system has an exponentially stable m = a(t)(m — mo) (25)
equilibrium point ate, = 0 if and only if the corresponding

linearized system has an exponentially stable equilibrium polfffere the time-varying coefficient(t), is

ate, = 0 [3]. Therefore, the system given by oh oh
af )= (G 6) o (G &) 0 @0
€z = we(2,4)es 17

_ _ anda(t) = 0 only whenh(x) = h(z). Sincea(t) is negative for
has an exponentially stable equilibrium poinéat= 0. Aslong  nonzero error converges tan, exponentially. It follows that

asw. + pri > 0 z converges toax exponentially as well. Our earlier assumption
of that
e, = (w.+ Bm)—(z,y)e, 18
(we + B1iv) 5 (2,y) (18) b= —Kr(z.£)en @)
also has an exponentially stable equilibrium poineat= 0. o
The perturbed system given by is valid with
A oh oh
of .
= (we +/3m) (z Ve, + Kr(z, e,) (19) r(z, &) = <8z( ) £1> <8z( ) £1> (28)
is also exponentially stable provided that Also, g( - ) must be chosen so that-) satisfies (20).
||7‘(||Zae|r)|| < (20) C. Demodulator Summary
ez

Given an exponentially convergent observE(r-n -), of the

for some constant > 0 and0 < K < K, for some suffi- nominal system given in (1), a convergent demodulator can be
ciently small K. [3]. An exponentially stable linear system isconstructed as

bounded input-bounded output (BIBO) stable [4]. Sifice v)

is bounded = (we + Bt (2, y)
&, = <(wc + Biin)— of (2z,y) + Kr(z, ez)> e, — B(z,y) e oh
iz ~ K(5- o ( @)
(21)
results in a bounded,. But (21) is identical to (15), which < We "‘ﬁm (z,y) + Kr(z afl)) & — pi(z,y)

meanst; is bounded and the perturbation expansion is valid.
Notice that¢; is determined by, y, and#, all of which are
signals that are local to the demodulator. We now show how the o .«
perturbation variable,, can be used to forcé to converge to oh oh
mo. . _

The perturbation expansion can be used to approximate, to rz.6) = <8z( ) 61) <8z( ) £1> (30)
first-order, the difference between= h(x) andy = i(z) as

(29)

0 < K < K, for someK,, andg : R — R such that

§—vy = h(z) — h(x) sgn(g(a)) = sgn(a) andr(-, -) satisfies (20).
— h(z) — h(z+ ey + ) Explicit determination ofK, requires knowledge of a Lya-
oh punov function for the linear, time-varying system given by
= a ( ) glem + O ( ) . (22) ~
. of
Since¢; can be generated in the demodulator, we can chdose &= a_x(x’ 3 (31)

to be o o .
which is generally difficult to determing{, can also be deter-

D oh 23 mined by computing the Floquet exponents (for periodic sys-
= K5 - v)g az( z)-& (23) tems) [4] or the Lyapunov exponents (for aperiodic systems) [5].
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Fig.3. Convergence of the rate estimate for the Van der Pol based system Wigh 4. The convergence of the state estimate for the Van der Pol based system
K =1andg =1. with K = 1andj = 1.

IV. DEMODULATOR EXAMPLES B. The Lorenz System

In this section, we demonstrate the modulation and demodu-The next example uses the Lorenz system for the underlying
lation scheme for two different dynamical systems. The first @ynamical system. The Lorenz system is an example of a chaotic
based on the Van der Pol oscillator, which is a two-dimensiorgfstem, which is characterized by long-term aperiodic signals
nonlinear system with a periodic attractor. The second systémd a sensitive dependence on initial conditions. The Lorenz
is the Lorenz system, which is a chaotic system with a strangguations are
attractor.

i‘l = O'(.Z‘Q — .Z‘l)

A. The Van der Pol Oscillator

.’i’g =TTy —Xx1xX3z3 — T2

The differential equation describing the Van der Pol oscillator i3 = 2110 — br3 (36)
is
) wheres = 10,7 = 25, andb = 8/3. An exponentially conver-
T1 =22 gent observer of this system is
.’i’Q = (1 — .’L’%) Xo — X1 (32)

7:1 = O’(ZQ — Zl)
Zy =TY — Yz — 22

7:3 =Yz — ng. (37)

whereX > 0. An exponentially convergent observer of the Van
der Pol oscillator is

A=zmty—a

) Adding the modulation to (36) and following the formulation
Zp=Al=-y")n -y (33)

specified in (29), the complete Lorenz-based modulation/de-

Introducing modulation into (32) and following the formulat|on modulation system is given by

specified in (29), the modulator and demodulator are

Modulator
Modulator &1 = (we + Sm)o(xe — 21)
1 = (we + )z &y = (we + pm)(rzy — x103 — x2)
By = (we + Pm) (A (1 — x%) zy — 1) &3 = (we + fm)(z122 — bxs)
Y= y=2a1
Demodulator Demodulator
21 = (we+ )z +y— 21) 21 = (we + Pi)o(z — 21)
(DI == = (o i)y = 25— =)
= 23 = (we + i) (yza — bzs)
= K () —y) sen(t) = K(z —y)sgn(yr)
z/11 -1 1 ] 1 o o 0
[ = ((we+pm) | A1 — y2) + K1Ir(z,¢) Go | =(wetB) [ |0 -1 —y|+KIr(z,v)
0 —b
r(/ 1 B / 29 + Y — (34) ”(/}3 Yy
P2 A(L 92)72 -y U oz — 21)
X |t | =B |1y —yz3 — 22 (38)
wherel is the 2x 2 identity matrix and s Yzo — bzg
r(z,v) = |[¢1]. (35) where! is the 3x 3 identity matrix and
The convergence afi when K = 1,A = 1,and3 = 1is r(z, ) = b1 (39)

shown in Fig. 3. The convergence of the state variabl® z-
is shown in Fig. 4. The numerical simulations in this paper wefighe convergence of: whenX = 0.02 andg = 1 is shown in

done using Matlab’s ODE suite with a relative toleranc&of*  Fig. 5. The convergence of the state variahldo =, andz; to
and an absolute tolerence 1. x3 is shown in Fig. 6.
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Fig. 5. Convergence of the rate estimate for the Lorenz-based system wit ) 5 10 15 20 25 30 35 40 45 50

K =0.02and3 = 1. Time (sec)
Fig. 7. Acomparison of the convergencefwhen/’ = 0.1 andk” = 0.02.

5
o
g-s duced oscillations from having adverse effects on the rate esti-
10 mate.
-15 . . L s L . s . - Note that the filtering operation described in (41) is not the
0 5 10 15 20 25 30 35 40 45 50 . . . . . .
Time (sec) same filter as the low-pass filter shown in Fig. 2. The filter in-
3 ' ' troduced in (41) is inside the observer/rate estimator feedback
0

loop. The filter shown in Fig. 2 is external to this feedback loop.

B. Increasing the Convergence Rate

15 . , . . . ‘ . . . _ _
o s 120 2530 35 40 45 50 In Section 11I-B, we established a loose upper bound on the

Time (sec)

rate estimate gain parametéf, for which the demodulator is
Fig. 6. Convergence of, to z» andz; to x5 for the Lorenz-based system Stable. From the derivation we see that the convergenee of

with K = 0.02 and3 = 1. is not only exponential, but also monotonic. By choosiig
slightly larger thank,, monotonic convergence can no longer
V. DEMODULATOR ENHANCEMENTS be guaranteed, but the resulting demodulator may still be

In this section, we explore three modifications that can able, as we show with numerical experiments and the circuit
made to the demodulator. First, a low-pass filter is added in tA&scribed in Section VII. Increasing has two significant
feedback path of the rate estimator to remove any spectral §ansequences. First, becadsgoverns the rate of convergence
ergy known to be absent from(t). Second, the demodulator©f 7, increasingil makessm converge faster and allows the
is modified so thatX can be increased beyord,, which al- demodulator to track signals that vary more rapidly. Second,
lows the demodulator to track faster signals. Lastly, the numb8g perturbation analysis may not be valid because we cannot
of nonlinearities present in the rate estimator is reduced by &ptarantee that the system will remain stablésats increased.
proximating a nonlinear, time-varying component of the rate e¥/e can, however, determine, either experimentally or through

timator with a linear, time-invariant system. other numerical techniques such as those based on Floquet
theory [6], whether or not the system is stable for a particular
A. Filtering value of K > K,.

As shown in Section IIl-B, the rate estimator equation is, to /S @ €xample, we return to the Lorenz system given in (38)
first-order and increasé{ beyond the point at which the perturbation ex-

pansion is valid. This requires that the te&iv»(z, ¢)) be re-
- _K <3h( )-€ ) . <%(Z) iy ) (1 —m). (40 moved from the equation fap, otherwise, from the perturba-
) ! oz ' tion analysis, we know that the equation governingnay be

Now, suppose that we have a smoothing operation, denoteaunStabIe The demodulator is now given by

(), given by = (we + f)o (22 — 1)
t = (we + ) (ry — yzs — 22)
- /0 r(/}(t77_)y(7_) dT? (41) 73 — (wc + /jm) (yZQ _ bzg)
where (¢, 7) is the smoothing kernel. If the support of this . = K(z1 —y)sgu(y)
kernel is sufficiently small compared to the rate at whickand 1 o o 0 1
7 vary, then Yo | =(wet+pPm) |0 -1 —y| |92
b 0 =b b
. oh oh ) P3 Yy 3
==K ((-(2)&) 9|5 (2)&)0n-—m) o2 — )
o o —B | ry—yzz— 22| . (43)
~ ey ol Zay . S — yzz — bz
i {(Go-6) o (Goe &) (i —m)

(42) The convergence of, for K’ = 0.1 and forK" = 0.02 is shown
in Fig. 7. WhenK = 0.1, 7h repeatedly crosses zero as can be
The addition of a low-pass filter can be advantageous when agen in the figure. This cannot happen wiérc K, due to the
ditive noise is present since it prevents high-frequency noise-meonotonicity of convergence in that case.
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20 T T T T T T T n(t)

0- i N ‘ i
. [ | Ti(z)_' Modulator y(t) O Demodulator __Ql(t)

; lIO lIS 2I0 25 30 35 40 45 50
Time (sec) . . . . .
Fig. 9. Additive-noise communication model.

1r 4
OMW\W The difference between the derivativesjadindy can be ap-
b 1 proximated as

- — Recovered

0 s 0 15 20 35 30 35 40 a5 50 . _Oh . Oh .
b~ 1= (e i) o (@) (2.0) — (e + ) S (0, )
Fig. 8. Anexample of demodulation. (a) The transmitted sigytal). (b) The oh, .
recovered signal (dashed), the actual modulating signal (solid). = _emﬁ£ (2)t(z,y) + O (67271) - (48)

An example of demodulation is shown in Fig. 8. The paran'lz-"tering -1y gives

eters in this example are. = 5, K = 0.6, = 3, and the . oh
modulating signal is a zero-mean Gaussian noise process that (J—9)=-p <$(Z)f(z,y)> m (49)
has a rectangular power spectral density band-limited to 0.4 Hz
and a standard deviation of 0.5. where we have assumed thagf varies slowly with respect to
the impulse response of the filter for allAssuming further that
C. Removal of Some Nonlinearities h(z) = CTz, (49) becomes
The rate estimator contains nonlinearities that appear in the L b
equation for¢,, (0 =0 = =piz y))em- (50)
of Settingri equal to the product of (47) and (50), we have
£ = <(wc + /37%)&(279) + KIT(ngl)) & — pi(z,y) m = KBQ@ _ y)(f‘(z,y))
(44) ~ — K3 (t(z,y))? (i — m)
= a(t)(m —m) (51)

where
oh oh whereqa(t) is a negative semi-definite function. The approxima-
r(z,&,) = <_(Z) .£1> g <_(Z) .£1> (45) tionin (51) suggests thai convergesn.
Iz Iz We can now substitute a different filter for ). For example,

0 < K < K, forsomeK,, andg : R — R such that a low-pass filter{-).,, resuits in

sgu(g(a)) = sgn(a). Even whenk' > K, andKIr(z,§;)is ;, _ KB((we + i) (CTE(z,9) 1
removed, a nonlinear equation remains. T

The last term in (44)3f(z, v), is generally nonlinear, but it is — W=z ) (52)
required by the observer portion of the demodulator. Since tmﬁ‘]ere we have made use of the fact that, = (y — (y)1.)-

term is already present in the demodulator, removing it from sq o example, we return the Lorenz based system. The mod-

(44) dqe; not rgduce thg number of nonlinAearities. This termtji%\tor equations remain the same as those given in (38). The de-
leftasitis. The firstterm in (44)w. +87)(0f /dz)-£,,isgen- 1 odulator equations become
erally nonlinear and does not appear elsewhere in the demodu-

lator. By approximating this term with a linear, time-invariant 29 = (we + B)(ry — yz3 — 22)
system, the hardware design discussed in Section VIl is greatly 23 = (we + A1) (yz2 — bza)
simplified. . )
First, we assume that. > g and remove the term 1= —wr(r —y)
KIr(z,&,) as described in Section V-B. Then (44) becomes 72 = —wr(r2 — (22 — y))
o m = KpB((we + prin)ra — (y — 1)) 72 (53)
& mwey & — fi(z,y). (46)  \wherew, is the cut-off frequency of the low-pass filter, ) ..
The matrix (9f/dz)(z,y) is generally nonlinear and VI. ADDITIVE NOISE

time-varying. However, (46) is a linear ordinary differen- In thi . d trate the robust ith ‘t
tial equation and corresponds to a time-varying linear filter h tis section we demonstrate the robustness with respect to

with —/31?(2 y) as the input. Using the notatidpn ) to denote additive noise through numerical simulations for a rate modula-
the filteringjct)peration (46) .becomes tion-demodulation system based on the chaotic Lorenz system.

. Uf h(z) # C7z, then a similar result is obtained by changing (47§ fo=
£ = —pf(z,y)). (47)  —5((0h)/(02)()E (2. y)).
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Fig. 10. An example of demodulation in the presence of additive noise.
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a5t 1
40f J
35k 4
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Fig. 11. SNR;, versusSNR., for several values of.

Our communication model is shown in Fig. 9. Incorporating thé
additive noise into the demodulator equations, we get

2 = (we + fi)(z,y +n)
i ==K~ -+ g (5.6,

. ot
& = <(‘Uc + /37?1)&(%21 +n) + IK7’(Z7£1)> &

- /3f(z,y +n).

(54)

1411

0.5
(A)
4]
-0.5
0.35 04 045 0.5 0.55
Time (sec)
T
051
(B}
1}
-0.5 ) .
0.35 04 0.45 0.5 0.55
Time (sec)

Fig. 12. An example of demodulation. (a) Circuit output. (b) Original speech
waveform.

varying 3. In the figure, the input SNR is the ratio between the
transmitted signal power and the noise power. Specifically

P2
where o2 is the variance of the noise process. Similarly, the
output SNR is

;2

SNRou; = 101logg — (56)

(m—m)
Two points should be noted. First, there is a SNR gain and,
second, there is a trade-off between bandwidth and noise im-
munity similar to that found in traditional FM.

VII. HARDWARE IMPLEMENTATION

A modulator and demodulator based on the chaotic Lorenz
system were implemented in hardware. The circuit design is
based on the modulator equations given in (38) and the demod-
ulator equations given in (53). The state variables are rescaled
so that their values stay within the operating range of the system
components. The rescaled Lorenz equations are

Xl = O’(XQ — Xl)
- 9
XQ = 7’X1 - §X1X3 - XQ

X5 = SXIX2 —bX; (57)
whereo, r, andb are 10, 25, and/3, respectively.

The differential equations corresponding to the modulator
and demodulator are implemented directly in hardware. Specif-
ically, the product of two signals, for examplé, X3, is ob-
tained using an AD734, which is an analog multiplier made by

The output of the demodulatof(¢), is obtained by filtering analog devices. The differential equations are integrated using

m(t) with a low-pass filter.

a standard analog integrator configuration. The operational am-

In the experiments, which are summarized in Figs. 10 and Hlifiers used are OP467s, also made by analog devices. The pro-
we generated a wide-band Gaussian noise process and nuitetype circuit was etched on doubled sided circuit board. Using
ically integrated the demodulator system given in (54). Fig. Jdldouble sided circuit board added design constraints that effect
summarizes the effects on the signal-to-noise (SNR) ratio thie performance of the circuit. For example, we were unable to
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have solid power and ground planes and had to break sevavade P. Torres(S'98) received the B.S. degree in electrical engineering and
traces to route the connections. USIng a multllayer circuit boa.tr& B.S. degree in mathematics from Southern lllinois University at Carbondale,

d elimi h . di h f in 1995, and the M.S. degree in electrical engineering from the Massachusetts
would eliminate these constraints and improve the per ormang&itute of Technology (MIT), Cambridge, in 1997. He is currently working

of the circuit. The modulator circuit board measures 6 cm hyward the Ph.D. degree at MIT in the Digital Signal Processing Group.
10 cm and the demodulator circuit measures 8 cm by 10 cmfrom 1995 to 1997, he was with MIT Lincoln Laboratory, Lexington, where

Th it h 1% tol d f t he worked on time-frequency analysis of nonstationary signals. Since 1997, he
€ resistors have a 17 tolerance and are surrace mount Cona@yeen with the Digital Signal Processing Group, MIT. He will be joining

nents. The capacitors have a 2.5% tolerance and are polyprogyse Corporation after completing his doctoral program. His current research
lene film capacitors. The component values were chosen so igrests are the signal processing aspects of nonlinear dynamical systems and
. chaos.
wc. ~ 1_00 000 and_ﬁ ~ 18 000. The amplitude of the modu- Mr. Torres is a member of Sigma Xi and Tau Beta Pi.
lating signal;m(t), is assumed to vary 0.2 V peak-to-peak.
Fig. 12 shows a demodulated speech waveform and the orig-
inal speech waveform of an utterance of the word “this”.

VIIl. CONCLUSION
. L Alan V. Oppenheim (F'77) received the S.B. and S.M. degrees in 1961, and
Inthis paper, we have presented a generalization of frequeRgysc.p. degree in 1964, all in electrical engineering, from the Massachusetts
modulation in which the carrier waveforms are those generateetitute of Technology (MIT), Cambridge, and the honorary doctorate degree
by a class of dynamical systems. The requirements on the g§ Tel-Aviv University, Tel-Aviv, Israel, in 1995.

. : T L In 1964, he joined the faculty at MIT, where he is currently the Ford Pro-
namical system are that it has a periodic, almost periodic, @&sor of Engineering and MacVicar Faculty Fellow with the Department of

chaotic attractor and that it has a known exponentially cohlectrical Engineering and Computer Science. Since 1967, he as also been affil-

: ; with MIT Lincoln Laboratory, Lexington, and, since 1977, with the Woods
vergent observer. Given a dynamlcal system that meets thE%%Oceanographic Institution, Woods Hole, MA. His research interests are in

requirements, we developed a general and systematic praggyeneral area of signal processing and its applications.

dure for constructing demodulators. Examples of the modulaHe is coauthor of the widely used textbodhiscrete-Time Signal Processing
; ; ; ; ; 1dSignals and Systemide is also Editor of several advanced books on signal

tion SCheme weregiven forthe casesin Wh'_Ch the underlylng Os?ocessing. Dr. Oppenheim is a member of the National Academy of Engi-

namical systems were the Van der Pol oscillator and the Lorefring and a member of Sigma Xi and Eta Kappa Nu. He has been a Guggen-

system. We also numerically demonstrated robustness in tigen Fellow and a Sackler Fellow at Tel-Aviv University. He has also received

" ; umber of awards for outstanding research and teaching including the IEEE
presence of additive noise and demonstrated the hardware E@ucation Medal, the IEEE Centennial Award, the Society Award, the Technical

plementation of the chaotic Lorenz-based modulator and g&hievement Award, and the Senior Award of the IEEE Society on Acoustics,
modulator. Speech, and Signal Processing. He has also received a number of awards at
MIT for excellence in teaching, including the Bose Award and the Everett Moor

Baker Award.
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