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Generalized Frequency Modulation
Wade P. Torres, Alan V. Oppenheim, and Rodolfo Ruben Rosales

Abstract—A generalization of frequency modulation is devel-
oped in which state trajectories of dynamical systems are used as
carrier waves. Our focus is on the design and analysis of modu-
lators and demodulators for such generalized frequency modula-
tion systems. In particular, we show that for a class of dynamical
systems, among which are certain chaotic systems, it is possible to
develop a general approach to demodulation. This approach to de-
modulation results in a systematic procedure for demodulator con-
struction that depends on the underlying dynamical system in a
simple manner.

Index Terms—Chaos, communications, frequency modulation,
nonlinear oscillators.

I. INTRODUCTION

T HIS paper presents an approach to information transmis-
sion that can be viewed as a generalization of frequency

modulation. The approach is based on modulating the rate of
evolution of a dynamical system that has a periodic, almost pe-
riodic or chaotic trajectory and has a known exponentially con-
vergent observer. Volkovskii [1] also noted that a chaotic system
can be modulated by varying the time-constant of the system. In
that work, the method of demodulation considered phase-locks
by adjusting the time-constant according to phase differences in
Poincare crossings. Our demodulator capitalizes on the charac-
teristics of the observer and is based on a perturbation expansion
of the observer error.

Among the dynamical systems to which our approach can be
applied are those with sinusoidal solutions, and as we show, ap-
plying our modulation scheme to these systems produces wave-
forms identical to those found in traditional FM systems. An-
other class are chaotic systems that have the self-synchronizing
property [2]. More generally, our approach can be applied to
chaotic dynamical systems for which the observer may not be a
self-synchronizing replica system.

The next section of this paper describes the modulation pro-
cedure and its relation to traditional FM. Sections III, IV, and
V focus on a general approach to constructing demodulators.
In particular, we develop an approach to demodulator construc-
tion that is independent of the underlying dynamical system,
yielding a systematic demodulator design procedure. Specific
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examples of demodulation are given for the cases in which the
underlying dynamical systems are the Van der Pol oscillator and
the chaotic Lorenz system. In Section VI, some experimental re-
sults are presented that demonstrate the robustness in the pres-
ence of additive noise. Section VII describes a hardware imple-
mentation of a modulator and demodulator based on the chaotic
Lorenz system.

II. M ODULATION

An information signal, , is modulated onto a carrier wave
by modulating the rate at which a dynamical system evolves.
The dynamical system is represented in state-space form as

(1)

where is an -dimensional vector and
the transmitted signal,, is chosen as a scalar function of the
state variables. The corresponding modulation system is

(2)

where is thecarrier rate and is themodulation gain. We
assume throughout thatis chosen such that for
all .

To see the effect of introducing modulation, let rep-
resent a solution to the nominal system given in (1) and
represent a solution to the modulated system given in (2). The
two solutions are related by

(3)

This relationship can be validated by first differentiating both
sides of (3) with respect to, which gives

(4)

Therefore

(5)

is a solution to (2). Assuming and are continuous,
(1) and (2) both have unique solutions. If ,
then given in (5) is the solution to (2). A block diagram
of the complete modulation system is shown in Fig. 1.
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Fig. 1. A block diagram of the modulator.

Fig. 2. A block diagram of the basic demodulator structure. The signaly(t) is
the transmitted signal,̂m(t) is the estimate of the modulating signal, andz(t)
is the estimate of state variables of the transmitter system.

When one of the state-space solutions,, of (1) follows a si-
nusoidal trajectory and that component is the transmitted signal,
it follows from (3) that

(6)

which is the same type of signal transmitted in traditional FM.

III. D EMODULATION

One of the requirements we impose on the dynamical system
is that it have a known exponentially convergent observer. Ex-
ploiting this condition, we develop a systematic procedure for
constructing demodulators.

A. Demodulator Structure

The basic demodulator structure is shown in Fig. 2. The ob-
server is assumed to be known. The rate estimator is designed
so that its interconnection with the observer, as depicted in the
figure, results in an overall system that demodulates the trans-
mitted signal to recover . The low-pass filter removes any
spectral energy known to be absent from the original modulating
signal, . Since this filter does not affect the convergence
properties of the demodulator, it is not included in the analysis
of this section.

The observer is represented by the dynamical state equation

(7)

where is the output of (1). We assume that the observer is ex-
ponentially convergent, i.e., the state vector,, converges expo-
nentially to the state,, of the nominal system in (1). It is worth
noting and useful shortly that

(8)

This follows from the fact that if , then the observer is and
remains synchronized, in which case .

As depicted in the figure, the rate estimator has as inputs the
transmitted signal, , and the observer’s state estimate,. The
entire modulation/demodulation system is represented as

Modulator:

Demodulator: (9)

where is the operator that represents the rate estimator.

B. Rate Estimator Design Based on a “Backward”
Perturbation Expansion

We begin by assuming that the modulating signal is an un-
known constant, i.e., . If the demodulator con-
verges to both the transmitter state and to the constant modu-
lating signal, then we assume that as long as varies suffi-
ciently slowly, the demodulator will track a time-varying .

To make the system shown in Fig. 2 converge to bothand
, we use a novel technique we refer to as a “backward” per-

turbation expansion. In the expansion, we express the modu-
lator state, , as a perturbation expansion about the demodulator
state, , in terms of the rate error, . Although ex-
panding the drive system in terms of the response system may
seem unusual, it is the key step in determining a rate estimator
system that results in a convergent demodulator system.

The perturbation expansion has the form

(10)

To show that this expansion is valid and that , we first
differentiate both sides of (10), resulting in

(11)

In (11), we have used (2) and the fact that ac-
cording (8). Expanding in a Taylor series gives

(12)

We now assume that is of the form

(13)

where . Equating terms of equal power in
and neglecting terms of higher order than first, we are left with
two equations, specifically

(14)

and

(15)
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Note that (14) implies that . The perturbation expansion
is valid if is bounded. We next show that the assumption that
the observer is exponentially convergent leads to a bounded.

The error equation for the transmitter/observer coupling for
the case in which there is no modulation is

(16)

The assumption that the observer is exponentially stable is
equivalent to (16) having an exponentially stable equilibrium
point at . A nonlinear system has an exponentially stable
equilibrium point at if and only if the corresponding
linearized system has an exponentially stable equilibrium point
at [3]. Therefore, the system given by

(17)

has an exponentially stable equilibrium point at . As long
as

(18)

also has an exponentially stable equilibrium point at .
The perturbed system given by

(19)

is also exponentially stable provided that

(20)

for some constant and for some suffi-
ciently small [3]. An exponentially stable linear system is
bounded input-bounded output (BIBO) stable [4]. Since
is bounded

(21)

results in a bounded . But (21) is identical to (15), which
means is bounded and the perturbation expansion is valid.
Notice that is determined by , and , all of which are
signals that are local to the demodulator. We now show how the
perturbation variable, , can be used to force to converge to

.
The perturbation expansion can be used to approximate, to

first-order, the difference between and as

(22)

Since can be generated in the demodulator, we can choose
to be

(23)

where is a real-valued function that has the property
, i.e., has the same sign as its

argument. This gives, to first-order,

(24)

To clarify the behavior of , we write its equation of motion as

(25)

where the time-varying coefficient, , is

(26)

and only when . Since is negative for
nonzero error, converges to exponentially. It follows that

converges to exponentially as well. Our earlier assumption
that

(27)

is valid with

(28)

Also, must be chosen so that satisfies (20).

C. Demodulator Summary

Given an exponentially convergent observer, , of the
nominal system given in (1), a convergent demodulator can be
constructed as

(29)

where

(30)

for some , and such that
and satisfies (20).

Explicit determination of requires knowledge of a Lya-
punov function for the linear, time-varying system given by

(31)

which is generally difficult to determine. can also be deter-
mined by computing the Floquet exponents (for periodic sys-
tems) [4] or the Lyapunov exponents (for aperiodic systems) [5].
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Fig. 3. Convergence of the rate estimate for the Van der Pol based system with
K = 1 and� = 1.

IV. DEMODULATOR EXAMPLES

In this section, we demonstrate the modulation and demodu-
lation scheme for two different dynamical systems. The first is
based on the Van der Pol oscillator, which is a two-dimensional
nonlinear system with a periodic attractor. The second system
is the Lorenz system, which is a chaotic system with a strange
attractor.

A. The Van der Pol Oscillator

The differential equation describing the Van der Pol oscillator
is

(32)

where . An exponentially convergent observer of the Van
der Pol oscillator is

(33)

Introducing modulation into (32) and following the formulation
specified in (29), the modulator and demodulator are

(34)

where is the 2 2 identity matrix and

(35)

The convergence of when , and is
shown in Fig. 3. The convergence of the state variableto
is shown in Fig. 4. The numerical simulations in this paper were
done using Matlab’s ODE suite with a relative tolerance of
and an absolute tolerence of .

Fig. 4. The convergence of the state estimate for the Van der Pol based system
with K = 1 and� = 1.

B. The Lorenz System

The next example uses the Lorenz system for the underlying
dynamical system. The Lorenz system is an example of a chaotic
system, which is characterized by long-term aperiodic signals
and a sensitive dependence on initial conditions. The Lorenz
equations are

(36)

where , and . An exponentially conver-
gent observer of this system is

(37)

Adding the modulation to (36) and following the formulation
specified in (29), the complete Lorenz-based modulation/de-
modulation system is given by

(38)

where is the 3 3 identity matrix and

(39)

The convergence of when and is shown in
Fig. 5. The convergence of the state variableto and to

is shown in Fig. 6.
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Fig. 5. Convergence of the rate estimate for the Lorenz-based system with
K = 0:02 and� = 1.

Fig. 6. Convergence ofz to x andz to x for the Lorenz-based system
with K = 0:02 and� = 1.

V. DEMODULATOR ENHANCEMENTS

In this section, we explore three modifications that can be
made to the demodulator. First, a low-pass filter is added in the
feedback path of the rate estimator to remove any spectral en-
ergy known to be absent from . Second, the demodulator
is modified so that can be increased beyond , which al-
lows the demodulator to track faster signals. Lastly, the number
of nonlinearities present in the rate estimator is reduced by ap-
proximating a nonlinear, time-varying component of the rate es-
timator with a linear, time-invariant system.

A. Filtering

As shown in Section III–B, the rate estimator equation is, to
first-order

(40)

Now, suppose that we have a smoothing operation, denoted as
, given by

(41)

where is the smoothing kernel. If the support of this
kernel is sufficiently small compared to the rate at whichand

vary, then

(42)

The addition of a low-pass filter can be advantageous when ad-
ditive noise is present since it prevents high-frequency noise-in-

Fig. 7. A comparison of the convergence ofm̂whenK = 0:1 andK = 0:02.

duced oscillations from having adverse effects on the rate esti-
mate.

Note that the filtering operation described in (41) is not the
same filter as the low-pass filter shown in Fig. 2. The filter in-
troduced in (41) is inside the observer/rate estimator feedback
loop. The filter shown in Fig. 2 is external to this feedback loop.

B. Increasing the Convergence Rate

In Section III–B, we established a loose upper bound on the
rate estimate gain parameter,, for which the demodulator is
stable. From the derivation we see that the convergence of
is not only exponential, but also monotonic. By choosing
slightly larger than , monotonic convergence can no longer
be guaranteed, but the resulting demodulator may still be
stable, as we show with numerical experiments and the circuit
described in Section VII. Increasing has two significant
consequences. First, becausegoverns the rate of convergence
of , increasing makes converge faster and allows the
demodulator to track signals that vary more rapidly. Second,
the perturbation analysis may not be valid because we cannot
guarantee that the system will remain stable asis increased.
We can, however, determine, either experimentally or through
other numerical techniques such as those based on Floquet
theory [6], whether or not the system is stable for a particular
value of .

As an example, we return to the Lorenz system given in (38)
and increase beyond the point at which the perturbation ex-
pansion is valid. This requires that the term be re-
moved from the equation for , otherwise, from the perturba-
tion analysis, we know that the equation governingmay be
unstable. The demodulator is now given by

(43)

The convergence of for and for is shown
in Fig. 7. When repeatedly crosses zero as can be
seen in the figure. This cannot happen when due to the
monotonicity of convergence in that case.
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Fig. 8. An example of demodulation. (a) The transmitted signal,y(t). (b) The
recovered signal (dashed), the actual modulating signal (solid).

An example of demodulation is shown in Fig. 8. The param-
eters in this example are , and the
modulating signal is a zero-mean Gaussian noise process that
has a rectangular power spectral density band-limited to 0.4 Hz
and a standard deviation of 0.5.

C. Removal of Some Nonlinearities

The rate estimator contains nonlinearities that appear in the
equation for

(44)

where

(45)

for some , and such that
. Even when and is

removed, a nonlinear equation remains.
The last term in (44), , is generally nonlinear, but it is

required by the observer portion of the demodulator. Since this
term is already present in the demodulator, removing it from
(44) does not reduce the number of nonlinearities. This term is
left as it is. The first term in (44), , is gen-
erally nonlinear and does not appear elsewhere in the demodu-
lator. By approximating this term with a linear, time-invariant
system, the hardware design discussed in Section VII is greatly
simplified.

First, we assume that and remove the term
as described in Section V-B. Then (44) becomes

(46)

The matrix is generally nonlinear and
time-varying. However, (46) is a linear ordinary differen-
tial equation and corresponds to a time-varying linear filter
with as the input. Using the notation to denote
the filtering operation, (46) becomes

(47)

Fig. 9. Additive-noise communication model.

The difference between the derivatives ofand can be ap-
proximated as

(48)

Filtering gives

(49)

where we have assumed that varies slowly with respect to
the impulse response of the filter for all. Assuming further that

, (49) becomes1

(50)

Setting equal to the product of (47) and (50), we have

(51)

where is a negative semi-definite function. The approxima-
tion in (51) suggests that converges .

We can now substitute a different filter for . For example,
a low-pass filter, , results in

(52)

where we have made use of the fact that .
As an example, we return the Lorenz based system. The mod-

ulator equations remain the same as those given in (38). The de-
modulator equations become

(53)

where is the cut-off frequency of the low-pass filter, .

VI. A DDITIVE NOISE

In this section we demonstrate the robustness with respect to
additive noise through numerical simulations for a rate modula-
tion-demodulation system based on the chaotic Lorenz system.

1If h(z) 6= C z, then a similar result is obtained by changing (47) to��� =
��h(@h)=(@z)(z)f̂(z; y)i.
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Fig. 10. An example of demodulation in the presence of additive noise.

Fig. 11. SNR versusSNR for several values of�.

Our communication model is shown in Fig. 9. Incorporating the
additive noise into the demodulator equations, we get

(54)

The output of the demodulator, , is obtained by filtering
with a low-pass filter.

In the experiments, which are summarized in Figs. 10 and 11,
we generated a wide-band Gaussian noise process and numer-
ically integrated the demodulator system given in (54). Fig. 11
summarizes the effects on the signal-to-noise (SNR) ratio of

Fig. 12. An example of demodulation. (a) Circuit output. (b) Original speech
waveform.

varying . In the figure, the input SNR is the ratio between the
transmitted signal power and the noise power. Specifically

(55)

where is the variance of the noise process. Similarly, the
output SNR is

(56)

Two points should be noted. First, there is a SNR gain and,
second, there is a trade-off between bandwidth and noise im-
munity similar to that found in traditional FM.

VII. H ARDWARE IMPLEMENTATION

A modulator and demodulator based on the chaotic Lorenz
system were implemented in hardware. The circuit design is
based on the modulator equations given in (38) and the demod-
ulator equations given in (53). The state variables are rescaled
so that their values stay within the operating range of the system
components. The rescaled Lorenz equations are

(57)

where , and are 10, 25, and , respectively.
The differential equations corresponding to the modulator

and demodulator are implemented directly in hardware. Specif-
ically, the product of two signals, for example , is ob-
tained using an AD734, which is an analog multiplier made by
analog devices. The differential equations are integrated using
a standard analog integrator configuration. The operational am-
plifiers used are OP467s, also made by analog devices. The pro-
totype circuit was etched on doubled sided circuit board. Using
a double sided circuit board added design constraints that effect
the performance of the circuit. For example, we were unable to
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have solid power and ground planes and had to break several
traces to route the connections. Using a multilayer circuit board
would eliminate these constraints and improve the performance
of the circuit. The modulator circuit board measures 6 cm by
10 cm and the demodulator circuit measures 8 cm by 10 cm.
The resistors have a 1% tolerance and are surface mount compo-
nents. The capacitors have a 2.5% tolerance and are polypropy-
lene film capacitors. The component values were chosen so that

and . The amplitude of the modu-
lating signal, , is assumed to vary 0.2 V peak-to-peak.

Fig. 12 shows a demodulated speech waveform and the orig-
inal speech waveform of an utterance of the word “this”.

VIII. C ONCLUSION

In this paper, we have presented a generalization of frequency
modulation in which the carrier waveforms are those generated
by a class of dynamical systems. The requirements on the dy-
namical system are that it has a periodic, almost periodic, or
chaotic attractor and that it has a known exponentially con-
vergent observer. Given a dynamical system that meets these
requirements, we developed a general and systematic proce-
dure for constructing demodulators. Examples of the modula-
tion scheme were given for the cases in which the underlying dy-
namical systems were the Van der Pol oscillator and the Lorenz
system. We also numerically demonstrated robustness in the
presence of additive noise and demonstrated the hardware im-
plementation of the chaotic Lorenz-based modulator and de-
modulator.
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