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Statistical Analysis and Spectral Estimation
Techniques for One-Dimensional Chaotic Signals

Steven H. Isabelle and Gregory W. Wornell, Member, IEEE

Abstract—Signals arising out of nonlinear dynamics are com-
pelling models for a wide range of both natural and man-made
phenomena. In contrast to signals arising out of linear dynamics,
extremely rich behavior is obtained even when we restrict our
attention to one-dimensional (1-D) chaotic systems with cer-
tain smoothness constraints. An important class of such systems
are the so-called Markov maps. We develop several properties
of signals obtained from Markov maps and present analytical
techniques for computing a broad class of their statistics in
closed form. These statistics include, for example, correlations of
arbitrary order and all moments of such signals. Among several
results, we demonstrate that all Markov maps produce signals
with rational spectra, and we can therefore view the associated
signals as “chaotic ARMA processes,” with “chaotic white noise”
as a special case. Finally, we also demonstrate how Markov maps
can be used to approximate to arbitrary accuracy the statistics
any of a broad class of non-Markov chaotic maps.

1. INTRODUCTION

ECENT developments in nonlinear dynamics and chaos

theory suggest that it may be possible to develop new and
powerful alternative strategies for signal modeling in a variety
of applications. In turn, the development of new classes of
signal models may naturally lead to new kinds of algorithms
for processing such signals that explicitly take into account
their special structure. In this paper, we introduce and develop
properties of a class of nonlinear signal models that appear to
be particularly well suited to engineering applications.

The notion of using chaotic signals as models for signal
processing applications has received increasing interest over
the last few years [1]. There has been, for example, work on
estimating the parameters of a nonlinear signal model from
data and on extracting chaotic signals from noise and other
forms of distortion; see, e.g., [2]-[7]. In addition, chaotic mod-
els have been proposed for a variety of practical engineering
systems including sigma-delta modulators in analog-to-digital
conveﬁters [8], as models for switching power converters [9]
and other switched flow systems [10], and for signal generators
[11]. In this paper, we focus on characterizing, analyzing,
and eStimating the properties of signals rather than the time
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series themselves or their parameters, although these issues
are obviously complementary.

In our development, we restrict our attention to the case of
discrete-time signals and consider scalar-valued signals y[n]
with the state space description

z[n] = F(z[n — 1]) (1a)
y[n] = g(=[n]) (1b)
where
z[0] initial condition,

F(-)

9()

nonlinear transformation that maps vectors to vectors
in M-dimensional state space,

nonlinear transformation that maps M-dimensional
state vectors into scalar observations.

To serve the broadest possible range of signal processing
applications, it is tempting to avoid further constraining the
structure of the signal model (1). However, as we will show,
without further restriction on the properties of F(-) and g(-),
the class of signals that can be described by (1) is so large as
to be unwieldy for application—regardless of the dimension
of the state space. As a result, in practice it is necessary to
add additional constraints on the dynamics. The signals that
we examine in this paper are generated by nonlinear systems
that satisfy a particular class of smoothness constraints that
makes them especially amenable to analysis. We demonstrate
that even with such constraints and restricting our attention
to a one-dimensional (1-D) state space, a rich class of signals
results.

The main focus of the paper is on developing important
properties of the resulting signals and efficient techniques for
analyzing them. We intentionally choose an approach that de-
emphasizes the traditional distinctions between deterministic
and stochastic signal models. In fact, the nonlinear dynamical
system framework we adopt and the associated ergodic theory
lends itself naturally to viewing signals from both perspectives
simultaneously and makes distinctions artificial.

This paper examines the time-average statistics of signals
generated by a specific class of 1-D nonlinear systems. For
this class of maps, the statistics are essentially independent
of the initial condition z[0] that generated the time series.
Moreover, if £[0] is a random variable whose probability
density function is appropriately chosen, the resulting random
process is ergodic, i.e, its ensemble-average statistics are equal
to the time-average statistics of the individual sample paths.
This equivalence leads to the signal analysis tools that are the
focus of this paper.
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The outline of the paper is as follows. Section II explores
some fundamental issues that arise in the use of nonlinear
dynamics for signal modeling and makes some preliminary ob-
servations about the limitations and potential of such models.
Section III establishes some basic terminology and notation
and develops the basic framework by which we will obtain
the statistics of signals from 1-D nonlinear maps. Section IV
introduces a class of 1-D chaotic systems called Markov maps
that generate signals with properties that can be characterized
in an efficient vector-matrix framework. This framework leads
to efficient algorithms for computing, e.g., the amplitude
distributions, power spectra, and higher order statistics of such
signals. In Section V, we then demonstrate that chaotic signals
from Markov maps can be synthesized to approximate the
behavior of any of a much broader set of chaotic signals
to arbitrary accuracy. Using this important property, we then
develop efficient algorithms for estimating the statistics of this
larger class of chaotic signals. Finally, Section VI contains
some concluding remarks, identifying open questions and
directions for further research.

II. MODELING WITH CHAOS

In this section, we discuss some basic issues involved in
using chaotic systems for signal modeling and, in the process,
illustrate some of the potential and limitations of this approach.

We begin by observing that in the absence of further
constraints, the class of signals that can be described by (1) is
exceedingly large. Since this point is often not articulated in
the literature, we demonstrate that, for example, it is. possible
to choose F(+),g(:), and z[0] to generate any desired time
series. An immediate implication of this statement is that
simply specifying that a signal was generated deterministically
does not significantly limit the possible range of time series
behavior. A corollary of this statement is that it is similarly
possible to choose F(-), g(-), and a probability density for [0]
to generate any stationary stochastic process.

A construction for the case of bounded signals is as follows.
First, observe that if the dimension of the state space is infinite,
then it is essentially trivial to establish that there is a system
F(-) and observation function g(-) that can produce any finite,
causal time series. It suffices to consider the state space X' to
be the space of right-sided sequences. We use z as the (infinite-
dimensional) vector notation for such a sequence and denote its
ith component by [z];. In other words, each element £ € X
is of the form

Now, suppose that F'(:) is the left-shift operator, which maps
the state space to itself, and. that g(-) observes the zeroth
component of a state vector, i.e.,

[F(x)]: = [®)ig1,
g(z) = [=]o.

i=0,1,2,

Then clearly, this system can generate any bounded time series
by a proper choice of initial condition. In essence, by choosing
the initial condition, the entire time series is chosen.
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By augmenting the previous construction, stochastic pro-
cesses can, likewise, be generated. In this case, the components
[z]; are viewed as random variables over an appropriate prob-
ability space. Stationary processes consist of those sequences
of random variables with the shift invariance property

Pr{lz);, € B1,[z]:, € Ba, -, [z]i. € B}
= Pr{lzls, 1x € B1,[x]iy1x € B2, -+, [x]i, 4% € Br}

for all positive integers » and & and all collections of valid
events By, Bs,---,B.. Moreover, by -a standard result: of
ergodic theory, every stationary' process .can be: generated
in this manner [12]. Hence, a- shift can -also generate any
stationary random process. :

It is important to note, however, that the complexity of time
series behavior that can be obtained is not a-function of the
dimension of the state space. Indeed, the same conclusion is
reached even in 1-D state spaces. To see this, it suffices to
construct in 1-D state space a system equivalent to the left-shift
operator of our infinite-dimensional example. This follows
immediately from a classical result of real analysis—that the
set of right-sided sequences of real numbers has the .same
cardinality as the unit interval [0, 1] (see, e.g.; [13]).-As a
result, the points of the unit interval can be put into one-
to-one correspondence with the points of the space X Let
¢:[0,1] — X denote this correspondence. Since ¢ is one-to-
one and, hence, invertible, each state sequence generated by
F(+) corresponds to a scalar sequence z[n] in [0, 1]. The scalar
sequence z[n] is, therefore, determined by the dynamics

z[n] = ¢~ (F(¢(a[n— 1])) £ f(aln - 1))

where f(-) is a scalar function mapping [0, 1] to itself.
The corresponding output time series is generated by the
observation equation

yln] = g(¢(z)) =

Thus, the 1-D map f(-) along with the observation function
h{-) generate the same collection of time series as the infinite-
dimensional map F(-) and observation function g(-). A similar
construction could establish this type of equivalence between
any two systems operating on subsets of finite-dimensional
spaces. ‘

The preceding results show that while nonlinear state space
models can generate virtually any bounded time series, such
models are often impractical. Indeed, the correspondenee func-
tion ¢(+) is highly irregular, precluding its implementation with
finite-precision arithmetic. However, many practical systems
naturally satisfy some type of smoothness conditions. Despite
the constraints implied by these smoothness conditions, a
remarkably broad class of time series can be obtained and
analyzed with such constrained models, even in 1-D state
space. '

h(x).

TII. ONE-DIMENSIONAL MAPS AND INVARIANT DENSITIES

For the duration of the paper, we specifically restrict our
attention to discrete-time signals z[n] generated by chaotic
systems with a single state variable by applying the recursion

zln] = f(zln — 1) @
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to some initial condition z[0], where the f(-) is a nonlinear
transformation that maps scalars to scalars. Such models have

been proposed not only for a variety of physical phenom-

ena but also for engineering systems ranging from nonlinear
oscillators [14] to power converters [9]. More generally, a
time-series z[n] can be modeled by a 1-D map whenever a
scatter plot of z[n] versus z[n — 1] resembles the graph of an
appropriate function f(-). Such a time series can be viewed as
being effectively generated by the recursion (2). Because the
focus of this paper is on the analysis of signals generated by
nonlinear maps, the problem of choosing an appropriate model
f(-) will not be addressed. However, when a model exists,
many applications could benefit from a detailed knowledge of
the time-average properties—such as power spectra and higher
order cumulants—of such a time series. While these statistics
can be estimated via empirical time averaging, this approach is
often computationally expensive and fails to reveal a number
of special properties associated with the statistics of this class
of signals.

In this section, we develop a framework for determin-
ing the time-average statistics of signals generated by 1-D
maps.. In particular, we will show how the time-average
properties of such deterministic signals can be equated with
the ensemble-average properties of the class of stationary
stochastic processes generated according to the dynamics (2)
with an initial condition z[0] chosen from an appropriate
probability distribution.

We begin by considering the properties of stochastic pro-
cesses obtained from 1-D nonlinear dynamics. Let po(+) denote
the probability density function of the initial condition x[0],
and more generally, let p,,(-) denote the corresponding density
of the nth iterate z[n]. Provided that the map f(+) is reasonably
well behaved,! a linear operator Ps{-} may be defined such
that

pa() = Pe{pa-1()}-

This operator, which is referred to as the Frobenius—Perron
(FP) operator [15], describes the time evolution of the density
for the particular map.

Although, in general, the densities at distinct times n will
differ, there can exist certain choices of po(-) such that the
densitjy of subsequent iterates does not change, i.e.,

po()=pi() = = pal-) £ p().

Such a density p(-), which is referred to as an invariant density
of the map f(-), is a fixed point of the FP operator, i.e.,

p(+) = Peip()}. 3)

For a given map f(-), more than one density may satisfy (3).

The invariant density plays an important role in the compu-
tation of time-averaged statistics of time series from nonlinear
dynamics. When po(+) is chosen to be an invariant density,
it is straightforward to verify that the resulting stochastic
process is stationary and—subject to certain constraints on

In particular, f(-) must be nonsingular. For the piecewise smooth maps

that will be the focus of this paper, nonsingularity translates into the require-
ment that the derivative be nonzero almost everywhere.
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f(-)—ergodic. In this case, f(-) has a unique invariant density,
and Birkhoff’s ergodic theorem [16] can be conveniently used
to establish that time averages are equivalent to ensemble
averages for almost all sample waveforms. For reasons that
will be discussed in Section V, we restrict our attention to
this case.

The statistics of interest in this paper are correlations of the
form

Rfohohy oo h [R1y oo s ke
1 L1
= [lim_ 7 :L;O ho(z[n])hy(zln + ki) - -

he(z[n + k.]) )]

where z[n] is a time series generated by (2), the h;(-) are suit-
ably well behaved but otherwise arbitrary functions, and the £;
are nonnegative integers. This class of statistics is sufficiently
broad to include as special cases the autocorrelation and all
higher order moments of the time series, which are of interest
in many applications.

To facilitate its computation, the correlation statistic (4) can
be expressed as an ensemble average directly in terms of the
invariant density and FP operator associated with the map. To
see this, we begin by adopting the notation f"(-) and P} {-}
for the respective n-fold compositions of f(-) and P¢{-} with
themselves. Then, we rewrite (4) as

Riho by sho b1y kil
= Jim < Zl]w (xn])
= [ [Imtst e
= [ hel)Pf ™ heos@) - PR a0 P
hol@)pl@)}} -} do s

where the equalities follow from applying, in turn, (2),
Birkhoff’s ergodic theorem, and repeated application of the
identity [15]

/ (@) Py {B(2)} do = / o(f(2))B(x) da

valid for bounded «(-) and integrable 3(-).2 This expression
for the correlation statistic will prove especially useful in
computing the statistics of time series from the particular class
of maps referred to as Markov maps, as we explore next.

ZNote that although the FP operator is defined only for densities, its
definition is extended to all integrable functions in a straightforward manner.
In particular, since any integrable function h(z) can be expressed in the form

h{z) =aghi(z) —a_h_(x)

where h4(x) and h_(x) are densities and a4 and a_ are finite, positive
constants, we use

Pi{h(2)} & ay Pr{hy(a)} — a_ Pr{h_(2)}.
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IV. CHAOTIC SIGNALS FROM MARKOV MAPS

A rich class of 1-D chaotic systems that are particularly
amenable to analysis are the eventually expanding, piecewise-
linear, Markov maps. An adequate definition for our purposes
follows.>

Definition 1: A map f:[0,1] — [0,1] is an eventually
expanding, piecewise-linear, Markov map when we have the
following: '

1) The map is piecewise-linear, ie., there is a set
of partition points ag,a1,-:+,an satisfying 0 =
ap<ay < - <ay = 1 and such that restricted to
each of the intervals V; = (a;_1,0;), the map f is
affine.

2) The map has the Markov property that partition points
map to partition points: For each 4, f{a;) = a; for some
J- .

3) The map has the eventually expanding property, i.e.,
there is an integer £ > 0 such that

inf >1.

z€]0,1]

M)

Despite what might appear to be a rather restrictive definition,
we will see in Section V that such piecewise-linear, eventually
expanding Markov maps can approximate to arbitrary accuracy
any member of a much larger class of maps.

Before proceeding, we remark that the maps corresponding
to Definition 1 constitute a subset of a broader class of Markov
maps. These more general Markov maps also map partition
points to partition points but need not be piecewise-linear
nor eventually expanding [17]. Because we will not require
a broader definition of Markov map in this paper, we will
refer to maps satisfying Definition 1 as simply “Markov maps”
when there is no risk of ambiguity.

Some additional notation and terminology will be useful in
the following analysis. The intervals V; = (a;_1, a;) are called
partition elements. Since partition points map to partition
points and f(-) is piecewise affine, the image of any partition
element is a union of partition elements. We denote by Z; the
set of indices of partition elements in the image of V;. With
this notation, the image may be expressed in the form

vy =W 6)
J€Z; :

We will also find it useful to define the indicator function

- (1 ze€eA
xXa(z) = {0 otherwise

and the modified indicator function

) (1 zeV
xi(z) = {0 otherwise.

Note that these two variants are related by

xi(z) = Xv,(2)-

3Because a map over any finite interval is equivalent to within an affine
change of variables and to a map of the unit interval, we restrict our attention
to maps of the unit interval with no loss of generality.
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Fig. 1. Example of a piecewise-linear Markov map with two partition
elements.

With these definitions, we then obtain from (6) the following
identity:

ifm)(fv)%ij(x)- | @

JET;

As an example of the use of this notation, consider the map

2= a+(1—a)z/a
ﬂ}‘{m—xwa~@

which meets the conditions of Definition 1 and is depicted
in Fig. 1. This map has partition elements V; = {0,a] and
Vo = [a,1]. The index ‘sets. associated with the partition
elements are 7; = {2} and 7y = {1,2}. We will make use of
this example on a number of occasions throughout the paper.

Markov maps have a number of important properties that
make them attractive for applications. For example, all Markov
maps have invariant depsities and are ergodic under readily
verifiable conditions [17]. In addition, suitably quantized out-
puts of Markov maps are equivalent to Markov chains. In
particular, for almost all initial conditions, the sequence of
partition element indices corresponding to successive iterates
of the map is indistinguishable from a sample path of a Markov
chain [18]. ,

0<z<a

o<z <1 ®)

A. Statistics of Markov Maps

In this section, we establish another property of Markov
maps—that their statistics can be determined in closed form.
To develop a strategy for computing these statistics, we begin
by noting that from Definition 1, we may express a Markov
map in the form ‘

N

fl@) = (siz +b)xi(x) ©

i=1

where s; # 0 for all 4. This leads to a convenient representation
for the map’s FP operator, as we now develop.

1) Frobenius—Perron Operator: It is straightforward to es-
tablish that the FP operator for nonsingular, 1-D maps of the
form

N
@) =3 flah)
7=1
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where each f;(-) is continuous and monotonic, can be ex-
pressed in the form [15]
sz(vl)( z)

Frihle)} = Z If’ @)

The FP operator for a piecewise linear map then follows by
substituting (9) into (10) to obtain

Pe{h(z }—le] ( ” )Xf(v)()

One unique property of FP operators of piecewise-linear
Markov maps is that their invariant subspaces contain piece-
wise polynomials of the form

N K ‘
= Z Z a;j27 xi(x)

i=1 j=0

(10)

an

12)

where the a;; are arbitrary scalars. To see this, note that such
functions can be expanded in the basis

{01(2),02(x), - -, On(r a1y }
2 (@), xn(@),zxa(z), - 2 (@),
¥ x1(z), 2% xn(2)} (13)

to yield the representation

N(K+1)
h(iL‘) = Z h191(x)
‘ i=1
Thus, each such function can be uniquely represented by the
vector

h=1lh1 hy hy+n)”

which we refer to as the coordinate vector of h(x). We denote
by Px the N(K + 1)-dimensional space spanned by the basis
functions {6; }N(K+1)

For these piecewise polynomial functions, a convenient

expression for Ps{h(z)} can be developed by using (11) to
obtain

Pr{tinyi(z)} = Pr{z’ xi(z)}

~ N —l_(x—bl)j ‘<x—bl> (x)
s\ s X\ Ty )R

(14)

After exploiting the relation (7) and the Markov property of
the map f(-), (14) simplifies to

PO i(a)} = ( 1s)

) lezI:Xl

Finally, using (15) and exploiting the linearity of the FP
operator, we obtain, for h(-) of the form (12), that

=33 s (S22) 2 S

=1 7=0 leT;

:J

16
5] (16)
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From (16), we see that the images of piecewise-polynomial
functions h(-) of degree K are also piecewise polynomials of
degree K, i.e., the operator Py{-} maps Pk to itself. Since
Py is a finite-dimensional space, the restriction of P¢{-} to
Px can be represented by a square N(K + 1)-dimensional
matrix, which we will denote by Py . This matrix, which we
will refer to as the FP matrix, describes how the coefficients
of expansions in terms of the basis (13) map under the FP
operator. In particular, if

N(K+1)
Pi{h(a)} 2 q(@) = X ails(@)
=
then
qg=Pxh an
where
a=n ¢ QN(K+1)]T-

Using (16) with the binomial theorem, it follows immedi-
ately that Pg is block upper triangular. In particular

Py Py Pk
P= 0 P'11 P.12 P%K
0 0 Prx

where each nonzero N X N block is of the form
P = (JZ.)POBJ’*"SJ‘ for j>i.

The N x N matrices B and S are diagonal with elements
B;; = —b; and S;; = 1/s,, respectively, while Py = Py is
the N x N matrix with elements

{1/|8j| iEIj
0

Polij =
[Polis otherwise.

The matrix Py has some key properties that will be im-
portant in our subsequent development. In particular, as es-
tablished by Friedman and Boyarsky [19], Py is diagonally
similar to a column stochastic matrix, i.e., there is a diagonal
matrix D with positive entries such that D™ PyD has positive
elements, and each of its columns sums to unity.

Since similar matrices have the same eigenvalues, it follows
that Py has the same eigenvalues as a stochastic matrix.
However, via Frobenius’s theorem [20], all stochastic matri-
ces—and, hence, Pp—have eigenvalues with magnitude not
greater than unity and at least one eigenvalue equal to unity.

In turn, we can conclude that

[1Pol| <1

where || - || denotes the usual matrix norm [21]. Furthermore,
because the elements of P, are nonnegative, an eigenvector
cortesponding to a unit eigenvalue has nonnegative compo-
nents.
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2) Invariant Densities: One use of the matrix representa-
tion of the FP operator is for directly calculating the invariant
densities of a Markov map, which is a problem first considered
in [22] and later in [17]. Invariant densities are obtained by
solving a matrix eigenvalue problem, as we now develop.

A nonnegative, unit-area function h(z) is an invariant
density if its coordinate vector is a solution to (17) with
g(z) = h(z). Markov maps have the property that all invariant
densities of interest are vectors in Py [23], i.e., they are
piecewise constant and can be expressed in the form

N
p(x) = pbi(x). (18)
j=1

It follows that the coordinate vector of the invariant density

p=[p p T

is obtained as the solution to the eigenvector problem
Pop =p.

Thus, this coordinate vector is the nonnegative eigenvector of
Py corresponding to the unit eigenvalue discussed in Section
IV-Al.

3) Correlation Statistics: Let us next consider the compu-
tation of more general correlation statistics (4) when each h;(-)
is a piecewise polynomial, i.e., h; € Px for each <. First, we
express (4) using (5) as

Rf;’lo,hl,--',hr [kl, ) kf‘] = /gl(x)QZ(m) dx (19)
where
91(z) = hr(z) (20a)
92(1’) :P;Cr—kr_1{hr_1($) oL Psz—kl
{ha(@) PP {ho(z)p(z)}} -} (20b)
Then, expanding g;{z) and go(z) in the basis (13), i.e.,
g1(z) = 29171'91'(37) (21a)
92(z) = > 92,564 () (21b)

" the associated coordinate vectors can be expressed in the form

(91,1 91,2 91,N(K+1)]T = g, = h. (22a)
and
lg2,1 932 go.n1) T 29,
=Pt Rt b1 00 PR TR (b 0 PR
(hioP))--) (22b)

where P is the FP matrix of sufficient dimension, and where &
denotes the polynomial product operator. For two coordinate
vectors u; and us, the notation u; ©us denotes the coordinate
vector for the corresponding product of piecewise polynomials
u1(z)ua(z) in a basis of suitably high dimension.

In turn, using (21) in (19) with a basis of sufficient dimen-
sion, we obtain

R hayoho [k, ] = g1 Mgy (23)
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where M is a basis correlation matrix with elements

When it is important to make the dimension of this matrix
explicit, we will use the notation M g when M is N(K +1) x
N(K + 1), corresponding to the case of Kth-order piecewise
polynomials. Note that each row and column of M contains
at most K + 1 nonzero entries because the support of only
K +1 of the ;s coincide, and the rest are disjoint. This sparse
structure of M can be exploited to obtain computationally
efficient implementations of (23).

4) Power Spectra: We now apply the results of the pre-
ceding section to problem of computing the power spectral
densities of time series generated by Markov maps. This yields
an algorithm for computing such spectra, as well as insight
into the properties such signals. We focus on the special case
of power spectra both because of its familiarity and because
power spectra have a strong physical significance in many
engineering systems. As an important example of the latter,
the power spectra of chaotic currents in power converters
governed by nonlinear dynamics is directly related to their
voltage ripple and to the spectrum of emitted radiation (see,
e.g., [6] and the references therein).

To begin, we express the autocorrelation function for the
time series in terms of the FP operator using the general
expression (5) to obtain

Roolk] = E{z[nlzn + b} = E{af*(x)}
= [ar*@pie)do = [ P} (ap(@) do
where p(-) is the invariant density associated with f(-). Since

R..[k] is symmetric, we restrict our attéention to & > 0 and
obtain that g1(z) and go(2) in (20) specialize to

(24a)
(24b)

g(z)y=a ’
g2(x) = Pf{ap(a)}

To determine the dimension required in the basis expansion
(21), recall that the invariant density of a Markov map is
piecewise constant (see Section IV-A2), and hence, product
zp(z) is piecewise linear. Since Py{-} maps piecewise-linear
functions to piecewise-linear functions as developed in Section
IV-A1l, we have that gs(z) is piecewise linear. Combining
this with the fact that gi(z) = =z is, of course, lincar, we
see that the space of piecewise-linear polynomials P; suffices
for the expansion. Accordingly, the FP matrix .P; and basis
correlation matrix M7 can be used, both of which are of size
2N x 2N.

Using (23) and (22), the correlation sequence can be ex-
pressed in the form

Realk] = 97 MyPYg, 25)

where each g, is the coordinate vector associated with (24)
and where §, is the coordinate vector associated with

ga(@) = zp(z)
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since
92(z) = Pf(g2(2))-

To obtain the power spectrum, we take the Fourier transform
of (25), which yields, exploiting symmetry

Spa(e?) = <Z PHe —J“”“)gQ. (26)
k=—o00

Further simplification of (26) is obtained by examining the
structure of the FP matrix P;. In general, P; has eigenvalues
whose magnitude is strictly less than unity and others with unit
magniﬁtude and at least one unit eigenvalue—that associated
with the invariant density as discussed in Section IV-A2. The
unit-magnitude eigenvalues of P; give rise to impulses in the
Fouri{er transform (26). The unit eigenvalue gives rise to the
DC component or, equivalently, the mean of the time series.

The effects of eigenvalues of unit magnitude on the spec-
trum can be isolated by expressing P; in the Jordan form

P, =E'JE

where F' is a matrix of generalized eigenvectors and where
_|J1 0

=[0 3]

with J; consisting of Jordan blocks with eigenvalues of

unit magnitude and Jy consisting of Jordan blocks with the

remaining eigenvalues, whose magnitudes are strictly less than
unity. In turn, P, can be expressed in the form

Pi=I1+415

where I'; and I'y are defined by

I‘1:E“1{J1 O]E

_ 1
r,=E [0 JZ]
It can be readily verified that PY = T'% + '} so that the sum
(26) 1s of the form

Sm(yw) =hi M(I — Tye™7%)"
+ Z C’ié(w - wi)

wherq C; and w; depend on I'y, and m is no larger than the
dlmer}swn of J1. Assuming the process generated by f(-) has

a nongero ‘mean, m > 1, and w; = 0 for some 7 with C; # 0.

From (27), we can conclude that the spectrum of a Markov
map is a linear combination of an impulsive component and
a rational function. This result implies that there are classes
of rat:ional spectra that can be generated not only by the

"I -T3)I - T2e™) g,

@7

usual |synthesis of driving white noise through a linear time- -

invariant filter with a rational system function but also by
iteratihg deterministic nonlinear dynamics. Thus, it is natural
to Vié‘W chaotic signals corresponding to Markov maps as
chaotlc autoregressive moving-average (ARMA) processes.”

Note ‘that a special case corresponds to the “chaotic white
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Fig. 2. Representative time series generated by the Markov map of Fig. 1
for a = 8/9.

noise” described in [3] and the first-order autoregressive
processes described in [24].

A natural question is whether an arbitrary rational spectrum
can be obtained via Markov map dynamics with a suitable
map. The answer to this question remains open, although
the answer is probably negative due to the complicated de-
pendency of pole and zero locations on the map. We point
out, for instance, that the poles of the rational portion of the
spectrum correspond to the eigenvalues of the matrix I's, i.e.,
the eigenvalues of P; with magnitude less than one. The zeros
of S..(z) depend on the vectors g, and §, and the matrix M.

B. An Example

In this section, we consider a simple example that illustrates
the use of these techmiques. In particular, we return to the
Markov map defined in (8) and depicted in Fig. 1.. A repre-
sentative time series generated by iterating f(-) from the initial
condition z[0] = 1/3 is shown Fig. 2 for the case a = 8/9.

When restricted to the 2-D space corresponding to
piecewise-constant functions, the FP matrix associated with
f(+) is readily calculated to be

1-a
l—al

0
Py =

° [a/(l ~a)
Furthermore, the eigenvector associated with the unique unit
eigenvalue is

=[1-a 1%

Via (18), we then get that the invariant density is the normal-
ized piecewise-constant function

p(z) = { 1/(1+a)

0<xr<a
a<xz<l.

1/(1-a?)

In Fig. 3, this density is compared with an empirically es-
timated density computed via a histogram of 50 000 points
generated by the map f for the case o = 8/9.
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Fig. 3. Comparison of the analytically computed first-order density with an
empirical estimate for the Markov map of Fig. 1. The analytically computed
density is indicated via the dashed curve. The empirical estimate, obtained
via a histogram with 40 bins applied to a time series of length 50 000, is
indicated via the bars.

To compute the power spectrum for this example map, we
first compute the FP matrix associated with the FP operator
on the space of piecewise-linear functions P;. From this
calculation, we obtain

0 1-a 0 l-a

P _|a/(1=a) 1-a ~a3/(1-a)? (1-a)
! 0 0 0 —(1~-a)?
0 0 a?/(1—-a)? —(1-a)?

In turn, we compute the basis correlation matrix corresponding
to the same space, obtaining

a 0 a?/2 0
|0 l-a 0 (1-a%)/2
M, = a?/2 0 a®/3 0

0 (1-a¥/2 0 (1-4*/3

Specializing our results to the case ¢ = 8/9, we first obtain
that the average value of the time series is m, = 217/306.
Then, using (27), we obtain that the rational part of the z
transform of the correlation sequence is given by (28), shown
at the bottom of the page.

The power spectrum corresponding to evaluating (28) on the
unit circle z = e’* is plotted in Fig. 4, along with an empirical
spectrum computed by periodogram averaging with a window
length of 128 on a time series of length 50 000. The solid
line corresponds to the analytically obtained expression (28),
whereas the circles represent the spectral samples estimated
by periodogram averaging.
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Fig. 4. Comparison of analytically computed power spectrum to empirical
power spectrum for the map of Fig. 1. The solid line indicates the analytically
computed spectrum, while the circles indicate the samples of the spectrum
estimated by applying periodogram averaging to a time series of length
50 000.

V. MODELING WITH MARKOV MAPS

A much larger class of chaotic signals for applications are
those corresponding to general eventually expanding maps,
which are defined as follows. Without loss in generality, we
again restrict our attention to maps.of the unit interval.

Definition 2: A nonsingular map f: [0, 1] — [0, 1] is called
eventually expanding if the following hold:

1) There is a set of partition points 0 = ap < a3 < -+-any =

1 such that restricted to each of the intervals V; =
(ai—1,a;), the map f(-) is monotonic, continuous, and
differentiable.

2) The function 1/|f'(x)| is of bounded variation [13].4

3) There exists a real A>1 and an integer m such that

d om
%f ()= A

for all z wherever the derivative exists. This is the
eventually expanding condition.

The class of eventually expanding maps includes not only the
piecewise-linear Markov maps of Definition 1 as a small subset
but also a wide range of maps that are not piecewise-linear,
do not satisfy the Markov property of mapping partition points
to partition points, and/or do not have a bounded derivative.
Note from the definition that an eventually expanding map
need not be continuous—only piecewise so. Non-Markov

4This is a smoothness condition on the derivative..In some -definitions, this
condition is replaced with a more restrictive bounded. slope condition, i.e.,
that there exist a constant B such that | f'(z)} < B for all 2. However, in
our case, it is just-as convenient to consider the broader class of eventually
expanding maps.

42632

36271 — 145 + 362

Sex(2) =-

459 (94 82)(9 4 8271)(6422 + 2 + 81) (6422 4+ 21 4+ 81)

(28)
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event%ually expanding maps arise in a number of applications.
As one example, they provide useful models for inductor
current in practical switching power converters [6] that can
be substantially more accurate than traditional linear models.

Soine properties of eventually expanding maps have been
well—$tudied. For example, conditions for ergodicity and the
applicability of central limit theorems have been developed
[25].|1t is known that all eventually expanding maps have
invariant densities [26]. In particular, an eventually expanding
map with N partition points has at least one and, at most,
N inl‘variant densities, all of which are of bounded variation.
Morelover, as discussed in [26], certain auxiliary conditions can
be irﬁposed on f(-} to ensure that a unique invariant density
exists. However, it is useful to note that when f(-) has multiple
invariant densities, each is supported on disjoint subsets of
the uhit interval consisting of finite unions of intervals. When
restricted to one of these subsets, f(-) is an ergodic map, i.e., it
has a! unique invariant density. In this manner, any eventually
expanding map may be decomposed into a finite number of
ergodic components. Using this decomposition, maps with
multiple invariant densities can be analyzed by examining each
ergodic component separately.

In ithis section, we explore the statistics of time series
generated by eventually expanding maps. These properties
have received comparatively little attention in the literature.
In pairticular, we show that the statistics of time series from
eventually expanding maps can be approximated to arbitrary
accuracy by those of piecewise-linear, eventually expanding
Markov maps. As we will see, such approximation strategies
provihe a powerful method for analyzing chaotic time series
fromJeventually expanding maps. For simplicity of exposition,
we restrict our attention to ergodic maps, i.e., maps for which
there} is a single ergodic component.

We begin by considering a sequence of piecewise-linear
Markov maps f;(-) and examining conditions under which
the statistics of fl() converge to those of a given eventually
expanding map f(-). This important mode of convergence,
which we will refer to as statistical convergence, is formally
deﬁnéd as follows.

Definition 3: Let f(-) be an eventually expanding map with
a uni;que invariant density p(-). A sequence of maps { Fi()}
statisfically converges to f(.) if each f;(-) has a unique
invar}ant density p,(-), and

|
! Rfiyho,hl,"‘,hr[kl"”’kr]
| = Ry hohy,oho [k, oy ko]

as i — 00

for any continuous A;(+) and all finite k; and finite r.

A sequence of Markov maps that statistically converges to
a gi\)ien eventually expanding map f(-} can be constructed
in a ‘computationally straightforward manner. To begin, we
denote by Q the set of partition points of f(-) and by Q;
the d‘et of partition points of the 7th in the sequence of
Markov map approximations. The sets of partition points for
the increasingly fine approximations are defined recursively

\
via |

-1
Qi =Qi-1Uf(Qi1).
|
3See, e.g., [25] for a more detailed treatment of these issues.
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In turn, each f,() is defined by specifying its value at the
partition points Q; according to the following prescription:®

1) For each partition point ¢ € Q; such that f(-) is
increasing at ¢*, define f;(¢") by

filg") = max{v e Qv < f(gN)}.

2) For each partition point ¢ € Q; such that f(-) is
decreasing at q*, define f;(q7) by

filg") = min{v € Qilv > f(¢")}.

3) For each partition point ¢ € Q; such that f(-) is
increasing at ¢, define f;(¢) by

filg™) =min{v € Qilv > f(a7)}.

4) For each partition point ¢ € Q; such that f() is
decreasing at ¢—, define f;(¢7) by

fila™) = max{v € Qilv < f(g7)}.

At all other points, the map fl() is defined by linear inter-
polation. Note that the number of partition points generally
grows exponentially as 7 increases. We emphasize that with
this construction, each approximating function f;(-) is not
only piecewise linear but also satisfies the Markov property,
ie., f;(Q;) C Q; and the eventually expanding property [27].
Hence, each is a Markov map in the sense of Definition 1.

For this sequence of approximations, we have the following
theorem, whose proof is provided in Appendix A.

Theorem 1: Suppose f(-) is an eventually expanding map
in the sense of Definition 2. Then, the sequence of piecewise-
linear Markov approximations f;(-) statistically converges to
f(*), i.e., converges in the sense of Definition 3.

We remark that this theorem includes as a special case the
results of [28], in which such approximations were used to
estimate the Lyapunov exponent of a 1-D map.

From Theorem 1, we conclude that for sufficiently large ¢,
the statistics of f;(-) are close to those of f(-). The practical
consequence of this result is that correlation statistics of an
eventually expanding map f(-) can be approximated by first
determining a Markov map f;(-) that is a good approximation
to f(-) and then finding the statistics of Markov map using
the techniques described in Section IV-A3.

This approach can be used, in particular, to efficiently
estimate the power spectrum associated with an eventually
expanding map. As an example, consider the map shown in
Fig. 5, which is not piecewise-linear and does not satisfy the
Markov property of Definition 1. As illustrated in Fig. 6,
a time-series generated by this map alternates irregularly
between periods of exponential growth in amplitude and
periods of rapid decay, which results in a pronounced peak
in its power spectrum. Fig. 7 shows an empirically computed
power spectrum along with two approximate spectra. The
dashed and solid lines correspond to approximate spectra
computed analytically using the Markov maps fl() and f3('),
respectively, whereas the dash-dotted line corresponds to an

6Note that since the original map f(-) can be discontinuous, we use

superscripts T and — to denote the left and right limiting values of the map
at an individual partition point.
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Fig. 6. Segment of a typical time-series generated by the map in Fig. 5.

estimate of the power spectrum associated with f(-) obtained
by applying periodogram averaging to a time-series generated
by f(-).

Not surprisingly, computing spectral estimates via Markov
map approximations requires, in general, significantly less
computation than those obtained via periodogram averaging.
Furthermore, this technique avoids numerical difficulties in-
herent in simulating chaotic systems on digital computers.

VI. CONCLUDING REMARKS

In this paper, new classes of signal models have been
developed and analyzed. The properties of such models sug-
gest that they may be efficient and convenient alternatives
to many conventional ARMA process models that are so
widely used in signal processing applications. In particular,
we showed that chaotic signals generated by deterministic
nonlinear dynamics corresponding to piecewise-linear, even-
tually expanding Markov maps share important properties

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 6, JUNE. 1997

dB

’18 1 1. 1 L i 1 1 L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency

Fig. 7. Comparison of approximdte and empirical ‘power spectra for.the
map in Fig. 5. The dashed line and solid line correspond to approximate
spectra computed analytically using the Markov maps fi(-) and F3(),
respectively, whereas the dash-dotted line corresponds to an estimate of
the power spectrum associated with f(-) obtained by applying periodogram
averaging to a time-series generated by f(-): . ' :

with ARMA processes. In particular, -all -such signals have
rational spectra. For these reasons; it is convenient to view
these chaotic signals as “chaotic ARMA processes.” While we
explored several properties of these processes, many others
remain to be investigated. Moreover, many interesting and
important questions remain open. For example, as discussed
in- Section IV-A4, while all chaotic ARMA processes have
rational spectra, it is unclear whether a chaotic ARMA process
can be constructed to produce any desired spectrum. Such a
result would, naturally, have important implications. Likewise,
exploring the properties of higher order spectra for these
signals may lead to important insights and applications.

We also established results to' show that chaotic' ARMA.
processes can be constructed to approximate the statistical
behavior of a broad class of chaotic processes to arbitrary ac-
curacy. In particular, we constructed a sequence of piecewise-
linear Markov maps whose statistics all converge to those of
a desired arbifrary eventually expanding map. These results
are particularly useful in applications where such maps arise
naturally, such as in the case of switching power converters
[6]. In such applications, the approximations allow important
statistics of these chaotic signals that cannot be computed
in closed form to be efficiently estimated; an important ex-
ample is power spectrum estimation. Important avenues for
further research remain. For example, it would be worth-
while to explore whether other useful sequences of Markov
map approximations can be obtained for modeling eventually
expanding maps. Of particular interest would be alternative
sequences that yield better approximations with fewer partition
points since this would reduce modeling complexity. Whether
such approximating sequences exist is an open question. A
related issue is that of characterizing the error inherent in
our approximation procedure. In this area, bounds on the
approximation error expressed in terms of the approximating
sequence would be desirable.
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APPENDIX A
PROOF OF THEOREM 1

To|prove our result, we need to exploit the notion of weak
convergence, which is defined as follows [15].

Definition 4: A sequence of functions ¢; € Lq converges
weakly to ¢ € L, if

hz)pi(z) dx =

[0,1] 0,1]
for all bounded measurable functions /.

In |addition, we will exploit the following theorem due to
Gora! [27].

Theorem 2: Suppose f is an eventually expanding map
with invariant density p, and fi is the sequence of Markov
approximation to f. If fi has invariant density p;, then fi - f
uniformly and p; -+ p weakly.

To| obtain our main result, we begin by expressing the
difference between the true and approximating statistics in the
form ‘

R

lim 29

1—00

h(z)p(z) dz

Fohoohno b (KL kel = R oo [Rors - K
= [ Ho(lha( £ @) bl £ )ta) d
= [ hal (£ @) b (o) o
= [ hafah (4 @) (4 2)la) — ()] da

+ [ ho@ha (75 @)+ b (F2 @) = ho(z)
(P (@) he(f¥ (2))] Bi(z) da. (30)

The first term in the second equality in (30) goes to zero
as i > oo by the weak convergence of p;(-) to p(-) that is
guaranteed by Theorem 2. The second term goes to zero as
1 — 00, provided two conditions are met: 1) Each h;(-) is
uniformly continuous, and 2) each flk 7 converges uniformly
to fRi().

The first of these conditions follows from the fact since each
h; is|continuous on [0, 1], it is also uniformly continuous.
The second of these conditions is established by the following
lemma, which completes our proof.

Lemma 1: The sequence of Markov approximations has the

property that f; converges uniformly to f7 as ¢ — oo for each
nonnegative j. "
_Proof: When f is continuous, the uniform convergence
of f; to f immediately implies that ff converges uniformly to
f7. In the remainder of the proof, we therefore consider the
case in which f is not continuous.

We denote the set of initial partition points by Qg =
{a;}IL, and the set corresponding to the ith in the sequence

of approximating maps by Q; = Q; U f~1(Q;_1) = {a,g.i)}.

Morepver, we denote the associated partitions by VJ@ =
ORNC
-1 |-
It is straightforward to verify that by construction the maps
f and f; satisfy

[a

FV) ¢ ) c vy 3D

1505

for some j;, which depends on j. Furthermore, it can be shown
(see, e.g., [25]) that the partition elements satisfy

max |V]@] <d (32)
3

for some d <'1. From (31) and (32), it therefore follows that
for i>k

|f¥(2) - fF@)| <Cd* (33)

for all z € [0,1] and for some constant C. Uniform conver-
gence of fF to f* follows from (33). |
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