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Correspondence

A Separation Theorem for Periodic Sharing Information  optimal control laws. Furthermore, for a particularly important class

Patterns in Decentralized Control of systems, we show that this separation theorem implies that the
volume of shared data i& times smaller under periodic sharing
James M. Ooi, Shawn M. Verbout, Jeffrey T. Ludwig, with period I than under either OSDS ai-step delay sharing.
and Gregory W. Wornell In the next section, we formulate the optimal decentralized control

problem under periodic sharing. In Section lll, we state and prove
a separation theorem that holds for periodic sharing patterns. In
Abstract—Optimal decentralized control of a discrete-time stochastic ggction V. we discuss the theorem and point out certain advantages

system is considered under a periodic sharing information pattern. In . ... . L L .
this scenario, controllers share information with one-step delay every limitations, and potential applications of periodic sharing.

K time steps. The periodic sharing pattern is a generalization of the
previously studied one-step delay sharing pattern, which is known to

possess a nonclassical separation property. It is proven that the periodic Il. PROBLEM DESCRIPTION
sharing pattern has an analogous separation property. We shall consider a discrete-time stochastic system that is regulated
by M decentralized controllers, each with an associated measurement
. INTRODUCTION station. The system state vectgrand themth measurement station’s

Decentralized control refers to the regulation of complex systerﬂgservat'on% evolve overI” time steps according to the equations

by multiple controllers that make decisions based on different sensor

1 M
information. The key element of a decentralized control problem is bt = folee ue, s v
the information pattern, which characterizes the information available t=0,1,--,T-1 (1)
to the controllers at each time step. The information pattern not v =gr (2, w), t=0,1,---, T -1,
only determines the nature of optimal control laws but also greatly m=1,2 -, M @)

influences the difficulty of their design.
Various information patterns have been considered in the ”teran\%ere f,

[1]-[6]. Perhaps the most widely studied information pattern has bepé)

the one-step delay sharing (OSDS) pattern, whereby each controlx

has instantaneous access to observations from its own measure

B

Q-
. . . % independent random disturbance vectors whose distributions
station as well as observations from all other stations after a one-s eré known. At a particular time step, the random vectors
delay. It was shown that dynamic programming could be efﬁcientIyL w! ]

applied to the design of optimal control laws for the OSDS pattern,,
after a nonclassical separation theorem was proven by Kurtaran {tﬁi]th
and Varaiya and Walrand [5]. Unfortunately, the OSDS pattern
often impractical because it requires that a large volume of data
shared with low delay. This low-delay requirement is relaxed unde
the n-step delay generalization of the OSDS pattern, but Varaiya agﬂ
Walrand [5] showed that the-step delay sharing pattern doset

obey an analogous .separatlon th.eof.‘em. _— . by all control stations. Since the sharing period has durahiorit is
I_n this paper, we m_troduce penodl(_: shanng information patterngohvenient to express any time> 0 ast = ¢k + r, whereg andr

\(JVh:;:h constl_tu(;_e ahdlf_ferentttgenera}lllzatl(in ”of theh OSDS patt(tsfrgre integers such that> 0 and0 < r < K —1. If the mth controller
.n €r a periodic sharing p? .em’ all contro grs S z.are.o serv.a Io|gsgoverned at time by the control lawy;", then fort = ¢K + r

with one-step delay evernyt time steps. While periodic sharing the control input is given by

with period X' = 1 corresponds to OSDS, the case in which no

observations are shared is approached{as- ~c. We prove that a

separation property holds for periodic sharing patterns, thus admitting

the possibility of using dynamic programming to efficiently desig(}v

and ¢;* are given Borel-measurable functiong,”
resents thenth controller’s input at timef, and the quantities

r 1 M L M
Vo, Wos oy Wh' )y ey, (Vr—1, wWp_y, e+, wi_,) are mutu-

.., w} may be statistically dependent. The vectors

v, wit, @y, and y* have given dimensions and take values
e given subset#’;”, Vi, W™, X:, andY,”, respectively, all
which are Borel subsets of appropriately dimensioned Euclidean

aces.

Each controller produces, according to a predesigned control law,
input based on local observations from its own measurement

station as well as observations that are shared efetyme steps

e — /YIL T m m 6 3
Ugkr = Vak+r(Ugks Vgl +1s "+ Yk trs Oqic+r) ?3)

here y;x, -- -, y x4~ are local observations, and,x . is the
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to minimize the total expected cost Yok +r € I'ik 4, and shared informatiof, x € A,x, we denote by
_— w';’jrﬂr‘éqK the sublaw satisfying
1 M
Z E[}lt(l’tﬁ»l’ Uyy mmmy Uy )] (6) W”;’}\"-&-r“éqK(yqn}\' : q[/\"-&-r) = Vﬁx-‘rl(y;{}\' cgK 4y éqI’()a
+t=0

VYqic: quctr € Yok i qicqrs Vogr € Agk. )
whereh, is a given Borel-measurable cost function. We shall assume following lemma will be used to prove the separation theorem.

that the expectation in (6) exists as an extended real number for a||_emma' For stagey of the optimization problem, define thi-
admissible control laws and also that (6) has a minimum over t'%f'ep immédiate cost functiof’.: T '
e

admissible control laws. A control law achieving this minimum i
called anoptimal control law? We also assume for convenience that ‘
T is an integer multiple of the sharing peridd, that is,7 = NK Co(Var: (a4 —15 dqKc)

aK:(g+DE—1 X Bgrx — R

for some integerV. K—1
=E| Y hgxtr(@grtrits tqrr) |84 Yax - (q1)K 1
r=0
IIl. A SEPARATION THEOREM FORPERIODI ARING PATTERN /
S © ° © ODIC SHARING S Végr € Agrc, Vs (v —1 € Tgx: (griyx—1- (8)

In this section, we prove that a separation property holds f\j)r . i .
the periodic sharing information pattern. More precisely, we prove addition, define the functiofy: Ty (g41)56-1 X Aqr — IR by
that there is no loss in performance if the shared information Qg (vyx : (q+1)x =1+ 0gF)

dqx+r = b4k is replaced by the functiorFqKMqK defined by = Cy(Var + (gi1)K— 1 i)

FqK|§qK(qu) = p(wa{|6q1\')| where [J(.I,’qj(wqj() denotes the +E[4 (F ' )|O L ) ]

conditional probability densifyof the state vector,x givené,x. A AL L (gD K 18011y 5 00K VR (q+1)K=1]s

control law is said to be separated if it dependsipr only through Vg € Aqrcs Vi (gt k-1 € Tgr: (grnr—1 ©)
Firis - The set{Fyrps . |V 0qx € Agrc} is denoted byP,x. where A 41: ®,11)x — IR is a measurable function such that the

To prove the separation theorem, we consider the process cgfiditional expectation above exists for all choices of control laws.
actually findingoptimal control laws and show that the set of suChnen, for allg such thatd < ¢ < N — 1, there exists a function
laws has a nonempty intersection with the set of separated laws. ¥ye. U (qini 1 X Pyx _. R such that

decompose the problem inf§ successive stages, each containifig .
time steps, and apply a modified version of the dynamic programminng (Yot (g1 =15 Sqrc) = Qu(Var s (qr1) K —1]55+ Fac (5,5 )
method outlined by Sandell and Athans [8]. Using the fact that the Véqr € Aqrs VYar i (41 —1 € Tykc: (g6 —1-

control laws at stage do not affect the costs incurred at stages zero (10)
throughg — 1, we conclude that optimal control laws for thth stage

can be determined by minimizing a “cost-to-go” function. We show Proof: See Appendix A. . o
that this function depends only on the conditional dengifys_,. . In the proof of the following separation theorem, the function .

from which it follows that the control laws at stageare separated. in (9) above will be a cost-to-go function.
Finally, by induction we show that control laws for every stage are Theorem: If there exists an c.)ptllmal cqntrol .Iaw for the decentral-
separated. ized control problem under periodic sharing with perfgdthen there

To ease the notational burden, we introduce some conventidhdst @ particular optimal control lawg . 1 and corresponding
before proceeding. First, we adopt the convention of using contextfCtions {&gk o Yk . grtr X Pgx — Ugk4,|0 < ¢ < N —
distinguish between values assumed by random variables and th€ <7 < K — 1,1 <m < M} such that
random variables themselves. In addition, domains and ranges of
functions are to be inferred from context but sometimes may be
explicitly given for emphasis or clarity. To consolidate lists of related
symbols, we defing, = (yi, ---, vi"), v = (W7, -+, u), Proof: Recall that the dynamic system operates for a total of
andys.: = (ys, -+, y+). Moreover, we denote the range @f by 7T = NK time steps. By modifying the dynamic programming
Y, = 1'[’w Y/", the range ofy.", by V., = H;.:S Y™, and the equations put forth by Sandell and Athans [8], we arrive at the

*m m _m m
’7’q1&'+7‘(yq1( tqK+rs 607() - @ql{+7‘(yq1( cqK+rs FqI\"\éqK)-/
m st
Vbqf\’ € Arﬂ(a quh’ cqK+r € qu\' cqK 4 (11)

m=1

range ofys., by Ys., = Htj:‘ Y;. Analogous notation will be used following set of recursively defined equations which will be used to
for the variablesu:, w:, and v, as well as their respective rangescharacterize optimal control laws for the periodic sharing problem:
Finally, because densities and expectations generally depend on g+ (5, ) = o, Vonk € Ank (12)
choice of control lawsy, ., we denote the density and expectation 5
induced by~,.: asp(-; v..+) and E[-; v, .+], respectively. Ta(Yarc: (a1 -15 8ar)

For both the separation theorem and the lemma that precedes the = Cq(Vgx :(qr1)x—15 dgK)
gjeorlem, it willblbefusef_ul to defi_nﬁ%’a contreljbllawL;’;g}{flfh as a + B[y (8(q+ 1y R8s Yarc: (ar 1)K —1]s

orel-measurable function mappiig%. ,x+. 0 Ujky,.. The set Vs )

. : s € Agrs Y vgr (o c—1 € lgre ., - 13
of all such sublaws is denoted ... Given a full control law o bt TR DR E Bl (DR (13)
J (g ) = min

. . . YeK :(¢+ DK -1 gK (g1 1)K -1
2|f a minimum does not exist, then one can only hope<foptimal control oty sty

laws, but we will not address this case. Jo(Var (a1 =15 Ogk)s Végr € Agx. (14)
3Following [4], we work with probability densities throughout, but similar 4Saying a functioni exists such thati(b(x)) = a(z) for all = is
manipulations can be carried out using cumulative distribution functions. tantamount to saying that depends orx only throughb(x).

1 1 M M 1 1 M M H
Yoo Udy " 5 Y0 s U0 s " s YgK—1> UgK—1» """ » YgK—1> UgK—1)s if¢g>0
6q1&'+r — {(yO 05 » Yo » Ug s YgK—1» UgK—1> s YgK -1 UgK 1) q (4)

0, ifg=0
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If a control law 5. vx—1 € To.nx—1 achieves the minimum in of control, and the design complexity of optimal control laws, in
(14) for everyé,x € Ayx and0 < ¢ < N — 1, then it minimizes comparison with the OSDS andstep delay sharing patterns.
the total expected cost in (6). The proof of this fact follows along the Periodic sharing patterns constitute a rich generalization of certain

lines of the proof in [8] and is omitted here._ information patterns that have already received much study. For
_Let us now show that there exist functiod$: ®,x — IR and example, if we putk’ = 1, we have the OSDS pattern; on the
Jot ¥k (g+1)K—1 X g — IR that satisfy other hand, adi — oc, we approach the case in which there is no

.o ~ : information sharing. Freedom to choaokein the rangel < K < oo
Jq(8qr) = T (Furjague): Viéar € Agi 15 affords great flexibility in the communication structures used in
Ja(Var  (q1)K =15 OqKc) decentralized control systems. For example, imagine a team of people
that makes decentralized decisions every hour. Meeting every hour
(16) to exchange information may be troublesome and wasteful. Instead,
they may prefer to meet once a day (that is, every 24 h, so that
The lemma and (13) together imply thatiif,, exists, then/, exists. K = 24) or once a week K = 7 - 24), at which point they
Since itis clear thaf %, exists by (12), we have thdty ; also exists. share all the information currently available to them. Compare this
To set up a proof by induction, suppose thatexists. Then rewrite With OSDS orn-step delay sharing, in which they must meet every
(14) as hour. The parametek” can be chosen to minimize the total time-
averaged cost of information sharing, which includes both the cost of
Vo s (a4 1K —1€V g (a4 1)K -1 establi;hing a co.mmunication link among controllers (for example,
Fo(thur ) Forcts ). Voo € Agx. (17) arranging a meeting) every steps and the cost of each controller’s
A\ Pal (g K —1 Bakléqx)s ks k- data transmission once the link has been established. Note that in
Since the right-hand side of the above equation depends only @@neral, ask™ increases, a resulting increase in minimum cost [as
F it follows that.J;, and therefore/, ., exist. By induction, measured by (6)] and increase in control law design complexity must

aK 6,5
it follows that.J, and.j; exist for all¢ such tha) < ¢ < N —1.  be taken into account. Also note that, in general, the total volume

Now, an optimal control law may be found as follows. Solve (179f data shared under periodic sharing is the same as that under
forall § € Ay and0 < ¢ < N = 1 Let ¢y, (pu1yxr € OSDS andn-step delay sharing. There is, however, an important
U, . (s+1)x—1 be the sublaw that achieves the minimum in (17) fopla§s pf systems fgr .which the total volume of data shared under
§ at stagey, and construct control laws; . (, 1), according to periodic sharing gk timessmallerthan the volume of data shared

under OSDS on-step delay sharing. This is the class of systems in

= Jq(Var (gt 1)K —115,5c0 Fai|5,5)

Véyr € Agrc, Vi (i1 —1 € Tgxc i (qrnyr—1-

,7;(6(11{) = min

VR : (4K -1 (05K s (g4 1)K —15 ©) which controllers receive noiseless observations. For such systems,
= wsvr\i’f((ﬁ]),‘,q(yg;(:(q“),\,_ﬂ, V6 € Agi it is assumed that the state vectp[ can be getermlned ex;ctly
vy Ceym ' (18) from the complete set of observatiopb, - - -, y;’. The separation
ef: (gt K 1 = gk (g K=1- theorem proven in Section Ill then implies that the controllers need
Then~g. v« 1 Will be an optimal control law. only share theM quantities(y,x—1, uqx—1), rather than al K A7

To complete the proof, consider the sublaws minimizing (17). fuantities(y(;—1)x :qix—1+ g—1)x: qc—1). That is, if only these
7,/’2’1&”:(q+1)1<71 achieves this minimum fob € A,x, and there 2M quantities are shared, the behavior of the optimally controlled
exists & € A,x such thatF, xjs = F, x5, then @’5‘2K:<q+1)1<_1 system is the same as when M'M.quantities are shared. It shouI.d .
also achieves the minimum fdr. This proves that optimal control P& noted that in this case of noiseless observations, the periodic
laws having the form given in (11) can be chosen. sharing pattern belongs tp the class of patterrls considered by Algardl

Remark 1: The dynamic programming equations (12)—(14) shot al.. [1]. However, in light of the §eparat|9n thgorem, periodic .

sharing patterns now warrant special consideration because their

that the control laws at a particular stagenust be found jointly, Pt : : X
but that they may be found independently of the control laws for fPMmmunication requirements (and design complexity) are lower than
se implied by the solution techniques described in [1].

other stages. If this were not the case, the complexity of search o ’ | o
for optimal control laws would increase enormously. ext, we compare the minimum cost associated with a periodic
Remark 2: The period of sharing need not remain fixed in ordefharing pattern to that associated with an OSDS:astep delay

for the separation property to hold. That is, the separation propeH?ttem- The (ni_nimum cost associated with a periodic s_hgring pattern
will still hold if, for example, controllers share information after fiveWith period i is always less than or equal to the minimum cost
steps, again two steps later, again eight steps later, and so on, as fiigpciated with am-step delay sharing pattern with > I, but

as these sharing times are known in advance, before the control Biays greater than or equal to the minimum cost associated with the
is designed. OSDS pattern. This follows once we recognize that under a periodic

sharing pattern, each controller has access to shared observations
IV DISCUSSION AND CONCLUSIONS that are a_t mosi_x" st(_aps qld, but at least one step old. Thus, periodic
) sharing with periody” achieves better performance thaRrstep delay

We have introduced a new class of information patterns in Whi(éﬂharing.
controllers share observations evely time steps. For these new Finally, let us compare the complexity of designing control laws
information patterns, known as periodic sharing patterns, we haygder periodic sharing with the complexity of designing control
shown that a nonclassical separation property holds. Since the s§g@s under OSDS ana-step delay. In general, it is not known
ration property offers the possibility of efficient control law design vigo\y to design control laws for arbitrary systems with any of these
dynamic programming, attention is naturally drawn to the attributgsformation patterns. For this reason, we focus on the case of finite
of this new information pattern. We therefore devote this sectiafiate-space, finite-decision space systems with noiseless observations,
to discussing the impact of the periodic sharing information pattefg, which we do know how to find control laws [1], [3]. In this case,
on the communication requirements of the system, the optimal CQ@signing an optimal control law foN K steps under a periodic

5As in [4] and [5], our treatment in this paper avoids measure-theoreffaring pattern with period” takes aboutV times the computation
issues such as whethe}, ., are Borel-measurable functions. of designing ak’-step optimal control law for a system with no
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information sharing. Although the details are too involved to presehét us now set up a proof by induction by supposing that there exists
here, it can also be shown that the design complexity under periodidunction 7, such that
sharing with periodK is about the same as that underkastep
delay information pattern [1]. o
We conclude by mentioning an important application of the results = Tol Wi ss Yjijbss Fjlogs Vicgrs—11;) (25)
of thls correspondence. Usmg. the separation property of perlo%cr somes such thatl < s < K — 1. Using the same argument used
sharing patterns, we have derived upper bounds on the throughput . -
. . 0 derive (23), we write
of the multiple access broadcast channel, which can be modeled as a
decentralized control system with no information sharing. Previously, P(@jqotts Yjrot1l05s Tjijaes Yjijrss Viijrk—1)
researchers have exploited the separation property of the OSDS
pattern to derive similar bounds [9]. However, because the periodic

(T sy Ui gslO5s Y5 jrr—1)

= p(@jrstilbie @y jrss Yjcjrst G(Yjass,)

sharing pattern approaches the no-sharing patteriy as oo, the Pt [85s it Yy gts) (26)
bounds we have derived are tighter than those derived in [9]. Details = P(T st |Tjdss Yitss G(W'J'Jrs\éj))
will be reported in a future submission. “P(Yjst1]Tidst1)- (27)
ince (27 n nly through-; L, W n he chain
APPENDIX Since ( )_depe ds a1 only throughv; 5|5, we can use the cha
rule to write
PROOF OF LEMMA
Before proving the main lemma, it is useful to introduce the P(&5 sty Yooidatr]055 Y5 jra-1)
following notation: define an expansion of a sublaw into a full control = Ts(@j s Yjogtss Filoge Viojrs—115;) - () (28)

m

law as follows. For eachi i, € Wi, defineGly, (Vik4,) €

™., 1o be the control lawy"% . satisfying where (x) represents the right-hand side of (27). Then (28) implies
q r gK+r

that there exists a functiofi,+, such that
'7";7}(+r(y:}(:qﬁ’+m 6qK) = 7%/):;}&"+7'(y;7}&":q]x"+r)$ pla;. i v |(5 o )
vy:}(:(ﬂ“—r c 3/(]";;’:17T(+r7 Voux € Ay (19) P "J3]~+s+la Yj:g+s+11055 V5 j+K—1 ‘
= T 1 () jrstre Ui jrstrs Fijsgs v i4a1,). (29)
Note that the range &, - is the set of control laws that vary only
with local observationg; . .k 4, and remain constant with respect
to 647c. We abbreviateG[, . by G, leaving both the superscript Pl a5, Ui 50k |653 V5 jr k1)
and subscript onG' to be inferred from its argument. Also, we
denOIe(G(u’)tl)v ) G(yi'%l ) by G(L’{'t)r and(G(ws)a T G(L/)t))
by G(¢s.4). which is what we wished to show. O

To prove the main lemma, we will use three additional lemmas. Remark: Note that many of the densities in subsequent proofs can
We begin with a lemma that shows that the probability density for thee derived from (20) via integration over the appropriate variables.

By induction, it follows that there exists a functiégn= 7 x such that

=T (@5 5400 YjijKs -Fj\ﬁja “/]:]+r(—1\r~;j) (30)

random variables beyond the shared informatign depends only Next, we prove that the conditional densityqﬂ),ﬂ,g(q“m can
on Fyis, - be recursively obtained fronf x5, -
Lemma 1: There exists a functior such that Lemma 2: There exists a mappin®,: ®,x X Yor . (q+1yx—1 X

S Ugsc i (g+1)5—1 — P(g41)x Such that
()i Y54k 1853 Yoi7-1) ek (1)K (a+DK
=725 4K, Y5+ ks Fjjsss Vijer—11s;) (20) Flat )R 15011y

wherej = ¢K,for¢g=10,---, N -1 = Yo(Fyxs pr Yk : (a41)K 15 g (gt 1) (31)
— ’ — Yy s L .

Proof: We use an inductive argument in which the main tool is  Proof: We argue that the mappind@, exists by extend-

the chain rule for probability density functions. If we put= ¢K, ing the arguments given in [4]. Lef = ¢k, and note that
then the last link of the chain can be written [4] Fivkis;orc(@irx) = p(ajsrlds, yjjrr—1, ujj+x-1). Let
v : s+ —1 be control laws such thaty , (Y7, x Ay) = {u]4,}

p(wjs Y1655 Vi jrr—1) = Fys; () - p(ysle;). (21) form=1,---, M ands =0, ---, K — 1. That is, the control law

Using the system equations (1) and (2), along with the fact that+s @lways outputs:j’, as the control input. We can then write

the random disturbance variables are independent at distinct times,

])(J7j+1<|15j’7 Yj:j+K—1, “’J’:J’JrKfl)
and the fact that the control lawS(~, . j4x— ng) return a constant

control input over their last argument, we combine the last two = P(@ir 8o v g1 % gra)- (32)
links in the chain by Using the definition of conditional probability, we can write
Pl s Y655 75 ek —1) (K |05y YjjrK—15 Visj+k—1)
= Fjis,; (25) - plysles) - plajalds. a5, y53 G(vj05,)) _ DTk, Yjs ek —1l853 Vs jrK—1) (33)
p(y1l85 251, 4) (22) P =185 isi4i-1)
= Fjis, (x;) - plysla;) - plajolas, yis Glvgs,) From Lemma 1, the_right-hand side of (33) dependsdépnonly
(it |2i01)- (23) throughF} . Since this dependence holds for every i € Xivr,
we conclude thaF7+;\»|5j+K can be expressed as in (31). O
Since (23) only depends Oﬁﬂbj, we conclude that a functiofi, Lemma 3: There exists a functioﬁ?q: Yok (g+1)K—1 X Pgx —
exists such that R such that
P&t Yiii1l05: 75 j4k—1) Cy(Ver s (g1 K —15 Oqrc) = éq (Vak : (g+1D)K—1[64k> FqKMqK)?

= 7@ 41, Yjsg41s Fiisss v5085)- (24) Vogx € Agrs Vygr (qr)x—1 € Dgr i (qr1yr—1- (34)
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Proof: We show using basic probability manipulations REFERENCES
that the right-hand side of (8) depends only @fjx s, and

VoK : (g1 K116 For notational convenience. we define a[l] M. Aicardi, F. Davoli, and R. Minciardi, “Decentralized optimal control
qii (g = OgK " ]

) a of Markov chains with a common past information sdEEE Trans.
function ¢ by Automat. Contr.yol. 32, pp. 1028-1031, Nov. 1987.
[2] Y.-C. Ho, “Team decision theory and information structureBroc.
ClTgr41: (g4 1) K> UgK : (q+1)K—1) IEEE, vol. 68, pp. 644654, June 1980.
K-1 [3] K. Hsu and S. |. Marcus, “Decentralized control of finite state Markov
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B On d-Inversion in Interruptive
TR (@41 K s YaR (a1 Timed Discrete-Event Systems

Fyris,00 Yal (a1 K 1[5, ) .
dT i 41 (DK - AYgK - (g1 1 (38) Yongseok Park and Edwin K. P. Chong
where the existence of an appropriafein (38) follows from

Lemma 1. Therefore, the right-hand side of (8) depends only onAbstract—The authors consider the problem of extracting event life-
Fqu‘SqK and”rqh';(q+1)r(—1 S yxc andC, exists. O times from partial ot_)servatlons pf an interruptive tlmed d|scret_e-event
We 'are now ready to prove the main lemma system. The extraction of the lifetime of an occurring event is based

. ) : on observations of all previous transitions andd subsequent transitions.

Proof of Main Lemma:We must show thaf), depends only on e refer to this notion as d-inversion. We give necessary and sufficient

Furis,e andygr:(a+1)rk—115,, - Since the first term of the right- structural conditions for an event to be d-invertible in a given system.

hand side of (9) can b_e replaced by th.e rlght-hanid side of (34), thqndex Terms—Automata, discrete-event simulation, discrete-event sys-
proof reduces to showing that there exists a functiosuch that tems, fault diagnosis, inverse problems, Markov processes, monitoring.

ElA g1 (Flgt) K15 1y 0075 Yarc s (g1 —1]
= d(Fquéqu Yok :(q+1),<71|qu), I. INTRODUCTION
Vg € Agrs VYgr s (qi1yic—1 € Tqrc i (1) —1- (39) Considerable effort has been invested in the study of discrete event
systems (DES’s), due to their potential impact on the modeling,
analysis, design, and control of a wide variety of complex systems,
including discrete manufacturing systems, communication networks,
traffic systems, and computer systems [6].

To show that (39) is true, we write

ElAgt1 (Flg4)K (5 1y )00 Yax s (1)K —1]

= / A1 (Tq(Fyrc s, 00 Yaric: (a1 K =1+ A key issue in DES's is the problem of gathering and analyzing
observed data from a given system as it is evolving, often referred to
VaK : (q+ DK =165 (Yqi s (a+1) K =1))) ason-line monitoring(see [19] for an overview of the subject in the
P (a1 K=1)10gK5 Yak s (q41) K —1) setting of distributed software systems). Observation data is used in a

(40) wide variety of contexts, including supervisory control [17], [9], [4],
fault testing and diagnosis [18], [8], [1], performance analysis and

Equation (40) follows from Lemma 2, and (40) with Lemma 1 implies
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