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Abstract—Optimal decentralized control of a discrete-time stochastic
system is considered under a periodic sharing information pattern. In
this scenario, controllers share information with one-step delay every
K time steps. The periodic sharing pattern is a generalization of the
previously studied one-step delay sharing pattern, which is known to
possess a nonclassical separation property. It is proven that the periodic
sharing pattern has an analogous separation property.

I. INTRODUCTION

Decentralized control refers to the regulation of complex systems
by multiple controllers that make decisions based on different sensor
information. The key element of a decentralized control problem is
the information pattern, which characterizes the information available
to the controllers at each time step. The information pattern not
only determines the nature of optimal control laws but also greatly
influences the difficulty of their design.

Various information patterns have been considered in the literature
[1]–[6]. Perhaps the most widely studied information pattern has been
the one-step delay sharing (OSDS) pattern, whereby each controller
has instantaneous access to observations from its own measurement
station as well as observations from all other stations after a one-step
delay. It was shown that dynamic programming could be efficiently
applied to the design of optimal control laws for the OSDS pattern
after a nonclassical separation theorem was proven by Kurtaran [4]
and Varaiya and Walrand [5]. Unfortunately, the OSDS pattern is
often impractical because it requires that a large volume of data be
shared with low delay. This low-delay requirement is relaxed under
then-step delay generalization of the OSDS pattern, but Varaiya and
Walrand [5] showed that then-step delay sharing pattern doesnot
obey an analogous separation theorem.1

In this paper, we introduce periodic sharing information patterns,
which constitute a different generalization of the OSDS pattern.
Under a periodic sharing pattern, all controllers share observations
with one-step delay everyK time steps. While periodic sharing
with period K = 1 corresponds to OSDS, the case in which no
observations are shared is approached asK ! 1. We prove that a
separation property holds for periodic sharing patterns, thus admitting
the possibility of using dynamic programming to efficiently design
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1Kurtaran [7] proved a modified “separation” theorem that can be exploited

in certain cases to efficiently obtain optimal control laws [1]. This theorem
shows that the estimator actually depends on the controller; hence, the two
are not separated in the usual sense.

optimal control laws. Furthermore, for a particularly important class
of systems, we show that this separation theorem implies that the
volume of shared data isK times smaller under periodic sharing
with periodK than under either OSDS orn-step delay sharing.

In the next section, we formulate the optimal decentralized control
problem under periodic sharing. In Section III, we state and prove
a separation theorem that holds for periodic sharing patterns. In
Section IV, we discuss the theorem and point out certain advantages,
limitations, and potential applications of periodic sharing.

II. PROBLEM DESCRIPTION

We shall consider a discrete-time stochastic system that is regulated
byM decentralized controllers, each with an associated measurement
station. The system state vectorxt and themth measurement station’s
observationsymt evolve overT time steps according to the equations

xt+1 = ft(xt; u
1

t ; � � � ; u
M

t ; vt)
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where ft and gmt are given Borel-measurable functions,umt
represents themth controller’s input at timet, and the quantities
x0; (v0; w
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T�1) are mutu-
ally independent random disturbance vectors whose distributions
are known. At a particular time stept, the random vectors
vt; w
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t may be statistically dependent. The vectors
umt ; vt; w

m

t ; xt; and ymt have given dimensions and take values
in the given subsetsUmt ; Vt; W

m

t ; Xt; and Y mt , respectively, all
of which are Borel subsets of appropriately dimensioned Euclidean
spaces.

Each controller produces, according to a predesigned control law,
an input based on local observations from its own measurement
station as well as observations that are shared everyK time steps
by all control stations. Since the sharing period has durationK, it is
convenient to express any timet � 0 ast = qK + r, whereq andr
are integers such thatq � 0 and0 � r � K�1. If themth controller
is governed at timet by the control law
mt , then for t = qK + r

the control input is given by
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where ymqK ; � � � ; y
m
qK+r are local observations, and�qK+r is the

shared information defined by (4), as shown at the bottom of the next
page. Observe that since the sharing of information among controllers
occurs only everyK time steps, we have that�qK = �qK+1 =

� � � = �(q+1)K�1. Also note that�(q+1)K differs from �qK in that
it contains all observations and controls generated during stepsqK

through (q + 1)K � 1.
We denote the range of�qK+r by�qK+r and define the set�mqK+r

of admissible control laws for themth controller at timeqK+r to be
the set of Borel-measurable functions mappingY m

qK�� � ��Y m
qK+r�

�qK to Um
qK+r. The design objective is to choose the control laws



m
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m
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to minimize the total expected cost

T�1

t=0

E[ht(xt+1; u
1
t ; � � � ; u

M
t )] (6)

whereht is a given Borel-measurable cost function. We shall assume
that the expectation in (6) exists as an extended real number for all
admissible control laws and also that (6) has a minimum over the
admissible control laws. A control law achieving this minimum is
called anoptimal control law.2 We also assume for convenience that
T is an integer multiple of the sharing periodK, that is,T = NK

for some integerN .

III. A SEPARATION THEOREM FORPERIODIC SHARING PATTERNS

In this section, we prove that a separation property holds for
the periodic sharing information pattern. More precisely, we prove
that there is no loss in performance if the shared information
�qK+r = �qK is replaced by the functionFqKj� defined by
FqKj� (xqK) = p(xqKj�qK), where p(xqKj�qK) denotes the
conditional probability density3 of the state vectorxqK given�qK . A
control law is said to be separated if it depends on�qK only through
FqKj� . The setfFqKj� j 8 �qK 2 �qKg is denoted by�qK .

To prove the separation theorem, we consider the process of
actually findingoptimal control laws and show that the set of such
laws has a nonempty intersection with the set of separated laws. We
decompose the problem intoN successive stages, each containingK

time steps, and apply a modified version of the dynamic programming
method outlined by Sandell and Athans [8]. Using the fact that the
control laws at stageq do not affect the costs incurred at stages zero
throughq�1, we conclude that optimal control laws for theqth stage
can be determined by minimizing a “cost-to-go” function. We show
that this function depends only on the conditional densityFqKj� ,
from which it follows that the control laws at stageq are separated.
Finally, by induction we show that control laws for every stage are
separated.

To ease the notational burden, we introduce some conventions
before proceeding. First, we adopt the convention of using context to
distinguish between values assumed by random variables and the
random variables themselves. In addition, domains and ranges of
functions are to be inferred from context but sometimes may be
explicitly given for emphasis or clarity. To consolidate lists of related
symbols, we defineyt = (y1t ; � � � ; y

M
t ); yms : t = (yms ; � � � ; y

m
t ),

and ys : t = (ys; � � � ; yt). Moreover, we denote the range ofyt by
Yt =

M

m=1
Y m
t , the range ofyms : t by Y m

s : t =
t

j=s
Y m
j , and the

range ofys : t by Ys : t =
t

j=s
Yj . Analogous notation will be used

for the variablesut; wt; and 
t, as well as their respective ranges.
Finally, because densities and expectations generally depend on a
choice of control laws
s : t, we denote the density and expectation
induced by
s : t asp(�; 
s : t) andE[�; 
s : t], respectively.

For both the separation theorem and the lemma that precedes the
theorem, it will be useful to define a controlsublaw mqK+r as a
Borel-measurable function mappingY m

qK: qK+r to Um
qK+r. The set

of all such sublaws is denoted	m
qK+r. Given a full control law

2If a minimum does not exist, then one can only hope for�-optimal control
laws, but we will not address this case.

3Following [4], we work with probability densities throughout, but similar
manipulations can be carried out using cumulative distribution functions.
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mqK+rj� the sublaw satisfying
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The following lemma will be used to prove the separation theorem.
Lemma: For stageq of the optimization problem, define theK-

step immediate cost functionCq: �qK: (q+1)K�1 � �qK ! IR

by

Cq(
qK : (q+1)K�1; �qK)

= E

K�1

r=0

hqK+r(xqK+r+1; uqK+r) j �qK ; 
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8 �qK 2 �qK ; 8 
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In addition, define the functionQq: �qK : (q+1)K�1��qK ! IR by

Qq(
qK : (q+1)K�1; �qK)

= Cq(
qK : (q+1)K�1; �qK)

+ E[Aq+1(F(q+1)Kj� )j�qK ; 
qK : (q+1)K�1];

8 �qK 2 �qK ; 8 
qK : (q+1)K�1 2 �qK : (q+1)K�1 (9)

whereAq+1: �(q+1)K ! IR is a measurable function such that the
conditional expectation above exists for all choices of control laws.
Then, for all q such that0 � q � N � 1, there exists a function
~Qq: 	qK : (q+1)K�1 � �qK ! IR such that4

Qq(
qK : (q+1)K�1; �qK) = ~Qq(
qK : (q+1)K�1j� ; FqKj� );

8 �qK 2 �qK ; 8 
qK : (q+1)K�1 2 �qK : (q+1)K�1:

(10)

Proof: See Appendix A.
In the proof of the following separation theorem, the functionAq+1

in (9) above will be a cost-to-go function.
Theorem: If there exists an optimal control law for the decentral-

ized control problem under periodic sharing with periodK, then there
exist a particular optimal control law
�0 :NK�1 and corresponding
functions f�mqK+r: Y

m
qK : qK+r � �qK ! Um

qK+rj0 � q � N �
1; 0 � r � K � 1; 1 � m � Mg such that
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Proof: Recall that the dynamic system operates for a total of
T = NK time steps. By modifying the dynamic programming
equations put forth by Sandell and Athans [8], we arrive at the
following set of recursively defined equations which will be used to
characterize optimal control laws for the periodic sharing problem:

J
�
N(�NK) = 0; 8 �NK 2 �NK (12)
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qK : (q+1)K�1; �qK)

= Cq(
qK : (q+1)K�1; �qK)

+ E[J
�
q+1(�(q+1)K)j�qK ; 
qK : (q+1)K�1];

8 �qK 2 �qK ; 8 
qK : (q+1)K�1 2 �qK : (q+1)K�1 (13)

J
�
q (�qK) = min


 2�

Jq(
qK : (q+1)K�1; �qK); 8 �qK 2 �qK : (14)
4Saying a function~a exists such that~a(b(x)) = a(x) for all x is

tantamount to saying thata depends onx only throughb(x).
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If a control law 
�0 :NK�1 2 �0 :NK�1 achieves the minimum in
(14) for every�qK 2 �qK and0 � q � N � 1, then it minimizes
the total expected cost in (6). The proof of this fact follows along the
lines of the proof in [8] and is omitted here.

Let us now show that there exist functions~J�q : �qK ! IR and
~Jq: 	qK : (q+1)K�1 � �qK ! IR that satisfy

J
�
q (�qK) = ~J

�
q (FqKj� ); 8 �qK 2 �qK (15)

Jq(
qK : (q+1)K�1; �qK)

= ~Jq(
qK : (q+1)K�1j� ; FqKj� )

8 �qK 2 �qK ; 8 
qK : (q+1)K�1 2 �qK : (q+1)K�1: (16)

The lemma and (13) together imply that if~J�q+1 exists, then~Jq exists.
Since it is clear that~J�N exists by (12), we have that~JN�1 also exists.
To set up a proof by induction, suppose that~Jq exists. Then rewrite
(14) as

J
�
q (�qK) = min

 2	

~Jq( qK : (q+1)K�1; FqKj� ); 8 �qK 2 �qK : (17)

Since the right-hand side of the above equation depends only on
FqKj� , it follows that ~J�q , and therefore~Jq�1, exist. By induction,
it follows that ~Jq and ~J�q exist for all q such that0 � q � N � 1.

Now, an optimal control law may be found as follows. Solve (17)
for all � 2 �qK and 0 � q � N � 1. Let  �qK : (q+1)K�1 2

	qK : (q+1)K�1 be the sublaw that achieves the minimum in (17) for
� at stageq, and construct control laws
�qK : (q+1)K�1 according to
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Then
�0 :NK�1 will be an optimal control law.5

To complete the proof, consider the sublaws minimizing (17). If
 �qK : (q+1)K�1 achieves this minimum for� 2 �qK , and there

exists �̂ 2 �qK such thatFqKj� = FqKj�̂, then  �qK : (q+1)K�1

also achieves the minimum for̂�. This proves that optimal control
laws having the form given in (11) can be chosen.

Remark 1: The dynamic programming equations (12)–(14) show
that the control laws at a particular stageq must be found jointly,
but that they may be found independently of the control laws for all
other stages. If this were not the case, the complexity of searching
for optimal control laws would increase enormously.

Remark 2: The period of sharing need not remain fixed in order
for the separation property to hold. That is, the separation property
will still hold if, for example, controllers share information after five
steps, again two steps later, again eight steps later, and so on, as long
as these sharing times are known in advance, before the control law
is designed.

IV. DISCUSSION AND CONCLUSIONS

We have introduced a new class of information patterns in which
controllers share observations everyK time steps. For these new
information patterns, known as periodic sharing patterns, we have
shown that a nonclassical separation property holds. Since the sepa-
ration property offers the possibility of efficient control law design via
dynamic programming, attention is naturally drawn to the attributes
of this new information pattern. We therefore devote this section
to discussing the impact of the periodic sharing information pattern
on the communication requirements of the system, the optimal cost

5As in [4] and [5], our treatment in this paper avoids measure-theoretic
issues such as whether
�0 :NK�1 are Borel-measurable functions.

of control, and the design complexity of optimal control laws, in
comparison with the OSDS andn-step delay sharing patterns.

Periodic sharing patterns constitute a rich generalization of certain
information patterns that have already received much study. For
example, if we putK = 1, we have the OSDS pattern; on the
other hand, asK ! 1, we approach the case in which there is no
information sharing. Freedom to chooseK in the range1 � K <1

affords great flexibility in the communication structures used in
decentralized control systems. For example, imagine a team of people
that makes decentralized decisions every hour. Meeting every hour
to exchange information may be troublesome and wasteful. Instead,
they may prefer to meet once a day (that is, every 24 h, so that
K = 24) or once a week (K = 7 � 24), at which point they
share all the information currently available to them. Compare this
with OSDS orn-step delay sharing, in which they must meet every
hour. The parameterK can be chosen to minimize the total time-
averaged cost of information sharing, which includes both the cost of
establishing a communication link among controllers (for example,
arranging a meeting) everyK steps and the cost of each controller’s
data transmission once the link has been established. Note that in
general, asK increases, a resulting increase in minimum cost [as
measured by (6)] and increase in control law design complexity must
be taken into account. Also note that, in general, the total volume
of data shared under periodic sharing is the same as that under
OSDS andn-step delay sharing. There is, however, an important
class of systems for which the total volume of data shared under
periodic sharing isK timessmaller than the volume of data shared
under OSDS orn-step delay sharing. This is the class of systems in
which controllers receive noiseless observations. For such systems,
it is assumed that the state vectorxt can be determined exactly
from the complete set of observationsy1t ; � � � ; y

M
t . The separation

theorem proven in Section III then implies that the controllers need
only share the2M quantities(yqK�1; uqK�1), rather than all2KM
quantities(y(q�1)K : qK�1; u(q�1)K : qK�1). That is, if only these
2M quantities are shared, the behavior of the optimally controlled
system is the same as when all2KM quantities are shared. It should
be noted that in this case of noiseless observations, the periodic
sharing pattern belongs to the class of patterns considered by Aicardi
et al. [1]. However, in light of the separation theorem, periodic
sharing patterns now warrant special consideration because their
communication requirements (and design complexity) are lower than
those implied by the solution techniques described in [1].

Next, we compare the minimum cost associated with a periodic
sharing pattern to that associated with an OSDS orn-step delay
pattern. The minimum cost associated with a periodic sharing pattern
with periodK is always less than or equal to the minimum cost
associated with ann-step delay sharing pattern withn � K, but
always greater than or equal to the minimum cost associated with the
OSDS pattern. This follows once we recognize that under a periodic
sharing pattern, each controller has access to shared observations
that are at mostK steps old, but at least one step old. Thus, periodic
sharing with periodK achieves better performance thanK-step delay
sharing.

Finally, let us compare the complexity of designing control laws
under periodic sharing with the complexity of designing control
laws under OSDS andn-step delay. In general, it is not known
how to design control laws for arbitrary systems with any of these
information patterns. For this reason, we focus on the case of finite
state-space, finite-decision space systems with noiseless observations,
for which we do know how to find control laws [1], [3]. In this case,
designing an optimal control law forNK steps under a periodic
sharing pattern with periodK takes aboutN times the computation
of designing aK-step optimal control law for a system with no
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information sharing. Although the details are too involved to present
here, it can also be shown that the design complexity under periodic
sharing with periodK is about the same as that under aK-step
delay information pattern [1].

We conclude by mentioning an important application of the results
of this correspondence. Using the separation property of periodic
sharing patterns, we have derived upper bounds on the throughput
of the multiple access broadcast channel, which can be modeled as a
decentralized control system with no information sharing. Previously,
researchers have exploited the separation property of the OSDS
pattern to derive similar bounds [9]. However, because the periodic
sharing pattern approaches the no-sharing pattern asK ! 1, the
bounds we have derived are tighter than those derived in [9]. Details
will be reported in a future submission.

APPENDIX

PROOF OF LEMMA

Before proving the main lemma, it is useful to introduce the
following notation: define an expansion of a sublaw into a full control
law as follows. For each mqK+r 2 	m

qK+r, defineGm
qK+r( 

m
qK+r) 2

�mqK+r to be the control law
mqK+r satisfying



m
qK+r(y

m
qK : qK+r; �qK) =  

m
qK+r(y

m
qK : qK+r);

8 y
m
qK : qK+r 2 Y

m
qK : qK+r; 8 �qK 2 �qK : (19)

Note that the range ofGm
qK+r is the set of control laws that vary only

with local observationsymqK : qK+r and remain constant with respect
to �qK . We abbreviateGm

qK+r by G, leaving both the superscript
and subscript onG to be inferred from its argument. Also, we
denote(G( 1

t ); � � � ; G( 
M
t )) by G( t), and(G( s); � � � ; G( t))

by G( s : t).
To prove the main lemma, we will use three additional lemmas.

We begin with a lemma that shows that the probability density for the
random variables beyond the shared information�qK depends only
on FqKj� .

Lemma 1: There exists a function~� such that

p(xj : j+K ; yj : j+K j�j ; 
0 :T�1)

= ~�(xj : j+K ; yj : j+K ; Fjj� ; 
j : j+K�1j� ) (20)

wherej = qK, for q = 0; � � � ; N � 1.
Proof: We use an inductive argument in which the main tool is

the chain rule for probability density functions. If we putj = qK,
then the last link of the chain can be written [4]

p(xj ; yj j�j ; 
j : j+K�1) = Fjj� (xj) � p(yj jxj): (21)

Using the system equations (1) and (2), along with the fact that
the random disturbance variables are independent at distinct times,
and the fact that the control lawsG(
j : j+K�1j� ) return a constant
control input over their last argument�j , we combine the last two
links in the chain by

p(xj : j+1; yj : j+1j�j ; 
j : j+K�1)

= Fjj� (xj) � p(yj jxj) � p(xj+1j�j ; xj ; yj ; G(
jj� ))

� p(yj+1j�j ; xj : j+1; yj) (22)

= Fjj� (xj) � p(yj jxj) � p(xj+1jxj ; yj ; G(
jj� ))

� p(yj+1jxj+1): (23)

Since (23) only depends onFjj� , we conclude that a function~�1
exists such that

p(xj : j+1; yj : j+1j�j ; 
j : j+K�1)

= ~�1(xj : j+1; yj : j+1; Fjj� ; 
jj� ): (24)

Let us now set up a proof by induction by supposing that there exists
a function ~�s such that

p(xj : j+s; yj : j+sj�j ; 
j : j+K�1)

= ~�s(xj : j+s; yj : j+s; Fjj� ; 
j : j+s�1j� ) (25)

for somes such that1 � s � K � 1. Using the same argument used
to derive (23), we write

p(xj+s+1; yj+s+1j�j ; xj : j+s; yj : j+s; 
j : j+K�1)

= p(xj+s+1j�j ; xj : j+s; yj : j+s; G(
j+sj� ))

� p(yj+s+1 j �j ; xj : j+s+1; yj : j+s) (26)

= p(xj+s+1jxj+s; yj+s; G(
j+sj� ))

� p(yj+s+1jxj+s+1): (27)

Since (27) depends on�j only through
j+sj� , we can use the chain
rule to write

p(xj : j+s+1; yj : j+s+1j�j ; 
j : j+K�1)

= ~�s(xj : j+s; yj : j+s; Fjj� ; 
j : j+s�1j� ) � (�) (28)

where(�) represents the right-hand side of (27). Then (28) implies
that there exists a function~�s+1 such that

p(xj : j+s+1; yj : j+s+1j�j ; 
j : j+K�1)

= ~�s+1(xj : j+s+1; yj : j+s+1; Fjj� ; 
j : j+sj� ): (29)

By induction, it follows that there exists a function~� = ~�K such that

p(xj : j+K ; yj : j+K j�j ; 
j : j+K�1)

= ~�K(xj : j+K ; yj : j+K ; Fjj� ; 
j : j+K�1j� ) (30)

which is what we wished to show.
Remark: Note that many of the densities in subsequent proofs can

be derived from (20) via integration over the appropriate variables.
Next, we prove that the conditional densityF(q+1)Kj� can

be recursively obtained fromFqKj� .
Lemma 2: There exists a mapping�q: �qK � YqK : (q+1)K�1 �

UqK : (q+1)K�1 ! �(q+1)K such that

F(q+1)Kj�

= �q(FqKj� ; yqK : (q+1)K�1; uqK : (q+1)K�1): (31)

Proof: We argue that the mapping�q exists by extend-
ing the arguments given in [4]. Letj = qK, and note that
Fj+Kj� (xj+K) = p(xj+K j�j ; yj : j+K�1, uj : j+K�1). Let

j : j+K�1 be control laws such that
mj+s(Y

m
j : j+s ��j) = fumj+sg

for m = 1; � � � ; M ands = 0; � � � ; K � 1. That is, the control law

mj+s always outputsumj+s as the control input. We can then write

p(xj+K j�j ; yj : j+K�1; uj : j+K�1)

= p(xj+K j�j ; yj : j+K�1; 
j : j+K�1): (32)

Using the definition of conditional probability, we can write

p(xj+K j�j ; yj : j+K�1; 
j : j+K�1)

=
p(xj+K ; yj : j+K�1j�j ; 
j : j+K�1)

p(yj : j+K�1j�j ; 
j : j+K�1)
: (33)

From Lemma 1, the right-hand side of (33) depends on�j only
throughFjj� . Since this dependence holds for everyxj+K 2 Xj+K ,
we conclude thatFj+Kj� can be expressed as in (31).

Lemma 3: There exists a function~Cq: 	qK : (q+1)K�1 ��qK !

IR such that

Cq(
qK : (q+1)K�1; �qK) = ~Cq(
qK : (q+1)K�1j� ; FqKj� );

8 �qK 2 �qK ; 8 
qK : (q+1)K�1 2 �qK : (q+1)K�1: (34)
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Proof: We show using basic probability manipulations
that the right-hand side of (8) depends only onFqKj� and

qK : (q+1)K�1j� . For notational convenience, we define a
function � by

�(xqK+1 : (q+1)K ; uqK : (q+1)K�1)

=

K�1

r=0

hqK+r(xqK+r+1; uqK+r): (35)

In addition, for the control sublaws qK : qK+r 2 	qK : qK+r, we
will use the notation

 qK : qK+r(yqK : qK+r) = ( 
1
qK(y

1
qK); � � � ;  

M
qK(y

M
qK);

� � � ;  
1
qK+r(y

1
qK : qK+r)

� � � ;  
M
qK+r(y

M
qK : qK+r)): (36)

Using �, we write the expectedK-step immediate cost explicitly as

E

K�1

r=0

hqK+r(xqK+r+1; uqK+r)j�qK ; 
qK : (q+1)K�1

= �(xqK+1 : (q+1)K ; 
qK : (q+1)K�1j� (yqK : (q+1)K�1))

� p(xqK+1 : (q+1)K ; yqK : (q+1)K�1j�qK ; 
qK : (q+1)K�1)

� dxqK+1 : (q+1)K � dyqK : (q+1)K�1 (37)

= �(xqK+1 : (q+1)K ; 
qK : (q+1)K�1j� (yqK : (q+1)K�1))

� ~�(xqK+1 : (q+1)K ; yqK : (q+1)K�1;

FqKj� ; 
qK : (q+1)K�1j� )

� dxqK+1 : (q+1)K � dyqK : (q+1)K�1 (38)

where the existence of an appropriate~� in (38) follows from
Lemma 1. Therefore, the right-hand side of (8) depends only on
FqKj� and
qK : (q+1)K�1j� , and ~Cq exists.

We are now ready to prove the main lemma.
Proof of Main Lemma:We must show thatQq depends only on

FqKj� and 
qK : (q+1)K�1j� . Since the first term of the right-
hand side of (9) can be replaced by the right-hand side of (34), the
proof reduces to showing that there exists a function~� such that

E[Aq+1(F(q+1)Kj� )j�qK ; 
qK : (q+1)K�1]

= ~�(FqKj� ; 
qK : (q+1)K�1j� );

8 �qK 2 �qK ; 8 
qK : (q+1)K�1 2 �qK : (q+1)K�1: (39)

To show that (39) is true, we write

E[Aq+1(F(q+1)Kj� )j�qK ; 
qK : (q+1)K�1]

= Aq+1(�q(FqKj� ; yqK : (q+1)K�1;


qK : (q+1)K�1j� (yqK : (q+1)K�1)))

� p(yqK : (q+1)K�1)j�qK ; 
qK : (q+1)K�1)

� dyqK : (q+1)K�1: (40)

Equation (40) follows from Lemma 2, and (40) with Lemma 1 implies
that ~� satisfying (39) exists.
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On -Inversion in Interruptive
Timed Discrete-Event Systems

Yongseok Park and Edwin K. P. Chong

Abstract—The authors consider the problem of extracting event life-
times from partial observations of an interruptive timed discrete-event
system. The extraction of the lifetime of an occurring event is based
on observations of all previous transitions andd subsequent transitions.
We refer to this notion as d-inversion. We give necessary and sufficient
structural conditions for an event to be d-invertible in a given system.

Index Terms—Automata, discrete-event simulation, discrete-event sys-
tems, fault diagnosis, inverse problems, Markov processes, monitoring.

I. INTRODUCTION

Considerable effort has been invested in the study of discrete event
systems (DES’s), due to their potential impact on the modeling,
analysis, design, and control of a wide variety of complex systems,
including discrete manufacturing systems, communication networks,
traffic systems, and computer systems [6].

A key issue in DES’s is the problem of gathering and analyzing
observed data from a given system as it is evolving, often referred to
ason-line monitoring(see [19] for an overview of the subject in the
setting of distributed software systems). Observation data is used in a
wide variety of contexts, including supervisory control [17], [9], [4],
fault testing and diagnosis [18], [8], [1], performance analysis and
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