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Abstract—The problem of estimating parameters of discrete-
time non-Gaussian autoregressive (AR) processes is addressed.
The subclass of such processes considered is restricted to those
whose driving noise samples are statistically independent and
identically distributed according to a Gaussian-mixture probabil-
ity density function (pdf). Because the likelihood function for this
problem is typically unbounded in the vicinity of undesirable, de-
generate parameter estimates, the maximum likelihood approach
is not fruitful. Hence, an alternative approach is taken whereby
a finite local maximum of the likelihood surface is sought. This
approach, which is termed the quasimaximum likelihood (QML)
approach, is used to obtain estimates of the AR parameters as
well as the means, variances, and weighting coefficients that define
the Gaussian-mixture pdf. A technique for generating solutions
to the QML problem is derived using a generalized version of
the expectation-maximization principle. This technique, which is
referred to as the EMAX algorithm, is applied in four illustrative
examples; its performance is compared directly with that of
previously proposed algorithms based on the same data model
and that of conventional least-squares techniques.

Index Terms—Autoregressive process, iterative methods, pa-
rameter estimation.

I. INTRODUCTION

ESTIMATION of parameters of discrete-time non-
Gaussian autoregressive (AR) processes has typically

been accomplished using methods based on higher order
statistics (HOS) (see, for example, [9]–[11] and associated
references). These methods are generally robust in the presence
of observation noise, are fairly easy to implement, and make
few assumptions about the probability density function (pdf)
of the AR process. However, because they extract much of
their information about the observed process by computing
sample moments or cumulants above second order, HOS-
based methods tend to produce high-variance estimates when
the length of the data record is small. The approach developed
in this paper is fundamentally different from the HOS-based
approach in that it assumes a specific form for the pdf of
the observed data and is therefore entirely parametric. In
particular, we consider processes that can be represented as
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the output of a linear time-invariant (LTI) AR system driven by
noise samples that are statistically independent and identically
distributed (i.i.d.) according to a Gaussian-mixture pdf (i.e., a
pdf that is a weighted average of a finite number of Gaussian
densities having arbitrary means and variances); we call
such processes autoregressive Gaussian-mixture (ARGMIX)
processes.

We seek estimates of the AR parameters jointly with the
mixture parameters—i.e., the means, variances, and weight-
ing coefficients—that define the Gaussian-mixture pdf. Joint
maximum likelihood (ML) estimates have not been directly
pursued in the past because the value of the likelihood function
is infinite for certain known, degenerate parameter values.
In general, these parameter values are not useful as es-
timates, even though, strictly speaking, they do maximize
the likelihood function. However, as we shall see in this
paper, strategies based on finding nondegeneratelocal maxima
of the likelihood function yield solutions that are useful.
Indeed, Titterington [17] showed that the approach of locally
maximizing the likelihood function is useful for the problem
of estimating only the mixture parameters, i.e., the problem
in which the LTI system is known to be an identity system.
He empirically studied the performance of several numerical
hill-climbing algorithms for computing ML estimates of the
mixture parameters and obtained useful answers. We call the
approach based on searching for finite local maxima the quasi-
maximum likelihood (QML) approach.

The Gaussian-mixture model is capable of closely ap-
proximating many densities and has been considered by a
number of researchers for this purpose (see, for example, [3],
[4], [8], [14], [17]). Yet apparently only a few researchers,
most notably Sengupta and Kay [16] and Zhao [19], have
considered Gaussian-mixture models in conjunction with AR
systems. Sengupta and Kay [16] address the problem of
ML estimation of AR parameters for ARGMIX processes
in which two Gaussian pdf’s constitute the mixture, each
with zero mean and known variance, but with unknown
relative weighting. They use a conventional Newton–Raphson
optimization algorithm that is initialized by the least-squares
solution to find ML estimates for the AR parameters and the
single weighting coefficient and show that the performance of
the ML estimate is superior to that of the standard forward-
backward least-squares method. In a separate investigation,
Zhao et al. [19] also consider ML estimation of the AR
parameters of ARGMIX processes and derive a set of linear
equations whose solution gives the ML estimate for the AR
parameters when all the mixture parameters areknown. When

1053–587X/98$10.00 1998 IEEE



VERBOUT et al.: PARAMETER ESTIMATION FOR AUTOREGRESSIVE GAUSSIAN-MIXTURE PROCESSES 2745

the mixture parameters areunknown, they combine these linear
equations with a cleverad hocclustering technique to produce
an iterative algorithm for obtaining a joint estimate of both
the AR parameters and the mixture parameters. They do not
guarantee convergence of this algorithm or optimality of the
estimate in any sense but demonstrate empirically that the
performance of their algorithm is superior to that of cumulant-
based methods in certain cases.

We use the expectation-maximization (EM) method to de-
rive an iterative algorithm, which we refer to as the EMAX
algorithm, for jointly estimating the AR parameters and mix-
ture parameters of ARGMIX processes. The EMAX algorithm
finds local maxima of the likelihood function. We demonstrate
that when initialized appropriately, the estimates correspond-
ing to these local maxima are desirable solutions and, hence,
that the likelihood function can still guide us to useful answers
via its local maxima even though the ML estimation problem
is degenerate.

The paper is organized in the following way: In Section II,
we introduce our data model and formulate the QML problem.
In Section III, we give a brief overview of the EM and
generalized EM algorithms and then use the EM theory to
derive the formulas that constitute the EMAX algorithm. This
algorithm is proposed as a practical solution to the QML
problem. In Section IV, we discuss four distinct applications
of the EMAX algorithm and, through computer simulations,
compare the performance of the algorithm to that of previously
developed algorithms based on a similar data model as well
as to that of the standard least-squares technique. Finally, in
Section V, we discuss the advantages, limitations, and possible
extensions of our method.

II. PROBLEM FORMULATION

In this section, we present a mathematical model for the
random process under consideration, define the set of model
parameters to be estimated from a realization of the process,
and state criteria that must be met by the most desirable
estimates of these model parameters. We begin by introducing
some notation that will be used throughout the paper.

A. Notation

We adopt the convention of writing random variables in
upper case and particular realizations of random variables in
lower case. If is a random variable, then we denote its
pdf by If takes values from a set containing finitely
many elements, its pdf will contain impulses (i.e., Dirac delta
functions), but in such cases, this pdf will be used only under
appropriate integrals. If is also a random variable, then
the conditional pdf of given is written If
these densities depend on a parameter, then they are written
as and , respectively. Expectations and
conditional expectations associated with densities that depend
on a parameter are analogously denoted by and

, respectively. Vector-valued variables, both random
and deterministic, are written in boldface. If is an -
dimensional vector, then theth element of is denoted by

for Finally, we introduce the function definition

(1)

as a special notation for the Gaussian pdf since this density is
used frequently in the remaining sections.

B. Data Model

We consider a discrete-time scalar-valued random process
that satisfies the th-order autoregressive difference

equation

(2)

where are the real-valued AR coefficients of the
process, and is a sequence (termed the driving process or
driving noise) that consists of i.i.d. random variables having a
Gaussian-mixture pdf defined by

(3)

where the weighting coefficients satisfy for
and Alternatively, we can

express theth sample of the driving process as

(4)

where is a sequence of i.i.d., zero-mean, unit-variance
Gaussian random variables,and are mappings defined by

and for is a
sequence of i.i.d. discrete-valued random variables distributed
according to the probability law Pr for

, and the processes and are assumed
statistically independent. The representation of the driving
process given in (4) will be very useful in the derivation of
the EMAX algorithm in Section III.

We assume that the order of the autoregressionand the
number of constituent densities in the Gaussian-mixture pdf

are given and that the parameters
, and are un-

known. We observe that the random variables
assume the values , respectively, and we wish
to estimate the parameter vector

(5)

based on this observation. For notational convenience, we
define the random vectors and

for and denote the realiza-
tions of these vectors by and , respectively.
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C. Approach to Parameter Estimation

As mentioned earlier, we are not strictly seeking an ML
estimate because in most cases, degenerate estimates exist that
have infinite likelihood. To see how such degenerate estimates
can arise, we can easily verify that if we put, say,
for for
and and then let , then the likelihood function

will increase without bound. This assignment
of parameter values corresponds to choosing the unknown
AR system to be an identity system and one of the Gaussian
densities in the mixture to be an impulse centered directly on
one of the observations.

It is apparent from (3) that degenerate estimates are obtained
only if one or more of the standard deviation estimates is
chosen to be zero. We may be tempted to avoid this problem by
restricting all of the standard deviation estimates to be greater
than some prespecified positive threshold. However, if this
minimum threshold is set too low, then meaningless estimates
can arise when the largest likelihood value occurs on the
boundary of the restricted parameter space near a singularity at
which for some Yet if the threshold is set too high, we
risk excluding the best available estimate since a component of
the true Gaussian-mixture pdf may have a standard deviation
smaller than the artificially set threshold.

One alternative to maximizing the likelihood function is
to find the parameters that achieve the largest of the finite
local maxima [3]. In general, no closed-form solution exists
for this estimate, and a numerical method must typically
be used. Because the likelihood surface may have a very
large number of local maxima, we have no guarantee that
classical optimization techniques will find the largest local
maximum. Yet Titterington [17] has found that methods based
on finding local maxima (not necessarily the largest finite
local maximum) yield useful estimates. Accordingly, we take
the approach of searching for local maxima of the likelihood
function using the generalized EM algorithm.

More formally, if we let denote the set of all possible
values for the parameter vector, then the estimate we seek
for is any satisfying

(6)

(7)

where the notation stands for the set of all

parameter values in achieving finite local maxima of
Since the estimate is defined in terms of the likeli-

hood function but is not obtained through a standard global
maximization, we refer to this estimate as a quasimaximum
likelihood (QML) estimate. In the sequel, we shall assume
that , i.e., that the number of samples in the observed
sequence is much greater than the number of AR parameters
to be estimated. Under this assumption, we may, as is standard
in the derivation of ML estimates for Gaussian AR processes,
ignore the first term of the log-likelihood function appearing
on the right-hand side of (7) and assume that a QML estimate

is any satisfying

(8)

III. SOLUTION VIA THE EM PRINCIPLE

In this section, we first review the theory behind the EM
and generalized EM (GEM) methods and then use the GEM
method to derive the equations that constitute the EMAX
algorithm.

A. Theory of the EM and GEM Algorithms

The EM and GEM algorithms, which were first proposed by
Dempsteret al. [1], are iterative techniques for finding local
maxima of likelihood functions. Although their convergence
rates are slow, these algorithms converge reliably to local max-
ima of the likelihood function under appropriate conditions,
require no derivatives of the likelihood function, and often
yield equations that have an intuitively pleasing interpretation.

The EM and GEM algorithms are best suited to problems in
which there is a “complete” data specificationfrom which
the original observations can be derived and such that
the expectation can be easily
computed for any two parameter vectors For our
problem, we use the complete data specification ,
where is the vector of pdf-selection variables defined by

With this choice of complete data, the
EM algorithm as applied to our problem generates a sequence
of estimates according to the recursive formula

(9)

where some starting estimate must be chosen to initialize
the recursion. We now show that the sequence of estimates

defined above satisfies the inequality

(10)

for ; that is, we show that the log-likelihood
value associated with our updated parameter estimate is
increased at each iteration. We begin by writing the log-
likelihood function for the observed data with parameters

as

(11)

Integrating both sides of (11) with respect toagainst the
density gives

(12)

(13)
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where the functions and are defined in the obvious way.
Then, (9) can be written as

(14)

The definition of together with Jensen’s inequality allows us
to conclude that for any
Hence, we have

(15)

(16)

(17)

(18)

which implies that the EM algorithm gives a sequence of
parameter estimates with increasing likelihoods. If the function

is continuous in both of its arguments, the sequence of
estimates converges to a stationary point of the log-likelihood
function [18].

The GEM algorithm is an alternative form of the EM
algorithm that is often easier to implement. Such an algorithm
chooses such that

(19)

at each iteration It does not necessarily select such
that (14) is satisfied. Using the same reasoning we used to go
from (15)–(18), we see that a GEM algorithm also produces a
sequence of parameter estimates with increasing likelihoods.
Whether the limit of this sequence of estimates is a stationary
point of the likelihood function depends on the particular rule
for selecting from If is selected so that it
is a local maximum of over , then the
sequence converges to a stationary point of the likelihood
function [6], [18]. We will use this local-maximum rule for
selecting updated parameters in our GEM algorithm. As is
the case with all “hill-climbing” algorithms, the limit of the
sequence of estimates generated by an EM or GEM algorithm
may not be a global maximum of the likelihood function.
Therefore, choosing judiciously is the key to obtaining a
good parameter estimate. A simple method for choosing
is given and empirically shown to be adequate in Section IV.

B. The EMAX Algorithm

In this section, we give for our problem explicit equations
that define the EMAX algorithm. The EMAX algorithm is
derived by using a GEM method that chooses to be a
local maximum of over

To derive the EMAX algorithm, we let
and write (14) as

(20)

This is equivalent to solving the two maximization problems

(21)

and

(22)

To find so that (21) is satisfied, we first define the
functions and by

if
otherwise

(23)

(24)

that is, is the number of times the symbolappears
in the vector In addition, for notational convenience, we
define the function by

(25)

for all for and Using
these definitions, the maximization in (21), which is over all

such that and can be written

(26)

(27)

(28)

(29)

where the last equality follows from Jensen’s inequality.
To attempt the maximization in (22), we use the knowledge

that the driving process is a sequence of i.i.d. Gaussian-mixture
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random variables to write the pdf for conditioned on and
as

(30)

(31)

Notice that the term represents the residual or
prediction error obtained by using as the AR parameter
vector. The function being maximized in (22) can then be
written as

(32)

Taking derivatives of this expression with respect to the
quantities , , and and setting the resulting expressions
equal to zero yields three coupled nonlinear equations that
define a stationary point of the right-hand side of (32). Because
we are unable to solve these nonlinear equations analytically,
it is difficult to find a global maximum. We instead use
the method of coordinate ascent to numerically find alocal
maximum, resulting in a GEM algorithm rather than an EM
algorithm. Coordinate ascent increases a multivariate function
at each iteration by changing one variable at a time. If, at each
iteration, the variable that is allowed to change is chosen to
achieve the maximum of the function while the other variables
are kept fixed, then coordinate ascent converges to a local
maximum of the function [6]. Coordinate ascent is attractive
because it is simple to maximize (32) separately over each
variable as

(33)

(34)

(35)

Using the equations above, the coordinate-ascent algorithm is
described as follows:

INITIALIZATION

(36)

(37)

(38)

ITERATION

(39)

(40)

(41)

If this recursion is iterated for , then we
define our parameter updates by

For sufficiently large values of , the
updated parameters are, for practical purposes, local maxima
of (32). Since the EMAX algorithm is a GEM algorithm
that chooses the updated parameter estimates to be local
maxima of (32), it converges to a stationary point. In summary,
then, a single iteration of the EMAX algorithm consists of
computing applying (29), and iterating (39)–(41)
until convergence.

As shown in Fig. 1, the EMAX algorithm can be concep-
tually decomposed into three main steps, which are iterated
to produce the final parameter estimates. Observe that the
filter can be interpreted as the current
estimate of the inverse of the AR filter. In the first block
of Fig. 1, this inverse filter is applied to the observations
to produce the residual sequence , which
can be interpreted as an estimate of the driving noise. This
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Fig. 1. Block diagram representation of the EMAX algorithm developed in
Section III.

residual sequence is used to compute the posterior probabilities
Under the hypothesis that is the true AR

parameter vector, these residuals are statistically independent.
Using the representation for the driving process given in
(4), we may take the view that each sample of the residual
sequence is a particular realization arising from one of
randomly chosen classes, where the pdf characterizing the
th of these classes is For the th sample

of the driving noise sequence, the value of the class label
is determined by the pdf-selection variable Assuming

that the mixture parameters are and , we can
easily compute the posterior probability that the
th sample is a realization from classusing Bayes’ rule;

this is the operation being performed in the second block of
Fig. 1. With these posterior probabilities, we first compute the
updated estimate of the weighting coefficient vector
according to (29). We then compute and
by iterating (39)–(41) until convergence to some prespecified
numerical tolerance is obtained; this operation is represented

by the third block. As shown in Fig. 1, the process is repeated,
starting again from the first block, until convergence.

A single iteration of (39)–(41) has the following intuitive
interpretation. The new estimate for the mean of theth
class is a weighted time average of the residuals, where
the weight on the th residual sample is proportional to the
posterior probability that the sample belongs to classThe
new estimate for the variance of theth class is a weighted
time average of the square of residuals with the previously
computed estimate of the mean of theth class removed; once
again, the weight on theth residual sample is proportional
to the posterior probability that the sample belongs to class
The new estimate for the AR coefficient vector is updated via
a generalized version of the Yule–Walker equations [19] using
the most recent estimates of the means and variances.

We make the final observation that if the values of the
parameters in any subset of the mixture parameters are
known, then the update equations for the parameter estimates
can easily be modified, and the properties of the EMAX
algorithm will be preserved. Specifically, we simply replace
the parameter updates in (29) and (39)–(41) with the corre-
sponding known parameter values. Clearly, updates for the
known parameters would not be performed in this case.

IV. NUMERICAL EXAMPLES

In this section, we present several examples to illustrate
the behavior and performance of the EMAX algorithm. These
examples were selected with several objectives in mind:

1) to verify that the EMAX algorithm behaves as expected
and produces results consistent with those obtained by
others on relevant ML estimation problems;

2) to illustrate that the EMAX algorithm performs signifi-
cantly better in certain estimation problems than either
conventional least-squares techniques or previously pro-
posed algorithms based on a similar data model;

3) to demonstrate that the EMAX algorithm can be used
to obtain good approximations to ML estimates in cases
where the functional form for the pdf of the driving
process is unknown;

4) to show that the EMAX algorithm can be very useful
in common signal processing problems where the pri-
mary objective is to recover a signal from corrupted
measurements.

For each of the examples presented here, we found that
the following simple method for generating an initial param-
eter estimate for the EMAX
algorithm yielded good average performance. The vector
was computed using the forward-backward least-squares tech-
nique from traditional AR signal analysis [7]. Each of the

elements of the mean vector was randomly gener-
ated according to a uniform pdf having region of support

, where is the th element of

the residual sequence produced by applying the filter
to the sequence of observations. Each

element of was randomly chosen according to a uniform pdf
with region of support Finally,
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TABLE I
SAMPLE MEANS AND VARIANCES FOR PARAMETER ESTIMATES FROM EXAMPLE 1. ENTRIES WERE COMPUTED USING RESULTS OF5000 TRIALS

FOR i) THE ALGORITHM OF SENGUPTA AND KAY (S-K), ii) THE EMAX A LGORITHM WITH KNOWN STANDARD DEVIATIONS (EMAX-KSD),
AND iii) THE EMAX A LGORITHM WITH UNKNOWN STANDARD DEVIATIONS (EMAX-USD). CRAMÉR–RAO BOUNDS ON THE ESTIMATION

VARIANCES, AS REPORTED BY SENGUPTA AND KAY, ARE ALSO LISTED FOR THECASE OF KNOWN STANDARD DEVIATIONS (KSD’s)

the elements of the weighting coefficient vector were all
set equal to For special cases in which certain elements
of were assumed known, no initial estimate needed to be
chosen.

A. Example 1—Comparison with Previous Work (Part I)

We begin with a simple example for which numerical
results have already been reported by Sengupta and Kay [16].
For direct comparison of the performance of our EMAX
algorithm to that of the Sengupta–Kay (S-K) algorithm, we
have replicated the computer simulations carried out in their
previous work. The problem considered by those authors was
the ML estimation of the parameters of a fourth-order AR
process, whose AR coefficients are given by

(42)

The driving noise for this process was assumed to consist
of i.i.d. samples distributed according to the two-component
Gaussian-mixture pdf

(43)

where the mixture parameters and are
defined by

(44)

(45)

A plot of the power spectral density of this process is shown
in Fig. 2.

Sengupta and Kay assumed that the values of
and were known and that the values of the remaining model
parameters and (and, of course, since

) were unknown. They developed a Newton–Raphson
algorithm for obtaining ML estimates of the AR parameters
and of the overall variance associated with the driving
process, which is given by

(46)

Obtaining an ML estimate of is, in this case, equivalent
to obtaining an unconstrained ML estimate of This is
true because the parameters and stand in one-to-
one correspondence, and the ML estimation procedure is
invariant with respect to such invertible transformations on
the parameters of the log-likelihood function [12].

Fig. 2. Power spectral density of fourth-order AR process discussed in
Example 1.

As was done in [16], we performed a total of 5000 trials.
On each trial, a sequence of 1000 data points was generated
and processed using the EMAX algorithm. The sample means
and variances of the parameter estimates produced by the
EMAX algorithm are presented in Table I in the column
labeled EMAX-KSD (where KSD stands forknown standard
deviations). The results of a separate simulation in which the
standard deviations were assumed to be unknown are also
listed in Table I in the column labeled EMAX USD (where
USD stands forunknown standard deviations). Remarkably,
the sample variance of the estimates of the AR coefficients in-
creased negligibly for the case in which the standard deviations
were unknown. However, the sample variance of the estimate
of the remaining parameter increased dramatically over that
for the case in which the standard deviations were known.

We observe from Table I that the estimate ofproduced by
the EMAX-KSD algorithm has less bias and a smaller sample
variance than the corresponding estimate produced by the S-K
algorithm. A possible explanation for this discrepancy is that
Sengupta and Kay did not constrain their estimate of
(which is a function of , whereas the EMAX algorithm
appropriately constrains its estimate ofto be between 0 and
1. We make two further observations from Table I: i) All of
the sample means associated with the AR parameter estimates
generated by the S-K algorithm exhibit slightly more bias than
the sample means generated by the EMAX algorithm; ii) all
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of the sample variances of these same estimates generated by
the S-K algorithm are below the Cramér–Rao bound, whereas
only one of the sample variances generated by the EMAX
algorithm has this property. These discrepancies may stem
from the methodology used by Sengupta and Kay. They report
that in approximately 1% of the trials performed for this
experiment (i.e., in approximately 50 out of 5000 trials), their
Newton–Raphson optimization algorithm did not converge.
Whenever convergence was not obtained, the results of the
corresponding trial were discarded; hence, these trials are not
reflected in the statistics presented in Table I. In contrast,
the EMAX algorithm converged in all of the 5000 trials;
hence, the results of all trials are represented in the table.
The reduction in variance realized by the S-K algorithm over
the EMAX algorithm may be due to the discarded trials.
This conjecture is plausible if, on those occasions when
the Newton–Raphson algorithm did not converge, the ML
parameter estimates were relatively far from the true parameter
values. If such a correlation exists between events, then it is
precisely the estimates that are never obtained because of lack
of convergence that distort the sample variances reported by
Sengupta and Kay.

B. Example 2—Comparison with Previous Work (Part II)

Our next example illustrates that the EMAX algorithm
performs significantly better in certain kinds of estimation
problems than the algorithm previously proposed by Zhao
et al. [19], which is based on precisely the same statistical
model for the observed data as that presented in Section II-
B. The algorithm of Zhao, which is apparently not motivated
in any respect by the EM principle, is similiar in structure
to the EMAX algorithm. In particular, both of these iterative
algorithms use the same set of generalized normal equations
to solve for the estimates of the AR parameters when given
the values of the mixture parameters. In addition, at the begin-
ning of each iteration, both algorithms use the resulting AR
parameter estimates to inverse filter the observation sequence.
The main difference lies in the stage of each algorithm that
estimates the pdf mixture parameters from the sequence of
residuals. As discussed in Section III, the EMAX algorithm
uses the information available in the residual sequence to
climb the likelihood surface. In contrast, Zhao abandons
a likelihood-based approach (citing a desire to avoid the
degenerate solutions mentioned earlier) in favor of a heuristic
clustering algorithm.

In the two-component mixture case, the clustering algorithm
first sorts the residual samples in ascending order and then
seeks out the best point at which to divide these sorted
samples into two disjoint sets. The optimum point is defined
as that which minimizes the average value of the sample
variances associated with these two sets. Once this optimum
point is found, Zhao’s estimates of the means and variances
of the constituent Gaussians are the sample means and sample
variances associated with the two sets, and the estimate of
the unknown weighting coefficient is simply the fraction of
samples contained in the first set with respect to the total
number of residual samples.

Fig. 3. Power spectral density of fourth-order AR process discussed in
Example 2.

We have observed that the algorithm of Zhao does not
perform well when the constituent Gaussian densities in the
driving-noise pdf have equal means. In this example, we
demonstrate that in such a case, the performance of the EMAX
algorithm is markedly superior to that of the Zhao algorithm.
In particular, we considered the problem of estimating the
parameters of an ARGMIX process whose AR coefficients
are given by

(47)
The pdf for the driving noise in this case was assumed to be a
two-component Gaussian-mixture pdf as in (43) but now with
mixture parameters defined by

(48)

(49)

A plot of the power spectral density of this process is shown
in Fig. 3.

To compare the performance of the two algorithms, we
performed a total of 500 trials. During each trial, a sequence of
1000 data points was generated and processed with the EMAX
algorithm and Zhao algorithm. The sample means, variances,
and mean square errors of the parameter estimates produced
by the two algorithms are presented in Table II. We note that
the Zhao algorithm produces strongly biased estimates in this
example. In addition, we note that the mean square errors
associated with the EMAX algorithm are approximately 25
times smaller than those associated with the Zhao algorithm.
Clearly, contributions to the mean square error for Zhao’s
estimates come not only from the bias term but also from
the high variance associated with her estimator.

The difficulties with the Zhao algorithm in this case may
be explained by its inability to obtain good mixture parameter
estimates. The quality of the mixture parameter estimates is
inherently limited because the clustering algorithm essentially
assigns the individual densities in the Gaussian mixture to
be representatives of disjoint portions of the histogram of the
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TABLE II
SAMPLE MEANS, VARIANCES, AND MEAN SQUARE ERROR(MSE) VALUES FORPARAMETER ESTIMATES OFEXAMPLE 2. ENTRIES WERE COMPUTED USING RESULTS OF

500 TRIALS FOR i) THE ZHAO ALGORITHM AND ii) THE EMAX A LGORITHM. RATIOS OF SAMPLE MSE VALUES (MSE OF ZHAO TO MSE OF EMAX) A RE ALSO GIVEN

(a)

(b)

Fig. 4. True marginal pdf (dashed curve) for driving process of Example 2
and typical estimates of the pdf (solid curves) produced by (a) the algorithm of
Zhaoet al. (20 estimates overlaid) and (b) the EMAX algorithm (20 estimates
overlaid).

residual sequence. Thus, one of the most readily observable
problems with the approach, as illustrated in Fig. 4(a), is
that all of the estimated means of the constituent densities
are necessarily distinct, even when the means of the true
densities are identical. Fig. 4(a) shows the true marginal pdf
for the driving noise as well as typical estimates of this pdf
produced by the Zhao algorithm on separate trials. Observe
from the figure that, for about half of the trials, the pdf
estimate produced by the Zhao algorithm is off center to the
positive side of zero, and for the other half, it is off center
to the negative side. On each trial, the estimated Gaussian-
mixture pdf is dominated by a single component that attempts
to model most of the histogram of the residual samples.
However, the resulting overall estimate is always off center
because the smaller of the two components in the mixture
attempts to model the remaining outliers, which are either
much greater or much less than zero. In contrast, as shown
in Fig. 4(b), the EMAX algorithm produces pdf estimates that
better approximate the true driving-noise pdf.

C. Example 3—AR Process with Laplacian Driving Noise

In many applications, we would like to obtain ML estimates
for the parameters of an AR system, but the ML problem is
ill-posed because the marginal pdf characterizing the driving
noise is unknown. In certain cases, however, it may be

Fig. 5. Power spectral density of fifth-order AR process discussed in Ex-
ample 3.

reasonable to assume that the true marginal pdf is accurately
modeled by a Gaussian-mixture pdf, provided that the means,
standard deviations, and weighting coefficients defining the
mixture are chosen appropriately. In these cases, if we process
our observations with the EMAX algorithm, then we might
expect the EMAX algorithm to find the mixture parameters
that yield a good approximation to the true driving-noise pdf
and simultaneously to produce good approximations to the ML
estimates for the AR parameters. With the present example, we
demonstrate the validity of this approximate approach to the
ML estimation problem.

In particular, we consider the parameter estimation problem
for a fifth-order AR process whose AR coefficients are given
by

(50)
The driving noise for this process consists of i.i.d. samples
distributed according to a Laplacian pdf defined by

(51)

where the scale parameter(which is related to the standard
deviation for this density by was put at
A plot of the power spectral density of this process is shown
in Fig. 5.

It will be interesting to compare the performance of the
EMAX algorithm with that of the exact ML estimates, which
can be computed in this case. It can be shown [2] that if
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TABLE III
SAMPLE MEANS AND SAMPLE MEAN SQUARE ERROR (MSE) VALUES FOR PARAMETER ESTIMATES OF EXAMPLE 3. ENTRIES

WERE COMPUTED USING RESULTS OF 500 TRIALS FOR i) THE STANDARD FORWARD-BACKWARD LEAST-SQUARES (LS)
METHOD, ii) THE EMAX A LGORITHM, AND iii) THE ML ESTIMATION ALGORITHM DEVELOPED BY SCHLOSSMACHER

the samples of the driving noise for an AR process are i.i.d.
and Laplacian, then the ML estimate for the AR parameter
vector is given by the value of that minimizes the sum of
absolute residuals An algorithm for finding
such a value for was proposed by Schlossmacher [15]; this
algorithm is based on the method of iteratively reweighted
least squares and is therefore easy to implement on a computer.

To find parameter estimates for this problem with the
EMAX algorithm, we fixed the number of Gaussian densities
in the mixture at and constrained the means of
these constituent densities to be zero. We performed a total
of 500 trials. On each trial, a sequence of 1000 data points
was generated and processed with the EMAX algorithm. The
sample means and sample mean square errors of the parameter
estimates produced by the EMAX algorithm are presented in
Table III.

A summary of the sample means and sample mean square
errors of the AR parameter estimates given by two other
algorithms is also shown in Table III: i) the forward-backward
least-squares method and ii) the ML algorithm of Schloss-
macher. Experimental results shown in Table III confirm our
expectation that the ML-based estimator would perform better
than the EMAX and least-squares methods since it directly
exploits the fact that the driving noise is i.i.d. with a Laplacian
distribution. Observe from the table that the ratio of the mean
square error of the least-squares estimate to that of the ML
estimate ranges approximately from 1.9–2.1. The ratio of the
mean square error of the EMAX estimate to that of the ML
estimate ranges approximately from 1.1–1.2. Thus, in this case,
the EMAX algorithm produces estimates that are much closer
to the exact ML estimates than the least-squares estimates.

The superior performance of the EMAX algorithm may be
attributed to the ability of its assumed Gaussian-mixture pdf
to closely approximate the Laplacian pdf, as is shown for a
typical case in Fig. 6(a). It is clear from this figure that the
approximation is very good over the region in which most
of the samples of the driving noise reside. However, since
the number of Gaussian densities in the mixture is finite, an
accurate model for the Laplacian density may be obtained only
over a finite region of support. Eventually, the tails of the
Gaussian-mixture pdf become bounded by a function of the
form for appropriately chosen constants
and Indeed, Fig. 6(b) reveals this phenomenon with the
aid of a log-magnitude scale.

It is interesting to note that although little was initially
assumed here about the shape of the driving-noise pdf, the

(a)

(b)

Fig. 6. True Laplacian marginal pdf (dashed curve) for driving process of
Example 3 and a typical estimate of the pdf (solid curve) produced by the
EMAX algorithm, plotted using (a) linear-magnitude scale (with horizontal
axis spanning�3 standard deviations) and (b) log-magnitude scale (with
horizontal axis spanning�15 standard deviations).

EMAX algorithm is also useful in a commonly encountered
variation on this example—namely, in the case where the
functional form of the pdf is preciselyknown except for a
scale factor. Suppose, for such a case, that ML estimation
is extremely difficult (possibly because of the complicated
form of the pdf) and, furthermore, that a simple Gaussian
assumption leads to unacceptably poor results. In this scenario,
the EMAX algorithm may once again provide a convenient
way of obtaining a good approximation to the ML solution.
To see this, suppose that the true pdf for the driving noise
belongs to a parameterized family of pdf’s that is invariant
with respect to scale (i.e., if the pdf for the random variable

is in the family, then the pdf for is also in the family
for any positive scalar). For example, the Laplacian family
used in the foregoing computer simulations is scale-invariant,
as is the Gaussian family and, hence, the Gaussian-mixture
family for any fixed number of mixture components. Since
the functional form for the true family of pdf’s is assumed
known, a good approximation for a particular pdf in this
family, using a Gaussian-mixture model, can be designed
offline before any data are observed. Once such a Gaussian-
mixture approximation is designed, the means and standard



2754 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 10, OCTOBER 1998

deviations of the mixture components are fixed relative to each
other. Moreover, an approximation for any other pdf in the
parameterized family can easily be generated from the original
approximation by appropriately scaling the means and standard
deviations in the Gaussian mixture. The EMAX algorithm can
be configured, through a straightforward modification of the
original updating formulas, to operate under such a restriction
so that it generates approximate joint ML estimates for the
AR parameters and for the scale factor associated with the
driving-noise pdf.

D. Example 4—Blind Equalization in Digital Communications

Our final example is an application in digital commu-
nications that has been adapted from [12]. In this exam-
ple, we demonstrate that the EMAX algorithm can be used
successfully in problems where the primary goal is signal
reconstruction, rather than parameter estimation. In particular,
we consider a communication system that uses amplitude-shift
keying (ASK). In this scheme, the transmitter communicates
with the receiver using an -symbol alphabet ,
whose elements we take to be real numbers. To send theth
symbol of a particular message sequence to the receiver,
the transmitter generates a pulse (having fixed shape) and mod-
ulates this pulse with the amplitude The pulse then propa-
gates through the communication medium, which we assume is
well modeled by an LTI system. Finally, the receiver processes
the waveform with a linear filter to facilitate estimation of

If this filtered waveform is sampled at a rate of one sample
per symbol, then the overall communication system, i.e., the
transmitter, the medium, and the receiver, can be represented
with an equivalent discrete-time LTI system, which we refer to
as the discrete-time channel. In this case, the sampled output
is the convolution of the transmitted symbol sequence
and the impulse response that characterizes the discrete-
time channel. If the impulse response is anything but a
shifted and scaled unit impulse, then each sample of the output
sequence will contain contributions from more than one input
symbol, i.e., there will be intersymbol interference (ISI). If the
characteristics of the medium are known, then the discrete-time
channel is also known, and the receiver can compensate for
the ISI using a linear filter; this technique is known as linear
equalization. Often, however, the characteristics of the medium
are unknown, and the impulse response of the discrete-time
channel must first be estimated in order to compensate for the
ISI. One approach for accomplishing this is for the transmitter
to send through the medium a training sequence that is known
to the receiver. The receiver can then identify the impulse
response of the discrete-time channel from the output sequence
and apply the corresponding inverse filter. However, if the
medium is rapidly changing, then this procedure must be
performed frequently, and the effective data rate will be
substantially reduced. An alternative approach is to perform
blind equalization, i.e., to estimate the impulse response of
the discrete-time channel from the outputwithout knowing
the input, and then apply the appropriate inverse filter.

We consider a scenario in which blind equalization must
be performed by the receiver. We assume an ASK mod-

(a)

(b)

(c)

(d)

(e)

Fig. 7. Illustration of channel equalization considered in Example 4. (a)
Original symbol sequence. (b) Received sequence. (c) Restored sequence
using standard forward-backward least-squares method. (d) Restored sequence
using fourth-order cumulant-based Giannakis–Mendel algorithm. (e) Restored
sequence using EMAX algorithm assuming four-component Gaussian-mixture
pdf.

ulation scheme that uses the four-symbol alphabet
A typical 200-point input sequence to the

discrete-time channel, which was generated randomly using
the alphabet , is shown in Fig. 7(a). We assume that the
discrete-time channel has a finite impulse response with
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-transform

(52)

Fig. 7(b) shows the received sequence, which is the convo-
lution of the input sequence shown in Fig. 7(a) and the impulse
response It is evident from this figure that detection
of the input symbols from the received sequence would be
difficult without further processing.

Our blind equalization approach consists of channel esti-
mation followed by filtering with the inverse of the estimated
channel. We compare three methods for estimating the impulse
response of the channel from the output sequence shown in
Fig. 7(b):

1) the forward-backward least-squares method;
2) the fourth-order cumulant-based technique of Giannakis

and Mendel [5];
3) the EMAX algorithm.

We configured all three algorithms to estimate 18 AR coef-
ficients. Such a configuration assumes that the discrete-time
channel inverse may be accurately modeled with a system
having 18 zeroes and no poles. We further configured the
EMAX algorithm to estimate the means and variances of
four constituent Gaussian densities. Fig. 7(c)–(e) shows the
restored input sequences generated, respectively, by

1) the least-squares method;
2) the Giannakis–Mendel algorithm;
3) the EMAX algorithm.

It is clear from Fig. 7(c)–(e) that the recovered sequence values
produced by the EMAX algorithm are much more tightly
distributed around the four true symbol values than either
the recovered sequence values produced by the least squares
method or those produced by the cumulant-based method.
Hence, in this case, we would expect superior detection
performance using the EMAX algorithm.

Further discussion of this equalization problem, as well as
references to other blind equalization techniques, can be found
in the paper by Porat and Friedlander [13].

V. CONCLUSION

We have presented a general iterative technique known as
the EMAX algorithm for estimating the parameters of a non-
Gaussian autoregressive random process. In particular, we
have restricted our attention to a process that can be repre-
sented as the output of an autoregressive LTI system driven
by a sequence of i.i.d. random variables having a Gaussian-
mixture pdf. Although the likelihood function associated with
such a process is typically unbounded in the vicinity of
undesirable, degenerate parameter values, we have seen in our
numerical examples that good estimates can still be obtained
by searching for finite local maxima of the likelihood surface.
The goal of the EMAX algorithm is to find such local maxima.

The computations that constitute the EMAX algorithm
have an intuitively pleasing form, are easy to implement in
computer code, and consume little computer memory. The
empirical results presented in Section IV suggest that the

EMAX algorithm has at least three distinct advantages over
other techniques proposed for similar estimation problems.

1) It produces high-quality estimates since it uses the
likelihood function as a guide for finding solutions.

2) It converges reliably to a stationary point of the like-
lihood function by virtue of being a generalized EM
algorithm.

3) It is extremely versatile because the Gaussian-mixture
pdf is able to model a wide range of densities very well.

Although the EMAX algorithm is a powerful tool for esti-
mating signal parameters, many issues must still be addressed
before the algorithm can be transformed into a complete
operational system for performing robust AR signal analysis.
For example, a reliable method is required for selecting initial
parameter estimates. Recall for the examples presented in
Section IV that we adopted an initialization method on the
basis of its conceptual and computational simplicity. However,
since initial estimates are the key to good performance, we
need an initialization that will consistently lead to points
of high likelihood after the algorithm has been iterated to
convergence. In addition, for some problems (particularly
those for which the Gaussian-mixture pdf has many individual
components), it would be useful to speed up the convergence
of the EMAX algorithm. This might be accomplished by
iterating the algorithm until reaching the vicinity of a local
maximum and then applying a more efficient method (e.g.,
the Newton–Raphson technique) to move to the peak. In
addition, it would be useful to detect, during the operation
of the algorithm, whether a degenerate parameter estimate
is being approached so that the algorithm could be restarted
elsewhere in the parameter space. Another issue that must be
addressed is how to estimate the parameters(the order
of the autoregression) and (the number of constituent
densities in the Gaussian mixture) when these parameters are
not given in advance and, moreover, how to assess the effect
that incorrectly chosen values for and would have on
the variance of the other parameter estimates. Finally, we note
that in any practical setting, our observations of the signal of
interest will be corrupted by additive noise. For example, the
digital communications application presented in Section IV is
a typical case in which additive noise is unavoidable. Hence,
a modification of the EMAX algorithm must be devised for
estimating the parameters of an ARGMIX process when noise
is present.

The Gaussian-mixture assumption for the driving-noise pdf
provides a convenient and general parametric framework for
analyzing non-Gaussian AR signals. The EMAX algorithm
provides a useful way of exploiting this assumption to obtain
high-quality estimates of signal parameters. Further research
aimed at enhancing the strengths of the EMAX algorithm in
relation to other inherently limited techniques could make the
EMAX algorithm a standard technique for solving practical
signal processing problems.
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