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Parameter Estimation for Autoregressive
Gaussian-Mixture Processes: The EMAX Algorithm

Shawn M. Verbout, James M. Ooi, Jeffrey T. Ludwig, and Alan V. OppenhEgiiow, IEEE

~ Abstract—The problem of estimating parameters of discrete- the output of a linear time-invariant (LTI) AR system driven by
time non-Gaussian autoregressive (AR) processes is addressednoise samples that are statistically independent and identically
The subclass of such processes considered is restricted to thos?jistributed (i.i.d.) according to a Gaussian-mixture pdf (i.e., a

whose driving noise samples are statistically independent and - . . .
identically distributed according to a Gaussian-mixture probabil- pdf that is a weighted average of a finite number of Gaussian

ity density function (pdf). Because the likelihood function for this densities having arbitrary means and variances); we call
problem is typically unbounded in the vicinity of undesirable, de- such processes autoregressive Gaussian-mixture (ARGMIX)
generate parameter estimates, the maximum likelihood approach processes.

is not fruitful. Hence, an alternative approach is taken whereby We seek estimates of the AR parameters iointly with the
a finite local maximum of the likelihood surface is sought. This P J y

approach, which is termed the quasimaximum likelihood (QML) Mixture parameters—i.e., the means, variances, and weight-
approach, is used to obtain estimates of the AR parameters as ing coefficients—that define the Gaussian-mixture pdf. Joint
well as the means, variances, and weighting coefficients that definemaximum likelihood (ML) estimates have not been directly

the Gaussian-mixture pdf. A technique for generating solutions nrsyed in the past because the value of the likelihood function

to the QML problem is derived using a generalized version of ._ . . . ;
the expectation-maximization principle. This technique, which is is infinite for certain known, degenerate parameter values.

referred to as the EMAX algorithm, is applied in four illustrative |_n general, these parameter values. are not useful as es-
examples; its performance is compared directly with that of timates, even though, strictly speaking, they do maximize
previously proposed algorithms based on the same data modelthe likelihood function. However, as we shall see in this

and that of conventional least-squares techniques. paper, strategies based on finding nondegen&yasémaxima
Index Terms—Autoregressive process, iterative methods, pa- of the likelihood function yield solutions that are useful.
rameter estimation. Indeed, Titterington [17] showed that the approach of locally

maximizing the likelihood function is useful for the problem
of estimating only the mixture parameters, i.e., the problem

in which the LTI system is known to be an identity system.

ESTIMATION of parameters of discrete-time none empirically studied the performance of several numerical
Gaussian autoregressive (AR) processes has typicalif_climping algorithms for computing ML estimates of the
been accomplished using methods based on higher orger

statistics (HOS) (see, for example, [9]-{11] anq associats roach based on searching for finite local maxima the quasi-
references). These methods are generally robust in the pres Cimum likelihood (QML) approach.

of observation noise, are fairly easy to implement, and make-rhe Gaussian-mixture model is capable of closely ap-
few assumptions about the probability density function (pdar ximating many densities and has been considered by a

of t.h? AR Process. However, because they extract much_ mber of researchers for this purpose (see, for example, [3],
their information about the observed process by computi . 8], [14], [17]). Yet apparently only a few researchers,

Eampc;e mt?]msntts (()jrtcumu(ljants ha}br?ve ;econd ?rdetr, H ost notably Sengupta and Kay [16] and Zhao [19], have
thaeS(Iaen;ﬁ ofothsza sgta r%fc:? q ;Jscgm;?l :\r/r?(relirp];;ﬁozsckmdis:lcmg sidered Gaussian-mixture models in conjunction with AR
in this paper is fundamentally different from the HOS-bas aystems. Sengupta and Kay [16] address the problem of

. . o L estimation of AR parameters for ARGMIX processes
approach in that it assumes a specific form for the pdf b b

, . ) which two Gaussian pdf's constitute the mixture, each
the observed data and is therefore entirely parametric. P

articular, we consider processes that can be represente N zero mean and known variance, but with unknown
particuiar, w ! P P cfitive weighting. They use a conventional Newton—Raphson
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the mixture parameters aneknownthey combine these linearfor ¢ = 1, - - -, n. Finally, we introduce the function definition
equations with a clevead hocclustering technique to produce

an iterative algorithm for obtaining a joint estimate of both ) 1 (v — p)?
the AR parameters and the mixture parameters. They do not Nwi,0) = V2ro P T o2
guarantee convergence of this algorithm or optimality of the —00 < U < 00 (1)

estimate in any sense but demonstrate empirically that the
erformance of their algorithm is superior to that of cumulant- . . . . . _

Eased methods in certgain cases P as a special notation for the Gaussian pdf since this density is
We use the expectation-maximization (EM) method to déj-sed frequently in the remaining sections.

rive an iterative algorithm, which we refer to as the EMAX

algorithm, for jointly estimating the AR parameters and mixB. Data Model

ture parameters of ARGMIX processes. The EMAX algorithm e consider a discrete-time scalar-valued random process

finds local maxima of the likelihood function. We demonstratg?yt} that satisfies theKth-order autoregressive difference
that when initialized appropriately, the estimates correspor@quaﬁon

ing to these local maxima are desirable solutions and, hence,

that the likelihood function can still guide us to useful answers K
via its local maxima even though the ML estimation problem Y, = Z arYi_r + Vi 2)
is degenerate. =l

The paper is organized in the following way: In Section II,
we introduce our data model and formulate the QML problerjhere {ax}I< | are the real-valued AR coefficients of the
In Section Ill, we give a brief overview of the EM andyrocess, andV;} is a sequence (termed the driving process or

generalized EM algorithms and then use the EM theory {fiving noise) that consists of i.i.d. random variables having a
derive the formulas that constitute the EMAX algorithm. Thig; 5 ssjan-mixture pdf defined by

algorithm is proposed as a practical solution to the QML

problem. In Section IV, we discuss four distinct applications M

of the EMAX algorithm and, through computer simulations, fr(v) = Z pi N'(v; i, 03) (3)
compare the performance of the algorithm to that of previously i1

developed algorithms based on a similar data model as well

as to that of the standard least-squares technique. FinallyRere the weighting coefficientép; }2, satisfy p; > 0 for

Section V, we discuss the advantages, limitations, and possiple. 1 2 ... A and =M, p; = 1. Alternatively, we can
extensions of our method. express theth sample of the driving process as

Vi = o(®) Wy + (@ 4
[I. PROBLEM FORMULATION ¢ (@)W + () @
In this section, we present a mathematical model for thenere (17,1 is a sequence of i.i.d., zero-mean, unit-variance
random process under consideration, define the set of mogel ssian random variables and: are mappings defined by
parameters to be estimated from a realization of the Processs) — 4, and p(i) = p; for i = 1,2,---, M, {®,} is a

and state criteria that must be met by the most desiraliggence of i.i.d. discrete-valued random variables distributed

estimates o_f these m(_)del parameters. We begin by introducg&ordmg to the probability law B, = ) = p; for i =

some notation that will be used throughout the paper. 1,2,---,M, and the processe§¥,} and {®,} are assumed
statistically independent. The representation of the driving

A. Notation process given in (4) will be very useful in the derivation of

. - . .the EMAX algorithm in Section llI.

We adopt the convention of writing random variables in We assume that the order of the autoregressioand the
upper case and particular realizations of random variables in . e . .
lower case. IfX is a random variable, then we denote it umber _of constituent densities in the Gaussmn—rplxture pdf
pdf by fx(-). If X takes values from a set containing finitely"~ 3¢ 9'Ven and that the parametgrs= L2 "“J¥] 7=
many elements, its pdf will contain impulses (i.e., Dirac delt§ ! ol p=lp1pul”, anda = a1 - ax]” are un-
functions), but in such cases, this pdf will be used only undefo"" - We observe that the random variafesy, - - -, Yiy_
appropriate integrals. IV is also a random variable, then®>>4M€ the \;]alu%K’”"yN—l’ respectively, and we wish
the conditional pdf ofX given Y is written fxy(:|-). If to estimate the parameter vector

these densities depend on a paramétdéhen they are written

as fx(6) and fxy(:|;6), respectively. Expectations and ¥ =(no0,p,a) ()
conditional expectations associated with densities that depend

on a parametef are analogously denoted h¥{-;6} and based on this observation. For notational convenience, we
E{-|; 6}, respectively. Vector-valued variables, both randomefine the random vector¥ = [Y,---Yy_1]7 andY, =

and deterministic, are written in boldface. 4 is an n- [V, 1---Y; g]¥ fort =0,1,---, N, and denote the realiza-
dimensional vector, then thigh element oft is denoted by:(;,  tions of these vectors by andy,, respectively.
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C. Approach to Parameter Estimation is anyﬁ'l satisfying

As mentioned earlier, we are not strictly seeking an ML ¥ e arg max {log fyy, (Ylyo; ¥} @)
estimate because in most cases, degenerate estimates exist that Yep
have infinite likelihood. To see how such degenerate estimates
can arise, we can easily verify that if we put, say,= 0 [ll. SOLUTION VIA THE EM PRINCIPLE
fori=1,---, K, (fu,0:p;) =(0,1,1/M) fori =2, .- M, In this section, we first review the theory behind the EM

andji; = yo and then let; — 0, then the likelihood function and generalized EM (GEM) methods and then use the GEM

fy, Y (o, w:¥") will increase without bound. This assignmeninethod to derive the equations that constitute the EMAX
of parameter values corresponds to choosing the unknowgorithm.

AR system to be an identity system and one of the Gaussian
densities in the mixture to be an impulse centered directly n Theory of the EM and GEM Algorithms

one of the observations. h d lqorith hich p db
It is apparent from (3) that degenerate estimates are obtained "€ EM and GEM algorithms, which were first proposed by

only if one or more of the standard deviation estimates REMPSteret al. [1], are iterative techniques for finding local
chosen to be zero. We may be tempted to avoid this problem'ﬁzx'ma of likelihood func_t|ons. Although thg|r convergence
restricting all of the standard deviation estimates to be greal8t®s 3€ sloyv, t_hese algorlt.hms converge rellgbly to Iocg! max-
than some prespecified positive threshold. However, if thif@ Of the likelihood function under appropriate conditions,

minimum threshold is set too low, then meaningless estimat&dyIre no_denvatlves of th? I|k_e_I|hood fun_ctlo_n, and oft_en
can arise when the largest likelihood value occurs on tp{éeld equations that have an intuitively pleasing interpretation.

boundary of the restricted parameter space near a singularitzvﬁll—;? ti';ﬂr:?g S!‘Ec’\grr?::ﬁgtrg’r’“gastaarspt;i?fti c;sautli;c:‘rtc())n?rv?/ﬁliﬁws n

which&; = 0 for some:. Yet if the threshold is set too high, we o X .
risk excluding the best available estimate since a component/df ©riginal observationd” can be derived and such that

H N . / _ . 1! H
the true Gaussian-mixture pdf may have a standard deviatity XPectationt{log fz(Z;¥)|Y = y:¥ ],’, can be easily
smaller than the artificially set threshold. computed for any two parameter vectdrs¥” < P. For our

One alternative to maximizing the likelihood function iProPlem. we use the complete data specificaor: (Y, ),

to find the parameters that achieve the largest of the ﬁnw@eresp is the ve;:tor _orf] pr(]:i_f—serlle_ction fvariablles d(;afinedhby
local maxima [3]. In general, no closed-form solution exists = [Po--- @] With this choice of complete data, the

for this estimate, and a numerical method must typicalz";/I algorithm as applied to our problem generates a sequence

be used. Because the likelihood surface may have a v estimates{¥(”}3z, according to the recursive formula
large number of local maxima, we have no guarantee that g+ —,pg max Eflog fy gy, (Y, Dy, )|

classical optimization techniques will find the largest local ¥cp ’

max@mu_m. Yet Titterington [17] has founq that methods baged Y =94, Y, =y, ¥} (9)

on finding local maxima (not necessarily the largest finite _ . o

local maximum) yield useful estimates. Accordingly, we takeshere some starting estimaté” must be chosen to initialize
the approach of searching for local maxima of the likelihoodle recursion. We now show that the sequence of estimates
function using the generalized EM algorithm. {w*)1  defined above satisfies the inequality

More formally, if we let’? denote the set of all possible (s+1) (s)
A o . > o .
values for the parameter vectdn, then the estimate we seek log fyyy, (wlye:¥""") 2 log fyy, (ulue: ¥ (10)

for @ is any ¥ satisfying for s = 0,1,2,---; that is, we show that the log-likelihood
. ) value associated with our updated parameter estimate is
¥ carg o= {log fy, v (o u:¥')} (6) increased at each iteration. We begin by writing the log-
<

, , likelihood function for the observed data with parameters
=g max {log fy,(yo:¥') +log fy|y,Wlve:¥)} @ ¢ P as
S

(7) log fyy, ¥lyo:¥’)
i =log f (y, Plyo: &)
where the notatIOIWnEag{g(a:)} stands for the set of all Y. @)y, \J: Pldo:
parameter values i® achieving finite local maxima of. —log fpyy,(Ply. yo: ¥"). (11)

Since the estimat@ is defined in terms of the likeli- . . . .
. ) _ Integrating both sides of (11) with respect ¢oagainst the
hood function but is not obtained through a standard glob . s .
g 9ONensity fgy v, (Sly.y0: ¥) gives

maximization, we refer to this estimate as a quasimaximum
likelihood (QML) estimate. In the sequel, we shall assume,g fY|Y (ylyo; ¥')
that vV > K, i.e., that the number of samples in the observed ’ , )
sequence is much greater than the number of AR parameters = £102 fy @y, (4 ®lyo; W)Y = 4,Y o = yo; ¥}
to be estimated. Under this assumption, we may, as is standard ~ — E{log fgy y,(@ly,90: ¥)[Y =y

in the derivation of ML estimates for Gaussian AR processes, Vo — ™) 12
ignore the first term of the log-likelihood function appearing / 0= Yo b (12)
on the right-hand side of (7) and assume that a QML estimate 2 U(&',#(*)) — V(@' &'*)) (13)
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where the function$g/ and V' are defined in the obvious way.This is equivalent to solving the two maximization problems

Then, (9) can be written as
®) ptY —arg max E
p/

POt = arg max UW ). (14)
¥ cp Alog Sy, @lyo; #)IY =y, Yo = yp; ¥}
The definition ofV together with Jensen'’s inequality allows us (21)
to conclude that/ (&', ®)) < V(@ @) forany®’ € P. and
Hence, we have
(s4+1) , (s+1) _(s+1)
log fyy, lyo: ¥ )lg g+ (@, p T o)
— U@CT) gy @bt gy (15) —arg max E
> U@ @) - v@® ) (16) {los fypy, 1,900 ,0")]
> U@ o) - vt o) (17) Y =y Yo =y ). (22)
/
= log fY|Y0 (ylyo; ¥ )|y7':y7<s> (18)

which implies that the EM algorithm gives a sequence %J&ig::g&j}M lsgntg?tcﬁﬂ :sbiansfled, we first define the
JVi= JSi=

parameter estimates with increasing likelihoods. If the function
U is continuous in both of its arguments, the sequence of
estimates converges to a stationary point of the log-likelihood d;(¢) :{ 1 if¢p= J7 (23)
function [18]. 0 otherwise

The GEM algorithm is an alternative form of the EM e
algorithm that is often easier to implement. Such an algorithm Ci([po - dna]™) = Z d;(¢:) (24)
chooses#**?) such that =0

U@EHD) gy > @ w) (19) that is, C;(@) is the number of times the symbglappears
in the vector®. In addition, for notational convenience, we
at each iteratior. It does not necessarily selegt**") such define the functionP, ; by
that (14) is satisfied. Using the same reasoning we used to go
from (15)—(18), we see that a GEM algorithm also produces a
sequence of parameter estimates with increasing likelihoods.
Whether the limit of this sequence of estimates is a stationary
point of the likelihood function depends on the particular rulfer all ¥’ € P, fort =0,---,N—1andj = 1,---, M. Using
for selectingg**V) from &) If ¥*+1) is selected so that it these definitions, the maximization in (21), which is over all
is a local maximum of U/(#',@*)) over &' € P, then the p’ such thatp, > 0 and=}, p(,) = 1, can be written
sequence converges to a stationary point of the likelihood
function [6], [18]. We will use this local-maximum rule for

P @) =Pr{®, =j|Y =9y, Yo =y ¥’}  (25)

selecting updated parameters in our GEM algorithm. As is P(j) = arg H;,E}X E

the case with all “hill-climbing” algorithms, the limit of the o

sequence of estimates generated by an EM or GEM algorithm ) Wl ( ST ()

may not be a global maximum of the likelihood function. log 1—[1 Poy Y =9Yo=uys¥ (26)
j=

Therefore, choosing"(o) judiciously is the key to obtaining a ‘
good parameter estimate. A simple method for choodiffy T ars mgx E
is given and empirically shown to be adequate in Section V.

M
_ 9> Ci(P) log () [Y =3, Yo = yo; ¥
B. The EMAX Algorithm j=1

In this section, we give for our problem explicit equations (27)
that define the EMAX algorithm. The EMAX algorithm is M N-1
derived by using a GEM method that chood€$™ to be a =arg max » > P, (@) logpf; (28)
local maximum ofU(¥’, &™) over®’ e P. g

To derive the EMAX algorithm, we le¥’ = (¢/,0”,p',a’) 1 Nl ©
and write (14) as =N ; P (@) (29)

Pt —arg o max  E{log fgy, (@lyo; p)
o ? i where the last equality follows from Jensen’s inequality.
&Y oY, To attempt the maximization in (22), we use the knowledge
(y|®.yg:a ), 0)Y =9, Yo =y,: %D} (20) that the driving process is a sequence of i.i.d. Gaussian-mixture
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random variables to write the pdf faf conditioned on® and arg max E{log fY@,Yo (Y|P, yo;
Y, as L
HL Y =y, Yo = yo: ¥
fY|¢7YO(y|¢7y0;a/7p’/70—/) (a # a))| ¥ %o Yo _1}
N-1 M
_ Py
= H Ny — y?a’7 I’L/((I)t)7 JE‘IH)) (30) - tz_% o (azj))Q Yy
t=0 = 7=
N—-1 N-1 M
1 B;(@)
=11 5= A S B | @)
2 \¢ ()9t
t=0 27“’2@) t=0 j=1 (“En) !
1 T ;e Using the equations above, the coordinate-ascent algorithm is
- eXp _20/—2(% Y @~ la,)) (- (31) described as follows:
. @ _ INITIALIZATION :
Notice that the termy, — y; a’ represents the residual or
prediction error obtained by using as the AR parameter /:LES) :ugg, j=1--- M (36)
vector. The function being maximized in (22) can then be 5O _ i1 M (37)
written as @ =% JT
s ~(0) _ (s
E{log fy, gy, y0:d 1, 0")[Y =4, Yo =y, ¥} al? =a. (38)
N—-1 M .
N . ITERATION:
= —E 10g27{' — z% z:l Pt“](!p( ))IOgO'b) Ne1
=0 j= (p(s) —Tq®
N-1 M (ye —yFa — N/( '))2 - tz_% P (@ )y —yi @)
- Z Z Py (@) 2072 N CO B0 N—1 o i=LM
t=0 j=1 @) Z P, /'(!p(s))
Taking derivatives of this expression with respect to the prt i
quantitiesy’, ¢’, anda’ and setting the resulting expressions (39)
equal to zero yields three coupled nonlinear equations that
define a stationary point of the right-hand side of (32). Because Ml ) TaG) D)
we are unable to solve these nonlinear equations analytically, Z Py () (g —yy 6 — 0 )?
it is difficult to find a global maximum. We instead use a—((,”.;’l) = | =0 —
the method of coordinate ascent to numerically fintbeal Z P, (@)
maximum, resulting in a GEM algorithm rather than an EM — b
algorithm. Coordinate ascent increases a multivariate function i1 X/[ 40
at each iteration by changing one variable at a time. If, at each J= A . (40)
iteration, the variable that is allowed to change is chosen to N1l Mo ,(W(s))
. . . . - ~(i41) _ t.J T
achieve the maximum of the function while the other variablesa = Z Z (i4D)y YtYi
are kept fixed, then coordinate ascent converges to a local t=0 j=1 (U(J') )
maximum of the function [6]. Coordinate ascent is attractive No1 M (W(S))
Hoie o e t. =(i+1)
beqause it is simple to maximize (32) separately over each . Z Z e (s — i Yo, | (41)
variable as =0 j=1 (o(j) )
arg IEE?? E{log fy @y, (¥® yo; If this recursion is iterated foi = 0,---,.J — 1, then we
;o / MY = 0. Ve — e @) define our parameter updates bytt) = &) pG+) =
(@' pgys - 1y 0)IY =4, Y0 = yos U7} i) ot = () For sufficiently large values of, the
Nl ) o updated parameters are, for practical purposes, local maxima
Z Py ) (v —yi @) of (32). Since the EMAX algorithm is a GEM algorithm
— =0 . (33) that chooses the updated parameter estimates to be local
= P (g™ maxima of (32), it converges to a stationary point. In summary,
; t ) then, a single iteration of the EMAX algorithm consists of

computing{ F; ; (@)}, applying (29), and iterating (39)—(41)
until convergence.
As shown in Fig. 1, the EMAX algorithm can be concep-

arg max E{log fY@,Yo (y|®, yo;
75

A _ — - ] . - .
(@', 19y ’U(M)))|Y =4, Yo =y ¥} tually decomposed into three main steps, which are iterated
N-1 to produce the final parameter estimates. Observe that the
> P @)y — yfal — ) filter 1 — XK agf))z—i can be interpreted as the current

_ t=0 (34) estimate of the inverse of the AR filter. In the first block

N-1 of Fig. 1, this inverse filter is applied to the observations
Z P (@) to produce the residual sequencg’ = v, — yZa*), which
t=0 can be interpreted as an estimate of the driving noise. This
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¥, Yo by the third block. As shown in Fig. 1, the process is repeated,
starting again from the first block, until convergence.
A single iteration of (39)-(41) has the following intuitive

| interpretation. The new estimate for the mean of thk
class is a weighted time average of the residuals, where
. PROCESS OBSERVATIONS the wgight on th.e_tth residual sample is proportiongl to the
a WITH INVERSE FILTER posterlo_r probability that _the samplg belongg to c[asghe
PR new estimate for the variance of thiéh class is a weighted
1= ima’z time average of the square of residuals with the previously
computed estimate of the mean of tjth class removed; once
RESIDUAL |[v(®) again, the weight on theth residual sample is proportional
SEQUENCE . - 5
to the posterior probability that the sample belongs to cfass
© ) Y The new estimate for the AR coefficient vector is updated via
w_oo e a generalized version of the Yule—Walker equations [19] using
COMPUTE POSTERIOR the most recent estimates of the means and variances.
™ CLASS PROBABILITIES We make the final observation that if the values of the
{P ()} parameters in any subset of tB@/ mixture parameters are
known, then the update equations for the parameter estimates
(P (¥} can easily be modified, and the properties of the EMAX
¢— algorithm will be preserved. Specifically, we simply replace
Y the parameter updates in (29) and (39)—(41) with the corre-
o COMPUTE UPDATES sponding known parameter values. Clearly, updates for the
pT gt plet1) 5ls+1) known parameters would not be performed in this case.
e USING EQS. (29),(33)—(35)
pop al®
e SET s:=s+1 IV. NUMERICAL EXAMPLES

In this section, we present several examples to illustrate
the behavior and performance of the EMAX algorithm. These
Y examples were selected with several objectives in mind:

TE) = (1), 0@ p® al)

TEST 1) to verify that the EMAX algorithm behaves as expected
CONVERGENCE and produces results consistent with those obtained by
others on relevant ML estimation problems;
T 2) to illustrate that the EMAX algorithm performs signifi-

cantly better in certain estimation problems than either
conventional least-squares techniques or previously pro-
Fig. 1. Block diagram representation of the EMAX algorithm developed in posed algorithms based on a similar data model;
Section Il 3) to demonstrate that the EMAX algorithm can be used
to obtain good approximations to ML estimates in cases
where the functional form for the pdf of the driving
residual sequence is used to compute the posterior probabilities process is unknown;
{P.;(®*))}. Under the hypothesis thai®) is the true AR 4) to show that the EMAX algorithm can be very useful
parameter vector, these residuals are statistically independent. in common signal processing problems where the pri-
Using the representation for the driving process given in  mary objective is to recover a signal from corrupted
(4), we may take the view that each sample of the residual measurements.

sequence is a particular realization arising from 0ngM)f For each of the examples presented here, we found that
randomly chosen classes, vzlsr;ere(s)the pdf characterizing {hg following simple method for generating an initial param-
jth of th(_es_e clas_ses W(-;u(j),a(j)). For the tth sample eter estimate#®) — (”(0)’0(0)’,,(0)’“(0)) for the EMAX

of the driving noise sequence, the value of the class lakghorithm yielded good average performance. The veetdr

J is determined by the pdf-selection varialle. Assuming was computed using the forward-backward least-squares tech-
that the mixture parameters afé*),0(*), and p*), we can nique from traditional AR signal analysis [7]. Each of the
easily compute the posterior probabilify, ;(@'”) that the 1/ elements of the mean vecta® was randomly gener-

tth sample is a realization from clagsusing Bayes’ rule; ated according to a uniform pdf having region of support

this is the operation being performed in the second block Bﬁint{véf))},maxt{vég))}], where UE?)) is the #h element of
Fig. 1. With these posterior probabilities, we first compute tf}ﬁe rés ' o

. (0) . .
updated estimate of the weighting coefficient vecsbr™) 1 KIdU&'(Q?G?;J etr;ct:h e ZreOduueC::e bg/f i%ilg:?/gti:)hni m;\rch
according to (29). We then compy#*+1), o+ anda(stL) i=1 )7 q :

by iterating (39)—(41) until convergence to some prespecifi(g.atljement ofr was randomly chosen according to a uniform paf
numerical tolerance is obtained; this operation is represenfg

gh region of suppor{O,maxt{vE?))} - mint{v((?))}]. Finally,
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TABLE |

SAMPLE MEANS AND VARIANCES FOR PARAMETER ESTIMATES FROM EXAMPLE 1. ENTRIES WERE COMPUTED USING ResSuLTS OF5000 TRIALS
FOR i) THE ALGORITHM OF SENGUPTA AND KAY (S-K), ii) THE EMAX A LGORITHM WITH KNOWN STANDARD DEVIATIONS (EMAX-KSD),
AND iii) THE EMAX A LGORITHM WITH UNKNOWN STANDARD DEVIATIONS (EMAX-USD). CRAMER—RAO BOUNDS ON THE ESTIMATION
V ARIANCES, AS REPORTED BY SENGUPTA AND KAY, ARE ALSO LISTED FOR THE CASE OF KNOWN STANDARD DEVIATIONS (KSD's)

Sample Sample Sample Sample Sample Sample Cramer-Rao

True Mean Mean Mean Variance Variance Variance Bound

Value (5-K) (EMAX-KSD) | (EMAX-USD) (s-K) (EMAX-KSD) (EMAX-USD) (usp)
ay 1.352 1.3527 1.3518 1.3518 1.0219 x 107 | 1.0727 x 10~% | 1.0782 x 10~ % | 1.0491 x 10~%
as | -1.338 | -1.3391 —1.3378 —1.3377 2.4619 x 104 | 2.5955 x 10~4 | 2.6073 x 10~¢ | 2.5961 x 10~4
a3 0.662 0.6629 0.6619 0.6619 2.4253 x 104 | 2.6125 x 104 | 2.6225 x 10~* | 2.5961 x 10~*
aq | -0.240 | -0.2404 —0.2402 —0.2402 1.0352 x 10~4 | 1.0742 x 10~% | 1.0753 x 10—% | 1.0491 x 10—*

o2 | 10.900 | 10.8544 10.8963 10.8946 1.2061 1.1655 2.8941 0.3149

the elements of the weighting coefficient vecié? were all 25 ————

set equal tdl /M. For special cases in which certain elements
of ¥ were assumed known, no initial estimate needed to be ,|
chosen.

A. Example 1—Comparison with Previous Work (Part ) i

ENSITY (dB)

We begin with a simple example for which numerical 2 :
results have already been reported by Sengupta and Kay [1@.“"” T
For direct comparison of the performance of our EMAX;)
algorithm to that of the Sengupta—Kay (S-K) algorithm, weg 5| ...
have replicated the computer simulations carried out in thei§
previous work. The problem considered by those authors was
the ML estimation of the parameters of a fourth-order AR
process, whose AR coefficients are given by

5 i ; , i . i i : i
(42) o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
FREQUENCY (CYCLES PER SAMPLE)

(CL1 , 2,03, CL4) = (1.352, —1.338, 0.662, —0.240).

The driving noise for this process was assumed to CONSig. 2. Power spectral density of fourth-order AR process discussed in
of i.i.d. samples distributed according to the two-componehtample 1.
Gaussian-mixture pdf
As was done in [16], we performed a total of 5000 trials.
On each trial, a sequence of 1000 data points was generated
and processed using the EMAX algorithm. The sample means
and variances of the parameter estimates produced by the
EMAX algorithm are presented in Table | in the column
labeled EMAX-KSD (where KSD stands féanown standard
deviation3. The results of a separate simulation in which the
standard deviations were assumed to be unknown are also
listed in Table | in the column labeled EMAX USD (where
A plot of the power spectral density of this process is showgsp stands forunknown standard deviationsRemarkably,
in Fig. 2. the sample variance of the estimates of the AR coefficients in-
Sengupta and Kay assumed that the valueg.0fi2, o1,  creased negligibly for the case in which the standard deviations
anda were known and that the values of the remaining modglere unknown. However, the sample variance of the estimate
parameters , az, as, a4, andp; (and, of coursep, sincep2 =  of the remaining parameter increased dramatically over that
1 — p1) were unknown. They developed a Newton—Raphs@sr the case in which the standard deviations were known.
algorithm for Obtaining ML estimates of the AR parameters \We observe from Table | that the estimatejafproduced by
and of the overall variance? associated with the driving the EMAX-KSD algorithm has less bias and a smaller sample
process, which is given by variance than the corresponding estimate produced by the S-K
algorithm. A possible explanation for this discrepancy is that
Sengupta and Kay did not constrain their estimatepof
Obtaining an ML estimate of? is, in this case, equivalent (which is a function ofs?), whereas the EMAX algorithm
to obtaining an unconstrained ML estimate @f. This is appropriately constrains its estimategfto be between 0 and
true because the parametesd and p; stand in one-to- 1. We make two further observations from Table I: i) All of
one correspondence, and the ML estimation proceduretli® sample means associated with the AR parameter estimates
invariant with respect to such invertible transformations ogenerated by the S-K algorithm exhibit slightly more bias than
the parameters of the log-likelihood function [12]. the sample means generated by the EMAX algorithm; ii) all

fv(v) = p1 N(v; pin, 01) + pa N(v; pa, 02)
— < U< X

(43)

where the mixture parametefs, u1, o1, p2, 2, and o, are
defined by

(p1,p1,01) =(0.9,0.0,1.0)
(p2, jt2,02) = (0.1,0.0, 10.0).

(44)
(45)

o = p1o} + (1 — p1)as. (46)
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of the sample variances of these same estimates generated bz . . T T . y T . T
the S-K algorithm are below the Cr&m-Rao bound, whereas : ' : : :
only one of the sample variances generated by the EMAX 2!
algorithm has this property. These discrepancies may stergzo,
from the methodology used by Sengupta and Kay. They repor¢
that in approximately 1% of the trials performed for this *9'19,
experiment (i.e., in approximately 50 out of 5000 trials), their
Newton—Raphson optimization algorithm did not converge g g
Whenever convergence was not obtained, the results of the
corresponding trial were discarded; hence, these trials are ngtw
reflected in the statistics presented in Table I. In contrast¥
the EMAX algorithm converged in all of the 5000 trials; £ *6f
hence, the results of all trials are represented in the table.
The reduction in variance realized by the S-K algorithm over
the EMAX algorithm may be due to the discarded trials. [~ | ; 1 : ; , ; : ;
This conjecture is plausible if, on those occasions when © %% 01 8 08 i srensamy O 0 08
the Newton—Raphson algorithm did not converge, the ML _ ' _
parameter estimates were relatively far from the true parameE%rﬁblePgwer spectral density of fourth-order AR process discussed in
values. If such a correlation exists between events, then it is '
precisely the estimates that are never obtained because of lack
of convergence that distort the sample variances reported byVe have observed that the algorithm of Zhao does not
Sengupta and Kay. perform well when the constituent Gaussian densities in the
driving-noise pdf have equal means. In this example, we
demonstrate that in such a case, the performance of the EMAX
B. Example 2—Comparison with Previous Work (Part Il)  algorithm is markedly superior to that of the Zhao algorithm.

Our next example illustrates that the EMAX algorithmn particular, we considered the problem of estimatipg the
performs significantly better in certain kinds of estimatioRarameters of an ARGMIX process whose AR coefficients

problems than the algorithm previously proposed by zh&#€ diven by
et al. [19], which is based on precisely the same statisticalf — (_0.1000. —0.2238. —0.0844. —0.0294
model for the observed data as that presented in Section | a2, 03, 01) = (0. T T T (21'7)

B. The algorithm of Zhao, which is apparently not motivateq,he pdf for the driving noise in this case was assumed to be a

in any respect by the EM principle, is similiar in StrUCtur‘i’wo—component Gaussian-mixture pdf as in (43) but now with
to the EMAX algorithm. In particular, both of these iterativemixture parameters defined by

algorithms use the same set of generalized normal equations
to solve for the estimates of the AR parameters when given (p1,p1,01) =(0.6,0.0,1.0) (48)
the values of the mixture parameters. In addition, at the begin- (p2, b2, 02) = (0.4,0.0, 10.0). (49)
ning of each iteration, both algorithms use the resulting AR
parameter estimates to inverse filter the observation sequercg@lot of the power spectral density of this process is shown
The main difference lies in the stage of each algorithm thet Fig. 3.
estimates the pdf mixture parameters from the sequence offo compare the performance of the two algorithms, we
residuals. As discussed in Section lll, the EMAX algorithnperformed a total of 500 trials. During each trial, a sequence of
uses the information available in the residual sequence 1000 data points was generated and processed with the EMAX
climb the likelihood surface. In contrast, Zhao abandorsgorithm and Zhao algorithm. The sample means, variances,
a likelihood-based approach (citing a desire to avoid ttend mean square errors of the parameter estimates produced
degenerate solutions mentioned earlier) in favor of a heurisbig the two algorithms are presented in Table Il. We note that
clustering algorithm. the Zhao algorithm produces strongly biased estimates in this
In the two-component mixture case, the clustering algorithexample. In addition, we note that the mean square errors
first sorts the residual samples in ascending order and tressociated with the EMAX algorithm are approximately 25
seeks out the best point at which to divide these sortéthes smaller than those associated with the Zhao algorithm.
samples into two disjoint sets. The optimum point is defingdlearly, contributions to the mean square error for Zhao's
as that which minimizes the average value of the sampstimates come not only from the bias term but also from
variances associated with these two sets. Once this optimtira high variance associated with her estimator.
point is found, Zhao's estimates of the means and variancesThe difficulties with the Zhao algorithm in this case may
of the constituent Gaussians are the sample means and sarbplexplained by its inability to obtain good mixture parameter
variances associated with the two sets, and the estimateesfimates. The quality of the mixture parameter estimates is
the unknown weighting coefficient is simply the fraction ofnherently limited because the clustering algorithm essentially
samples contained in the first set with respect to the totdsigns the individual densities in the Gaussian mixture to
number of residual samples. be representatives of disjoint portions of the histogram of the

151
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TABLE I
SAMPLE MEANS, VARIANCES, AND MEAN SQUARE ERROR (MSE) VALUES FOR PARAMETER ESTIMATES OF EXAMPLE 2. ENTRIES WERE COMPUTED USING RESULTS OF
500 TRIALS FOR i) THE ZHAO ALGORITHM AND ii) THE EMAX A LGORITHM. RATIOS OF SAMPLE MSE VALUES (MSE oF ZHAO To MSE oF EMAX) A RE ALSO GIVEN

Sample | Sample Sample Sample Sample Sample
True Mean Mean Variance Variance MSE MSE Ratio
Value | (EMAX) | (ZHAO) (EMAX) (zHAO) (EMAX) (zHAO) of MSE'’s
a1 | -0.1000 | -0.1000 | -0.1150 | 4.975 x 10~° | 1.170 x 10~3 | 4.965 x 107° | 1.392 x 10~2 28.03
az | -0.2238 | -0.2238 | -0.2390 | 5.564 x 105 | 1.198 x 10~3 | 5.553 x 105 | 1.427 x 10—3 25.71
az | -0.0844 | -0.0843 | -0.0983 | 5.539 x 10~5 | 1.165 x 103 | 5.528 x 10~5 | 1.355 x 10~3 24.52
aq | -0.0294 | -0.0289 | -0.0405 | 5.010 x 10~ | 1.148 x 10~3 | 5.029 x 10~° | 1.269 x 10~3 25.24
%o.zs " :
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(b) Fig. 5. Power spectral density of fifth-order AR process discussed in Ex-

ample 3.
Fig. 4. True marginal pdf (dashed curve) for driving process of Example 2
and typical estimates of the pdf (solid curves) produced by (a) the algorithm of ) )
Zhaoet al. (20 estimates overlaid) and (b) the EMAX algorithm (20 estimateseasonable to assume that the true marginal pdf is accurately

overlaid). modeled by a Gaussian-mixture pdf, provided that the means,
standard deviations, and weighting coefficients defining the

residual sequence. Thus, one of the most readily observabiture are chosen appropriately. In these cases, if we process

problems with the approach, as illustrated in Fig. 4(a), tur observations with the EMAX algorithm, then we might

that all of the estimated means of the constituent densitiegpect the EMAX algorithm to find the mixture parameters

are necessarily distinct, even when the means of the tm#at yield a good approximation to the true driving-noise pdf

densities are identical. Fig. 4(a) shows the true marginal paiid simultaneously to produce good approximations to the ML

for the driving noise as well as typical estimates of this pdfstimates for the AR parameters. With the present example, we

produced by the Zhao algorithm on separate trials. Obser¥€monstrate the validity of this approximate approach to the

from the figure that, for about half of the trials, the pdML estimation problem.

estimate produced by the Zhao algorithm is off center to the|n particular, we consider the parameter estimation problem

positive side of zero, and for the other half, it is off centefor a fifth-order AR process whose AR coefficients are given

to the negative side. On each ftrial, the estimated Gaussigp-

mixture pdf is dominated by a single component that attemp

to model most of the histogram of the residual sample a1, 02, 03, 04, 05) = (1.934, _2'048’1'072’_0'340’0'02?(')

However, the resulting overall estimate is always off centq: drivi ise for thi ists of iid (50) |

because the smaller of the two components in the mixturge. rving naise for this process consists o 11.d. samples

attempts to model the remaining outliers, which are eithg}smbmed according to a Laplacian pdf defined by

much greater or much less than zero. In contrast, as shown Fo(v) = 1 eXp{_M} 00 < ¥ < 00 (51)

in Fig. 4(b), the EMAX algorithm produces pdf estimates that 273 ’ ) )

better approximate the true driving-noise pdf. where the scale paramet@r(which is related to the standard

. ) . , deviationo for this density byo = v/23) was put at3 = 5.
C. Example 3—AR Process with Laplacian Driving Noise A piot of the power spectral density of this process is shown
In many applications, we would like to obtain ML estimateg Fig. 5.
for the parameters of an AR system, but the ML problem is It will be interesting to compare the performance of the
ill-posed because the marginal pdf characterizing the drivifgMAX algorithm with that of the exact ML estimates, which
noise is unknown. In certain cases, however, it may lman be computed in this case. It can be shown [2] that if
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TABLE 11l
SAMPLE MEANS AND SAMPLE MEAN SQUARE ERROR (MSE) VALUES FOR PARAMETER ESTIMATES OF EXAMPLE 3. ENTRIES
WERE CoMPUTED UsING REsULTS OF 500 TRIALS FOR i) THE STANDARD FORWARD-BACKWARD LEAST-SQUARES (LS)
METHOD, ii) THE EMAX ALGORITHM, AND iii) THE ML ESTIMATION ALGORITHM DEVELOPED BY SCHLOSSMACHER

Sample | Sample | Sample Sample Sample Sample
True Mean Mean Mean MSE MSE MSE
Value (Ls) (EMAX) (ML) (Ls) (EMAX) (ML)

a1 1.934 1.9311 1.9323 1.9328 | 1.0751 x 10~2 | 6.3040 x 10~% | 5.7711 x 10~%
az | -2.048 | -2.0413 | -2.0447 | -2.0449 | 5.1570 x 10~3 | 2.8784 x 10~3 | 2.7250 x 10~3
a3 1.072 1.0647 1.0685 1.0697 | 8.4001 x 103 | 4.7769 x 103 | 4.2887 x 10~2
aq | -0.340 | -0.3358 | -0.3383 | -0.3390 | 4.9714 x 10~2 | 2.9190 x 10=3 | 2.4228 x 10~3
as | 0.027 | 0.0256 0.0264 | 0.0269 | 1.0509 x 10~3 | 6.2875 x 10~% | 5.3948 x 10~4

the samples of the driving noise for an AR process are i.i.d, o1
and Laplacian, then the ML estimate for the AR paramete% 0.08
vectora is given by the value o’ that minimizes the sum of @
absolute residualE ;' |y, —y¥'a’|. An algorithm for finding
such a value for’ was proposed by Schlossmacher [15]; this%
algorithm is based on the method of iteratively reweightedg b.02
least squares and is therefore easy to implement on a computer. 0Zz==—t——+—— .
To find parameter estimates for this problem with the PDF ARGUMENT
EMAX algorithm, we fixed the number of Gaussian densities (@
in the mixture atdM = 3 and constrained the means of
these constituent densities to be zero. We performed a totgl'oz
of 500 trials. On each trial, a sequence of 1000 data point§ ' |
was generated and processed with the EMAX algorithm. Th& 0™ ¢
sample means and sample mean square errors of the parameles- |
estimates produced by the EMAX algorithm are presented i@m-a i -
Table III. & ool AN T
A summary of the sample means and sample mean square -0 -8 -60 -40 B e 0 0 s 100
errors of the AR parameter estimates given by two other b)
algorithms is also shown in Table IlI: i) the forward-backward _ , -
least-squares method and i) the ML algorithm of Schios§9, . TIve Lanacen margnal cf st cuve) o s process o
macher. Experimental results shown in Table Il confirm oufivax algorithm, plotted using (a) linear-magnitude scale (with horizontal
expectation that the ML-based estimator would perform bettefis spanning+3 standard deviations) and (b) log-magnitude scale (with
than the EMAX and least-squares methods since it directl§zont@! axis spanning-15 standard deviations).
exploits the fact that the driving noise is i.i.d. with a Laplacian
distribution. Observe from the table that the ratio of the me@MAX algorithm is also useful in a commonly encountered
square error of the least-squares estimate to that of the Mériation on this example—namely, in the case where the
estimate ranges approximately from 1.9-2.1. The ratio of thenctional form of the pdf is preciselxnown except for a
mean square error of the EMAX estimate to that of the Mkcale factor. Suppose, for such a case, that ML estimation
estimate ranges approximately from 1.1-1.2. Thus, in this cage extremely difficult (possibly because of the complicated
the EMAX algorithm produces estimates that are much closierm of the pdf) and, furthermore, that a simple Gaussian
to the exact ML estimates than the least-squares estimatesassumption leads to unacceptably poor results. In this scenario,
The superior performance of the EMAX algorithm may beéhe EMAX algorithm may once again provide a convenient
attributed to the ability of its assumed Gaussian-mixture pdfay of obtaining a good approximation to the ML solution.
to closely approximate the Laplacian pdf, as is shown for & see this, suppose that the true pdf for the driving noise
typical case in Fig. 6(a). It is clear from this figure that théelongs to a parameterized family of pdf's that is invariant
approximation is very good over the region in which mostith respect to scale (i.e., if the pdf for the random variable
of the samples of the driving noise reside. However, sinC€ is in the family, then the pdf forX is also in the family
the number of Gaussian densities in the mixture is finite, &r any positive scalat). For example, the Laplacian family
accurate model for the Laplacian density may be obtained onlged in the foregoing computer simulations is scale-invariant,
over a finite region of support. Eventually, the tails of thas is the Gaussian family and, hence, the Gaussian-mixture
Gaussian-mixture pdf become bounded by a function of thf@mily for any fixed number of mixture components. Since
form k; exp {—kv?} for appropriately chosen constarits the functional form for the true family of pdf's is assumed
and k.. Indeed, Fig. 6(b) reveals this phenomenon with thenown, a good approximation for a particular pdf in this
aid of a log-magnitude scale. family, using a Gaussian-mixture model, can be designed
It is interesting to note that although little was initiallyoffline before any data are observed. Once such a Gaussian-
assumed here about the shape of the driving-noise pdf, thixture approximation is designed, the means and standard

w
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deviations of the mixture components are fixed relative to each s r ' . .
other. Moreover, an approximation for any other pdf in the | kuxxmen
parameterized family can easily be generated from the originad
approximation by appropriately scaling the means and standar_fgj of .
deviations in the Gaussian mixture. The EMAX algorithm cang

be configured, through a straightforward modification of thie” e s e 00— XKk XX KKK
original updating formulas, to operate under such a restriction -s,——-——-————
so that it generates approximate joint ML estimates for the SAMPLE NUMBER
AR parameters and for the scale factor associated with the @
driving-noise pdf. , , , , . , , , ,
* * x*
5 SM* s Ky x X 3: T *; :n?* ¥ ** x :*‘,—
D. Example 4—Blind Equalization in Digital Communications > 0%%":; x;f‘ * *:,(; *,:&: ’;; *;:ﬁ‘;**
Our final example is an application in digital commu- 3 %g@; 'f* *“ *}: L ",z*:
nications that has been adapted from [12]. In this exam~ -s@,x * ™ > R T T
ple, we demonstrate that the EMAX algorithm can be used y : : : ; ' : : t
. N . . 0 20 40 80 80 100 120 140 160 180 200
successfully in problems where the primary goal is signal SAMPLE NUMBER
reconstruction, rather than parameter estimation. In particular, (b)
we consider a communication system that uses amplitude-shift . ‘ ‘ . . ' ‘ ' , .
keying (ASK). In this scheme, the transmitter communicates ' ,, » .,  , «, x xo "
with the receiver using al-symbol alphabetd = {4}, 4 |* _ S M xR, T
whose elements we take to be real numbers. To sendtthe % ow*w*—i—xﬂﬁ‘ﬂ:“*ﬁ—r’%
symbol of a particular message sequeficg} to the receiver, = g Bl c X x w,%%""* R
the transmitter generates a pulse (having fixed shape) and moa- ol _ f;(: 3 x wxX ¥
ulates this pulse with the amplitude. The pulse then propa- | Cx L

gates through the communication medium, which we assumeis © 20 40 60 B e 20 140 160 180 200
well modeled by an LTI system. Finally, the receiver processes ©
the waveform with a linear filter to facilitate estimationaf.

If this filtered waveform is sampled at a rate of one sample 5 — T T T T \ T

per symbol, then the overall communication system, i.e., thg, [ e X X * L ,of X x m X

. i . S *E x = X k%K L xRk % »
transmitter, the medium, and the receiver, can be represented |, " . _«* . o PR - Sl M.
with an equivalent discrete-time LTI system, which we refer toz of «* "‘*?‘: X% j’;‘%x o R

. . . ST T SRS e i T g AT T T e |

as the discrete-time channel. In this case, the sampled outp@@t |« *~ ¥ " * *¥ = « " " e o
is the convolution of the transmitted symbol sequefeg} Rk x * x*’z*i‘ xx K,
a}nd the impulse respons{at} that charactgrizes the discrete- 5 T T e e o 1o e e 200
time channel. If the impulse respongg;} is anything but a SAMPLE NUMBER
shifted and scaled unit impulse, then each sample of the output (d)

sequence will contain contributions from more than one input
symbol, i.e., there will be intersymbol interference (ISI). If the |
characteristics of the medium are known, then the discrete-timg

channel is also known, and the receiver can compensate f&r [ > RO o
the ISl using a linear filter; this technique is known as linearz | == IO HOK IO — N K —IHe
equalization. Often, however, the characteristics Of the MEdIUME s s s ssms 00— xxx—3ox 3K Hs0—3e—X M3 _X K

are unknown, and the impulse response of the discrete-time ‘ . , ‘ \ , . ,
channel must first be estimated in order to compensate forthe °© 20 % 80 80 100 wees 140 160 180 200
ISI. One approach for accomplishing this is for the transmitter ©
to send through the medium a training sequence that is known _ o , _
to the receiver. The receiver can then identify the im ul%;._?. lllustration of channel equalization considered in Example 4. (a)
0 s ; p iginal symbol sequence. (b) Received sequence. (c) Restored sequence
response of the discrete-time channel from the output sequeng®gy standard forward-backward least-squares method. (d) Restored sequence
and apply the corresponding inverse filter. However, if thsing fourth-order cumulant-based Giannakis—-Mendel algorithm. (e) Restored
. - . . . ' sequence using EMAX algorithm assuming four-component Gaussian-mixture

medium is rapidly changing, then this procedure must ta,gf_
performed frequently, and the effective data rate will be
substantially reduced. An alternative approach is to perform
blind equalization, i.e., to estimate the impulse response Wation scheme that uses the four-symbol alphaldet=
the discrete-time channel from the outpuithout knowing {—3,—1,1,3}. A typical 200-point input sequence to the
the input, and then apply the appropriate inverse filter. discrete-time channel, which was generated randomly using

We consider a scenario in which blind equalization mugite alphabet4, is shown in Fig. 7(a). We assume that the

be performed by the receiver. We assume an ASK modiscrete-time channel has a finite impulse respdrisé with
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z-transform EMAX algorithm has at least three distinct advantages over
other techniques proposed for similar estimation problems.
H(z) =1.0-0.652"1 +0.06272 +0.4123. (52) 1) It produces high-quality estimates since it uses the

likelihood function as a guide for finding solutions.

Fig. 7(b) shows the received sequence, which is the convo2) It converges reliably to a stationary point of the like-
lution of the input sequence shown in Fig. 7(a) and the impulse  lihood function by virtue of being a generalized EM

response{h,;}. It is evident from this figure that detection algorithm. _ _ _
of the input symbols from the received sequence would be3) It is extremely versatile because the Gaussian-mixture
difficult without further processing. pdf is able to model a wide range of densities very well.

Our blind equalization approach consists of channel esti-Although the EMAX algorithm is a powerful tool for esti-
mation followed by filtering with the inverse of the estimatednating signal parameters, many issues must still be addressed
channel. We compare three methods for estimating the imputssfore the algorithm can be transformed into a complete
response of the channel from the output sequence showrpperational system for performing robust AR signal analysis.

Fig. 7(b): For example, a reliable method is required for selecting initial
1) the forward-backward least-squares method; parameter estimates. Recall for the examples presented in
2) the fourth-order cumulant-based technique of Giannakegction IV that we adopted an initialization method on the

and Mendel [5]; basis of its conceptual and computational simplicity. However,
3) the EMAX algorithm. since initial estimates are the key to good performance, we

We configured all three algorithms to estimate 18 AR coef€€d an initialization that will consistently lead to points
ficients. Such a configuration assumes that the discrete-tiftfenidh likelihood after the algorithm has been iterated to
channel inverse may be accurately modeled with a syst&@nvergence. In addition, for some problems (particularly
having 18 zeroes and no poles. We further configured tfhpse forwhlch the Gaussian-mixture pdf has many individual
EMAX algorithm to estimate the means and variances GPMPonents), it would be useful to speed up the convergence

four constituent Gaussian densities. Fig. 7(c)—(e) shows ik the EMAX algorithm. This might be accomplished by
restored input sequences generated, respectively, by iterating the algorithm until reaching the vicinity of a local
1) the least-squares method: maximum and then applying a more efficient method (e.g.,

2 the s el g 0 evion Fagieen enae) o move b e pesk
3) the EMAX algorithm. : , 9 p

) , of the algorithm, whether a degenerate parameter estimate
Itis clear from Fig. 7(c)-(e) that the recovered sequence valygsyeing approached so that the algorithm could be restarted

produced by the EMAX algorithm are much more tightly,ise\yhere in the parameter space. Another issue that must be
distributed around the four true symbol values than eithgressed is how to estimate the parameférgthe order
the recovered sequence values produced by the least squgfeg,e autoregression) and/ (the number of constituent
method or those produced by the cumulant-based methgdpgities in the Gaussian mixture) when these parameters are
Hence, in this case, we would expect superior detectiy given in advance and, moreover, how to assess the effect
performance using the EMAX algorithm. that incorrectly chosen values fdt and M would have on
Further discussion of this equalization problem, as well §§e variance of the other parameter estimates. Finally, we note
references to other blind equalization techniques, can be foupds in any practical setting, our observations of the signal of
in the paper by Porat and Friedlander [13]. interest will be corrupted by additive noise. For example, the
digital communications application presented in Section IV is
a typical case in which additive noise is unavoidable. Hence,
a modification of the EMAX algorithm must be devised for
We have presented a general iterative technique knownggimating the parameters of an ARGMIX process when noise
the EMAX algorithm for estimating the parameters of a nons present.
Gaussian autoregressive random process. In particular, wehe Gaussian-mixture assumption for the driving-noise pdf
have restricted our attention to a process that can be regigovides a convenient and general parametric framework for
sented as the output of an autoregressive LTI system driv@falyzing non-Gaussian AR signals. The EMAX algorithm
by a sequence of i.i.d. random variables having a Gaussigfiovides a useful way of exploiting this assumption to obtain
mixture pdf A|thOUgh the likelihood function associated Wlthmgh_qua“ty estimates of Signa| parameters. Further research
such a process is typically unbounded in the vicinity odimed at enhancing the strengths of the EMAX algorithm in
undesirable, degenerate parameter values, we have seen inélefion to other inherently limited techniques could make the
numerical examples that good estimates can still be obtairefiAX algorithm a standard technique for solving practical
by searching for finite local maxima of the likelihood surfacesignal processing problems.
The goal of the EMAX algorithm is to find such local maxima.
The computations that constitute the EMAX algorithm REFERENCES
have an intuitively pleasing form’ are easy to implement | 1] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
computer code, and consume little computer memory. Th from incomplete data via the EM algorithm]. R. Statist. So¢cSeries
empirical results presented in Section IV suggest that the B, pp. 1-38, 1977.
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