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Estimation of Modulation Based on
FM-to-AM Transduction: Two-Sinusoid Case
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Abstract—A method is described for estimating the amplitude
modulation (AM) and the frequency modulation (FM) of the
components of a signal that consists of two AM–FM sinusoids.
The approach is based on thetransduction of FM to AM that
occurs whenever a signal of varying frequency passes through
a filter with a nonflat frequency response. The objective is to
separate the AM and FM of the sinusoids from theamplitude
envelopesof the output of two transduction filters, where the AM
and FM are nonlinearly combined in the amplitude envelopes.
A current scheme is first refined for AM–FM estimation of a
single AM–FM sinusoid by iteratively inverting the AM and
FM estimates to reduce error introduced in transduction. The
transduction filter pair is designed relying on both a time- and
frequency-domain characterization of transduction error. The
approach is then extended to the case of two AM–FM sinusoids
by essentially reducing the problem to two single-component
AM–FM estimation problems. By exploiting the beating in the
amplitude envelope of each filter output due to the two-sinusoidal
input, a closed-form solution is obtained. This solution is also
improved upon by iterative refinement. The AM–FM estima-
tion methods are evaluated through an error analysis and are
illustrated for a wide range of AM–FM signals.

Index Terms—AM–FM estimation, bandpass amplituse enve-
lope, FM-to-AM transduction, signal separation, time–frequency
distribution.

I. INTRODUCTION

AMPLITUDE modulation (AM) and frequency modula-
tion (FM) are found in many naturally occurring signals.

For example, AM–FM is an important information carrier
in speech and biological signals, characterizing both their
resonant and harmonic components. Motivation for the ap-
proach of this paper in estimating AM–FM in signals is the
hypothesis that the AM–FM of such signals is represented
in and estimated from theamplitude envelopesof bandpass
cochlear filter outputs in the front-end auditory system. We
rely on two basic properties of a signal’s amplitude envelope:
first, that FM istransducedto AM by the shape of a bandpass
filter, similar to the original Armstrong FM demodulator [1]
and, second, that the amplitude envelope of a filter output
reflects thebeatingof two sinusoids at the filter input. It has
been hypothesized that the auditory system uses both this FM-
to-AM transduction and the beating phenomenon for the neural
coding of AM–FM in sounds [9], [20], [27].
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In discrete time, the goal of AM–FM estimation is to
estimate the amplitude functions and frequency functions

of the composite discrete-time signal

where denotes the discrete-time phase function, and
is obtained from sampling the derivative of the counterpart
continuous-time phase . AM–FM estimation has been
approached from several perspectives of which we describe
a few. Perhaps one of the earliest and simplest methods is
based on the short-time Fourier transform magnitude (STFTM)
squared of a sequence, i.e.,

which measures the energy in in a time–frequency neigh-
borhood of , where is a sliding short-time win-
dow. One AM–FM estimation method, which is sometimes
referred to as the “ridge algorithm,” computes the instan-
taneous frequencies in the sequence from local max-
ima in . The STFTM squared is one of many
time–frequency distributions (TFD’s) of a signal. A TFD
describes a signal simultaneously in the time and frequency
domains from which AM and FM components can be esti-
mated from their ridges or other TFD properties [3], [5]. This
includes the Wigner distribution (first introduced in the 1930’s
to calculate the quantum mechanical distributions of position
and momentum) and a large related class of TFD’s [5]. A
method of harmonic ridge tracking has also been used in the
context of speech analysis/synthesis [13]. In the 1960’s, Costas
proposed a different approach to AM–FM estimation referred
to as residual signal analysis [6]. This approach uses a set
of “trackers”: one for each AM–FM component contained in
the signal. At the input to each tracker, the other component
estimates are subtracted so that the assigned component to
a particular tracker is predominant. The estimates in Costas’
original system are calculated by a linear projection of ampli-
tude and phase. Recently, a more elaborate projection method
has improved upon Costas’ original system [18]. Another
approach uses a nonlinear operator referred to as the Teager
energy operator for AM–FM estimation [12]. Although derived
for a single AM–FM sine, this method has been used in
speech analysis by first separating sines. One approach for
sine separation in this application iteratively removes speech
resonant contributions [10]. An alternate approach to the

1053–587X/99$10.00 1999 IEEE



TORRES AND QUATIERI: ESTIMATION OF MODULATION BASED ON FM-TO-AM TRANSDUCTION 3085

Fig. 1. Approach to two-component AM–FM estimation.

initial sine separation formulates the problem as a system of
linear equations [21]. The solution to the system of equations,
which have additional constraint equations relating to the
periodicity of the components, is the solution to an augmented
least-squares problem. The estimates of the AM–FM sine
components are then processed with the Teager energy-based
algorithm to obtain the AM–FM estimates of each component.
Other generalizations of Teager energy-based AM–FM estima-
tion have also been recently proposed for the multicomponent
problem [11].

An approach to AM–FM estimation of a single-component
AM–FM signal exploited within this paper is based on the
transduction of FM to AM by linear filters. FM is transduced
to AM whenever an FM signal passes through a filter with
a nonflat frequency response; as the instantaneous frequency
of the FM moves across the nonflat passband of the filter, a
change in the output amplitude envelope occurs. Using two
overlapping transduction filters, it is possible to estimate the
AM and FM of a single-component AM–FM signal using only
the amplitude envelopes of the filter outputs [14], [17]. In this
paper, we generalize this approach to signals that consists of
two AM–FM sinusoids.

A two-component AM–FM signal is given in discrete time
by

where and are the AM functions, and
are the phase functions, and and are the FM
functions. The structure of our two-component estimation
approach is shown in Fig. 1. After passing the signal through
the pair of transduction filters and , the
amplitude envelopes of the filter outputs are computed; this
operation is denoted in Fig. 1 as the rectify stage. The ampli-
tude envelopes themselves each contain a single-component
AM–FM signal due to beating between the two sinusoidal
components within each filter; each filter output envelope is a
function of , , , and and has frequency

. By applying the single-component AM–FM
estimation algorithm to the envelopes, we can obtain the
AM and FM of each component in the input signal. Two
sources of error are introduced in the estimation process. In the
single-component algorithm, the error is due to the inexactness
of the assumed transduction process, which is referred to
as transduction error [17]. Because the single-component
algorithm is embedded in the two-component algorithm, the
latter suffers from this error as well. In addition, the two-
component algorithm has error due to the inexactness of each

filter’s envelope output representation as a “pure” AM–FM
component. Iterative methods are introduced to reduce both
forms of error.

The paper is organized as follows. In Section II, we dis-
cuss considerations of uniqueness in AM–FM representations
of one- and two-component signals and review the related
concept of the analytic signal. In Section III, we describe the
concept of FM-to-AM transduction and describe a transduction
approximation in terms of amplitude envelopes and linear,
time-invariant filters when the input is a single-component
AM–FM signal. We then review the AM–FM estimation
algorithm, which is based on FM-to-AM transduction and
applied to a single-component signal, and describe its imple-
mentation used in the remainder of the paper. A frequency-
domain characterization of the transduction error is used as a
basis for obtaining the filter pair for transduction. Section III
ends with a technique that improves performance of this
algorithm by iteratively inverting the modulation to reduce
transduction error. In Section IV, the algorithm for estimating
the AM and FM of a signal composed of two AM–FM
components is presented, and refinements are then made based
on inverse modulation techniques conceptually similar to those
of Section III. Section V concludes with a summary, including
a brief discussion on the paper’s generalization to more than
two AM–FM components.

II. PRELIMINARIES

Consider a real signal that we desire to represent in
the form

where is assumed to be positive. In finding this repre-
sentation, we could choose any value for at each such
that , resulting in equal to .
Because our only constraint is that , there are an
infinite number of choices for and at each sample
point. One approach to making the decomposition unique
is through theanalytic signal [5]. An analytic signal is, by
definition, a signal that has no negative frequency components.
Under certain conditions, a real signal has an analytic
signal counterpart such that if

(1)

then

(2)

The conditions under which (1) and (2) hold are as follows [3].

1) The Fourier transform of lies entirely in the region
for some .

2) The Fourier transform of exists only outside
of this region.

We assume that these conditions hold. Defined in this manner,
the analytic signal provides a unique expression for
as an AM–FM sinusoid where the amplitude function is

and , which is
unique (modulo ). Although this uniqueness property can
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be established for any complex signal representation of,
Vakman [26] showed that the analytic signal is the only
complex signal representation that simultaneously satisfies the
following desirable properties.

1) The amplitude envelope is continuous and differentiable
(in continuous time).

2) The phase and frequency are not affected by scalar
multiplication of the signal.

3) If the real signal has constant amplitude and frequency,
the complex signal also has constant amplitude and
frequency.

The analytic signal also allows a definition of instantaneous
frequency as the derivative of the phase of the analytic signal1

[5].
In generalizing the representation problem to writing as

a sum of two AM–FM sinusoids of the form of (1),2 it is again
possible to argue that there are an infinite number of ways to
decompose in this form [25]. However, we will see that
our scheme of reducing the two-component problem into two
one-component problems leads naturally to uniqueness of the
AM–FM components.

III. SINGLE-COMPONENT AM–FM ESTIMATION

We first describe FM-to-AM transduction and then review
and further develop the single-component AM–FM estimation
algorithm based on FM-to-AM transduction [17]. The method
of inverse modulationis proposed for improving the estimation
for sinusoids with large AM and FM.

A. FM-to-AM Transduction

FM-to-AM transduction occurs when an FM signal passes
through a filter that has a nonflat spectral shape. As the
frequency of the signal sweeps across the passband of the
filter, the amplitude envelope of the filter output changes. The
amplitude envelope of the filter output is therefore a function
of both the AM and the FM of the filter input. For an input
of the form , the output of a linear
time-invariant (LTI) filter can be approximated as [4], [17]

(3)

It is assumed that for , making the resulting
signal analytic. If has neither AM nor FM, then the
approximation (3) is exact.

B. Algorithm

For a single-component AM–FM sinusoid, there are two
parameters being estimated at each time point and .
By passing the signal through two filters and using the

1For some signals, this definition of instantaneous frequency matches our
intuition. Many signals, however, produce “paradoxical” results, in particular,
signals that have multiple components [5]. To avoid problems with this
definition, we redefine instantaneous frequency to be asetof phase derivatives
with each phase derivative corresponding to a particular AM–FM component
of the signal.

2Determining the appropriate number of sinusoids is a rather complex issue
and not the topic of this paper. Therefore, we assume that the number of
sinusoids is knowna priori and that the components are always present.

transduction approximation (3), we have two equations and
two unknowns at each time sample. The filters can be chosen
so that the equations are readily solved. In fact, it is only the
relationshipbetween the two filters that establishes a unique
solution. The actual filter shape is chosen to minimize the
error in the approximation (3).

Suppose we choose the filters and to have
the relation

(4)

We assume that and are real and non-
negative in frequency, thus having the property of being
symmetric and localized around the time origin, as well as
leading to a convenient solution formulation. In addition, we
assume that , and thus, is zero for negative
frequency. From (3), the square of the envelopes of the filter
outputs can be approximated as

The AM and FM are then estimated by

(5)

(6)

C. Filter Choice and Transduction Error

We have the following constraints on the choice of
and .

1) The filter outputs must be analytic to provide a unique
AM–FM decomposition.

2) and should be chosen to reduce the
transduction error in (3).

The first constraint is satisfied by virtue of being
zero for , i.e., the Hilbert transform operation is
embedded within . To satisfy the second constraint,
we analyze the transduction error from both a time-domain
and a frequency-domain perspective.

1) Time Domain: In the time domain, error bounds for
the transduction approximation have been derived by Bovik
et al. [4]. Let be the output of an LTI filter with
frequency response and impulse response for
input , i.e., , and let be given by
the transduction approximation (3). Then, the error defined as

is bounded by

(7)

where , and and are the contin-
uous time signals corresponding to and . The above
upper bound suggests that a filter with small transduction error
has energy in its impulse response concentrated about .
For our objective of reducing transduction error in AM–FM



TORRES AND QUATIERI: ESTIMATION OF MODULATION BASED ON FM-TO-AM TRANSDUCTION 3087

estimation, we will now see, however, the importance of both
a time- and a frequency-domain characterization of the error
analysis.

2) Frequency Domain:Our frequency-domain approach to
characterizing transduction error is similar to the “quasista-
tionary” method used in early work on FM communication
systems [22]. Consider a filter with a frequency response

(8)

where is some arbitrary function. We assume that
over the frequency range of the input signal, we can represent

as a sum of polynomials, i.e.,

(9)

Since the output of a filter with shape is
[15], we can analyze the transduction

error explicitly by looking at the transduction error that
corresponds to each term in (9).3

For an input of the form , we have the
filter outputs as shown in (9a) at the bottom of the page. We
now make the following observations:

1) As the number of high-order terms in (9) decreases, the
transduction error, in general, becomes less severe.

2) If over the frequency range of the signal,
there is no transduction error.

3) If over the frequency range of the
signal, there is no transduction error due to frequency
modulation.

A few comments are in order with regard to the two differ-
ent time- and frequency-domain perspectives on transduction
error. Consider, as an example, the Hilbert transformer filter
used to obtain an analytic signal. This method does not suffer
from any transduction error, yet the time-domain analysis
would lead us to believe that the Hilbert transformer suffers
from significant transduction error. It is important, therefore,

3(dk=dnk)x[n] corresponds to samples of(dk=dtk)x(t), wherex(t) is a
bandlimited continuous-time signal corresponding tox[n].

to use frequency-domain transduction error analysis in de-
signing transduction filters. Nevertheless, we still desire that
the impulse response of the filters remains short so that the
AM–FM estimation algorithm operates on only a local portion
of the signal. This condition will minimize transient effects
due to any nonsmooth modulating functions that the signal
may contain.

From the above analysis, the filters should have short
impulse responses and have few high-order coefficients in their
polynomial expansion.4 This type of problem, i.e., optimizing
with a tradeoff between multiple objectives, can be solved
by an optimization technique known as the goal attainment
method [8]. The goal attainment method solves the problem
given by

minimize such that (10)

where

vector of costs;
vector of weights;
vector of goals;
vector of unknown parameters;
scale factor.

The advantage in using the goal attainment method is that it
allows the objectives to be over- and under-achieved. For our
filter design problem, our objectives5 are

4Prolate spheroidal wave functions satisfy a similar constraint in the time
domain but an energy concentration constraint in frequency [23].

5Adding the constraintsF5(c) = G2

1
(ej0) +G2

1
(ej�) = 0 andF6(c) =

((d=d!)G1(ej!)j!=0)2 + ((d=d!)G1(ej!)j!=�)2 = 0 significantly im-
proved the performance because these constraints aid in making the frequency
response “smooth.” This reduces the transient response in the frequency
domain when the impulse response is truncated to obtain an FIR filter.

Filter Output

...

(9a)
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subject to the constraint

with and where
, ,

and . Given the symmetry of
and , only positive time values of these responses

are used in the minimization. The summation lower bounds
are selected as , which will concentrate the energy
in the first five polynomial coefficients, and , which
concentrates the energy of the impulse response in seven
samples. We also chose because using a higher
order polynomial for makes the optimization too
computationally intensive. We want to satisfy , , and

while forcing . Therefore, our goal vector is

The weight vector specifies the relative degree of the under-
or over-achievement of the goals. We chose the weight vector
to be

Referring back to (10), for ,
will force to achieve the value of 1. Choosing

will cause the corresponding objectives to be under-
achieved to an equal degree. The goal attainment method will
find a solution that minimizes, which, again referring to (10),
means that , , and are as close to zero as possible,
and . By using the goal attainment method, we have
gained the ability to incorporate hard constraints and to trade
off between conflicting goals in our optimization problem.

The frequency responses of the filters obtained using the
goal attainment method are shown in Fig. 2(a). In Fig. 2(b)
and (c), the energy of the impulse responses is seen to be
concentrated in seven samples around . The coefficients
of the polynomial of expansion of about is
shown in Fig. 3, where it can be seen that only the first five
coefficients are significant. It is important to again observe
that the “transduction gain,” i.e., the extent to which FM is
transduced to AM, comes from the relation between the two
filters and not the shape of the filters.
This is one of the strengths of the algorithm because it allows
for the choice of filters that minimize transduction error, with
the above filter relation preventing both filters from being flat
in the frequency domain.

C. Inverse Modulation

The performance of the algorithm presented in the pre-
vious sections degrades as the rate and extent of AM and
FM increases because as the modulation is increased, the
transduction approximation becomes less accurate. To reduce
the extent of the AM and FM, we use the estimates obtained
from the AM–FM estimation algorithm of the previous section
to invert the modulation and then reapply the algorithm
to the new demodulated signal. Since the initial estimates
are not exact, the demodulated signal still contains some
modulation. Iterating this procedure, however, reduces the

(a)

(b)

(c)

Fig. 2. Frequency and impulse response ofG1(ej!) and G2(ej!). (a)
Frequency response,G1(ej!) (lower), G2(ej!) (upper). (b) Magnitude of
the impulse response ofg1[n]. (c) Magnitude of the impulse response ofg2[n].

Fig. 3. Coefficients of the polynomial expansion ofG1(!).

Fig. 4. Block diagram of the single-component AM-FM estimation algo-
rithm with iterative refinement.

remaining modulation. The block diagram of this system is
shown in Fig. 4.

We denote by the input on the th iteration and

by and the amplitude and frequency estimates
corresponding to . On the initial iteration, ,
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(a)

(b)

Fig. 5. Average root-mean-square error in amplitude and frequency estimates of transduction-based AM–FM estimation algorithm. The frequency is in
Hertz with a 10 000-Hz sampling rate.

, and . The inverse modulation procedure
is described by

where the term is necessary to shift the spectrum of
the signal back up to the passband of the filters and

. The overall phase and amplitude estimates after
iterations are given by

and

The procedure can be summarized as follows.

1) Estimate the modulation of with the estimation
algorithm of previous sections.

2) Divide by the amplitude estimate .
3) Obtain a phase estimate by numerically integrating

using the trapezoidal rule [24].
4) Invert the FM and multiply by . For real ,

the FM inversion, however, is constrained so that the
negative frequencies of the real signal are not modulated
to positive frequencies as described in step (5).

5) Modulate back up to the passband of the fil-
ters and . Because the filters were
optimized about , the modulation frequency is

selected as close as possible to without modulating
negative frequencies to positive frequencies (see the
Appendix).

6) Stop at the current iteration or repeat the procedure with
the new “inverse modulated” signal.

In steps (4) and (5), it is important to observe that even if a
portion of the negative frequency spectrum does get modulated
to positive frequencies (see the Appendix), the algorithm still
produces useful results. This is because the filters
and are close to zero near and 0. Any negative-
frequency spectral components that are modulated to the low
or high positive frequency range are approximately filtered out.

D. Examples

To quantify the performance of the single-component
AM–FM estimation algorithm, we show the error for a group
of 625 signals which are described as

(11)

where , and . If these signals
were obtained from sampling continuous-time signals at a rate
of 10 000 samples/s, the continuous-time set of signals would
have sinusoidal amplitude modulation varying from 0.5 to 1.5
over a range of frequencies from 20–500 Hz. The FM varies
from 2000–3000 Hz around a carrier of 2500 Hz, and the rate
of the frequency modulation ranges from 20–500 Hz. The root-
mean-square error is shown in Fig. 5. Plots of the estimates
are given in [25].

In comparing performance with the iterative inverse modu-
lation method, we used the same signal set described in (11)
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TABLE I
AVERAGE OF THE ROOT-MEAN-SQUARE ERROR OVER THESIGNAL SET IN

(11) USING THE ITERATIVE INVERSE MODULATION METHOD.
(FREQUENCY ERROR CALCULATIONS DONE IN TERMS OF RADIANS)

and found that the iterative method results in error reduction by
a factor of 10. Table I lists the root-mean-square error averaged
over the signal set after 1–5 iterations.

E. Additive Noise

If the input signal is corrupted with another signal, then the
frequency estimate becomes

(12)

where “ ” denotes matrix transpose, and where and
are vectors denoting the impulse responses of and

, and is a vector denoting a disturbance signal. The
impulse responses are assumed to fall in the interval ,
and thus, all vectors are of length .

To more simply quantify the performance of the algorithm
in the presence of a disturbance, we assume an amplitude-
bounded disturbance vector and derive upper and lower bounds
on the frequency estimate. Explicitly, we assume

where . Equation (12) is upper
bounded by

(13)

where, to avoid a singularity in (13), we assume that the
disturbance is small enough so that

(14)

Fig. 6. Frequency estimate of a constant amplitude, constant frequency
signal with a disturbance vector of amplitude corresponding to� = 0:1 (SNR
= 15 dB). The upper and lower bounds are illustrated by dashed lines.

The upper bound can be written in terms ofby first writing

The upper bound then becomes

A lower bound derived in a similar manner is given by

These bounds are somewhat loose and, as can be seen in (13),
become less tight as becomes large. An example of the
frequency estimate of a constant amplitude, constant frequency
signal, when there is a disturbance vector with a maximum
amplitude corresponding to (SNR dB), is
shown in Fig. 6. The upper and lower bounds are illustrated
by dashed lines.

IV. TWO-COMPONENT AM–FM ESTIMATION

We begin this section with showing that with the amplitude
envelopes of the outputs of filters and , it is
possible to essentially reduce the two-component estimation
problem to two single-component estimation problems and
that this allows a unique solution. The resulting two single
sinusoids represent the beating that occurs in each filter’s
output between the two sinusoids in the input. This beating
phenomenon is exploited to form estimates of the AM and
FM of the input components.
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A. Reduction to Two Single-Component Problems

Consider a signal of the form

(15)

If is passed through the filters and , the
filter outputs can be approximated as

(16)

and

(17)

The square of the amplitude envelopes of the filter outputs are
given by

(18)

and

(19)

Treating the first two terms of and as “noise,”6

and denoting them as

(20)

(21)

we are left with two single AM–FM sinusoids with additive
noise

and

We can think of the envelopes and as si-
nusoids due to thebeating between the two filter input

6In Section IV-B, we assume these noise terms are negligible. We will
discuss when this treatment is valid in Section IV-C.

components. The AM envelope of these sinusoidal components
is determined in part by the cross product of the original
envelopes, and the FM of each component is given by the
difference, or spacing, between the input frequencies.7

B. AM–FM Separation

Our goal now is to separate from and
the AM and FM of each sinusoidal component of the input.
Because and are essentially single-component
functions, they can be processed with the single-component
AM–FM estimation method. With passed to the single-
component estimation algorithm, the algorithm gives a unique
amplitude and frequency estimate because the signal is made
analytic. The unique amplitude function is given by

(22)

and the unique instantaneous frequency estimate by

(23)

Similarly, for , we get a unique amplitude estimate

and the same instantaneous frequency estimate

We can now work with these AM and FM functions to
determine the AM and FM of the input components.

The product of the individual instantaneous frequencies can
be obtained from

(24)

Solving for in (23) and substituting this into (24) gives

which has two possible solutions

Since the desired frequency is positive, the correct solution is

(25)

Substituting this result into (23), we obtain

(26)

7If the crossterms are not present, the equations are not meaningful; we
would want to detect this situation and fall back to the single-component
algorithm.
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This solution always assigns the lower valued frequency
estimate to and the higher valued frequency estimate to

.8 It is now possible to estimate the AM functions using
the instantaneous frequency estimates and the magnitude of the
filter outputs. First, we multiply of (18) by and
then subtract the result from of (19), which results in

(27)

From (22), we have

(28)

Dropping the time subscript so that the equations are less
cumbersome and combining (27) with (28), we have

Rearranging terms gives

The above equation has two roots:

(29)

From (25) and (26), and are both positive; therefore, it
is always true that

8If the frequencies cross, the frequency track that corresponded to_�1[n]
will then correspond to_�2[n] and vice versa. A similar switching will occur
for the amplitude estimates.

Fig. 7. Block diagram of two-sinusoid AM–FM estimation algorithm.

and thus, it is always true that

Therefore, one of the roots of (29) is always negative, and
the other is always positive. The correct root is the positive
root as shown in (30) at the bottom of the page. We can now
obtain from (22) and (30) as

(31)

A block diagram of the two-sinusoid AM–FM estimation
algorithm is shown in Fig. 7.

C. Validity of the Approximations

The two terms and described in (20) and (21)
will be referred to asself generated noise(SGN). These
SGN contributions consist primarily of low-frequency com-
ponents and thus are effectively eliminated at the input of the
single-sinusoid algorithm by the filters and .9

Nevertheless, if the two signals are not stationary, some
energy of the SGN passes through the filters and results in
error in the estimates. It is difficult to quantify the allowable
frequency range of the SGN because there are many factors
that influence the sensitivity to the SGN. For example, if the
two sinusoids are close in frequency, then is
at a low frequency near the SGN. In this case, when
passes through , the SGN is not reduced relative to
the single AM–FM term. Consequently, we use the general

9When there is no AM or FM modulation, the noise terms are constant and
therefore completely eliminated.

(30)
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guideline that the frequency separation of the two sinusoids
should be greater than the frequencies of the SGN. In other
words, if we represent and as and

, respectively, then the guideline can be stated as
.

The presence of SGN also requires a modification in the
single-component estimation algorithm. Recall that for a real
input to the single-component algorithm, the inverse modula-
tion algorithm modulates the signal to a frequencythat is
as close to as possible. The closeness of to was
constrained to avoid modulating the negative frequencies to
positive frequencies (see the Appendix). In the two-component
case, we are even more constrained because we must prevent
the SGN from being modulated to the passband of the filters,
which would violate the assumption that most of the energy
of the SGN is at low frequencies and therefore significantly
reduced by the filters and . In a later section,
we describe a modification to the two-component algorithm
that significantly reduces the SGN. Once the SGN has been
reduced, we can use the inverse modulation techniques in the
embedded single-component algorithm.

D. Examples of the Two-Component AM-FM
Estimation Algorithm

In this section, examples of the performance of the two-
component AM–FM estimation algorithm are presented to
demonstrate its capabilities and limitations.10 As a first ex-
ample, we use the signal

(32)

For each component, the frequency modulation is the same,
and the only difference is the carrier frequencies. The results
are shown in Fig. 8. Note that the spectrums of the two com-
ponents overlap significantly. The signal in the next example
has two components that cross in frequency

(33)

and results are shown in Fig. 9. Since the algorithm assigns

the lowest frequency estimate to , it does not show the
frequency cross. In addition, observe that the effect of the
frequency crossing is local.

Our purpose in this paper is to present a method of sepa-
rating AM and FM of a two-tone signal from the amplitude
envelope of the output of two transduction filters, motivated
by the speculation that frontend auditory filters may use such a
scheme. Nevertheless, it is of interest to consider a comparison
with an existing scheme. One such approach described in
the introduction to this paper is based on tracking spectro-
gram ridges, i.e., peaks in the short-time Fourier transform
magnitude (STFTM) [3]. Figs. 10 and 11 show the frequency

10These examples do not use the iterative techniques in the embedded
single-component algorithms.

(a)

(b)

(c)

Fig. 8. AM and FM estimates of a two component signal with constant AM
and sinusoidal FM. (a) Estimate ofa1[n], mean square error:2:48� 10�4,
max deviation:3:95 � 10�2. (b) Estimate ofa2[n], mean square error:
2:94�10�3, max deviation:3:77�10�2. (c) Estimates of_�1[n] and _�2[n],
mean square error,_�1[n]: 6:29�10�5 (rad/sample), mean square error,_�2[n]:
1:00 � 10�4 (rad/sample), max deviation,_�1[n]: 1:73 � 10�2 (rad), max
deviation, _�2[n]: 2:10 � 10�2 (rad).

estimation resulting from STFTM ridge tracking for the above
two examples of this section. The STFTM is updated every
sample, and a 10-ms window length was selected to give
a reasonable tradeoff in time and frequency resolution. In
the first case, we see that both algorithms have difficulty at
the frequency crossover point; the ridge algorithm merges
the two frequencies into one, whereas the transduction-based
algorithm exhibits instability. For the sinusoidal FM case,
the ridge algorithm has difficulty in resolving frequencies
due to the smearing of the window Fourier transforms; a
longer window in time, thus achieving an improved frequency
resolution, degrades the estimate even further due to poor
time resolution. A complete comparative study would involve
more advanced time–frequency methods, including the Wigner
distribution and its variations and other techniques alluded to
the introduction. In addition, we can speculate that the inverse
modulation approach of this paper might improve the ridge
technique [3], as well as other AM–FM estimation methods.

We end this section with an example of an actual two-tone
single consisting of the sum of two AM–FM tones from a
guitar. Fig. 12 shows the spectrogram of the signal and the
frequency estimates derived from our two-tone transduction-
based algorithm.



3094 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999

(a)

(b)

(c)

Fig. 9. Example in which the frequencies of the two components cross. (a)
Amplitude estimate of first component. (b) Amplitude estimate of second
component. (c) Frequency estimates.

Fig. 10. Ridge tracking on signal with two crossing frequencies.

Fig. 11. Ridge tracking on signal with two frequencies with sinusoidal FM.

E. Improvements on the Two-Component Algorithm

We now make two improvements to the two-component

algorithm. First, the estimates of , , , and
can be used to reduce the SGN. Second, the AM of each
component can be inverted with time-varying filters to reduce
the transduction error. Using both methods together, we reduce

(a)

(b)

Fig. 12. FM estimates of AM–FM signal from a guitar. (a) Spectrogram of
signal. (b) FM estimates of two-component algorithm.

Fig. 13. Block diagram of two-component AM–FM estimation algorithm
with SGN cancellation feedback.

the overall mean-squared error by a factor of 10. This section
briefly describes each technique.

1) Eliminating the SGN:The SGN can be estimated from
the AM and FM estimates of a first pass with the two-
component algorithm and then reduced on a second pass.
The estimate of the SGN is calculated from (20) and (21)
and is then subtracted from the output of filters and

. Fig. 13 shows the block diagram with the SGN noise
cancellation. With significant reduction of the SGN, we can
use the single-sinusoid inverse modulation algorithm as it was
described in Section IV.

To illustrate the effects of SGN cancellation, consider the
signal

(34)
The effects of SGN cancellation for this signal are shown in
Fig. 14. Further illustration of the benefits of SGN are given
in [25].



TORRES AND QUATIERI: ESTIMATION OF MODULATION BASED ON FM-TO-AM TRANSDUCTION 3095

(a)

(b)

Fig. 14. (a) Magnitude of Fourier transform ofjg1[n] � x[n]j2, which is
the input to the single-component algorithm on the first pass (b) with SGN
reduction on the second pass. The sequencex[n] is given by (34)

2) Inverting the Amplitude Modulation:Inverting the mod-
ulation when the signal consists of two AM–FM components
is not as straightforward as in the single-component case.
The difficulty arises because we cannot operate on each
signal component independently. This makes inverting the FM,
in particular, very difficult. In order to keep the frequency
separation between the two signals constant, we would need
to adjust the sampling rate as a function of time to compress
and stretch the spectrum of the signal. We do not address FM
inversion for the two-component case in this paper.

To invert the AM, we use a pair of filters that have a linear
frequency response for and are unrestricted11 for

. At each time sample, using estimates from an
initial pass through the two-component estimation algorithm,
we weight the output of the two linear filters in such a way that
the amplitudes of both components are scaled to a value of one.
For example, suppose that at time, , ,

, and . Then, if we pass this
signal through a filter with a frequency response such
that and , the output of
this filter at consists of the sum of two sinusoids: each
sinusoid with an amplitude equal to one. With this procedure
performed at each time sample, the amplitude modulation is
approximately eliminated (assuming the modulation estimates
are close to the true modulation). Implementation of the
method is fully described in [25].

We again use the signal described in (34) to demonstrate
the effect of AM inversion, together with SGN cancellation.
The results are shown in Fig. 15. Adding the AM inversion
has improved the estimate by reducing spectral sidelobes due
to AM. The mean-squared-error for the AM and FM estimates
is reduced overall by a factor of 10 [25].

V. CONCLUSION

In this paper, we first improved on a single-component
AM–FM estimation algorithm that is based on the output
envelope of two overlapping transduction filters. The im-

11The filters are unrestricted for! 2 (��; 0) because when we compute
the analytic signal, the negative frequencies ofx[n] are eliminated.

Fig. 15. Magnitude of Fourier transform ofjg1[n] � x[n]j2 after SGN
cancellation and AM inversion. The sequencex[n] is given by (34).

provement involved “inverting” the signal modulation and
then applying the algorithm to the demodulated signal. We
developed a frequency-domain approach to analyze and select
filters with respect to transduction error. We also derived
bounds on the frequency estimate for an amplitude-bounded
noise disturbance. We then proposed a method to estimate the
AM and FM functions when the input signal is the sum of
two AM–FM sinusoids and showed that this problem can be
essentially reduced to two single-component AM–FM estima-
tion problems. In addition, we improved this algorithm by both
canceling the self generated noise (SGN) and inverting the
AM. We gave several examples demonstrating the algorithm
under a wide range of AM–FM signals. Additional examples
and evaluations can be found in [25].

There are several aspects of the algorithms presented that
can be improved upon or that require further investigation.
One of the key factors in choosing the particular relation
between transduction filters was analytic simplicity. Therefore,
although the filters are optimal according to our goal attain-
ment approach, tradeoffs still exist in choosing this relation
between overlapping transduction filters involving spectral
shape and impulse response length as well as simplicity.
In Section III, we showed experimentally that inverting the
modulation with estimates of the AM and FM significantly
reduced the estimation error. A current area of investigation
is proving that this technique converges to the exact AM and
FM functions. In the algorithms presented in this paper, we
have used only two filters. A possible approach to reduce
the error is to use many filters and exploit the redundancy
to obtain improved AM–FM estimates. For example, we
could average the estimates obtained from different filter
sets. Such approaches, as was the theme of this paper, are
motivated by the hypothesis that the auditory system, with
multiple overlapping filters at various processing stages, may
use similar mechanisms in robustly “perceiving” AM and FM
in a signal [20]. Indeed, it has recently been shown that the
transduction approach can be realized as a bank of cochlear
bandpass filters followed by envelope detectors and shunting
neural networks and that the resulting dynamical system is
capable of robust AM–FM estimation in noisy environments
and over a broad range of filter bandwidths and locations
[2]. Shunting neural networks appear throughout the nervous
system and are characterized by a form of ratio processing.

Finally, a problem we are currently considering is AM–FM
estimation of multiple sinusoids. In this case, one approach is
to use a filterbank of more than two filters, as illustrated in
Fig. 16. Initial work in this area has shown that the shape of
the filters must be nonlinear for any additional information to
be gained by more then two filters, and that the approach
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Fig. 16. General filterbank approach to AM–FM estimation.

used for the two-sinusoid case, i.e., reducing the problem
to a lower order problem, is not applicable [25]. Rather,
the multicomponent AM–FM problem has been formulated
as a nonlinear estimation problem, and standard numerical
approaches of the Newton iterative type were used to solve the
set of nonlinear equations that result from taking the magnitude
of the filter bank outputs. Examples for the single- and
two-sinusoid case have been demonstrated using a five-filter
filterbank, and an approach for more than two components
was outlined. For the later case, solution uniqueness has yet
to be established.

Generalization of the two-tone AM–FM estimation algo-
rithm to multicomponent signals is currently being investigated
in the particular context of speech applications where AM–FM
representations have an extensive history. Perhaps the earliest
application of AM–FM representations in speech processing
was by Flanagan and Golden [7] in the phase vocoder that
allowed bit-rate reduction by downsampling the AM and FM
of each filterbank output, rather than the output signal itself,
where the AM and FM had a smaller bandwidth than the output
signal. This same concept has been applied more recently
in a speech vocoder based on AM–FM resonances where
the resonant AM and FM is downsampled rather than the
bandpass filter output AM–FM [16]. Yet another application
is in speaker and speech recognition, where a parameterized
version of the AM and FM are used as features in recognition
systems [10], [19]. AM–FM estimation of multiple tones,
as well as of functions of the multiple components, will be
especially important in these applications where sinusoidal
components are often closely spaced.

APPENDIX

EFFECT OFNEGATIVE FREQUENCIES ININVERSE MODULATION

In the inverse modulation algorithm of Section III-D, for
a real signal , we restrict the function used to invert the
FM so that negative frequencies are not modulated to positive
frequencies. We denote as the positive FM function of

and as the negative FM function. For real

where . Demodulating with
results in

To prevent the negative frequencies from being modulated into
the positive frequency range, we must force

for all (35)

where . A necessary condition for this inequality
to be satisfied is that

for all (36)

To satisfy this inequality, there are two options. We can scale

by some factor , or we can divide the
signal into shorter sections in which the frequency variation
of is confined to a smaller region. With the first option,
the frequency modulation would never be completely inverted.
The second option assumes that the frequency modulation of

does not vary over a range of rad/sample within the
duration of the impulse response of the filters and

. This does not impose a significant constraint. For
example, if the sampling frequency is 10 000 Hz, a signal that
violated this constraint would have to sweep across 2500 Hz in
approximately 1 ms. If a signal does violate this assumption,
we can use both options, i.e., use a short block of the signal
and scale the FM estimate by to ensure that (36)
is not violated. Therefore, we always use option two and, if
necessary, combine it with option one.

Once we have satisfied (36), we can now choose.
Because we have optimized the design of our transduction
filter pair about the frequency , we select as close
to as possible while still satisfying (35) [25]. Assuming
that (36) is satisfied, is determined by

if

if

and

if .

(37)
In deriving the constraint in (37), it was assumed that we

knew the actual FM function. However, we have only an
estimate of the FM function, and because this estimate is
generally not exact, using it to demodulate the FM might
violate the constraint in (36). In addition, the spectrum of an
FM signal has spectral components outside the range of the
instantaneous frequency. This implies that although is
confined to , might have spectral components
in the positive frequency range. Therefore, we must leave some
room for error when we demodulate, thus giving the constraint

for all (38)

where . Determining the best is a complex issue that
involves finding a tight bound for the estimation error as well
as determining the spectral range of the negative frequencies.
We chose rad/s based on experimental results.
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