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Estimation of Modulation Based on
FM-to-AM Transduction: Two-Sinusoid Case

Wade P. TorresStudent Member, IEEEand Thomas F. Quatierkellow, IEEE

Abstract—A method is described for estimating the amplitude In discrete time, the goal of AM—FM estimation is to
modulation (A][\/') and tlhe;] frequency medU|af&C,>\;l1 l(:'T\AM)_Of th_z estimate the amplitude functions[] and frequency functions
components of a signal that consists of two AM—FM sinusoids. , : ; 4 ;

The approach is based on theransduction of FM to AM that Bin] of the composite discrete-time signal
occurs whenever a signal of varying frequency passes through N

a filter with a nonflat frequency response. The objective is to s[n] = Z a;[n] cos (6;[n])
separate the AM and FM of the sinusoids from theamplitude ’ ’
envelopef the output of two transduction filters, where the AM

and FM are nonlinearly combined in the amplitude envelopes. where#; [n] denotes the discrete-time phase function,éil{vd]

A current scheme is first refined for AM—FM estimation of a . . . oo
single AM—FM sinusoid by iteratively inverting the AM and is obtained from sampling the derivative of the counterpart

FM estimates to reduce error introduced in transduction. The ~Continuous-time phasé,(t). AM—FM estimation has been
transduction filter pair is designed relying on both a time- and approached from several perspectives of which we describe
frequency-domain characterization of transduction error. The a few. Perhaps one of the earliest and simplest methods is
approach is then extended to the case of two AM-FM sinusoids pased on the short-time Fourier transform magnitude (STFTM)
by essentially reducing the problem to two single-component d of .

AM-FM estimation problems. By exploiting the beating in the Squared of a sequence, 1.€.,
amplitude envelope of each filter output due to the two-sinusoidal 2
input, a closed-form solution is obtained. This solution is also |X(n w)|2 _ Z x[m]w[n . m]ejum,
improved upon by iterative refinement. The AM-FM estima- ’ -

tion methods are evaluated through an error analysis and are

illustrated for a wide range of AM-FM signals. which measures the energy:ifin] in a time—frequency neigh-
Index Terms—AM-FM estimation, bandpass amplituse enve- borhood of (n, w), wherew[n] is a sliding short-time win-
lope, FM-to-AM transduction, signal separation, time—frequency dow. One AM-FM estimation method, which is sometimes
distribution. referred to as the “ridge algorithm,” computes the instan-
taneous frequencies in the sequende| from local max-
|. INTRODUCTION ima in |X(n, w)|?. The STFTM squared is one of many

MPLITUDE modulation (AM) and frequency rnodula_t|me—frequency distributions (TFD’s) of a signal. A TFD

. . ’ . describes a signal simultaneously in the time and frequency
tion (FM) are fOUI"Id.In many naturaII)_/ occurring Slgr]‘E?lsdomains from which AM and FM components can be esti-
il;ors eg:cr?]plaer,] dAt)/li;:; Miclzil z:] rzgzoréir;tralz}zg:ir;ii“ogoiﬁ rrtlﬁgnlrated from their ridges or other TFD properties [3], [5]. This
resoFr)1ant and harmorg\]ic comg one’nts Motivationgfor the am_cludes the Wigner distribution (first introduced in the 1930’s

. . mpol ‘ o . {5 calculate the guantum mechanical distributions of position
proach of this paper in estimating AM—FM in signals is th%nd momentum) and a large related class of TED's [5]. A
hypothesis that the AM—FM of such signals is represented :

in and estimated from thamplitude envelopesf bandpass method of harmonic ridge tracking has also been used in the

X . . ontext of speech analysis/synthesis [13]. In the 1960’s, Costas
cochlear filter outputs in the front-end auditory system. We . L
: . . , . roposed a different approach to AM—FM estimation referred
rely on two basic properties of a signal’s amplitude envelop

first, that FM istransducedo AM by the shape of a bandpasso “as re5|dlial signal analysis [6]. This approach uses a_set
. o L of “trackers”. one for each AM—FM component contained in
filter, similar to the original Armstrong FM demodulator [1]

. . the signal. At the input to each tracker, the other component
and, second, that the amplitude envelope of a filter Ompé’%timates are subtracted so that the assigned component to
reflects thebeatingof two sinusoids at the filter input. It has g P

been hypothesized that the auditory system uses both this F%Aparticular tracker is predominant. The estimates in Costas’

to-AM transduction and the beating phenomenon for the neufa“gmal system are calculated by a linear projection of ampli
coding of AM—FM in sounds [9], [20], [27].

=1

m

ude and phase. Recently, a more elaborate projection method
has improved upon Costas’ original system [18]. Another

. . . . . Epproach uses a nonlinear operator referred to as the Teager
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Rectify filter's envelope output representation as a “pure” AM—FM
Filter 1 Output component. Iterative methods are introduced to reduce both

G1(e™)
-I? \ forms of error.

The paper is organized as follows. In Section I, we dis-

Input Process . . . . .
Fnvelopes ), by CUSS considerations of uniqueness in AM—FM representations
- / az[”]’,;z[nj of one- and two-component signals and review the related
. ecti ’ . . . .
g;lz:]r,f) Outpnt concept of the analytic signal. In Section Ill, we describe the

[-I? concept of FM-to-AM transduction and describe a transduction
approximation in terms of amplitude envelopes and linear,
time-invariant filters when the input is a single-component
AM-FM signal. We then review the AM—-FM estimation
initial sine separation formulates the problem as a systemaiforithm, which is based on FM-to-AM transduction and
linear equations [21]. The solution to the system of equatiorspplied to a single-component signal, and describe its imple-
which have additional constraint equations relating to thaentation used in the remainder of the paper. A frequency-
periodicity of the components, is the solution to an augmentedmain characterization of the transduction error is used as a
least-squares problem. The estimates of the AM-FM sihesis for obtaining the filter pair for transduction. Section IlI
components are then processed with the Teager energy-basets with a technique that improves performance of this
algorithm to obtain the AM—FM estimates of each componerdlgorithm by iteratively inverting the modulation to reduce
Other generalizations of Teager energy-based AM—FM estinteansduction error. In Section 1V, the algorithm for estimating
tion have also been recently proposed for the multicomponghe AM and FM of a signal composed of two AM-FM
problem [11]. components is presented, and refinements are then made based
An approach to AM—FM estimation of a single-componerdn inverse modulation techniques conceptually similar to those
AM-FM signal exploited within this paper is based on thef Section Ill. Section V concludes with a summary, including
transduction of FM to AM by linear filters. FM is transducedh brief discussion on the paper’s generalization to more than
to AM whenever an FM signal passes through a filter witwo AM—FM components.
a nonflat frequency response; as the instantaneous frequency
of the FM moves across the nonflat passband of the filter, a I
change in the output amplitude envelope occurs. Using two
overlapping transduction filters, it is possible to estimate the
AM and FM of a single-component AM—FM signal using onlyne form
the amplitude envglopeg of the filter outputs [14], [17]. In.this s[n] = a[n] cos(6[n])
paper, we generalize this approach to signals that consists of
two AM—FM sinusoids. where a[n] is assumed to be positive. In finding this repre-
A two-component AM—FM signal is given in discrete timesentation, we could choose any value &r] at eachn such
by thata[n] > |s[n]|, resulting inf[»] equal toarccos(s[n]/a[n]).
Because our only constraint is thdt:] > |s[n]|, there are an
infinite number of choices fou[n] and #[n] at each sample
wherea, [n] anday[n] are the AM functionsg; [n] andf,[n] PoiInt. One approach to making the decomposition unique
are the phase functions, ar#j[n] and 6,[n] are the FM is through theanalytic signal[5]. An analytic signal is, by
functions. The structure of our two-component estimatio#efinition, a signal that has no negative frequency components.
approach is shown in Fig. 1. After passing the signal throud#nder certain conditions, a real signgh] has an analytic
the pair of transduction filters?; () and Ga(e’*), the Signal counterpark,[n] such that if
amplitude envelopes of the filter outputs are computed; this
operation is denoted in Fig. 1 as the rectify stage. The ampli- sfn] = afn] cos(¢[n]) (1)
tude envelopes themselves each contain a single-componggh
AM-FM signal due to beating between the two sinusoidal
components within each filter; each filter output envelope is a sqln] = a[n]ejem. (2)
function of a1[n], az[n], 61[n], and 6;[n] and has frequency y ,
62[n] — 6:[n]. By applying the single-component AM—pM The conditions under which (1) and (2) hold are as follows [3].
estimation algorithm to the envelopes, we can obtain thel) The Fourier transform of[n] lies entirely in the region
AM and FM of each component in the input signal. Two lw] < wo for somews.
sources of error are introduced in the estimation process. In the) The Fourier transform ofos(6[»]) exists only outside
single-component algorithm, the error is due to the inexactness  ©of this region.
of the assumed transduction process, which is referred We assume that these conditions hold. Defined in this manner,
as transduction error [17]. Because the single-componenthe analytic signal provides a unique expression $pi]
algorithm is embedded in the two-component algorithm, ttes an AM—FM sinusoid where the amplitude function is
latter suffers from this error as well. In addition, the twoa[r] = |s.[n]| and 8[n] = —j In(s.[n]/a[n]), which is
component algorithm has error due to the inexactness of eagtique (modulo2x). Although this uniqueness property can

Fig. 1. Approach to two-component AM—FM estimation.

. PRELIMINARIES
Consider a real signad[n] that we desire to represent in

s[n] = ai[n] cos (81[n]) + az[n] cos(62[n])
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be established for any complex signal representatios[«gf transduction approximation (3), we have two equations and
Vakman [26] showed that the analytic signal is the onlywo unknowns at each time sample. The filters can be chosen
complex signal representation that simultaneously satisfies #tethat the equations are readily solved. In fact, it is only the
following desirable properties. relationshipbetween the two filters that establishes a unique
1) The amplitude envelope is continuous and differentiab&@lution. The actual filter shape is chosen to minimize the
(in continuous time). error in the approximation (3). ’ ’
2) The phase and frequency are not affected by scalalSuppose we choose the filtess (e’“) andGz(e’) to have
multiplication of the signal. the relation
3) If the real signal has constant amplitude and frequency,
the complex signal also has constant amplitude and

frequency. We assume thatii(¢’*) and Ga(e’*) are real and non-

The analytic signal also allows a definition of instantaneoumgative in frequency, thus having the property of being
frequency as the derivative of the phase of the analytic signgymmetric and localized around the time origin, as well as
(5] leading to a convenient solution formulation. In addition, we

In generalizing the representation problem to writkfig] as  assume tha (¢’*), and thus,G-(e’*) is zero for negative
a sum of two AM—FM sinusoids of the form of (%)t is again frequency. From (3), the square of the envelopes of the filter
possible to argue that there are an infinite number of waysdatputs can be approximated as
decomposes[n] in this form [25]. However, we will see that .
our scheme of reducing the two-component problem into two |41 [n]? %CLQ[”]Gf(G]eM)
one-component problems leads naturally to uniqueness of the ly2[n]|? %CL?[”]Gg(Cjé[n]) - GQ[H]Q'Q[H]G%(CWM)_
AM—-FM components.

Go(e*) = wG1 (7). (4)

The AM and FM are then estimated by

lll. SINGLE-COMPONENT AM—FM ESTIMATION BE
; n
We first describe FM-to-AM transduction and then review Oln] =/ |y2[n]|2 5)
and further develop the single-component AM—FM estimation n
algorithm based on FM-to-AM transduction [17]. The method an] =V ly1[n]|? (6)
of inverse modulatiofis proposed for improving the estimation el (ejé[n]) '

for sinusoids with large AM and FM.
C. Filter Choice and Transduction Error

A. FM-to-AM Transduction We have the following constraints on the choiceaf(¢/)
FM-to-AM transduction occurs when an FM signal passesd GQ(ejw)_

through a filter that has a nonflat spectral shape. As the1) The filter outputs must be analytic to provide a unique

frequency of the signal sweeps across the passband of the' aApM-FM decomposition.

filter, the amplitude envelope of the filter output changes. The) G, (¢} and G,(e) should be chosen to reduce the

amplitude envelope of the filter output is therefore a function ~ {ransduction error in (3).

of both the AM and the FM of the filter input. For an inpu

of the form s[r] = a[n]cos(€[n]), the output of a linear

time-invariant (LTI) filter can be approximated as [4], [17]

"The first constraint is satisfied by virtue ¢f,;(¢’*) being

zero for—r < w < 0, i.e., the Hilbert transform operation is

embedded withinG;(e?“). To satisfy the second constraint,

yln] ~ a[n]ejﬂ[n}H(ejé[n}) _ S[n]H(ejé[M)' 3) we analyze the transd_uction error from both a time-domain
and a frequency-domain perspective.

It is assumed thaH (w) = 0 for w < 0, making the resulting 1) Time Domain:in the time domain, error bounds for
signal analytic. Ifs[n] has neither AM nor FM, then the the transduction approximation have been denvgd by _Bowk
approximation (3) is exact. et al. [4]. Let z[n] be the output of an LTI filter with
frequency responséf(e’“) and impulse responsg[n] for
B. Algorithm input s[n], i.e., z[n] = s[n] = A[n], and lety[n] be given by
' ) ) ] the transduction approximation (3). Then, the error defined as
For a single-component AM—FM sinusoid, there are twgy,| = |[n] — y[n]| is bounded by
parameters being estimated at each time pejn} and 6[n].

By passing the signal through two filters and using the eln] < Z |h[p]|/n (|6L(v)|—i—amax|p||é(v)|)dv -
n—p

1For some signals, this definition of instantaneous frequency matches our pel
intuition. Many signals, however, produce “paradoxical” results, in particular, p#0
signals that have multiple components [5]. To avoid problems with this .
definition, we redefine instantaneous frequency to betaf phase derivatives wherea,,.x = max, a[n]|, anda(v) andé(v) are the contin-

with each phase derivative corresponding to a particular AM—FM componagibus time signals corresponding d{n] and g[n] The above

of the signal. upper bound suggests that a filter with small transduction error

2Determining the appropriate number of sinusoids is a rather complex issr@ LT | d abeuD
and not the topic of this paper. Therefore, we assume that the number S energy In Its Impulse response concentrate eub.

sinusoids is knowra priori and that the components are always present. For our objective of reducing transduction error in AM—FM
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estimation, we will now see, however, the importance of botb use frequency-domain transduction error analysis in de-
a time- and a frequency-domain characterization of the ermigning transduction filters. Nevertheless, we still desire that
analysis. the impulse response of the filters remains short so that the
2) Frequency Domain:Our frequency-domain approach tcAM—FM estimation algorithm operates on only a local portion
characterizing transduction error is similar to the “quasistaf the signal. This condition will minimize transient effects
tionary” method used in early work on FM communicatiomlue to any nonsmooth modulating functions that the signal
systems [22]. Consider a filter with a frequency response may contain.
. From the above analysis, the filters should have short
H(c™) = {H+(@]‘°)v 0<w<m (8) impulse responses and have few high-order coefficients in their
0, —m<w<0 polynomial expansiofi.This type of problem, i.e., optimizing

Loy . . with a tradeoff between multiple objectives, can be solved
where H (e’*) is some arbitrary function. We assume thay P )

d : an optimization technique known as the goal attainment
over the frequency range of the input signal, we can represﬁﬁ{éthod [8]. The goal attainment method solves the problem
H, (%) as a sum of polynomials, i.e.,

given by
Hy(e?) = Z o i ©) minicr?j/zefy suchthat F(c)-wy<g (10)
k=0
where

Since the output of a filter with shapew® is
(—5)*(d*/dn*)z[n] [15], we can analyze the transduction
error explicitly by looking at the transduction error that
corresponds to each term in ®).

For an input of the forme[n] = a[n]e’’l", we have the

filter outputs as shown in (9a) at the bottom of the page. \Af%e advantage in using the goal attainment method is that it

now make the following observations: S .
, i allows the objectives to be over- and under-achieved. For our
1) As the number of high-order terms in (9) decreases, tﬂﬁer design problem, our objectiveare

transduction error, in general, becomes less severe.

F =vector of costs;

w =vector of weights;

g = vector of goals;

¢ = vector of unknown parameters;
~ = scale factor.

2) If H(c’*) = 1 over the frequency range of the signal, =
there is no transduction error. Fi(c) = min Z =
3) If H(e’*) = cw + d over the frequency range of the p=fo
signal, there is no transduction error due to frequenc .
m?)dulation. | Y F5(e) = min EJ\: . giln]
A few comments are in order with regard to the two differ- ! oo+
ent time- and frequency-domain perspectives on transduction F3(c) = min Z g3[n]
error. Consider, as an example, the Hilbert transformer filter n=N-+1

used to obtain an analytic signal. This method does not suffer

from any transduction error, yet the time-domain ana|ystijs4Prplate spheroidal wave funct_ions satisfy_ a §imi|ar constraint in the time
. . omain but an energy concentration constraint in frequency [23].

would lead us to believe that the Hilbert transformer suffersg, . . : el o 9y imn .
L . L Adding the constraintés (¢) = Gi(e??) + Gi(e/™) = 0 and Fs(c) =
from significant transduction error. It is important, thereforeq/q.)G, (e7+)|..—0)? + ((d/dw)G1(e7*)|o=x)? = 0 significantly im-

proved the performance because these constraints aid in making the frequency

3(d* /dn*)x[n] corresponds to samples @I* /dt*)x(t), wherex(t) is a  response “smooth.” This reduces the transient response in the frequency
bandlimited continuous-time signal corresponding:fa]. domain when the impulse response is truncated to obtain an FIR filter.

et Output

1+ y[n] :a[n]eje[n1

w > y[n] = 9'[n]a[n]ej0[n1 _jd[n]ejO[n}
N e N e

Transduction 1[n]
Approximation

W o yn] = 6*[n]afn]??" — j(é[n]a[n] + é[n]d[n])eje[n] - jdi e1[n]
—— n

Transduction

Approximation e2[n]

W o y[n] = 6" [n]a[n]e?t — j((n — 1)6"2[n)é[n]a[n] + 9‘"—1[n]a[n])eﬂ'9["1 _ jdi eni]n] (92)
N— —— n

-

Transduction

Approximation en[n]
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subject to the constraint 4 . ,
Fy(e) = ||lgiln]ll2 = 1

with F(c) = [Fi(e) Fa(e) Fz(e) Fy(c)] and where
Gi(w) = Th_ cplw — /20, qin] = i Grlw)erdw, L, . ‘ .
and g2[n] = fow wG(w)e 7" dw. Given the symmetry of Frequency (rads)
g1[n] and g2[n], only positive time values of these responses @)

are used in the minimization. The summation lower bounds
are selected a$t = 5, which will concentrate the energy
in the first five polynomial coefficients, and¥ = 3, which 3
concentrates the energy of the impulse response in sevgn+r

Amplitude

0.8 T T T T T T T T

samples. We also chos? = 20 because using a higher = o2f T T
order polynomial for Gi(w) makes the optimization too o o o o a? ? o0 60
. . . . -10 -8 -6 —4 -2 0 2 4 6 8 10
computationally intensive. We want to satisfy;, F5, and Samples
F5 while forcing Fy = 1. Therefore, our goal vector is (b)

g=[0001]. -—

8 4

0
The weight vectow specifies the relative degree of the unders (4| ]

or over-achievement of the goals. We chose the weight vect@roa\ ]
to be = 02} ]
o oo o0 ol P oo oo owow
_ =10 -8 -6 4 2 0
wW = [1 1 1 0]' Samples 2 4 6 8 10
Referring back to (10), fow = [w; wy w3 wy], wy = 0 ©
will force F} to achieve the value of 1. Choosing = w2 = Fig. 2. Frequency and impulse response (&f(e’~') and Ga(e/<). (a)

w3 = 1 will cause the corresponding objectives to be undeftequency responsés; (/') (lower), Gz (e?*) (upper). (b) Magnitude of
achieved to an equal degree. The goal attainment method Wifi mPuIse response gf n]. (¢) Magnitude of the impulse responsesofr].
find a solution that minimizes, which, again referring to (10),

means thatfy, F», and F5 are as close to zero as possible, s— : ; . : . . v . .
and I, = 1. By using the goal attainment method, we have
gained the ability to incorporate hard constraints and to tradeor T o l ¢ 1 6 0000000066000 o A

off between conflicting goals in our optimization problem. &
The frequency responses of the filters obtained using thes

goal attainment method are shown in Fig. 2(a). In Fig. 2(0) ° * " °  coettisenNumper . ° %

and (c), the energy of the impulse responses is seen to be Fig. 3. Coefficients of the polynomial expansion @f ().

concentrated in seven samples aroung 0. The coefficients ‘

of the polynomial of expansion of; (w) aboutw = #/2 is

! 1 1 L L L L 1

shown in Fig. 3, where it can be seen that only the first five .
. . . po . . . npu 2y

coefficients are significant. It is important to again observep—-lv}{jf{fﬁ;‘;e"---~~~m-—----—--~~~~--—----—~~wl
that the “transduction gain,” i.e., the extent to which FM is 7 . :
transduced to AM, comes from the relation between the two spq1fn] = oln] g el eI ulrkdn)
filters G2(e’*) = wG1(e’®) and not the shape of the filters. Rectif

o . . Filter 1 Y
This is one of the strengths of the algorithm because it allows Gr(er) [ Outp;lt
for the choice of filters that minimize transduction error, with -l \
the above filter relation preventing both filters from being flat Process | afn], 8]
in the frequency domain. Envelopes [~

. . Rectify /
C. Inverse Modulation gﬂze;?) || Qutput
e W
The performance of the algorithm presented in the pre- ’ N

VIOU§ sections degrades as the rate an_d e>_<te|_'1t of AM arpéj 4. Block diagram of the single-component AM-FM estimation algo-
FM increases because as the modulation is increased, &g with iterative refinement.

transduction approximation becomes less accurate. To reduce

the extent of the AM and FM, we use the estimates obtained . . . ) )
from the AM—FM estimation algorithm of the previous sectiofeMaining modulation. The block diagram of this system is
to invert the modulation and then reapply the algorithown in Fig. 4. _ -

to the new demodulated signal. Since the initial estimates'Ve denote byz,[n] the input on thekth iteration and
are not exact, the demodulated signal still contains sorhg ax[n] and 8,[n] the amplitude and frequency estimates

modulation. lterating this procedure, however, reduces therresponding ta[n]. On the initial iterationzo[n] = z[n],
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(b)

Fig. 5. Average root-mean-square error in amplitude and frequency estimates of transduction-based AM—-FM estimation algorithm. The frequency is in
Hertz with a 10000-Hz sampling rate.

ao[n] = 1, andéy[n] = 0. The inverse modulation procedure ~ selected as close as possiblert without modulating
is described by negative frequencies to positive frequencies (see the

1 s Appendix).
Tpr1[n] = —— zx[nle fo Orlpldp jwen 6) Stop at the current iteration or repeat the procedure with
ay[n] the new “inverse modulated” signal.
aln] ej(g[n],zfnzl fo Gora [0] dp) In steps (4) and (5), it is important to observe that even if a
ai[n] portion of the negative frequency spectrum does get modulated
to positive frequencies (see the Appendix), the algorithm still
produces useful results. This is because the fil@&gc’«)

where the terme#~=" is necessary to shift the spectrum ofNdG2(¢’~) are close to zero neasr and 0. Any negative-
the signal back up to the passband of the fil@igc/) and frequency ;pectral components that are mpdulateo! to the low
Ga(¢7*). The overall phase and amplitude estimates aiter OF high positive frequency range are approximately filtered out.

iterations are given by

=1
B ejkwcn

. D. Examples
é[n] — Z éi[n] — kw. To quantify the performance of the single-component
oy AM-FM estimation algorithm, we show the error for a group
and of 625 signals which are described as
k
S 21k
aln] = H a;[n]. xr,1[n] = |14+ 0.5 sin ik
i=1 ’ 500
The procedure can be summarized as follows. . cos <<ﬂ 4+ s <27d”>>> (11)
1) Estimate the modulation ofz[n] with the estimation 2 l 500
algorithm of previous sections. wherek = 2, 4, ..., 50, andl = 2, 4, ..., 50. If these signals
2) D'V'd_e x[n] by the. amphtude estlma_tek [”]_' . were obtained from sampling continuous-time signals at a rate
3) Obtain a phase estimatg[] by numerically integrating ot 10000 samples/s, the continuous-time set of signals would
0k [n] using the trapezoidal rule [24]. have sinusoidal amplitude modulation varying from 0.5 to 1.5

4) Invert the FM and multiply bye=7%["l. For realz[n], over a range of frequencies from 20-500 Hz. The FM varies
the FM inversion, however, is constrained so that tHieom 2000-3000 Hz around a carrier of 2500 Hz, and the rate
negative frequencies of the real signal are not modulatetithe frequency modulation ranges from 20-500 Hz. The root-
to positive frequencies as described in step (5). mean-square error is shown in Fig. 5. Plots of the estimates

5) Modulate x;[n] back up to the passband of the fil-are given in [25].
ters G1(e’*) and Gz(e’*). Because the filters were In comparing performance with the iterative inverse modu-
optimized aboutr/2, the modulation frequency, is lation method, we used the same signal set described in (11)
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TABLE | Time (scc)
AVERAGE OF THE ROOT-MEAN-SQUARE ERROR OVER THESIGNAL SET IN oML o0 05 0p4 005 006 007 008 009 0l
(11) UsING THE ITERATIVE INVERSE MODULATION METHOD.
(FREQUENCY ERROR CALCULATIONS DONE IN TERMS OF RADIANS)

Frequency (rads)

Tteration: 1 2 3 4 5
Avg. Mean Sq. .
AM Estimate 1.27x107% | 6.29%1073 | 4.96x 107 | 3.59x 1073 | 2.75x 1073 . . . . . . . . L 800

100 200 300 400 500 600 700 800 900 1000

Error Samples
Avg. Mean Sq.
FM Estimate 1.09x1072 | 4.58x1073 | 3.95x107% | 2.84x 1073 | 2.19x10®  Fig. 6. Frequency estimate of a constant amplitude, constant frequency
Error signal with a disturbance vector of amplitude corresponding+o0.1 (SNR

= 15 dB). The upper and lower bounds are illustrated by dashed lines.

and found that the iterative method results in error reduction
a factor of 10. Table I lists the root-mean-square error avera
over the signal set after 1-5 iterations.

gt(%le upper bound can be written in termsedby first writing

N

> gillwln]

E. Additive Noise N
If the input signal is corrupted with another signal, then the

lgiw| =

IA
]
)
S
£,
=

frequency estimate becomes "=A7N
. iy : = gi|n]||w(n
. ‘a[n]e[n]Gl(ew[n})e]e[n} —i—géw‘ n:z_:N| [ ]|| [ ]|
f[n] = ‘ G () 1 gt (12) N
aln|G(e??l)edvln —|—glw‘ < € |
= gi[n]|
llg1lx n;N
where ‘t" denotes matrix transpose, and whege and g» il |1
are vectors denoting the impulse responseg7ofe’*) and :Gm-

G»(e’*), andw is a vector denoting a disturbance signal. The
impulse responses are assumed to fall in the intdrval, N, The upper bound then becomes
and thus, all vectors are of lengthv + 1.

To more simply quantify the performance of the algorithm R p
in the presence of a disturbance, we assume an amplitude- fn] < 6[n] + cllsz = #nlesll1/llg s
bounded disturbance vector and derive upper and lower bounds a[n]Gi(e/®ln) — e

on the frequency estimate. Explicitly, we assume

A lower bound derived in a similar manner is given by

max |w[n]| <
n

llg1ll1 ; ; ellg2 — Blnlg:]l1/ g1y
f[n] > 0[n] — G ) — ¢

where ||gilh = SN |a[n]]. Equation (12) is upper

bounded by These bounds are somewhat loose and, as can be seen in (13),
become less tight aé[n] becomes large. An example of the

é[n] frequency estimate of a constant amplitude, constant frequency

. signal, when there is a disturbance vector with a maximum
(g5 —9[”185)“" amplitude corresponding te = 0.10 (SNR = 15 dB), is
shown in Fig. 6. The upper and lower bounds are illustrated
by dashed lines.

|alnlfln]Ga (e e+ gt w |+

[alnlG (@)1 + g w]

(gt — Ol v

= f[n]+ ,
a[n]Gl(cﬂ’["l)ef@["l+g§w‘ IV. Two-CoMPONENT AM—FM ESTIMATION
. , We begin this section with showing that with the amplitude
. ‘(82’ — O[nlg)w envelopes of the outputs of filtel6; (w) and Gy(w), it is
< O[n]+ . (13) possible to essentially reduce the two-component estimation
aln]Gy(e70) |~ gl wi - it
problem to two single-component estimation problems and

that this allows a unique solution. The resulting two single
where, to avoid a singularity in (13), we assume that thgnusoids represent the beating that occurs in each filter's
disturbance is small enough so that output between the two sinusoids in the input. This beating
phenomenon is exploited to form estimates of the AM and
|giw| < |a[n]G1(c?)]|. (14) FM of the input components.
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A. Reduction to Two Single-Component Problems components. The AM envelope of these sinusoidal components
Consider a signal of the form is determined in part by the cross product of the original
envelopes, and the FM of each component is given by the
z[n] = ai[n] cos(61[n]) + az[n] cos(ba2[n]). (15) difference, or spacing, between the input frequenties.

If z[n] is passed through the filtets; (/) and Go(e’), the

. : B. AM—FM Separation
filter outputs can be approximated as

Our goal now is to separate frofy;[»]|?> and |y2[n]|?

ui[n] ~ a1 [n]Gy (ejél["])ejel["] the AM and FM of each sinusoidal component of the input.
y o Becausdy; [n]|? and |y2[n]|? are essentially single-component
+ a2[n]G1 (GJ 2["1)61 2l (16) functions, they can be processed with the single-component
and AM-FM estimation method. Withy, [»]|? passed to the single-
~ 3611n]\ 561 [n] component estimation algorithm, the algorithm gives a unique
valn] R [n]Ga (C )C amplitude and frequency estimate because the signal is made
+ az[n]Ga (ejéz[n])ejez[nl analytic. The unique amplitude function is given by
= ay ol o]y (90 ) 1 ity 2 I7] = 201 [nlaz ]G (01 )Gy (1) (22)
+ az[n]fa[n]Gy (ejéz[nl)ejﬂz[nl_ (17) and the unique instantaneous frequency estimate by
The square of the amplitude envelopes of the filter outputs are élyllz [n] = 6 [n] - 91[”]- (23)
given by

Similarly, for |y2[n]|?, we get a unique amplitude estimate

2 2 2( jé1[n] 2 2( j65[n) . . o o
[ [n]]” ~ai[n]GY ((3 ) + a3[n]Gy ((3 ) ijyo |2 [1] = 201 [n]as[n]61[n)fa[n] G (ewl[n})gl (Gwzw)

361 [n] 382 [n]
+ 2a[nJa[n] (C )Gl (C ) and the same instantaneous frequency estimate

- cos(fa[n] — 01[n]) (18) : . .
and Olye1? [n] = ba[n] — O1[n].
lu2[n])? &~ a?[n]G3 (eﬂ’l["]) We can now work with these AM and FM functions to
) o( o] determine the AM and FM of the input components.
+a3[n] Gy (6 ’ ) + 2a[n]as[n] The product of the individual instantaneous frequencies can
Gy (ejél[rq)GQ (ejéz[n}) cos(Ba[n] — 61[n]) be obtained from -
. . o1 APl
=3[l n]G3 (7 [n]) + a3l ]G3 (% [n] Bolnlbaln) =2 Tl @4
+ 2a1[n]az[n]f1 [n]02[n] G4 (Cjalw)Gl (CjHZ["J) Solving for f,[n] in (23) and substituting this into (24) gives
- cos(fa[n] — 61[n]). (29) . . . a2 n
6.[n] (91 [n] + B}y, 2 [n]) _ e[l
Treating the first two terms dfy, [»]|? and|y2[n]|* as “noise,® Qpy, 12 [n]
and denoting them as . ¢ . jy,12 1]
g O2[n] + Oy, 2 [l [n] — 2222 — ¢
Gy, 2 [n]

1 [n] = a2[n]G? (ea'ek w) + a2[n] G2 (cjé? [nl) (20)

. g . - which has two possible solutions
vo[n] = a3[n]63[n]G? (6301[n1) + a2[n]63[n]G? (6362 ["1) (21)

A _ 1 A A2 &|y2|2 [n]
we are left with two single AM—FM sinusoids with additive 0[] = 9 <_9|y1|2[”] + \/Qlyllz[n] +4&|y1|2[n .
noise
41 [n]|2 ~ 2a1 [n]as[n|G1 (ejél M)Gl (ejéz ["1)
- cos(02[n] — 61[n]) + 11[n] 6.[n] = 1 <_é|y1|2 ] + \/éﬁh . ] + 4 Huel? [ﬂ]) . (25)

2 CAL|y1 |2 [n]

Since the desired frequency is positive, the correct solution is

and
lya[n]|? & 2a1 [n]as[n]6:[n]62[n] Gy (ejél["1)G1 (ejézm) Substituting this result into (23), we obtain
- cos(Ba[n] — 61[n]) + 12[n].

. 1f +
: 2 2 : O2[n] = S| Oy, 2[n] +
We can think of the envelopelg;[»]|* and |yz[n]|* as si- 2
nusoids due to thebeating between the two filter input

2 Ay 121
0> oln]+ 452 ]} (26)
. Ay, |2 [7‘L
7If the crossterms are not present, the equations are not meaningful; we

6In Section IV-B, we assume these noise terms are negligible. We willould want to detect this situation and fall back to the single-component
discuss when this treatment is valid in Section IV-C. algorithm.
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This solution always assigns the lower valued frequency .
" : - : Fil Rectify Single
estimate to%; [n] and the higher valued frequency estimate to ilter 1 Output

- 1) L s
62[n].8 It is now possible to estimate the AM functions using Ga(e™) I | [Estimation
the instantaneous frequency estimates and the magnitude of the
filter outputs. First, we multiplyjy; [n]|* of (18) by #,6, and ~ Input
then subtract the result frofy,[n][? of (19), which results in ]
; ; . Rectify | | i
ly2[n]|* — 61 [TL]QQV[TL”?JI [n]|? g‘;{fﬁ; — Output | — Sisgﬁf(l,?d _.Sg)lffrﬂi\gn
ARCEACES  GAORIAD D) SR
+ a3[nlGE (/= 00) (630n] - Bu[nldaln]).  (27) aale, o]
as(n], Oafn]

From (22), we have
Fig. 7. Block diagram of two-sinusoid AM—FM estimation algorithm.

(A1, 12 [0])°

a2[n]G2 (eI = : . 28
2[7] 1( ) 4a2[n]G3(ei0:1n]) (28) and thus, it is always true that
Dropping the time subscript so that the equations are less o2 — 6.6 1|2 2 (a 2)29-
cumbersome and combining (27) with (28), we have < 2 7 19 Z L ) 'ylel
— U1b2 1
of? — bubiolun? =363 (%) (62 — 616, ) [91? — Bualan
9 — 616,

Ay |2 2 . PR
+ (2'%2—')6 (43— 6162).

4aiGi(e/) Therefore, one of the roots of (29) is always negative, and
the other is always positive. The correct root is the positive

Rearranging terms gives )
root as shown in (30) at the bottom of the page. We can now

[GQGQ(GJ@I)}? 2|2 — 0102|112 obtain a[n] from (22) and (30) as
1 1 —_— T . s N
vt - Ot R @)
'[G%G%(cjé‘ ):| _ (&|y1|‘2)292 —0. 2a1 Gy (Gjel)Gl (Gjez)
46,

A block diagram of the two-sinusoid AM—FM estimation
The above equation has two roots: algorithm is shown in Fig. 7.

" 1 lya|2 — 9192|y1| C. Validity of the Approximations
a1 Gi(’) = ol — 2 _4.0.

62 — 6,0, The two termsi4 [n] and »[n] described in (20) and (21)
will be referred to asself generated noisSGN). These
s 4 SN2 . 9 SGN contributions consist primarily of low-frequency com-
" <|y2| ~— 6163y ) (alyl!z) & ~ ponents and thus are effectively eliminated at the input of the
67 — 616, 6, single-sinusoid algorithm by the filtes; (¢’) andGa(c?*).%

Nevertheless, if the two signals are not stationary, some

(29) energy of the SGN passes through the filters and results in
error in the estimates. It is difficult to quantify the allowable
frequency range of the SGN because there are many factors
that influence the sensitivity to the SGN. For example, if the
(g, )0 two sinusoids are close in frequency, theti®[*=¢:1[7) js
—— >0 at a low frequency near the SGN. In this case, whem]|?

01 passes througli;(¢’*), the SGN is not reduced relative to
the single AM—FM term. Consequently, we use the general

From (25) and (26)§; and#é. are both positive; therefore, it
is always true that

8If the frequencies cross, the frequency track that correspondéd|td
will then correspond t@>[n] and vice versa. A similar switching will occur ~ °When there is no AM or FM modulation, the noise terms are constant and
for the amplitude estimates. therefore completely eliminated.

2 02 — 6,6, 62 — 616 6,

Gy (ejél)

P 2 R .
1 Jyel? —9192|yl|2Jr <|y2|2 9192|y1|2> Jr(aly1|2)292

ai

(30)
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guideline that the frequency separation of the two sinusoids Time (sec)
should be greater than the frequencies of the SGN. In otheps}—22— %2 0 00 005 06 007 0B 000 o

words, if we represent,[n] andis[n] asaycos(gu[n]) and s (L e
az cos(¢z([n]), respectively, then the guideline can be stated as

6[n] — 61[n] > max(di[n], $a[n]). <03
The presence of SGN also requires a modification in the , . . ‘ 1 . . . . [

single-component estimation algorithm. Recall that for a real o T e

input to the single-component algorithm, the inverse modula- @)

tion algorithm modulates the signal to a frequengythat is

as close tor/2 as possible. The closenesswaf to 7/2 was Time (sec)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. ll
T T T T T T T T T 5

constrained to avoid modulating the negative frequencies to*
positive frequencies (see the Appendix). In the tW0-COMPONEBL 1 frrrv s p s st s |
case, we are even more constrained because we must pre\@n;
the SGN from being modulated to the passband of the filterg, I

which would violate the assumption that most of the energy * 0 50 0 0 w0 o 1 o o
of the SGN is at low frequencies and therefore significantly Samples
reduced by the filteré&:; (¢?*) andGo(e?). In a later section, (b)

we describe a modification to the two-component algorithm Time (se0)

that significantly reduces the SGN. Once the SGN has beego 0010 003 0w 00 0w 00 o 0w o1
reduced, we can use the inverse modulation techniques in the
embedded single-component algorithm.

2

Sr

D. Examples of the Two-Component AM-FM
Estimation Algorithm

Frequency (rads)

1

In this section, examples of the performance of the two-; . - , . ‘ : . ‘ . ] 100
. . . 0 100 200 300 400 500 600 700 800 900 1000
component AM-FM estimation algorithm are presented to Samples
demonstrate its capabilities and limitatioflsAs a first ex- ©

ample, we use the S|gnal Fig. 8. AM and FM estimates of a two component signal with constant AM

and sinusoidal FM. (a) Estimate afi[r], mean square erro2.48 x 1074,

a:[n] — cos <2.27m 115 sin [ﬁ_ﬂ}) max deviation:3.95 x 1072, (b) Estimate ofas[r], mean square error:
5 200 2.94 x 103, max deviation3.77 x 10~2. (c) Estimates 06+ [r] andé2[n],
9 9 mean square errofiy [n]: 6.29x 10> (rad/sample), mean square eridy{n]:
+ cos <— + 15 sin {—}) (32) 1.00x 10~* (rad/sample), max deviatiom; [2]: 1.73 x 10~2 (rad), max
deviation, #3[n]: 2.10 x 10—2 (rad).

For each component, the frequency modulation is the same,
and the only difference is the carrier frequencies. The resu@istimation resulting from STFTM ridge tracking for the above
are shown in Fig. 8. Note that the spectrums of the two cortwo examples of this section. The STFTM is updated every
ponents overlap significantly. The signal in the next examp$@mple, and a 10-ms window length was selected to give
has two components that cross in frequency a reasonable tradeoff in time and frequency resolution. In
the first case, we see that both algorithms have difficulty at
2[n] = cos <7m n 27n? ) + cos <97r_n B 2mn? ) (33) the frequency crossover point; the ridge algorithm merges
10~ 10000 10 10000 the two frequencies into one, whereas the transduction-based
- . . . algorithm exhibits instability. For the sinusoidal FM case,
and results are shown in Fig. 9. Since the algorithm assi % ridge algorithm has difficulty in resolving frequencies
the lowest frequency estimate &ln], it does not show the gue to the smearing of the window Fourier transforms; a
frequency cross. In addition, observe that the effect of thenger window in time, thus achieving an improved frequency
frequency crossing is local. resolution, degrades the estimate even further due to poor
Our purpose in this paper is to present a method of sefgne resolution. A complete comparative study would involve
rating AM and FM of a two-tone signal from the amplitudgnore advanced time—frequency methods, including the Wigner
envelope of the output of two transduction filters, motivategistribution and its variations and other techniques alluded to
by the speculation that frontend auditory filters may use suchif introduction. In addition, we can speculate that the inverse
scheme. Nevertheless, it is of interest to consider a comparisgedulation approach of this paper might improve the ridge
with an existing scheme. One such approach describeddhnique [3], as well as other AM—FM estimation methods.
the introduction to this paper is based on tracking spectro-\we end this section with an example of an actual two-tone
gram ridges, i.e., peaks in the short-time Fourier transforg‘hg|e consisting of the sum of two AM—FM tones from a
magnitude (STFTM) [3]. Figs. 10 and 11 show the frequengyitar. Fig. 12 shows the spectrogram of the signal and the
10These examples do not use the iterative techniques in the embedy&quency estimates derived from our two-tone transduction-
single-component algorithms. based algorithm.




3094 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 1999
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Time (sec)
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0.0] 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 (b)
22 T T T T T T T T T
2k 13500 Fig. 12. FM estimates of AM—FM signal from a guitar. (a) Spectrogram of
%1'8, L0 signal. (b) FM estimates of two-component algorithm.
Pt 2500 & A
5 14} g By[n]
=] quee g rTooTommmm oo o s 0
& 12p & ! |
1500 Rectify ' Singl |
13 Filter 1 o v mgle |
o . . ) . . ) . ' ) T 1000 Ci(e) [ utput Componen |
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(c) Input :
Fig. 9. Example in which the frequencies of the two components cross. (a) l 1
Amplitude estimate of first component. (b) Amplitude estimate of second }
component. (c) Frequency estimates. - Rectify | | i !
p (© q y Filter 2 Output c Single t Process | !
Ga(el?) 2 _Q omponen Envelopes |
2 ‘ ' |- ' |Estimation !
,
) |
1.8 B Tl * -
= o [n] R
£16 a1, 61[n)
Eia 1B ¢1
g az[n], 62[n]
E 1.2
. Fig. 13. Block diagram of two-component AM—FM estimation algorithm
with SGN cancellation feedback.
0.8 L L
) 0.05 [*A Q.15

Time {ms)

the overall mean-squared error by a factor of 10. This section
briefly describes each technique.

1) Eliminating the SGN:The SGN can be estimated from
the AM and FM estimates of a first pass with the two-
component algorithm and then reduced on a second pass.
The estimate of the SGN is calculated from (20) and (21)
and is then subtracted from the output of filt€¥s(e/~) and
G (e*). Fig. 13 shows the block diagram with the SGN noise
cancellation. With significant reduction of the SGN, we can

005 Time (e 01 015 yse the single-sinusoid inverse modulation algorithm as it was
described in Section IV.
Fig. 11. Ridge tracking on signal with two frequencies with sinusoidal FM. To illustrate the effects of SGN cancellation, consider the
signal

Fig. 10. Ridge tracking on signal with two crossing frequencies.

25 T T

Frequency (rad)
; N

T

L

E. Improvements on the Two-Component Algorithm

. 27mn 2mn 3rn
We now make two improvements to the two-co[nponentaf[n] = [1 + 0.5cos <E>} COS< 5 ) + cos <T>
algorithm. First, the estimates af 1], a2[n], 81[n], andfa[n] (34)
can be used to reduce the SGN. Second, the AM of edChe effects of SGN cancellation for this signal are shown in
component can be inverted with time-varying filters to redudgg. 14. Further illustration of the benefits of SGN are given

the transduction error. Using both methods together, we reduce[25].
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. ool T T T T T ] 500 T T T T T T
":C:! SGN %400> N
.*:é 23001 g
g SO 7 5)200» 1
&
: R -
ol L L U W ) : y . L . I "
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Frequency (rads) Frequency (rads)
@ Fig. 15. Magnitude of Fourier transform dfy [n] * z[n]|> after SGN
500 . ‘ ‘ cancellation and AM inversion. The sequende] is given by (34).
,"c; 400+ -
g 0op 1 provement involved “inverting” the signal modulation and
éf’ = 1 then applying the algorithm to the demodulated signal. We
ol . ) VS (o . .| developed a frequency-domain approach to analyze and select
- - T Rrequeney rads) g * filters with respect to transduction error. We also derived
() bounds on the frequency estimate for an amplitude-bounded

, _ _ ‘ _ . noise disturbance. We then proposed a method to estimate the
Fig. 14. (a) Magnitude of Fourier transform &fy [»] * x[n]|?, which is

the input to the single-component algorithm on the first pass (b) with SG&M and FM fL_JnCthnS when the Input S|gr_1al is the sum of
reduction on the second pass. The sequerjog is given by (34) two AM—FM sinusoids and showed that this problem can be

essentially reduced to two single-component AM—FM estima-
, . . . tion problems. In addition, we improved this algorithm by both
2) 1 he Ampl Modul I h - X : . d

) Inverting the Amplitude Modulationinverting the mod %zmcellng the self generated noise (SGN) and inverting the

ulation when the signal consists of two AM—FM component M. Wi v veral examoles demonstrating the algorithm
is not as straightforward as in the single-component case. € gave several examples demonstralng the algo

The difficulty arises because we cannot operate on ea der a wide range of AM-FM signals. Additional examples

signal component independently. This makes inverting the Fﬁﬁghi\gl:?gogj g?g gg Z)cutrs]do;ntriil orithms presented that
in particular, very difficult. In order to keep the frequency v P gon P

separation between the two signals constant, we would net d, bsf mgri?d f:Sg?SOiL ttﬁtoéiﬁnu'r?h?rtgﬁziézreﬁs?gg?gg
o adjust the sampling rate as a function of ime to compregs ween transdﬁction filters was analgtic sin? licity. Therefore
and stretch the spectrum of the signal. We do not address . . Y plicity. !

although the filters are optimal according to our goal attain-

inversion for the two-component case in this paper. . o : ) .
P bap ment approach, tradeoffs still exist in choosing this relation

To invert the AM, we use a pair of filters that have a line ) ; . X .
frequency response fa € [0 ?r] and are unrestrictdd for abetween overlapping transduction filters involving spectral
i hape and impulse response length as well as simplicity.

w € (—m, 0). At each time sample, using estimates from 1 Section Ill. we showed experimentally that inverting th
initial pass through the two-component estimation algorithm ectio , We showed experimentally tha erting the

we weight the output of the two linear filters in such a way th:S?OdUIatmn with estimates of the AM and FM significantly

the amplitudes of both components are scaled to a value of Oheed.uced the estimation error. A current area of investigation

For exampl,suppose hata U o 1] =2 1] 5. 5 onnd 13 S echaue converges o th exact AN an
B1[no] = w/4, and 2[ng] = 3w/4. Then, if we pass this unctions. gor! P In IS paper, w

S 2 nr i ey espor ) 4 1560y o s postle s o e
that H(e/(7/9) = 1/2 and H(/(37/%)) = 1/3, the output of Y P y

this filter at ng consists of the sum of two sinusoids: eacﬁo obtain improved AM_FM est|m_ates. For e>_(ample, we
sinusoid with an amplitude equal to one. With this proceduFeOUId average the estimales obiained from dlﬁerent filter
performed at each time sample, the amplitude modulationslgts.' Such approaches, as was the themg of this paper, are
approximately eliminated (assuming the modulation estimates tlyated by the' hypothe5|s th"’?t the a“d"ofy system, with

are close to the true modulation). Implementation of thrgultlple.overlappmg fllter.s at varlou‘? proc!as.snlg stages, may
method is fully described in [25]. use similar mechanisms in robustly “perceiving” AM and FM

We again use the signal described in (34) to demonstra'#ea signal [20]. Indeed, it has recently been shown that the

the effect of AM inversion, together with SGN cancellation ansduction approach can be realized as a bank of cochlear

The results are shown in Fig. 15. Adding the AM inversioRandp"’lSS filters followed by envelope detectorg and Sh“”“r.‘g
has improved the estimate by reducing spectral sidelobes G ral networks and that the'resgltm'g dyr.1am|cal' system Is
to AM. The mean-squared-error for the AM and FM estimatecsapable of robust AM-FM estimation in noisy environments
is reduced overall by a factor of 10 [25]. and over a broad range of filter bandwidths and locations
[2]. Shunting neural networks appear throughout the nervous
system and are characterized by a form of ratio processing.
Finally, a problem we are currently considering is AM—FM
In this paper, we first improved on a single-componemistimation of multiple sinusoids. In this case, one approach is
AM-FM estimation algorithm that is based on the outpub use a filterbank of more than two filters, as illustrated in
envelope of two overlapping transduction filters. The imFig. 16. Initial work in this area has shown that the shape of
117The filters are unrestricted for € (—, 0) because when we compute th€ filters must be nonlinear for any additional information to

the analytic signal, the negative frequencies:pf] are eliminated. be gained by more then two filters, and that the approach

V. CONCLUSION
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To prevent the negative frequencies from being modulated into
ot Bl T Rectifier | 2| poseeng [~ ®["l the positive frequency range, we must force
Fig. 16. General filterbank approach to AM—FM estimation. -7 < 9_[71] - 9+[n] +w., <0 for all n (35)

used for the two-sinusoid case, i.e., reducing the probleffrerewe € [0, 7]. A necessary condition for this inequality

to a lower order problem, is not applicable [25]. Rathe’;O be sa‘usfled is that

the multicomponent AM—FM problem has been formulated . @

as a nonlinear estimation problem, and standard numerical 6-[n] = 04[] <

approaches of the Newton iterative type were used to solve the

set of nonlinear equations that result from taking the magnitudie satisfy this inequality, there are two options. We can scale

of the filter bank outputs. Examples for the single- anél;[n] by some factor0 < « < 1, or we can divide the

two-sinusoid case have been demonstrated using a five-fikégnal into shorter sections in which the frequency variation

filterbank, and an approach for more than two componera$ z[n] is confined to a smaller region. With the first option,

was outlined. For the later case, solution uniqueness has tet frequency modulation would never be completely inverted.

to be established. The second option assumes that the frequency modulation of
Generalization of the two-tone AM—FM estimation algo«[n] does not vary over a range 92 rad/sample within the

rithm to multicomponent signals is currently being investigatedlration of the impulse response of the filte#s(e/*) and

in the particular context of speech applications where AM—F 2 (e?*). This does not impose a significant constraint. For

representations have an extensive history. Perhaps the eartigaimple, if the sampling frequency is 10000 Hz, a signal that

application of AM—FM representations in speech processingplated this constraint would have to sweep across 2500 Hz in

was by Flanagan and Golden [7] in the phase vocoder ttegtproximately 1 ms. If a signal does violate this assumption,

allowed bit-rate reduction by downsampling the AM and FMve can use both options, i.e., use a short block of the signal

of each filterbank output, rather than the output signal itsefind scale the FM estimate lly< « < 1 to ensure that (36)

where the AM and FM had a smaller bandwidth than the outpigt not violated. Therefore, we always use option two and, if

signal. This same concept has been applied more recemcessary, combine it with option one.

in a speech vocoder based on AM—FM resonances wheréOnce we have satisfied (36), we can now choase

the resonant AM and FM is downsampled rather than thecause we have optimized the design of our transduction

bandpass filter output AM—FM [16]. Yet another applicatiofilter pair about the frequency = 7 /2, we select... as close

is in speaker and speech recognition, where a parameterited /2 as possible while still satisfying (35) [25]. Assuming

version of the AM and FM are used as features in recognitidinat (36) is satisfiedw, is determined by

systems [10], [19]. AM—FM estimation of multiple tones,

for all n. (36)

as well as of functions of the multiple components, will be (wmin(26,,[n]), if min(d,[n]) < ~
especially important in these applications where sinusoidal " "o 4
components are often closely spaced. g if min(6,[n]) > %
We = " ° 3
andmax(0, [n]) < il
APPENDIX . " 5 4
EFFECT OFNEGATIVE FREQUENCIES ININVERSE MODULATION r—max(260,[n]), if 1nax(9+[n]) > %
In the inverse modulation algorithm of Section IlI-D, for ! (37)

a real signalz[n], we restrict the function used to invert the In deriving the constraint in (37), it was assumed that we
FM so that negative frequencies are not modulated to positikeew the actual FM function. However, we have only an
frequencies. We denot®,[n] as the positive FM function of estimate of the FM function, and because this estimate is

z[n] andf_[n] as the negative FM function. For reajn] generally not exact, using it to demodulate the FM might
violate the constraint in (36). In addition, the spectrum of an
2[n] = L aln] & S bipld ,f FM signal has spectral components outside the range of the
T2 instantaneous frequency. This implies that althodghy] is

confined to(—, 0), ¢*~["] might have spectral components

where é+[n] - 4. [n]. Demodulating withw,n — é+[n] in the positive frequency range. Therefore,vyg must leave some
results in room for error when we demodulate, thus giving the constraint
#n] = L afn] <Cj " éitplap L AT dp) —m+e<O_[n]—04n]+w.<0—¢ foraln (38)
o= [ 6. [p] dp) wheree > 0. Determining the best is a complex issue that
’ . involves finding a tight bound for the estimation error as well
~Lafn] <Cjwcn T Jwent [T (6-1p] 9+[PD‘1P>>_ as determining the spectral range of the negative frequencies.
We chose: = 0.06 rad/s based on experimental results.
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