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Covariance Shaping Least-Squares Estimation
Yonina C. Eldar, Member, IEEE,and Alan V. Oppenheim, Fellow, IEEE

Abstract—A new linear estimator is proposed, which we refer
to as the covariance shaping least-squares (CSLS) estimator, for
estimating a set of unknown deterministic parametersx observed
through a known linear transformation H and corrupted by ad-
ditive noise. The CSLS estimator is a biased estimator directed at
improving the performance of the traditional least-squares (LS) es-
timator by choosing the estimate ofx to minimize the (weighted)
total error variance in the observations subject to a constraint on
the covariance of the estimation error so that we control the dy-
namic range and spectral shape of the covariance of the estimation
error.

The CSLS estimator presented in this paper is shown to achieve
the Cramér-Rao lower bound for biased estimators. Furthermore,
analysis of the mean-squared error (MSE) of both the CSLS esti-
mator and the LS estimator demonstrates that the covariance of
the estimation error can be chosen such that there is a threshold
SNR below which the CSLS estimator yields a lower MSE than the
LS estimator for all values ofx.

As we show, some of the well-known modifications of the LS es-
timator can be formulated as CSLS estimators. This allows us to
interpret these estimators as the estimators that minimize the total
error variance in the observations, among all linear estimators with
the same covariance.

Index Terms—Biased estimation, covariance shaping, estima-
tion, least squares, MMSE.

I. INTRODUCTION

A generic estimation problem that has been studied exten-
sively in the literature is that of estimating the unknown

deterministic parameters observed through a known linear
transformation and corrupted by zero-mean additive noise

. A common approach to estimating the parametersis to re-
strict the estimator to be linear in the data and
then to find the linear estimate ofthat results in an estimated
data vector that is as close as possible to the given data vector

in a least-squares (LS) sense so thatis chosen to minimize
the total squared error in the observations.

The LS method is widely employed in diverse fields, both
as an estimation criterion and as a method for parametric mod-
eling of data (see e.g., [1]–[4]). Numerous extensions of the
LS method have been previously proposed in the literature. The
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total LS method, first proposed by Golub and Van Loan in [5]
(see also [6]), assumes that the model matrixmay not be
known exactly and seeks the parametersand the minimum
perturbation to the model matrix that minimize the LS error. The
extended LS method proposed by Yeredor in [7] seeks the pa-
rameters and some presumed underlying data that together mini-
mize a weighted combination of model errors and measurement
errors. In both of these extensions, it is assumed that the data
model does not hold perfectly, either due to errors inor er-
rors in the data .

In our method, we assume that the data model holds i.e.,
with and known exactly, and our objec-

tive is to minimize the error betweenand the estimate of.
It is well known that among all possible unbiased linear estima-
tors, the LS estimator minimizes the variance [2]. However, this
does not imply that the resulting variance or mean-squared error
(MSE) is small, where the MSE of an estimator is the sum of the
variance and the squared norm of the bias. In particular, in many
cases, the data vectoris not very sensitive to changes inso
that a large error in estimatingmay translate into a small error
in estimating the data vector, in which case, the LS estimate
may result in a poor estimate of. This effect is especially pre-
dominant at low to moderate signal-to-noise ratio (SNR), where
the data vector is typically affected more by the noise than by
changes in ; the exact SNR range will depend on the properties
of the model matrix . A difficulty often encountered in this es-
timation problem is that the error in the estimation can have a
large variance and a covariance structure with a very high dy-
namic range.

Various modifications of the LS estimator for the case in
which the data model is assumed to hold perfectly have been
proposed [8]. In [9], Stein showed that the LS estimator for the
mean vector in a multivariate Gaussian distribution with dimen-
sion greater than 2 is “inadmissible,” i.e., for certain parameter
values, other estimators exist with lower MSE. An explicit (non-
linear) estimator with this property, which is referred to as the
James–Stein estimator, was later proposed and analyzed in [10].
This work appears to have been the starting point for the study
of alternatives to LS estimators. Among the more prominent al-
ternatives are the ridge estimator [11] (also known as Tikhonov
regularization [12]) and the shrunken estimator [13].

To improve the performance of the LS estimator at low to
moderate SNR, we propose a modification of the LS estimate,
in which we choose the estimator of to minimize the total
error variance in the observations, subject to a constraint on
the covariance of the error in the estimate of. The resulting
estimator of is derived in Section III, and is referred to as
the covariance shaping LS (CSLS) estimator. In Section IV, we
show that both the ridge estimator and the shrunken estimator
can be formulated as CSLS estimators.

1053-587X/03$17.00 © 2003 IEEE



ELDAR AND OPPENHEIM: COVARIANCE SHAPING LEAST-SQUARES ESTIMATION 687

In Section V, we show that the CSLS estimator has a property
analogous to the property of the LS estimator. Specifically, it
is shown to achieve the Cramér-Rao lower bound (CRLB) for
biased estimators [2], [14], [15] when the noise is Gaussian. This
implies that for Gaussian noise, there is no linear or nonlinear
estimator with a smaller variance, or MSE, and the same bias as
the CSLS estimator.

In Section VI, we analyze the MSE in estimatingof both
the CSLS estimator and the LS estimator and show that the co-
variance of the estimation error can be chosen so that there is a
threshold SNR, below which the CSLS estimator yields a lower
MSE than the LS estimator, for all values of. The simula-
tions presented in Section IX strongly suggest that the CSLS
estimator can significantly decrease the MSE of the estimation
error in over the LS estimator for a wide range of SNR values.

In Section VII, we show that the CSLS estimator can
alternatively be expressed as an LS estimator followed by a
weighted minimum mean-squared error (WMMSE) shaping
transformation [18] that optimally shapes the covariance of
the LS estimate of . The WMMSE covariance shaping trans-
formation minimizes the weighted MSE between the original
vector and the transformed vector, i.e., results in a vector with
a specified covariance matrix that is closest in a weighted MSE
sense to the original vector. The WMMSE covariance shaping
problem is an extension of the minimum MSE (MMSE)
whitening problem [16], [17], in which the transformed vector
is constrained to be white, and the transformation is chosen to
minimize the (unweighted) MSE between the original vector
and the white vector.

Several applications of CSLS estimation are discussed in Sec-
tion IX. The first application is to estimation of the parameters
in an ARMA model. We show that the CSLS estimator can sig-
nificantly decrease the MSE in estimating both the AR and the
MA parameters over a wide range of SNRs. As a second applica-
tion, the CSLS estimator is applied to the problem of estimating
the amplitudes of complex exponentials with known frequen-
cies and damping factor in additive noise.

II. L EAST-SQUARESESTIMATION

We denote vectors in ( arbitrary) by boldface lowercase
letters and matrices in by boldface uppercase letters.
denotes the identity matrix. The adjoint of a transfor-
mation is denoted by , and denotes an optimal vector or
transformation. The squared norm of the vectoris denoted by

. A prime attached to a random variable or vector
denotes the variable or vector with the mean subtracted, e.g.,

.
We consider the class of estimation problems represented by

the linear model

(1)

where is a deterministic vector of unknown parameters,is a
known matrix, and is a zero-mean random vector with
covariance . For simplicity of exposition, we assume that
has rank ; the results extend in a straightforward way to the
case in which the rank of is less than [18].

The (weighted) least-squares (LS) estimate of, which is de-
noted , is chosen such that is as close
as possible to in a (weighted) LS sense so thatminimizes
the total squared error in the observations. Thus, the LS estimate

is chosen to minimize the total squared error

(2)

where is an arbitrary positive definite weighting matrix. If
we choose , then the LS estimate is given by

(3)

The Gauss–Markov theorem [2] states that with ,
the LS estimator is the best linear unbiased estimator (BLUE)
of , i.e., it minimizes the total variance defined by

(4)

from all linear unbiasedestimators. Furthermore, if is a
zero-mean Gaussian random vector, then the LS estimator (with
optimal weighting) is also the minimum variance unbiased
estimator, i.e., it minimizes the variance from all linear and
nonlinearunbiasedestimators.

The LS estimator has a variety of optimality properties in the
class of unbiased estimators. However, an unbiased estimator
does not necessarily lead to minimum MSE, where the MSE of
an estimate of is defined by

MSE Tr

(5)

Here, denotes the bias of the estimator.
As we will show, in many cases, the CSLS estimator, which we
develop in Section III, can result in lower MSE than the LS esti-
mator by allowing for a bias. In Section V, we also show that the
CSLS estimator has a property analogous to the LS estimator.
Namely, for Gaussian noise, it is the estimator among all linear
and nonlinear estimators that minimizes the variance subject to
a constraint on the bias.

III. COVARIANCE SHAPING LEAST-SQUARESESTIMATION

Since the MSE depends explicitly on the unknown parameters
, we cannot choose an estimate to directly minimize the MSE.

A common approach is to restrict the estimator to be linear and
unbiased and then seek the estimator of this form that minimizes
the variance or the MSE, which leads to the BLUE or the LS es-
timator. In our development, the estimator is not constrained to
be unbiased. Our approach for choosing the estimator is moti-
vated by the observation that, in many cases, the data vector
is not very sensitive to changes inso that a large error in esti-
mating may translate into a small error in estimating the data
vector , in which case, may result in a poor estimate of.
In the high SNR limit, where , so that the LS
estimate converges to the true parameters, regardless of the
model matrix . The CSLS estimator is directed at improving
the performance of the LS estimator at low to moderate SNR by
choosing the estimate of to minimize the total error variance
in subject to a constraint on the covariance of the error in the
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estimate of so that we control the dynamic range and spectral
shape of the covariance of the estimation error.

The CSLS estimate of, which is denoted , is chosen
to minimize the total variance of the weighted error between

and , subject to the constraint that
the covariance of the error in the estimate is proportional
to a given covariance matrix . From (1), it follows that the
covariance of is equal to so that the covariance of ,
which is equal to the covariance of the error in the estimate

, is given by . Thus, is chosen
to minimize

(6)

subject to

(7)

where , is a given covariance matrix, and
is a constant that is either specified in advance or chosen

to minimize the error (6).
This minimization problem is a special case of the general

weighted MMSE (WMMSE) shaping problem. Specifically, the
problem of (6) and (7) can be restated as the problem of finding
the transformation to minimize

(8)

where , subject to

(9)

with , , , and .

A. WMMSE Shaping

In this section, we consider the WMMSE shaping problem of
(8) with weighting matrix . The more general case of arbi-
trary weighting is considered in [18]. Letdenote a zero-mean
random vector with positive-definite covariance matrix, and
let . We seek the transformation that minimizes (8)
subject to (9), where is a given covariance matrix that is not
assumed to be invertible, and is a constant that is either
specified or chosen to minimize the error (8).

Denoting by and , we may rewrite
(8) as

(10)

where the covariance matrix ofis equal to , and the covari-
ance matrix of is

(11)

Thus, minimizing (8) subject to (9) is equivalent to finding the
transformation

(12)

such that the random vector has covariance given by
(11) and is closest in an MSE sense to the random vectorwith
covariance .

This problem is very similar to the MMSE whitening problem
considered in [16]. Using the method used in [16] and [18] to de-
rive the MMSE whitening transformation, it is straightforward
to show (see Appendix A) that the minimizing is given by

(13)

From (12), we then have that the optimal value ofis

(14)

Using (62) (see Appendix B), we may expressas

(15)

We may further wish to choosesuch that (8) is minimized.
Substituting back into (8), and minimizing with respect to,
the optimal value of , which is denoted by, is given by

Tr

Tr
(16)

If the scaling in (9) is fixed and , then the WMMSE
whitening transformation is equal to the MMSE whitening
transformation derived in [16]; however, the optimal scaling
values are different in both cases.

The results above are summarized in the following theorem.
Theorem 1 (WMMSE Covariance Shaping):Let be

a random vector with positive-definite covariance matrix.
Let be the optimal covariance shaping transformation that
minimizes the weighted MSE defined by (8), between the input

and the output with covariance , where
is a given covariance matrix, and . Then

where we have the following.

1) If is specified, then .
2) If is chosen to minimize the weighted MSE, then

given by (16).

B. CSLS Estimator

In the problem of (6), , , , and
. Denoting by , we then have from

Theorem 1 that the optimal value of, which is denoted ,
satisfies

(17)

Using straightforward matrix manipulations, we show in Ap-
pendix B that

(18)

If the scaling in (7) is specified, then the CSLS estimator is
given by

(19)
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If is chosen to minimize , then

(20)

where from Theorem 1

Tr

Tr
(21)

Note from (19) and (20) that is a biased estimator of
so that when , does not converge to. At

very high SNR, we therefore expect the LS estimator to perform
better than the CSLS estimator. The advantage of the CSLS is
at low to moderate SNR, where we reduce the MSE of the esti-
mator by allowing for a biased estimator. Indeed, as we show in
Section VI, for many choices of , regardless of the value of,
there is always a threshold SNR, so that for SNR values below
this threshold, the CSLS estimator yields a lower MSE than the
LS estimator. As we show in [18], in applications, this threshold
value can be pretty large.

Since the covariance of the LS estimate is given from (3) by
and the covariance of the CSLS estimate is pro-

portional to , it follows immediately that can be equal
to only if is proportional to . In fact,
using the CSLS estimator of (20), we have that if
and only if for some . Indeed, if

, then , and

(22)
From (21), so that for any choice of ,

.
Finally, we note that the CSLS estimator of (20) is invariant

to an overall gain in . Thus, if for some covari-
ance matrix , then the CSLS estimator does not depend on.
This property does not hold in the case in whichis chosen as
a constant, independent of. In this case, the CSLS estimator
depends explicitly on , which therefore must be known. Al-
ternatively, if we let , then the CSLS estimator will not
depend on , which might be unknown. We conclude that in the
case in which the variance is unknown, we must either use
of (21) or .

The CSLS estimator is summarized in the following theorem.
Theorem 2 (CSLS Estimator):Let denote the deterministic

unknown parameters in the model , where is a
known matrix with rank , and is a zero-mean random
vector with covariance . Let denote the covariance
shaping least-squares estimator ofthat minimizes the error
(6) subject to (7) for some . Then

where we have the following.

1) If is specified, then .
2) If is chosen to minimize the error, then given by

(21).
Furthermore, with , the least-squares estimate is equal
to if and only if for some .

IV. CONNECTION WITH OTHER MODIFICATIONS OF

LEAST-SQUARES

In this section, we compare the CSLS estimator with the ridge
estimator proposed by Hoerl and Kennard [11] and Tikhonov
[12], as well as with the shrunken estimator proposed by Mayer
and Willke [13]. In Section IX, we discuss a performance com-
parison in the context of a specific application.

The ridge estimator for the linear model (1), which is denoted
by , is defined by

(23)

where is a regularization parameter. It can be shown that
minimizes the LS error subject to a constraint on the norm of

. Thus, for all estimators with fixed norm, given by (23)
minimizes the LS error, where is chosen to satisfy the norm
constraint.

To show that is equal to a CSLS estimator with an appro-
priate choice of , let be the CSLS estimator with covari-
ance , where is the covariance of the estimate and
is given by

. By direct substitution of into the expression for
from Theorem 2, . Based on this connec-

tion between the ridge estimator and the CSLS estimator, we
may interpret the ridge estimator as the estimator that minimizes
the error given by (6) from all estimators with covariance

.
The shrunken estimator for the linear model (1), which is de-

noted by , is a scaled version of the LS estimator and is de-
fined by

(24)

where is a regularization parameter. A stochastically (non-
linear) shrunken estimator is a shrunken estimator in whichis
a function of the data , an example of which is the well-known
James–Stein estimator [10].

The shrunken estimator can be formulated as a CSLS es-
timator where the covariance of is chosen to be equal to
the covariance of given by . Substi-
tuting into the expression for from Theorem 2, we
indeed have that . Thus, we may interpret as
the estimator that minimizes the error of (6) from all es-
timators with covariance .

In summary, some of the more popular alternatives to the
LS estimator under the model (1) can be interpreted within the
framework of CSLS estimators. This provides additional insight
and further optimality properties of these estimators. However,
the CSLS estimator is more general since we are not constrained
to a specific choice of covariance. By choosing to “best”
shape the estimator covariance in some sense, we can improve
the performance of the estimator over these LS alternatives.

As a final note, suppose we are given an arbitrary linear esti-
mate of for which the covariance of the error is . Then,
we can compute the CSLS estimate with . If

, then the estimate has the additional property
that from all estimators with covariance , it minimizes the
(weighted) total error variance in the observations. If, on the
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other hand, , then we can always improve the total
error variance of the estimate without altering its covariance by
using . Therefore, an estimate with covariance is said
to be consistent with the total error variance criterion if it min-
imizes this criterion from all estimators with covariance, in
which case, it is equal to the CSLS estimate with .

V. CRAMÉR–RAO LOWER BOUND

The variance of an unbiased estimatorof the unknown pa-
rameters can be bounded by the CRLB [2], [14]. A similar
bound is also given for the variance of a biased estimator, which
is known as the biased CRLB [15]. Specifically, suppose we
want to estimate a set of unknown deterministic parameters
from some given observations. Let denote the prob-
ability density function of the observations, which is charac-
terized by . It is assumed that satisfies the regularity
condition . Then, for any estimator of
with bias , the covariance of the estimator must satisfy

(25)

where is the Fisher information matrix defined by

(26)

For the CSLS estimator, the bias is given by

(27)

and

(28)

We now show that if the noise in (1) is Gaussian with
zero-mean and covariance , then the CSLS estimator
achieves the CRLB for biased estimatorswith bias
given by (27).

For the linear model of (1) with Gaussian noise, the Fisher
information matrix is [2] . The CRLB on the
variance of any estimator with bias is therefore given
by

(29)

Now, for the CSLS estimator,
so that the CRLB is achieved. Thus, from

all estimators with bias given by (27) for someand , the
CSLS estimator minimizes the variance.

VI. M EAN-SQUARED ERRORPERFORMANCE

In Section V, we showed that the CSLS estimator minimizes
the MSE among all estimators with a particular bias. While it

would be desirable to analyze the MSE of the CSLS estimator
for more general forms of bias, we cannot directly evaluate the
MSE of the CSLS estimator since the bias and, consequently,
the MSE depend explicitly on the unknown parameters. To
gain some additional insight into the performance of the CSLS
estimator, in this section, we instead compare its MSE with the
MSE of the LS estimator. Our analysis indicates that there are
many cases in which the CSLS estimator performs better than
the LS estimator in a MSE sense for all values of the unknown
parameters .

The approach we take in this section is to directly compare
the MSE of the CSLS and the LS estimators and show that
for a variety of choices of the output covariance, there is a
threshold SNR such that for SNR values below this threshold,
the CSLS estimator yields a lower MSE than the LS estimator
for all values of . In our analysis, we assume that ,
where the diagonal elements ofare all equal to 1 so that the
variance of each of the noise components of is . To en-
sure that the estimator does not depend on, which may not be
known, we let the scaling of the CSLS estimator be or

, which is given by (21).
The detailed analysis related to this discussion is carried out

in Appendix C. Here, we focus on the interpretation of the re-
sults developed in the Appendix.

A. Fixed Scaling

We first consider the case in which . The MSE of the
CSLS estimator is then given by

MSE Tr (30)

where . The first term in (30) is the squared
norm of the bias of the estimate , and the second term in
(30) is the total variance of .

For large values of in comparison with , the first term
in (30) is negligible, and MSE Tr . Thus, at
sufficiently low SNR, where the SNR is defined as ,
both MSE and MSE are proportional to , where
we can always choose so that the proportionality constant
Tr of the CSLS estimator is smaller than the proportion-
ality constant Tr of the LS estimator. At sufficiently high
SNR, the second term in (30) can be considered negligible and
as , MSE converges to the constant

. From this qualitative analysis, it is clear that there is a
threshold SNR that will depend in general onbelow which,
for appropriate choices of , the CSLS estimator outperforms
the LS estimator.

In Appendix C, we show that if , then
MSE MSE if

Tr Tr
(31)

where denotes the SNR per component,
, , and are the eigenvalues of

. The bound
given by (31) is a worst-case bound since it corresponds to
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the worst possible choice of parameters, namely, when the un-
known vector is in the direction of the eigenvector of corre-
sponding to the eigenvalue . In practice, the CSLS estimator
will outperform the LS estimator for higher values of SNR than

.
Since we have freedom in designing, we may always

choose so that . In this case, we are guaranteed that
there is a range of SNR values for which the CSLS estimator
leads to a lower MSE than the LS estimator for all choices of
the unknown parameters.

For example, suppose we wish to design an estimator with co-
variance proportional to some given covariance matrixso that

for some . If we choose Tr Tr ,
then we are guaranteed that there is an SNR range for which the
CSLS estimator will have a lower MSE than the LS estimator
for all values of .

In specific applications, it may not be obvious how to choose a
particular proportionality factor. In such cases, we may prefer
using the CSLS estimator with optimal scaling, which we dis-
cuss in Section VI-B.

B. Optimal Scaling

In cases in which there is no natural scaling, it may be prefer-
able to use the CSLS estimator with optimal scaling. In this case,
the scaling is a function of cannot be chosen arbitrarily, so
that in general, we can no longer guarantee that there is a posi-
tive SNR threshold, i.e., that there is always an SNR range over
which the CSLS performs better than the LS estimator. How-
ever, as we show, in the special case in which , there is
always such an SNR range.

If and , then (see Appendix C)

MSE (32)

where

Tr
Tr

(33)

and , denote the eigenvalues of .
For sufficiently large values of in comparison with

, we can consider the first term in (32) negligible and
MSE . Thus, at sufficiently low SNR, both
MSE and MSE are proportional to and, as
we show in Appendix C, the proportionality constant of
the CSLS estimator is smaller than the proportionality constant
Tr of the LS estimator. At sufficiently high SNR, the
second term in (30) can be considered negligible, and as ,
MSE converges to the constant .
These trends in the behavior of the MSE can be seen in the
simulations in Section IX.

In Appendix C, we show that if , then
MSE MSE if

(34)

where . We also show that when
, so that there is always a range of SNR

values for which MSE MSE .
The bound given by (34) is a worst-case bound since

it corresponds to the worst possible choice of parameters. In
practice, the CSLS estimator will outperform the LS estimator
for higher values of SNR than .

In a similar manner, we show that MSE
MSE if

(35)

where .
The performance analysis of the CSLS estimator with

optimal scaling in the case in which and
can be summarized as follows: Let denote the
SNR per component. Then, with denoting the
eigenvalues of , and given by (33), we have
the following.

1) MSE MSE for , where
is the worst-case bound given by (34).

2) MSE MSE for , where is
the best-case bound given by (35).

3) MSE may be smaller or larger than MSE
for , depending on the value of. Thus,
the true threshold value in a particular application will be
between and .

In addition, we have the following.

1) If is in the direction of the eigenvector of
corresponding to the eigenvalue , then

MSE MSE for , and
MSE MSE for .

2) If is in the direction of the eigenvector of
corresponding to the eigenvalue , then

MSE MSE for , and
MSE MSE for .

In [18], we consider some examples illustrating the threshold
values for different matrices , where

. These examples indicate that in a variety of applications,
the threshold values are pretty large, as can also be seen from
the simulations in Section IX.

VII. LS FOLLOWED BY WMMSE SHAPING

The CSLS was derived to minimize the total variance in the
data error subject to a constraint on the covariance of the esti-
mator of . In this section, we show that the CSLS estimator
can alternatively be expressed as a LS estimator followed by a
weighted minimum mean-squared error (WMMSE) covariance
shaping transformation.

Specifically, suppose we estimate the parameters
using the LS estimator . Since , where

, the covariance of the noise
component in is equal to the covariance of , which
is denoted and is given by . To
improve the performance of the LS estimator, we consider
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shaping the covariance of the noise component in the estimator
. Thus, we seek a transformation such that the covari-

ance matrix of , which is denoted by , satisfies

(36)

for some . To minimize the distortion to the estimator ,
from all possible transformations satisfying (36), we choose
the one that minimizes the weighted MSE

(37)

where is an arbitrary weighting matrix.
We now show that if we choose in (37), then the

resulting estimator is equal to . Note that this
choice of weighting matrix is reminiscent of the Gauss–Markov
weighting in LS estimation [2]. The minimization problem of
(37) with is a special case of the general WMMSE
shaping problem discussed in Section III-A with ,

, and . Thus, from Theorem 1

(38)

and

Tr

Tr
(39)

Comparing (38) with given by Theorem 2, we conclude
that so that the CSLS estimator can be determined
by first finding the LS estimator and then optimally shaping
its covariance.

In [18]–[20], a new linear multiuser receiver for synchronous
code-division multiple-access (CDMA) systems, which is re-
ferred to as the orthogonal multiuser receiver, was proposed.
In a CDMA system, the received signalis modeled as

, where is a known matrix of signature vectors,
is a diagonal matrix of received amplitudes,is the data

vector, and is a noise vector. Linear multiuser receivers con-
sist of an estimator of followed by a channel de-
coder. The well-known decorrelator receiver [21] is based on
a least-squares estimate of. The orthogonal multiuser receiver
is designed to optimally whiten the output of the decorrelator
receiver prior to detection and is therefore a special case of
the CSLS estimator with . Therefore, the performance
properties of the CSLS estimator can now be used to establish
optimality properties of the orthogonal multiuser receiver.

VIII. M ATCHED CORRELATORESTIMATOR FOLLOWED BY

MMSE SHAPING

We now show that the CSLS estimator with fixed scaling can
also be expressed as a matched correlator estimator followed
by MMSE shaping. Consider estimating the parametersusing
the transformation . Then, the covariance of
the noise component in , which is equal to the covariance
of , is . To improve the performance of

, we consider shaping its covariance so that we seek a trans-

formation such that the covariance matrix of ,
which is denoted by , satisfies

(40)

where is given. To minimize the distortion to the estimator
, from all possible transformations satisfying (40), we

choose the one that minimizes the MSE

(41)

where .
This minimization problem is a special case of the general

MMSE shaping problem considered in [18], from which it fol-
lows that

(42)

Comparing (42) with given by Theorem 2, we conclude
that so that the CSLS estimator with fixed scaling
can be determined by first finding the matched correlator esti-
mator and then optimally shaping its covariance. The op-
timal scaling can be found by choosingto minimize (6) with

.
In [17] and [22], a modification of the well-known matched

filter (MF) detector, which is referred to as the orthogonal MF
detector, was proposed. The orthogonal MF detector is obtained
by MMSE whitening of the MF output, which is equivalent to
a matched correlator. Therefore, when scaled appropriately, the
orthogonal MF implements a CSLS estimator with .
In [17] and [22], the orthogonal MF was proposed as anad-hoc
detector. The performance properties of the CSLS estimator can
now be used to establish optimality properties of this detector.

IX. A PPLICATIONS

In this section we consider two applications of CSLS estima-
tion. The first is to the estimation of parameters in an ARMA
model. The second is to the estimation of amplitudes in expo-
nential signal models.

A. System Identification

As one application of CSLS estimation, we consider the
problem of estimating the parameters in an ARMA model,
and compare the estimated parameters to those obtained by
using the modified Yule-Walker equations in combination with
Shanks’ method [3], [23].

Suppose we are given a finite segment of noisy measurements
of an ARMA signal , which is defined by

(43)

for some coefficients and , where . The coefficients
in (43) are the AR parameters of , and the coefficients

in (43) are the the MA parameters. The-transform of is

(44)
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where denotes the numerator polynomial, and de-
notes the inverse of the denominator polynomial. The problem
then is to estimate the AR and MA parameters from the data

, where

(45)

Here, represents a combination of measurement noise and
modeling error. In the simulations below, is chosen as a
zero-mean Gaussian noise process with variance.

Various methods exist for estimating the ARMA parameters
based on different applications of LS estimation [3]. A popular
method is to estimate the AR parameters using the modified
Yule–Walker equations [3] and then use these estimates in com-
bination with Shanks’ method [22] to estimate the MA param-
eters. We use this method as a basis for comparison with our
method.

From (45), it follows that

(46)

We now use (46) to estimate the AR parameters. Since we
do not have access to the clean data , we estimate
by substituting instead of in (46). Then, with

denoting the vector with components
denoting the data vector with components

denoting the vector with components ,
and

...
...

...
(47)

we have that . The LS estimate of the AR
parameters is then

(48)

From Theorem 2, the CSLS estimate of the AR parameters is

(49)

where is given by (21).
We now use these estimates ofto estimate the MA param-

eters using Shanks’ method. Specifically, let
, where is the impulse response of the filter with-trans-

form , which is computed using the estimates of the AR
parameters, and is the (unknown) impulse response of the
filter with -transform . Shanks proposed estimating the
unknown sequence by minimizing . With de-
noting the error vector with components , we
have that , where is the vector with compo-

Fig. 1. Mean-squared error in estimating the AR parametersa given by (53)
using the LS estimator (48) and the CSLS estimator (49).

nents , , is the data vector with components ,
, and

...
...

...
(50)

so that Shanks’ method reduces to a LS problem. The LS esti-
mator of the MA parameters is then

(51)

where is computed using the LS estimate given by
(48).

We can modify Shanks’ estimator by using the CSLS esti-
mator of the parameters, which leads to the estimator

(52)

where is given by (21), and now, is computed using the
CSLS estimate of (49).

To evaluate the performance of both estimators, we consider
an example in which the ARMA parameters are given by

(53)
and the matrix is chosen as .

In Fig. 1, we plot the MSE in estimating the AR parameters
using and for averaged over 2000 noise real-
izations, as a function of10 (to base 10), where is the
noise variance. As we expect, the MSE of the CSLS estimator
decreases with for low SNR and then converges to a constant
in the high SNR limit. The MSE of the LS estimator decreases
with at a much slower rate. The experimental threshold is

65 dB so that for values of greater than 65 dB, the
CSLS estimator yields a lower MSE than the LS estimator.

We also compared the CSLS estimator with the shrunken es-
timator and the ridge estimator described in Section IV. Since
both of these estimators depend on parameters that have to be
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Fig. 2. Mean-squared error in estimating the MA parametersb given by (53)
based on the estimated values of the AR parameters using the LS estimator (51)
and the CSLS estimator (52).

chosen, the performance of these estimators cannot be showed
in a single figure. In our simulations with different choices of
parameters, we observed that the CSLS estimator performs sig-
nificantly better than both the shrunken estimator and the ridge
estimator.

In Fig. 2, we plot the MSE in estimating the MA parameters
using and for averaged over 2000 noise
realizations, as a function of . The experimental
threshold is 32 dB. In this case, we observed that the CSLS
estimator performs better than the shrunken estimator for all
SNR. For SNR values up to roughly 25–30 dB (depending on
the choice of regularization parameter), the CSLS estimator
also performs better than the ridge estimator.

B. Exponential Signal Models

As a second application of the CSLS estimator, we consider
the problem of estimating the amplitudes of two complex
exponentials with known frequencies and damping factor in
complex-valued additive white Gaussian noise. The data is thus
given by

(54)

where is a white complex Gaussian noise process with vari-
ance , and is the number of data points.

Denoting by the vector of components , we have that
, where is the vector of components and ,

is the vector of components , and

...
...

(55)

In Fig. 3, we plot the MSE in estimating the parameters
and using the CSLS estimator and the LS estimator for the
case in which ,

Fig. 3. Mean-squared error in estimating the amplitudesa anda in the
model (54) using the LS estimator and the CSLS estimator. The parameter
values are given bys = �0:6 + j2�(0:40), s = �0:6 + j2�(0:41),
n = 15, anda = a = 1.

and . The true parameter values are . For
the noise variance range shown, the CSLS estimator performs
better than the LS estimator. In this example, the experimental
threshold variance is 56 dB so that for values of greater
than 56 dB, the CSLS estimator yields a lower MSE than
the LS estimator.

APPENDIX A

MMSE SHAPING

In this appendix, we consider the problem of finding an op-
timal shaping transformation that results in a random vector

with covariance that is as close as possible to
in mean squared error, where the covariance ofis given by

. Specifically, among all possible shaping transforma-
tions, we seek the one that minimizes the total MSE given by

(56)

subject to

(57)

where and are the th components of and , respectively.
Our approach to determining the shaping transformation that

minimizes (56) is to perform a unitary change of coordinates
so that in the new coordinate system,is mapped to ,
and is mapped to , with the elements of uncorre-
lated. Since is unitary and , the covariance matrix
of is , and the MSE defined by (56) betweenand

is equal to the MSE betweenand .
Such a unitary transformation is provided by the eigendecom-

position of . Specifically, suppose that has an eigende-
composition , where is a unitary matrix, and

is a diagonal matrix with diagonal elements. If we choose
, then the covariance matrix of is .
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Thus, we may first solve the optimal shaping problem in the

new coordinate system. Then, with and denoting the op-
timal shaping transformations in the new and original coordinate
systems, respectively, it is straightforward to show that

(58)

To determine , we express of (56) as

(59)

where and denote the th components of and , respec-
tively, and . From the Cauchy–Schwarz inequality

(60)

with equality if and only if with probability one
for some non-negative deterministic constant, in which case,
we also have so that

. Note that can always be chosen proportional to
since the variables are uncorrelated. Thus, the optimal value

of is , and . The optimal shaping
transformation then follows from (58):

(61)

APPENDIX B

CSLS ESTIMATOR

From (17), the optimal value of must satisfy

(62)

Multiplying both sides by , we have
that

(63)

To simplify the expression for , we now prove the following
matrix equality. Suppose thatis an matrix of rank ,
is an matrix of rank and , where
and denote the range space and null space, respectively.
Then

(64)

To prove (64), we first verify that

(65)

where denotes the Moore–Penrose pseudo inverse of. In-
deed

(66)

since from the properties of the pseudo inverse and the fact that
has full row rank, , and is an orthogonal projec-

tion onto , where by our assumption, .
Multiplying both sides of (65) on the right byestablishes (64).

Now, using (64) with and ,
we may simplify (63) as

(67)

APPENDIX C

PERFORMANCEANALYSIS

To compare the performance of the LS and CSLS estimators,
we evaluate the MSE of the estimators, where the MSE of an
estimate of is given by (5). In the following, we use to
denote the matrix product .

From (1) and (3), , so that

MSE Tr (68)

From Theorem 2,
so that

MSE

Tr

Tr (69)

A. Fixed Scaling

We first consider the case in which . Then, from (69)

MSE Tr (70)

and

MSE Tr (71)

where , and are the eigenvalues of
. We have equality in (69)

only in the event in which is in the direction of the eigenvector
of corresponding to the eigenvalue.

Let denote the SNR per com-
ponent. Then, combining (68) and (71), we have that
MSE MSE if Tr Tr .
Since only if for all , which implies that

and , it follows that if ,
then MSE MSE if

Tr Tr
(72)

Note that is a worst-case bound since it corresponds to
the worst possible choice of parameters, namely, when the un-
known vector is in the direction of the eigenvector of cor-
responding to the eigenvalue .

B. Optimal Scaling

Suppose now that given by (21), and that .
Then

MSE (73)
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where

Tr
Tr

(74)

and , denote the eigenvalues of.
From (32), we have that

MSE (75)

where

(76)

with given by (74). We have equality in (75) only in the event
in which is in the direction of the eigenvector of corre-
sponding to the eigenvalue .

Combining (68) and (75), we have that MSE
MSE if

(77)

The expression is equal to zero only in the case in
which for all so that . From The-
orem 2, it then follows that if and only if

. If , then we have that MSE
MSE if

(78)

Note that is a worst case bound since it corresponds to
the worst possible choice of parameters, namely, when the un-
known vector is in the direction of the eigenvector of cor-
responding to the eigenvalue .

We now show that when , so that
there is always a range of SNR values for which MSE
MSE . To this end we need to prove that

(79)

or, equivalently

(80)

with equality if and only if . Using the inequality

(81)

we have that

(82)

Furthermore

(83)

Combining (82) with (83) proves the inequality (80).
We have equality in (81) if and only if for all and

some constant. Thus, we have equality in (82) if and only if
, which implies that all the eigenvalues are

equal, so that is proportional to , and from Theorem 2,
. Under the same condition, we have equality in

(83). We therefore conclude that when , there is
always a range of SNR for which MSE MSE .

In a similar manner, we can show that

MSE (84)

where

(85)

with equality in (84) only if is in the direction of the
eigenvector of corresponding to the eigenvalue . Thus,
MSE MSE if

(86)
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