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Covariance Shaping Least-Squares Estimation

Yonina C. Elday Member, IEEEand Alan V. OppenheiirFellow, IEEE

Abstract—A new linear estimator is proposed, which we refer total LS method, first proposed by Golub and Van Loan in [5]
to as the covariance shaping least-squares (CSLS) estimator, for (see also [6]), assumes that the model maHixnay not be
estimating a set of unknown deterministic parametersk observed known exactly and seeks the parameterand the minimum

through a known linear transformation H and corrupted by ad- . . L
ditive noise. The CSLS estimator is a biased estimator directed at perturbation to the model matrix that minimize the LS error. The

improving the performance of the traditional least-squares (LS) es- €xtended LS method proposed by Yeredor in [7] seeks the pa-
timator by choosing the estimate ofx to minimize the (weighted) rameters and some presumed underlying data that together mini-

total error variance in the observations subject to a constraint on  mjze a weighted combination of model errors and measurement
the covariance of the estimation error so that we control the dy- arygrg |y poth of these extensions, it is assumed that the data
namic range and spectral shape of the covariance of the estimation .

model does not hold perfectly, either due to error#iror er-

error. .

The CSLS estimator presented in this paper is shown to achieve r0rs in the data.
the Cramér-Rao lower bound for biased estimators. Furthermore, In our method, we assume that the data model holds i.e.,
analysis of the mean-squared error (MSE) of both the CSLS esti- y — Hx + w with H andy known exactly, and our objec-

mator gnd @he LS estimator demonstrates that the covariance of tive is to minimize the error between and the estimate of.
the estimation error can be chosen such that there is a threshold

SNR below which the CSLS estimator yields a lower MSE than the Itis well known that among all possible unbiased linear estima-
LS estimator for all values of x. tors, the LS estimator minimizes the variance [2]. However, this
As we show, some of the well-known modifications of the LS es- does not imply that the resulting variance or mean-squared error
timator can be formulated as CSLS estimators. This allows us to (MSE) is small, where the MSE of an estimator is the sum of the
interpret these estimators as the estimators that minimize the total 5 iy ce and the squared norm of the bias. In particular, in many
error variance in the observations, among all linear estimators with . " X
the same covariance. cases, the data vectgris not very sensitive to changesxrso
that a large error in estimatingmay translate into a small error
in estimating the data vectgr, in which case, the LS estimate
may result in a poor estimate &f This effect is especially pre-
dominant at low to moderate signal-to-noise ratio (SNR), where
I. INTRODUCTION the data vectoy is typically affected more by the noise than by
generic estimation problem that has been studied ext&fanges inx; the exact SNR range will depend on the properties
A sively in the literature is that of estimating the unknowQf the model matri. A difficulty often encountered in this es-
deterministic parameters observed through a known lineartimation problem is that the error in the estimation can have a
transformationEl and corrupted by zero-mean additive nois9€ variance and a covariance structure with a very high dy-
w. A common approach to estimating the parameteissto re- namic range. . .
strict the estimator to be linear in the data= Hx + w and  Various modifications of the LS estimator for the case in
then to find the linear estimate afthat results in an estimatedWhich the data model is assumed to hold perfectly have been

data vectoy that is as close as possible to the given data vect®ioPosed [8]. In [9], Stein showed that the LS estimator for the
y in a least-squares (LS) sense so hat chosen to minimize Mean vector in a multivariate Gaussian distribution with dimen-

the total squared error in the observations. sion greater than 2 is “inadmissible,” i.e., for certain parameter

The LS method is widely employed in diverse fields, botMalues, other estimators exist with lower MSE. An explicit (non-
as an estimation criterion and as a method for parametric méear) estimator with this property, which is referred to as the
eling of data (see e.g., [1]-[4]). Numerous extensions of td@mes—Stein estimator, was later proposed and analyzed in [10].
LS method have been previously proposed in the literature. Theis work appears to have been the starting point for the study
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In Section V, we show that the CSLS estimator has a propertyThe (weighted) least-squares (LS) estimate ofhich is de-
analogous to the property of the LS estimator. Specifically, fitotedxy s, is chosen such thgt = Hx;s = HGy is as close
is shown to achieve the Cramér-Rao lower bound (CRLB) fais possible ty in a (weighted) LS sense so thatminimizes
biased estimators [2], [14], [15] when the noise is Gaussian. Tl total squared error in the observations. Thus, the LS estimate
implies that for Gaussian noise, there is no linear or nonlinegys = Gy is chosen to minimize the total squared error
estimator with a smaller variance, or MSE, and the same bias as
the CSLS estimator. ers = (y — HGy)"W(y — HGy) 2

In Section VI, we analyze the MSE in estimatirgof both
the CSLS estimator and the LS estimator and show that the
variance of the estimation error can be chosen so that there
threshold SNR, below which the CSLS estimator yields a lower
MSE than the LS estimator, for all values »f The simula-

tions presented in Section IX strongly suggest that the CSLSThe Gauss—Markov theorem [2] states that Wh= C_?,

estimator can significantly decrease the MSE of the estimatigqy | S estimator is the best linear unbiased estimator (BLUE)
error inx over the LS estimator for a wide range of SNR valuegs x j.e., it minimizes the total variance defined by

In Section VII, we show that the CSLS estimator can
alternatively be expressed as an LS estimator followed by a V(x)=E(x—- EX)"(x— EX))) (4)
weighted minimum mean-squared error (WMMSE) shaping
transformation [18] that optimally shapes the covariance &Pm all linear unbiasedestimators. Furthermore, i is a
the LS estimate ok. The WMMSE covariance shaping transZero-mean Gaussian random vector, then the LS estimator (with
formation minimizes the weighted MSE between the origin@pPtimal weighting) is also the minimum variance unbiased
vector and the transformed vector, i.e., results in a vector wiggtimator, i.e., it minimizes the variance from all linear and
a specified covariance matrix that is closest in a weighted M$@nlinearunbiasedestimators.
sense to the original vector. The WMMSE covariance shapingThe LS estimator has a variety of optimality properties in the
problem is an extension of the minimum MSE (MMSEYlass of unbiased estimators. However, an unbiased estimator
whitening problem [16], [17], in which the transformed vectofloes not necessarily lead to minimum MSE, where the MSE of
is constrained to be white, and the transformation is chosen@d estimatex of x is defined by
g1r:rc;|rtrr11|é?,v'::;ee (\lljgcv;/s;ghted) MSE between the original vector MSE(%) =E(|[% — x|[2) = Tr (B((% - x)(% — %))

Several applications of CSLS estimation are discussed in Sec- =V (%) + || B(%)|*. (5)
tion IX. The first application is to estimation of the parameters ) A ) o
in an ARMA model. We show that the CSLS estimator can si¢i€€ B(X) = E(x) — x denotes the bias of the estimatar
nificantly decrease the MSE in estimating both the AR and th¥ We Will show, in many cases, the CSLS estimator, which we
MA parameters over a wide range of SNRs. As a second app"&ig_velop in Section Ill, can result in lower MSE than the LS esti-

tion, the CSLS estimator is applied to the problem of estimatif§ator by allowing forabias. In Section V, we also show that the
the amplitudes of complex exponentials with known freque “SLS estimator has a property analogous to the LS estimator.
cies and damping factor in additive noise. Namely, for Gaussian noise, it is the estimator among all linear

and nonlinear estimators that minimizes the variance subject to
a constraint on the bias.

X\glereW is an arbitrary positive definite weighting matrix. If
eachoosé?V = C;!, then the LS estimate is given by

xis = (H*Cy'H) ™ H*Cly. 3)

Il. LEAST-SQUARESESTIMATION

We denote vectors 6™ (m arbitrary) by boldface lowercase !l COVARIANCE SHAPING L EAST-SQUARES ESTIMATION

letters and matrices ia™*"™ by boldface uppercase lettels, Since the MSE depends explicitly on the unknown parameters
denotes then x m identity matrix. The adjoint of a transfor- x, we cannot choose an estimate to directly minimize the MSE.
mation is denoted by-)*, and(-) denotes an optimal vector or A common approach is to restrict the estimator to be linear and
transformation. The squared norm of the vestds denoted by unbiased and then seek the estimator of this form that minimizes
|x]|* = x*x. A prime attached to a random variable or vectathe variance or the MSE, which leads to the BLUE or the LS es-
denotes the variable or vector with the mean subtracted, etgmator. In our development, the estimator is not constrained to

a’ = a— F(a). be unbiased. Our approach for choosing the estimator is moti-
We consider the class of estimation problems representedvayed by the observation that, in many cases, the data vector
the linear model is not very sensitive to changessirso that a large error in esti-
matingx may translate into a small error in estimating the data
y=Hx+w (1) vectory, in which casexrs may result in a poor estimate &f

In the high SNR limit, where? — 0, %15 — x so that the LS
wherex is a deterministic vector of unknown paramet@dissa estimate converges to the true parametersegardless of the
knownn x m matrix, andw is a zero-mean random vector withmodel matrixH. The CSLS estimator is directed at improving
covarianceC,,. For simplicity of exposition, we assume tiHdt the performance of the LS estimator at low to moderate SNR by
has rankm; the results extend in a straightforward way to thehoosing the estimate &f to minimize the total error variance
case in which the rank dl is less thann [18]. in y subject to a constraint on the covariance of the error in the
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estimate ok so that we control the dynamic range and spectral This problem is very similar to the MMSE whitening problem
shape of the covariance of the estimation error. considered in [16]. Using the method used in[16] and [18] to de-
The CSLS estimate of, which is denoteckcsys, is chosen rive the MMSE whitening transformation, it is straightforward
to minimize the total variance of the weighted error betwedn show (see Appendix A) that the minimizing is given by
y = Hxcss = HGy andy, subject to the constraint that . 1/2
the covariance of the error in the estimate;r s is proportional W = C%ﬂ =c (Cgl/QQCCTl”) . (13)
to a given covariance matriR. From (1), it follows that the
covariance of is equal toC,, so that the covariance éf-srs, From (12), we then have that the optimal valuevefis
which is equal to the covariance of the error in the estimate . 172
%csis, is given byGC, G*. Thus,%cscs — Gy is chosen W = cCL/2 (C;l/ZQC;W) col2. (14)
to minimize
Using (62) (see Appendix B), we may expré@sas

ecsis = E ((y —HGy')*C,'(y' — HGy'))  (6) - 1/2
W = ct ) 15
subject to ’ (Q ‘ ) o

i ) We may further wish to choosesuch that (8) is minimized.
GC,G™ =R (7 SubstitutingW back into (8), and minimizing with respecté&p

wherey’ = y — E(y), R is a given covariance matrix, andthe optimal value ot, which is denoted by, is given by

¢ > 0 is a constant that is either specified in advance or chosen T ((QC”) 1/2)
to minimize the error (6). ¢ = ‘ - (16)
This minimization problem is a special case of the general Tr (QC;")

weighted MMSE (WMMSE) shaping problegipecifically, the .__Ifthe scalingcin (9) is fixed andR = 1,,,, then the WMMSE
problem of (6) and (7) can be restated as the problem of f'nd'ﬂﬁwitening transformation is equal to the MMSE whitening

the transformatiofW’ to minimize transformation derived in [16]; however, the optimal scaling

E ((a —b)*Cia— b)) @8) values are different in both cases. _
The results above are summarized in the following theorem.
whereb = Wa, subject to Theorem 1 (WMMSE Covariance Shaping)eta € C™ be
a raggom vector with positive-definite covariance maftly.
C, = WC,W* = *Q (9) Let W be the optimal covariance shaping transformation that

minimizes the weighted MSE defined by (8), between the input
a and the outpub = Wa with covarianceC; = c?Q, where
Q is a given covariance matrix, ard> 0. Then

witha=y’, C, = C,, W = HG, andQ = HRH*.

A. WMMSE Shaping

In this section, we consider the WMMSE shaping problem of W =5 (Qc;h)
(8) with weighting matrixC; 1. The more general case of arbi- .
trary weighting is considered in [18]. Latdenote a zero-mean Where we have the following.

1/2

random vector with positive-definite covariance mattlx, and 1) If ¢ is specified, ther = c. _ A
letb = Wa. We seek the transformatidi that minimizes (8) ~ 2) If ¢ is chosen to minimize the weighted MSE, ther- ¢
subject to (9), wher€) is a given covariance matrix that is not given by (16).

assumed to be invertible, ard> 0 is a constant that is either )
specified or chosen to minimize the error (8). B. CSLS Estimator
Denoting bya = C; */?a andb = C;'/*b, we may rewrite  In the problem of (6)a = y’, C, = C,,, W = HG, and
(8) as Q = HRH". Denoting byG = (1/¢)G, we then have from
Theorem 1 that the optimal value &, which is denoted3,
(10)  satisfies

where the covariance matrix afis equal tdl,,, and the covari- Hé _ (HRH*C—I) 1/2 . 17)
ance matrix ofb is w

E((a-b)'C;'(a~b) = E((a-B)(&- b))

B a Using straightforward matrix manipulations, we show in Ap-
C; = *C; vzQe;t. (11) pendix B that

Thus, minimizing (8) subject to (9) is equivalent to finding the
transformation

RH*C,'. (18)

G =R (H*C,'HR)
- = (RE"C;'H)
W = C;'/?WCl/? (12)

o If the scalinge in (7) is specified, then the CSLS estimator is
such that the random vectbr= Wa has covariance given by given by
(11) and is closest in an MSE sense to the random vaoioth ~
covariance,,,. XcsLs = cGy. (19)
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If cis chosen to minimizecsr.s, then IV. CONNECTION WITH OTHER MODIFICATIONS OF
~ LEAST-SQUARES
Xcsis = ¢Gy @0 nthis section, we compare the CSLS estimator with the ridge
where from Theorem 1 estimator proposed by Hoerl and Kennard [11] and Tikhonov
[12], as well as with the shrunken estimator proposed by Mayer
Tr ((RH* C;lH) 1/2) and Willke [13]. In Section 1X, we discuss a performance com-
&= Tr (RH* C;lH) : (21) parison in the context of a specific application.

The ridge estimator for the linear model (1), which is denoted
Note from (19) and (20) thatcsys is a biased estimator of by xg, is defined by
x so that wherv? — 0, Xcgrg does not converge ta. At
very high SNR, we therefore expect the LS estimator to perform xp = (H* C,'H + 6Ln) e C.ly (23)
better than the CSLS estimator. The advantage of the CSLS is
at low to moderate SNR, where we reduce the MSE of the edtiheres is a regularization parameter. It can be shown fhat
mator by allowing for a biased estimator. Indeed, as we showftinimizes the LS error subject to a constraint on the norm of
Section VI, for many choices @&, regardless of the value af  Xr- Thus, for all estimators with fixed norn& given by (23)
there is always a threshold SNR, so that for SNR values belddnimizes the LS error, wher@is chosen to satisfy the norm
this threshold, the CSLS estimator yields a lower MSE than tgenstraint.
LS estimator. As we show in [18], in applications, this threshold To show thatr is equal to a CSLS estimator with an appro-
value can be pretty large. priate choice oR, letxcsps be the CSLS estimator with covari-
Since the covariance of the LS estimate is given from (3) ®nceR g, whereRp is the covariance of the estimatg; and
(H*C;'H)~! and the covariance of the CSLS estimate is prds given byRp = (I, + §(H*C,,'H)'L,) '(H*C,'H +
portional toc2R, it follows immediately thagkrs can be equal éI..)~". By direct substitution oR  into the expression for
to Xcsis only if (H*C,'H) ! is proportional toR.. In fact, XcsLs from Theorem 2xcs.s = xg. Based on this connec-
using the CSLS estimator of (20), we have that = xcsis if tion between the ridge estimator and the CSLS estimator, we
and only if(H*C;'H)~! = d?R for somed > 0. Indeed, if May interpretthe ridge estimator as the estimator that minimizes

(H*C,'H)~! = d’R, thenx; s = d>RH*C 'y, and the errorecsps given by (6) from all estimators with covariance
Rrk.
%csis = ¢(R(d°R)™!)"Y/?RH*C 'y = ¢cdRH*Cy. The shrunken estimator for the linear model (1), which is de-

(22) noted byxs, is a scaled version of the LS estimator and is de-
From (21),¢ = d~'/d=? = d so that for any choice of, fined by
XcsLs = XLs.
Finally, we note that the CSLS estimator of (20) is invariant x5 = kxrs = & (H* C;lH)*1 H*C,'y (24)
to an overall gain irC,,. Thus, ifC,, = ¢2C for some covari-
ance matrixC, then the CSLS estimator does not depend on wherex is a regularization parameter. A stochastically (non-
This property does not hold in the case in whicls chosen as linear) shrunken estimator is a shrunken estimator in whiish
a constant, independent of In this case, the CSLS estimatora function of the datg, an example of which is the well-known
depends explicitly o, which therefore must be known. Al- James—Stein estimator [10].
ternatively, if we letc = o, then the CSLS estimator will not The shrunken estimatsts can be formulated as a CSLS es-
depend onr, which might be unknown. We conclude that in théimator where the covariance &1 is chosen to be equal to
case in which the variance is unknown, we must eitheruseé  the covariance oks given byRgs = x?(H*C,,H) 1. Substi-
of (21) orc = o. tuting Rs into the expression fakcsps from Theorem 2, we
The CSLS estimator is summarized in the following theorermdeed have thatcsps = xs. Thus, we may interprets as
Theorem 2 (CSLS Estimator):etx denote the deterministic the estimator that minimizes the errafsys of (6) from all es-
unknown parameters in the model= Hx + w, whereH is a timators with covarianc®s.
knownn x m matrix with rankm, andw is a zero-mean random In summary, some of the more popular alternatives to the
vector with covarianceC,,. Let xcsps denote the covariance LS estimator under the model (1) can be interpreted within the
shaping least-squares estimatorxofthat minimizes the error framework of CSLS estimators. This provides additional insight

(6) subject to (7) for some > 0. Then and further optimality properties of these estimators. However,
the CSLS estimator is more general since we are not constrained
Xcsis =AR(H*C,'HR) '/?H*C,'y to a specific choice of covariand®. By choosingR to “best”
=6(RH*C;'H)"Y2RH*C 'y shape the estimator covariance in some sense, we can improve
] the performance of the estimator over these LS alternatives.
where we have the following. As a final note, suppose we are given an arbitrary linear esti-
1) If cis specified, ther = c. matex of x for which the covariance of the error@,.. Then,
2) If cis chosen to minimize the error, thén= ¢ given by we can compute the CSLS estimates;.s with R = C,. If
(21). XcsLs = X, then the estimat& has the additional property

Furthermore, with = ¢, the least-squares estimatg; is equal that from all estimators with covariangg,,, it minimizes the
to Xcsps if and only if H*C,'H = d’R for somed > 0. (weighted) total error variance in the observations. If, on the
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other handxcsLs # X, then we can always improve the totalwould be desirable to analyze the MSE of the CSLS estimator
error variance of the estimate without altering its covariance ligr more general forms of bias, we cannot directly evaluate the
usingxcsLs. Therefore, an estimate with covariafCe is said MSE of the CSLS estimator since the bias and, consequently,
to be consistent with the total error variance criterion if it minthe MSE depend explicitly on the unknown parameterdo

imizes this criterion from all estimators with covarian@g, in  gain some additional insight into the performance of the CSLS

which case, it is equal to the CSLS estimate viRth= C,.. estimator, in this section, we instead compare its MSE with the
MSE of the LS estimator. Our analysis indicates that there are

V. CRAMER—RAO LOWER BOUND many cases in which the CSLS estimator performs better than

the LS estimator in a MSE sense for all values of the unknown

The variance of an unbiased estimatoof the unknown pa-

rametersx can be bounded by the CRLB [2], [14]. A similar s L .
hThe approach we take in this section is to directly compare

bound is also given for the variance of a biased estimator, Whitge MSE of the CSLS and the LS estimators and show that

is known as the biased CRLB [15]. Specifically, suppose V\% . . . .
want to estimate a set of unknown deterministic parameetersOr a variety of choices of the output covarianiBe there is a

rom some gien obseatons Lty.) denate e prob- SIS S Such 0t for SR vaues below i resho
ability density function of the observatiogs which is charac- : ! W !

i — 2
terized byx. It is assumed thai(y, x) satisfies the regularity forr] all vterl]lu? ofx. Inl O:Jr ana{y%? we elllssumei :@f _g] ?th
conditionE(dp(y, x)/0x) = 0. Then, for any estimatat of x where Ine diagona’ elements Ofare af equal fo 1 50 that the

) : C Ty X
with bias B(x), the covariance of the estimator must satisfy variance of each of the noise componentﬂq_f IS 0. To en
sure that the estimator does not depend pwhich may not be

E((x — E(X))(x — E(%))") known, we let the scaling of the CSLS estimator/be- o or

parameters.

OB OB * B = ¢, which is given by (21).
> (Im + 8£(X)> J1(x) <Im “+ 8E(X)> (25) The detailed analysis related to this discussion is carried out
in Appendix C. Here, we focus on the interpretation of the re-
where.J(x) is the Fisher information matrix defined by sults developed in the Appendix.
2
J(x) = —F <81°§4p(2y7x>> _ (26) A. Fixed Scaling
x We first consider the case in whigh= ¢. The MSE of the
For the CSLS estimator, the bias is given by CSLS estimator is then given by
B(% = (p(rE*C;'H) -1, 27 )
(XCSLS) (ﬂ( w ) )X ( ) MSE(XCSLS) _ ”((RB)I/Z _ Im)XHZ + 02Tr(R) (30)

and
whereB = H*C~'H. The first term in (30) is the squared

OB(XcsLs) _ 3 ((RH*C;lH)l/Z) ~1,. (28) normofthe bias of the estimae:si.s, and the second term in
ox (30) is the total variance ofcsys.

We now show that if the noisev in (1) is Gaussian with  Forlarge values of? in comparison with|x||?, the first term
zero-mean and covarianc€,,, then the CSLS estimatorin (30) is negligible, and MSEcsrs) =~ o*Tr(R). Thus, at
achieves the CRLB for biased estimatcrswith bias B(x) Sufficiently low SNR, where the SNR is defined fs||* /o,
given by (27). both MSEx%1,s) and MSExcs1.s) are proportional to-2, where
For the linear model of (1) with Gaussian noise, the Fish#fe can always choosR so that the proportionality constant
information matrix is [2}J(x) = H*C'H. The CRLB onthe Tr(R) of the CSLS estimator is smaller than the proportion-

variance of any estimator with bidxcs..s) is therefore given ality constant TfB ") of the LS estimator. At sufficiently high
by SNR, the second term in (30) can be considered negligible and

aso — 0, MSE(%cs1s) converges to the constafif RB)'/? —
E((x—- E(x))(x— E(x))") I,,)x||?. From this qualitative analysis, it is clear that there is a
> 32 (RH*C;IH)UQ (H*C;IH)A (H*C;lHR)l/Q threshold S_NR that_ will depend in genergl wrrbelow which,
o 1/2 o 12 e _, for approp_rlate choices @, the CSLS estimator outperforms
=4* (RH*C,'H) " (RH*C,'H) '~ (H*C,'H) the LS estimator.
= ’R. (29) In Appendix C, we show that ikps # =Xcsps, then
MSE(Xcsrs) < MSE(xys) if
Now, for the CSLS estimatoE(f:CSLs — E()A(CSLs))()ACCSLS —
E(Xcsps))*) = B?R so that the CRLB is achieved. Thus, from TrH(B1) — Tr(R)
all estimators with bias given by (27) for sonseand R, the ¢ <
CSLS estimator minimizes the variance.

2 EVV C (3 1)

Oy

where¢ = ||x||?/(o?m) denotes the SNR per componeBt=
V1. MEAN-SQUARED ERROR PERFORMANCE H*C'H, v = argmaxoy, andoy are the eigenvalues of
In Section V, we showed that the CSLS estimator minimize = ((RB)'/? — L,,)*((RB)'/? — 1,,,). The bound{wc
the MSE among all estimators with a particular bias. While given by (31) is a worst-case bound since it corresponds to
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the worst possible choice of parameters, namely, when the wherey = argmax |a/\i/2 — 1]2. We also show that when

known vector is in the direction of the eigenvector @ corre- xcsrs # XLs, (we > 0 so that there is always a range of SNR

sponding to the eigenvalus,. In practice, the CSLS estimatorvalues for which MSExcsps) < MSE(Xrs).

will outperform the LS estimator for higher values of SNR than The bound(wc given by (34) is a worst-case bound since

¢we- it corresponds to the worst possible choice of parameters. In
Since we have freedom in designim), we may always practice, the CSLS estimator will outperform the LS estimator

chooseR so thatfwc > 0. In this case, we are guaranteed th&br higher values of SNR thaiyc.

there is a range of SNR values for which the CSLS estimatorin a similar manner, we show that M&&grs) >

leads to a lower MSE than the LS estimator for all choices MSE(x.g) if

the unknown parametess

For example, suppose we wish to design an estimator with co- (%) 3 )\;1 —a?
variance proportional to some given covariance ma&rso that ¢> k=1 . 2 (s (35)
R = aZ for somea > 0. If we choosen < Tr(B~1)/Tr(Z), ‘a/\’liﬂ _ 1’

then we are guaranteed that there is an SNR range for which the
CSLS estimator will have a lower MSE than the LS estimatg\r,here,i = arg min |aAi/2 — 12

for all values ofx. _ The performance analysis of the CSLS estimates s with
In specific applications, it may not be obvious how to Choosecﬁ)timal scaling in the case in whid = I,, andC,, = 0>C

particular proportionality factos. In such cases, we may prefer.;, pe summarized as follows: Lt ||x||?/(o2m) denote the

using the CSLS estimator with optimal scaling, which we disg\g per component. Then, wift\,, 1 < k < m} denoting the

cuss in Section VI-B. eigenvalues oB = H*C'H, and« given by (33), we have
the following.

1) MSEx < MSE(xys) for ¢ < (wc, where >
In cases in which there is no natural scaling, it may be prefer- ) 0 isﬁ\)écvflgsrit—_case égjﬁé givgn_b?zs? 4). Gwe

able to use the CSLS estimator with optimal scaling. In this case, ) MSE(%csrs) > MSE(%1s) for ¢ > (e, whereCpc is
the scaling is a function aR cannot be chosen arbitrarily, so the best-case bound given by (35)_
that in general, we can no longer guarantee that there is a posig) MSE(Xcsrs) may be smaller or larger than M&E s)
tive SNR threshold, i.e., that there is always an SNR range over * ¢, (wo < ¢ < (po, depending on the value af Thus,
which the CSLS p.erforms bgtter than the LS estimator. ,HOW' the true threshold value in a particular application will be
ever, as we show, in the special case in witk= 1,,,, there is betweenwe and(ac.
always such an SNR range.

If 6 =¢andR = I,,,, then (see Appendix C)

B. Optimal Scaling

In addition, we have the following.
1) If x is in the direction of the eigenvector of

MSE(XcsLs) = ||(OZBl/2 —L,)x|]? + ma2o? (32) B corresponding to the eigenvalue\,, then
MSE()A(CSLs) S MSE()A(Ls) for C S CVVC, and

where MSE(xcsLs) > MSE(xws) for ¢ > (we.

™m0 2) If x is in the direction of the eigenvector of
A ) )

¢ Tr(BY?) ; ! B corresponding to the eigenvalue\., then
o= ; = TI‘(B) = ,4m (33) MSE()A(CSLs) < MSE()A(Ls) for C < CBC: and

El)\z MSE()A(CSLs) > MSE()A(Ls) fOI’C > CBC-

In [18], we consider some examples illustrating the threshold
and)\;, 1 <4 < m denote the eigenvalues Bf= H*C_'H.  values for different matriceB = H*C~'H, whereC,, =
For sufficiently large values of? in comparison with ¢2C. These examples indicate that in a variety of applications,
|Ix||?, we can consider the first term in (32) negligible anthe threshold values are pretty large, as can also be seen from
MSE(xcsrs) ~ ma?o?. Thus, at sufficiently low SNR, both the simulations in Section IX.
MSE(x1s) and MSExcsrs) are proportional tar? and, as
we show in Appendix C, the proportionality constant:? of VII. LS FoLLoweD BY WMMSE SHAPING

the CSLS estimator is smaller than the proportionality constant . A . .
. . : The CSLS was derived to minimize the total variance in the
Tr(B~1!) of the LS estimator. At sufficiently high SNR, the W

. . . data error subject to a constraint on the covariance of the esti-
seconfi term in (30) can be considered neg“%"};le’ am’d%g’ mator ofx. In this section, we show that the CSLS estimator
MSE(xcsis) converges to the constafifaB '/ — L. )x||°. ., alternatively be expressed as a LS estimator followed by a
T_hese Frend_s n th_e behavior of the MSE can be seen in \(/&)Sighted minimum mean-squared error (WMMSE) covariance
simulations in Section IX. shaping transformation,

MénE(QZSf;)dz I\SI:SE\(I::L:;]?fW that ikys # Xcsis, then Specifically, suppose we estimate the parameters

using the LS estimatoks. Sincexys = x + w, where
1) R -1 2 w = (H*C_'H)"'H*C,w, the covariance of the noise
(E) k§1 kT component¥ in xig is equal to the covariance @&f g, which

¢ < 7— = (we (34) is denotedCy, . and is given byCy,. = (H*C,'H) !. To
1/2 X XLs XLs — - w . ]
’a)‘v - 1‘ improve the performance of the LS estimator, we consider



692 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 3, MARCH 2003

shaping the covariance of the noise component in the estimdtmmmation T such that the covariance matrix &f = Txyc,
%X1s. Thus, we seek a transformatidW such that the covari- which is denoted byC;, satisfies
ance matrix ok = Wxyg, which is denoted b{;, satisfies

C; = TC4,, . T* = ’R (40)

C; = WC,, . W* =R (36)

S

wherec is given. To minimize the distortion to the estimator
for somec > 0. To minimize the distortion to the estimators, Xwmc, from all possible transformatioriB satisfying (40), we
from all possible transformatio® satisfying (36), we choose choose the one that minimizes the MSE

the one that minimizes the weighted MSE

E ((%ye — Txye)” (Kyc — Txye)) (41)
E ((X;s — Wx}g)" C(%g — WX] 37 X X X
((%s rs) C(Xis Ls)) (37) wherex, ;. = %uc — E(Xyc).
whereC is an arbitrary weighting matrix. This minimization problem is a special case of the general

We now show that if we choos® = C;' in (37), then the MMSE shaping problem considered in [18], from which it fol-
resulting estimatok = W s is equal takcsr.s. Note that this 10WS that
choice of weighting matrix is reminiscent of the Gauss—Markov

N % ~—1 —-1/2 ~
weighting in LS estimation [2]. The minimization problem of % =c(RH"C,,'H) " Riuc

(87) withC = C. ' is a special case of the general WMMSE =c (RH" C;IH)_I/2 RH*C.'y. (42)
shaping problem discussed in Section llI-A with = X[, ) o )
C, = (H*C:'H)~!, andb = %. Thus, from Theorem 1 Comparing (42) withkcsps given by T_heorem 2 we conclupie
thatx = Xcsps SO that the CSLS estimator with fixed scaling
% =¢R. (H*C;lHRfm H*C;'Hxg can be determined by first finding the matched correlator esti-
R 1 S1/2 g matorxyic and then optimally shaping its covariance. The op-
=R (H*C,'HR) ""H'C 'y (38)  timal scaling can be found by choosingo minimize (6) with
G = ¢(RH*C_'H) '/?RH*C_'.
and In [17] and [22], a modification of the well-known matched
Tr ((RH* C;lH)l/Q) filter (MF) detector, which is referred to as the orthogonal MF
o= _ ) (39) detector, was proposed. The orthogonal MF detector is obtained
Tr (RH*C'H) by MMSE whitening of the MF output, which is equivalent to

. - . a matched correlator. Therefore, when scaled appropriately, the
Comparing (38) withkcsts given by Theorem 2, we concludei,,40nal MF implements a CSLS estimator wiRh= T,
that_fc = §<<_;5Ls so that the CSLS estimator can be determlnqq [17] and [22], the orthogonal MF was proposed agédrhoc
by first finding the LS estimataty.s and then optimally shaping jeyector. The performance properties of the CSLS estimator can

Its covariance. , , _ now be used to establish optimality properties of this detector.
In [18]-[20], a new linear multiuser receiver for synchronous

code-division multiple-access (CDMA) systems, which is re-

ferred to as the orthogonal multiuser receiver, was proposed.

In a CDMA system, the received signalis modeled ag = In this section we consider two applications of CSLS estima-

SAb + w, whereS is a known matrix of signature Vectors’tion. The first is to the estimation of parameters in an ARMA

A is a diagonal matrix of received amplitudds,is the data model. The second is to the estimation of amplitudes in expo-

vector, andw is a noise vector. Linear multiuser receivers corfiential signal models.

sist of an estimator ok = Ab followed by a channel de- o

coder. The well-known decorrelator receiver [21] is based h System Identification

a least-squares estimatexofThe orthogonal multiuser receiver As one application of CSLS estimation, we consider the

is designed to optimally whiten the output of the decorrelatproblem of estimating the parameters in an ARMA model,

receiver prior to detection and is therefore a special casearfd compare the estimated parameters to those obtained by

the CSLS estimator witlR. = I,,,. Therefore, the performanceusing the modified Yule-Walker equations in combination with

properties of the CSLS estimator can now be used to establ&imanks’ method [3], [23].

optimality properties of the orthogonal multiuser receiver. Suppose we are given a finite segment of noisy measurements
of an ARMA signalz[/], which is defined by

IX. APPLICATIONS

VIIl. M ATCHED CORRELATOR ESTIMATOR FOLLOWED BY » g
MMSE SHAPING o) = aall — K+ bes[l — K] (43)
We now show that the CSLS estimator with fixed scaling can k=1 k=0

also be expressed as a matched correlator estimator followgdsome coefficients;, andby., whereg < p. The coefficients
by MMSE shaping. Consider estimating the parametarsing ay, in (43) are the AR parameters ofi], and the coefficients,

the transformatiorkyic = H*C3'y. Then, the covariance of i, (43) are the the MA parameters. Theransform ofz[l] is

w

the noise component iky;c, which is equal to the covariance
of Xyc, is Cx,,. = H*C,,'H. To improve the performance of (2) = bo+bizt+ . +bgzl 4
Xnmc, We consider shaping its covariance so that we seek a trans- S +az7'+...+a,z? B

B(:)H(z)  (44)
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where B(z) denotes the numerator polynomial, aHdz) de- 10°
notes the inverse of the denominator polynomial. The problel :
then is to estimate the AR and MA parameters from the dai N
y[0],...,y[n — 1], where 107

ol = o+ wll] = 3 axall - ] .
k=1

q
+ > bedll =K +wll], 0<I<n—1. (45)
k=0

Here,w[l] represents a combination of measurement noise ai
modeling error. In the simulations belowy/] is chosen as a 1"
zero-mean Gaussian noise process with variafice

Various methods exist for estimating the ARMA parameter. : : : : : : :
based on different applications of LS estimation [3]. A popula 3 5 n s 20 % 2 3
method is to estimate the AR parameters using the modifieu SNR (8]
Yule—Walker equations [3] and then use these estimates in CQfy- 1 mean-squared error in estimating the AR parametexgiven by (53)
bination with Shanks’ method [22] to estimate the MA paranusing the LS estimator (48) and the CSLS estimator (49).
eters. We use this method as a basis for comparison with our

method. nentsbg, 1 < k < ¢, y is the data vector with componenj§],
From (45), it follows that 0<IlI<n-1,and
P h[0] 0 0
yll] = apx[l — k] +wll], ¢g<l<n-1. (46) h[1] Rh[0] 0
; Hya = : : : (50)
We now use (46) to estimate the AR parametgrsSince we hln —1] h[n=2] - h[n—g]

do not have access to the clean dala— k], we estimateu,
by substitutingy[l — k] instead ofz[l — k] in (46). Then, with
a denoting the vector with componenig,1 < k£ < p, y

so that Shanks’ method reduces to a LS problem. The LS esti-
mator of the MA parameters is then

denoting the data vector with componepif,p < | < n — brs = (H1‘§4AHMA)’1 Hy .y (51)
1, w denoting the vector with component§l],p <1 <n—1, ) ) ) )
and whereH,;, is computed using the LS estimaigs given by
(48).
yp—1] ylp-2] - y[0] We can modify Shanks’ estimator by using the CSLS esti-
ylp]  ylp—-1 - y[1] mator of the parametets, which leads to the estimator
Har = . . (47)

’ : ’ BCSLS =c (RHK{AHMA)_UZ RHY Y (52)
yln =2 yln—=3] - ylh—p—1]
) wherec¢ is given by (21), and novH ;4 is computed using the
we have thaly ~ Hara + w. The LS estimate of the AR cg| 5 estimatécs; s of (49).

parameters is then To evaluate the performance of both estimators, we consider

an example in which the ARMA parameters are given by
ars = (HirHar) "HiRy. (48)
ay = 0.97 as = 0.6, as = 0.47 b() = 1, b2 =0.5

From Theorem 2, the CSLS estimate of the AR parameters is (53)

and the matrixR is chosen aR = 1,,.
acsts = (RHARHAR) Y2 RHARY (49) In Fig. 1, we plot the MSE in estimating the AR parameters

usingacsrs andarg for n = 20 averaged over 2000 noise real-

whereé is given by (21). izations, as a function ef 10log o (to base 10), wher&? is the

We now use these estimatesaofo estimate the MA param- noise variance. As we expect, the MSE of the CSLS estimator
eters using Shanks’ method. Specifically,dgt = y[/] — h[l] * decreases with? for low SNR and then converges to a constant
b[l], whereh[l] is the impulse response of the filter wititrans- in the high SNR limit. The MSE of the LS estimator decreases
form H(z), which is computed using the estimates of the ARith o2 at a much slower rate. The experimental threshold is
parameters, antl/] is the (unknown) impulse response of thez 65 dB so that for values af? greater thanz —65 dB, the
filter with z-transformB(z). Shanks proposed estimating theCSLS estimator yields a lower MSE than the LS estimator.
unknown sequencigl] by minimizing 27:_01 e2[l]. With e de- We also compared the CSLS estimator with the shrunken es-
noting the error vector with component{g$],0 <! < n—1,we timator and the ridge estimator described in Section IV. Since
have thate = y — Hya b, Whereb is the vector with compo- both of these estimators depend on parameters that have to be
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1
1 7 15 35
SNR [dB] SNR [dB]

Fig. 2. Mean-squared error in estimating the MA paramétegiven by (53) Fig- 3. Mean-squared error in estimating the amplitudesand a, in the

based on the estimated values of the AR parameters using the LS estimator {&2§el (54) using the LS estimator and the CSLS estimator. The parameter
and the CSLS estimator (52). values are given by; = —0.6 + j27(0.40), so = —0.6 + j2x(0.41),
n = 15,anda; = a;, = 1.

chosen, the performance of these estimators cannot be showr(]agn

in a single figure. In our simulations with different choices o he noise variance range shown, the CSLS estimator performs

parameters, we observed that the CSLS estimator performs Beiter than the LS estimator. In this example, the experimental

gglicrigttgrbetter than both the shrunken estimator and the rld91ereshold variance isz 56 dB so that for values af? greater

In Fig. 2, we plot the MSE in estimating the MA parameter%anz _5.6 dB, the CSLS estimator yields a lower MSE than
° e LS estimator.

usingbgsrs and BLS for n = 20 averaged over 2000 noise
realizations, as a function of10logo?. The experimental
threshold is~ 32 dB. In this case, we observed that the CSLS
estimator performs better than the shrunken estimator for all MMSE SHAPING
SNR. For SNR values up to roughly 25-30 dB (depending on

the choice of regularization parameter), the CSLS estimattorIn this append|x, we con3|der the problem of finding an op-
. . imal shaping transformation that results in a random vector
also performs better than the ridge estimator.

b = Wa with covarianceC, that is as close as possibledo
in mean squared error, where the covarianca & given by
C, = I,,. Specifically, among all possible shaping transforma-
As a second application of the CSLS estimator, we consid@ins, we seek the one that minimizes the total MSE given by
the problem of estimating the amplitudes of two complex .
exponentials with known frequencies and damping factor in SE = ZE ((ak B bk)Q)
k=1

= 15. The true parameter values are = as = 1. For

APPENDIX A

B. Exponential Signal Models

complex-valued additive white Gaussian noise. The data is thus =E(a-b)"(a=b)) (56)

given by
subject to
yll] = are®™ + age™ +w[l], 1=0,1,....n—1 (54)
C, = WC,W*=WW* = 2C, (57)

wherew(l] is a white complex Gaussian noise process with vari-
anceo?, andn is the number of data points. wherea;, andb,, are thekth components af andb, respectively.

Denoting byy the vector of componentg], we have that ~ Our approach to determining the shaping transformation that
y = Hx + w, wherex is the vector of components anda,, Minimizes (56) is to perform a unitary change of coordinafes

w is the vector of components]i], and so that in the new coordinate systemnis mapped t& = Ua,
andb is mapped td = Ub, with the elements ob uncorre-
1 1 lated. SincdJ is unitary andC,, = ¢%1,,,, the covariance matrix
est €52 ofais Cz = I,,,, and the MSE defined by (56) betwearand
H = ; ; : (59) pis equal to the MSE betweenandb.
es2(n—=1)  s2(n—1) Such a unitary transformation is provided by the eigendecom-

position of C,. Specifically, suppose th&f; has an eigende-

In Fig. 3, we plot the MSE in estimating the parameters compositionC, = VDV™*, whereV is a unitary matrix, and

anda, using the CSLS estimator and the LS estimator for tHB is a diagonal matrix with diagonal elemewis If we choose
case in whichs; = —0.6 + j27(0.40), sy = —0.6 + j27(0.41) b = V*b, then the covariance matrix bfis V*C,V = D.
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Thus, we may first solve the optimal shaping problem in the Now, using (64) withS = RH*C,"? andT = C,'/*H,
new coordinate system. Then, wkW andW denoting the op- We may simplify (63) as
timal shaping transformations in the new and original coordinate = ~1/2

~ *~—1 *v—1
systems, respectively, it is straightforward to show that G= (RH C, H) RH'C,
o~ — _ % ~—1 —1/2 o ~—1
W = U'WU. (58) =R (H C, HR) H*'C,". (67)
To determinéW, we express)sg of (56) as APPENDIX C
emse = 3 E ((@, — br)?) PERFORMANCEANALYSIS

kjll m To compare the performance of the LS and CSLS estimators,
=S"d +me2 —25 " E(auhs 59 we_evaluate th(_a MSE of the estimators, wr_]ere the MSE of an
kZ:1 ke Z (@be) (59) estimatex of x is given by (5). In the following, we usB to

_ _ denote the matrix produdi*C—1H.
wherea;, andb;, denote thesith components dé andb, respec-  Erom (1) and (3)k.s — x = B-TH*C~'w, so that

tively, andd, = £ (Ei) From the Cauchy—Schwarz inequality

k=1

MSE(XLs) = o2Tr(B™1). (68)

_ _ _ /
E(aybi) < |E(agby)| < (E (E%)E(bi))l ’ (60) From Theorem 2,%csts — x = ((8/0)(RB)Y2 —

. o o o . I,.)x+(3/0)(RB)"Y/?RH*C~'w so that
with equality if and only ifbr, = ~xax with probability one

for some non—negative deterministic constantin which case, MSE(X¢sis)

2+ﬂ2Tr((RB)_1/2R(RB)1/2)

we also haveE(b,,) = v2E(a2) = v = c%dj, so thaty, = i 12
¢/dy. Note thatb, can always be chosen proportionaldp = <<;> (RB) —Im>X
since thAe variables, are un/gorrelated. Thus, the optimal value 3 9
of by, is by, = cap\/dy, andW = ¢D'/2. The optimal shaping = <</—> (RB)Y/2 — Im> x|| +B*Tr(R). (69)
transformation then follows from (58): 7

W = cVD'2V* = cC, /2, (61) A Fixed Scaling

We first consider the case in whigh= . Then, from (69)

APPENDIX B
MSE(xcsis) = ||[(RB)Y2 —L,)x||? + o*Tr(R)  (70)

CSLS ESTIMATOR

From (17), the optimal value o must satisfy and

1/2 MSE(xcsts) < o, [|x[|* + o*Tr(R) (71)

HG = (HRH'C,!) (62)
Multiplying both sides by RH*C;'H)"'RH*C!, we have Wheréy = argmaxoy, andoy, are the eigenvalues @ =

w w

that (RB)'/? — L,,)*((RB)"/? — L,,). We have equality in (69)
~ ~ . ~ PR only in the eventin whick is in the direction of the eigenvector
G = (RH"C,'H) RH'C_' (HRH*C_')'". (63) of Q corresponding to the eigenvalte.
o = _ Let ¢ = ||x||?/(¢*m) denote the SNR per com-
To simplify the expression fa&, we now prove the following ponent. Then, combining (68) and (71), we have that
matrix equality. Suppose thatis anm x n matrix of rankm, T MSE(Xcsts) < MSE(Xps) if o,¢ + Tr(R) < Tr(B~Y).
is ann x m matrix of rankm andR(T) C N (S)+, whereR(-) Sinceo., — 0_0nly if o, = 0 for all k, Which_implies that

andN(-) denote the range space and null space, respectivgly._ g-1 andxrs = %csws, it follows that if xr.s # %csts,

Then then MSEXcsrs) < MSE(Xys) if
S(TS)"/? = (ST)"/?s. (64) Tr(B~1) — TH(R) & -
(< ( ) (R) 2 (we- (72)
To prove (64), we first verify that Ty
(TS)I/Q _ ST(ST)1/2S (65) Note that(wc is a worst-case bound since it corresponds to

the worst possible choice of parameters, namely, when the un-
whereST denotes the Moore—-Penrose pseudo inverse &f-  known vectorx is in the direction of the eigenvector 6§ cor-
deed responding to the eigenvalue .
T 1/2 1/2gq _ —

st(sT)!/2ssf(ST)'/2S =STSTS =TS  (66) B. Optimal Scaling
since from the properties of the pseudo inverse and the fact thaéuppose now that = ¢ given by (21), and thaR = T,,..
S has full row rankSS' = I,,,, andS S is an orthogonal projec- Then ’
tion onto N/ (S)+, where by our assumptio® (T) C N (S)*.
Multiplying both sides of (65) on the right iy establishes (64). MSE(xcsLs) = ||(aBY? — I,,)x||? + ma?o? (73)
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where Furthermore
m 2
IO Su-iyisaz () e
“T e Tr(B) T (74) k=1 k=1 k=1 k=1
L; Ai Combining (82) with (83) proves the inequality (80).

We have equality in (81) if and only if; = ag; for all i and
some constant. Thus, we have equality in (82) if and only if
A% = aAl/?, which implies that all the eigenvalues are

N 1/2 2 2 2 o equal, so thaB is proportional tol,,, and from Theorem 2,
MSE(%css) = ‘a/\‘// - 1’ || + mao (75) %csrs = X1s. Under the same condition, we have equality in
where (83). We therefore conclude that whe&ps;s # X1s, there is

always a range of SNR for which M$Ecsps) < MSE(XLs).
(76) In a similar manner, we can show that

and);, 1 < i < m denote the eigenvalues Bf.
From (32), we have that

v = arg max ‘a)\llcﬂ — 1‘2
with a given by (74). We have equality in (75) only in the event MSE(xcsis) > [ad/? = 117[[x[|* +ma?e®  (84)
in which x is in the direction of the eigenvector & corre- \here
sponding to the eigenvalue, .
Combining (68) and (75), we have that MGisrs) < k = argmin |aA}/% — 1|2 (85)
MSE(xrg) if
with equality in (84) only if x is in the direction of the

1 & eigenvector ofB corresponding to the eigenvalug.. Thus
1/2 _ el g p g g '
’ Ay 1’ (o< kz_: (7)  MSE(xesis) > MSE(kis) if
The expressiortu)\ﬁ/2 — 1] is equal to zero only in the case in (%) Z At
which )\iﬂ = 1/« for all k so thatB = (1/a?)L,,. From The- 1/2 T £ (ae. (86)
orem 2, it then follows thaibz)\}/2 —1]=0ifandonlyifxys = | A 1]
XcsLs. If Xis 75 XcsLs, then we have that MS&CSLS) <
MSE(xys) if ACKNOWLEDGMENT
1y & 1 9 The authors would like to thank Prof. G. Verghese for refer-
(L) A" -a . fike to thar |
m N ring the authors to various modified LS estimators and for many
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