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Abstract

Adaptive array processing algorithms have achieved widespread use because they are
very effective at rejecting unwanted signals (i.e., controlling sidelobe levels) and in
general have very good resolution (i.e., have narrow mainlobes). However, many
adaptive high-resolution array processing algorithms suffer a significant degradation
in performance in the presence of environmental mismatch. This sensitivity to envi-
ronmental mismatch is of particular concern in problems such as long-range acoustic
array processing in the ocean where the array processor's knowledge of the propaga-
tion characteristics of the ocean is imperfect. An Adaptive Minmax Matched Field
Processor has been developed which combines adaptive matched field processing and
minmax approximation techniques to achieve the effective interference rejection char-
acteristic of adaptive processors while limiting the sensitivity of the processor to
environmental mismatch.

The derivation of the algorithm is carried out within the framework of minmax
signal processing. The optimal array weights are those which minimize the maximum
conditional mean squared estimation error at the output of a linear weight-and-sum
beamformer. The error is conditioned on the propagation characteristics of the envi-
ronment and the maximum is evaluated over the range of environmental conditions in
which the processor is expected to operate. The theorems developed using this frame-
work characterize the solutions to the minmax array weight problem, and relate the
optimal minmax array weights to the solution to a particular type of Wiener filtering
problem. This relationship makes possible the development of an efficient algorithm
for calculating the optimal minmax array weights and the associated estimate of the
signal power emitted by a source at the array focal point. An important feature of
this algorithm is that it is guarenteed to converge to an exact solution for the array
weights and estimated signal power in a finite number of iterations.



The Adaptive Minmax Matched Field Processor can also be interpreted as a two-
stage Minimum Variance Distortionless Response (MVDR) Matched Field Processor.
The first stage of this processor generates an estimate of the replica vector of the signal
emitted by a source at the array focal point, and the second stage is a traditional
MVDR Matched Field Processor implemented using the estimate of the signal replica
vector.

Computer simulations using several environmental models and types of environ-
mental uncertainty have shown that the resolution and interference rejection capabil-
ity of the Adaptive Minmax Matched Field Processor is close to that of a traditional
MVDR Matched Field Processor which has perfect knowledge of the characteristics
of the propagation environment and far exceeds that of the Bartlett Matched Field
Processor. In addition, the simulations show that the Adaptive Minmax Matched
Field Processor is able to maintain it's accuracy, resolution and interference rejection
capability when it's knowledge of the environment is only approximate, and is there-
fore much less sensitive to environmental mismatch than is the traditional MVDR
Matched Field Processor.

Thesis Supervisor: Alan V. Oppenheim
Title: Distinquished Professor of Electrical Engineering

Thesis Supervisor: Arthur B. Baggeroer
Title: Ford Professor of Electrical and Ocean Engineering



Acknowledgments

While the completion of a doctorate is looked upon as an individual accomplishment,
it is rarely accomplished without the help of a significant cast of supporting charac-
ters. Such is the case here, for it has been the friendship, guidance, and support of
many people that has helped make the last six years some of the most exciting and
stimulating of my life and have help me through the times when things got tough.

Over the past several years, Al Oppenheim has been a source of inspiration
and stimulation, has tolerated my often unhealthy addiction to bicycle racing, and
deftly alternated between providing the encouragement and critical evaluation which
I needed. His guidance and friendship has helped me grow both professionally and
personally. Art Baggeroer has similarly taken the time and effort to push me to de-
velop more fully in my work over the past few years. For their concern, caring and
effort, I am eternally grateful.

I would also like to thank Udi Weinstein, Bruce Musicus and Rob Freund for the
time and friendship which they have freely given to help me both technically and
personally in the past years. Henrik Schmidt has also provided much help with his
constant feedback on acoustics issues and his continual help with using SAFARI in
doing my work.

All my colleagues in the Digital Signal Processing Group, past and present, have
been intrumental in making the last three years fun and challenging. Particular among
these have been Greg Wornell, who has ridden with me on this roller coaster for the
last six years and has been an accomplice in creating an unholy mess in my kitchen on
many occasions; and Steve Isabelle, who, as an honorary member of TEAM THESIS
91, tolerated far more repetitions of the music of the Nylons and of Andrew Lloyd
Webber than was reasonable. Special thanks also go to John Buck, Andy Singer,
and Giovanni Aliberti who have patiently answered so many of my dumb computer
questions that they must be convinced (rightly so) that I am a hopeless case when it
comes to computer system management. My other friends including Jim and Carol
Bowen, John and Dana Richardson, Josko and Liz Catipovic, and all my cohorts in
the world of bicycle racing have been constant sources of friendship and excitement
and have helped me keep the world in a little better perspective through all of this.
And finally, the love and understanding of my family has been the pillar of support
which has kept me upright over the years. Without them, none of this would have
happened.

Financially, I have relied upon the generousity of others to keep me fed and in
school here at MIT and WHOI. For their support, I would like to thank the National
Science Foundation, the General Electric Foundation, the Office of Naval Research,
the Defense Advanced Research Projects Agency, and the Woods Hole Oceanographic
Institution.

To all of you, and to all of the many people who are not specifically listed above
but who have been there and given of themselves whenever I needed their help and
friendship, I say thanks. You have helped make it a wonderful 6 years.





Contents

1 Introduction 11
1.1 Linear, Adaptive, and Matched Field Processing ................ . 13
1.2 The Signal Replica Vector ....................... ......... . 15
1.3 Array Processor Performance in Uncertain Propagation Environments 17

2 Minmax Array Processing 21
2.1 The Minmax Signal Processing Framework ............... 21
2.2 The Adaptive Minmax Matched Field Processor ................ . 26

2.2.1 Signal Model ........................... 26
2.2.2 Processor Structure ....................... ......... . 29
2.2.3 The Minmax Array Weight Problem . . . . . . . . . . . . . . 31
2.2.4 The Minmax Array Processing Algorithm .......... . 33

2.3 Solution of the Minmax Problem ............................ . 36
2.3.1 Characterization of w_.pt(f,z, , 2' ) ............ 37
2.3.2 The Least Favorable PMF Random Parameter Framework . 39
2.3.3 Solving for the Least Favorable PMF ................... . 43
2.3.4 Least Favorable PMF form of the Array Processing Algorithm 48

2.4 Minmax Estimation Error Bounds . . . . . . . . . . . . . . . . . . . . 48

3 Analysis and Interpretation of the Adaptive Minmax Matched Field
Processor 53
3.1 MVDR Interpretation of the Adaptive Minmax Matched Field Processor 54

3.1.1 The Two-Stage MVDR Matched Field Processor ....... . 55
3.1.2 Analysis of the Two Stage MVDR Matched Field Processor . 56
3.1.3 Replica Norm Considerations and a Normalization Modification 61
3.1.4 The Range and Sampling of the Environmental Parameter Set · 64

3.2 Numerical Analysis of the Adaptive Minmax Matched Field Processor 69
3.2.1 The Deterministic Ideal Waveguide .................... . 70
3.2.2 The Arctic Ocean ................................. . 89
3.2.3 The Random Ideal Waveguide .................. 105

3.3 Algorithm Complexity .......................... 116

4 Matched Field Calculation of the Signal Replica Vector 123
4.1 The Spatial/Temporal Cross-Correlation Function .............. . 124
4.2 Ray Approximation ............................ 126

7

---- ---



4.3 Normal Mode Approximation ...................... 137
4.4 Numerical Solution of the Wave Equation ............... 144

5 Conclusions and Future Work 147

A Proofs for General Minmax Problems 151

B Proofs Specific to the Adaptive Minmax Array Processor 163

8



List of Figures

2-1 The Minmax Signal Processor .............. 22
2-2 Non-Optimal Solution. w =w, ..................... ......... . 27
2-3 Optimal Solution: w =w ......................... 28
2-4 Array Processor Structure . .. . . . . . . . . . . . . . . . . . . . . . 31
2-5 The MVDR Processor Bank .................... 34
2-6 Conditional Mean-Squared Estimation Error ............. ...... . 42

3-1 The Two-Stage MVDR Matched Field Processor ........... ..... . 54
3-2 The Convex Hull of Replicas with Different Norms . .......... 62
3-3 The Convex Hull of Replicas with Unit Norms ............. 63
3-4 Ambiguity Function for the MVDR Processor: SNR = 10 dB Assumed

Ocean Depth = 290 meters .............................. 74
3-5 Ambiguity Function for the MVDR Processor: SNR = 10 dB Assumed

Ocean Depth = 310 meters .............................. 75
3-6 Ambiguity Function for the Bartlett Processor: SNR = 10 dB Assumed

Ocean Depth = 290 meters ........................... 76
3-7 Ambiguity Function for the Bartlett Processor: SNR = 10 dB Assumed

Ocean Depth = 310 meters .............................. 77
3-8 Ambiguity Function for the Minmax Processor: SNR = 10 dB Assumed

Range of Ocean Depths = 290 to 310 meters ............. ...... . 78
3-9 Ambiguity Functions for SNR = 0 dB and Ocean Depth = 310 meters 79
3-10 Ambiguity Functions for the Minmax Processor: Two Sources . . . 82
3-11 Resolution Comparison for Different Processors . . . . . . . . . . . . 83
3-12 Source Depth/Ocean Depth Response for Array Focal Point = 175

meters and Actual Ocean Depth = 290 meters ............. 85
3-13 Source Depth/Ocean Depth Response for Array Focal Point = 175

meters and Actual Ocean Depth = 310 meters ............. 86
3-14 Source Depth/Ocean Depth Response for Array Focal Point = 250

meters and Actual Ocean Depth = 290 meters ............. 87
3-15 Source Depth/Ocean Depth Response for Array Focal Point = 250

meters and Actual Ocean Depth = 310 meters ............. 88
3-16 Adaptive Minmax Processor Characteristics vs SNR ............. . 90
3-17 Arctic Sound Speed Profile . .. . . . . . . . . . . . . . . . . . . . . . 91
3-18 Ambiguity Function for the Matched MVDR Processor ....... .. . 94
3-19 Ambiguity Function for the Mismatched MVDR Processor ...... . 95
3-20 Ambiguity Function for the Matched Bartlett Processor ....... .. . 96

9



3-21 Ambiguity Function for the Adaptive Minmax Processor ...... . 97
3-22 Array Gain vs SNR for Various Surface Sound Speeds ........ . 98
3-23 cos 2 (qff,d; Sn(f)-1 ) vs SNR for Various Surface Sound Speeds . . 100
3-24 Least Favorable PMF for Various Actual Surface Sound Speeds . . . 101
3-25 Least Favorable PMFs (continued) ................... 102
3-26 Peak Response Loss for Various Numbers of Environmental Samples. 104
3-27 Maximum Cross-Spectral Correlation Matrix Eigenvalues vs Modal

Phase Decorrelation ....................................... 110
3-28 Ambiguity Functions for = oo ............................ . 112
3-29 Ambiguity Functions for P = 2R ............................ . 113
3-30 Ambiguity Functions for = R . . . . . . . . . . . . . . . . . . . . . 114
3-31 Ambiguity Functions for 8 : 0 ..................... 115
3-32 Ambiguity Functions for 8 = oo with redefined Replica Vector . . . 117
3-33 Ambiguity Functions for 8 = 2R with redefined Replica Vector . . . 118
3-34 Ambiguity Functions for P3 = R with redefined Replica Vector .... 119
3-35 Ambiguity Functions for 8 z 0 with redefined Replica Vector . . . . 120

4-1 Similar Rays .......................................... . 134
4-2 Distinctly Different Rays ......................... 134
4-3 The Lloyd Mirror Effect Modification ................. ........ . 137

10



Chapter 1

Introduction

The signals received by spatial arrays of sensors are often composed of the sum of

signals emitted by sources at different locations. In order to estimate the signal, or

the parameters of the signal, emitted by a source at a particular location, the array

processor must often separate that signal from the other signals which are received.

This separation of signals based upon the location of the source is referred to as

spatial filtering. Thus, the spatial filtering of signals received by an array of sensors

to generate estimates of the parameters of the signals emitted by sources at locations

of interest is an important operation in many array processing applications.

Array processors achieve spatial discrimination through filtering by exploiting the

fact that the spatial characteristics of a propagating signal as received at an array of

sensors depend upon the location of the source of the signal. However, the spatial

characteristics of a propagating signal also depend upon the characteristics of the

medium through which the signal is propagating. Therefore, if a processor has in-

accurate or incomplete information concerning the characteristics of the propagation

environment, it may be unable to determine the spatial characteristics which should

be exhibited by a signal emitted by a source at the location of interest. In this case,

the processor may have difficulty in accomplishing the spatial filtering necessary to

estimate the parameters of the signal of interest. This work proposes an approach to

array processing which yields a processor capable of operating with only approximate

environmental information while at the same time achieving levels of spatial discrim-
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ination which are close to those achieved by adaptive processors having accurate and

detailed environmental information.

The remainder of this chapter contains general background information on array

processing. Section 1.1 discusses general linear, adaptive, and matched field pro-

cessing. Section 1.2 describes a parameterization of the spatial characteristics of

propagating signals, which is useful for the class of algorithms considered herein. The

problems which array processors exhibit when the environmental information is in-

accurate, and possible approaches to developing processors which are able to operate

effectively with inaccurate or imprecise information are reviewed in Section 1.3. This

section also introduces the minmax signal processing approach, which is proposed

herein to address the problem of array processing with only approximate environ-

mental information.

The theoretical foundations of the minmax approach, based on the Minmax Char-

acterization Theorm, are developed in Chapter 2. This theorem sets forth the neces-

sary and sufficient conditions which must be met by any solution to a general class

of minmax problems. The details of the proposed array processor, referred to as the

Adaptive Minmax Matched Field Processor, are presented. A computationally effi-

cient algorithm which is guaranteed to converge to an exact solution of the minmax

optimization problem of interest is developed by exploiting the special structure im-

posed on the solution by the Minmax Characterization Theorem. Finally, an approach

to bounding the minmax performance achievable by any processor is proposed.

In Chapter 3, the structure imposed by the Minmax Characterization Theorem is

again exploited to relate the Adaptive Minmax Matched Field Processor to Capon's

Minimum Variance Distortionless Response (MVDR) Matched Field Processor [9, 11].

The relationship developed leads to a qualitative analysis of the processor. This anal-

ysis motivates a small change to the algorithm developed in Chapter 2. A quantitative

analysis of the algorithm based on results of numerical simulations is also presented.

These numerical results are generated for both deterministic time-invariant and ran-

dom time-varying propagation environments. The results for the latter case motivate

another small change to the algorithm which is also detailed.
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Chapter 4 addresses the problem of generating a priori estimates of the spa-

tial/temporal characteristics of a propagating signal as a function of environmental

conditions and source location. This chapter does not present original work. Instead,

it presents results developed by others [29, 30, 31, 32, 33, 40, 41] on the propagation

of signals through random media and outlines how this work can be applied to gen-

erating estimates of the spatial/temporal signal characteristics. Finally, the results

generated herein are summarized and future work is discussed in Chapter 5.

1.1 Linear, Adaptive, and Matched Field Processing

Many types of array processors either implicitly or explicitly incorporate a linear

weight-and-sum beamformer to implement spatial filtering. This filtering allows the

processor to discriminate among signals based upon the location of the source of

the signals. Given an input y (the joint temporal/spatial filtering of the sampled

vector time series y[n] will not be considered in this introduction), the output of a

linear weight-and-sum beamformer is = why where w is the array weight vector,

the superscript h denotes complex conjugate transpose (i.e., Hermitian), and i is an

estimate of the signal emitted by a source at a location of interest.

Linear beamformers enjoy widespread use for several reasons. First, they generally

have the lowest computational complexity of the available methods of implementing

a spatial filter (given an N element array, the filtering operation is an X (N) opera-

tion and, if required, the calculation of the array weights to minimize a squared error

criterion is often an O (N 3) operation). Second, when the array weights are chosen to

minimize a mean-squared estimation error criterion, the solution for the optimal ar-

ray weights is a convex quadratic minimization problem and is analytically tractable.

Third, linear filtering preserves the actual time-series of the signal of interest which

is important in many applications. Finally, when the received signal consists of the

sum of a signal of interest and interfering signals,the spatial correlation of the inter-

fering signals is different from that of the signal of interest, and the signal of interest

is correlated across the aperture of the array, the linear beamformer is effective at
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filtering out the interfering signals and generating an estimate of th signal of interest.

Another class of array processors which enjoys widespread use it the adaptive

array processor. Adaptive array processors use observations of, or information about,

the signal, noise, and propagation environments to adjust the characteristics of the

processor to minimize or maximize some performance criterion. The processors are

able to efficiently use the degrees of freedom available to the processor to adjust to

the environment in which the processor is operating. [6] The most widely-used type of

adaptive processors are those incorporating adaptive linear beamformers [7, 8]. Two

such examples are Capon's MVDR Processor [9] and the Applebaum Beamformer

[10]. These processors use observations of the combined signal and noise environment

to adaptively adjust the array weight vector to optimally pass the signal of interest

through the filter and while controlling the sidelobes of the filter's spatial response to

reject the interfering signals contained in the received signal. In order to distinguish

between the signal emitted by a source at the location of interest from all other signals,

the processor uses a priori estimates of the spatial characteristics of the signals of

interest. These a priori estimates depend upon the manner in which the propagating

signals are modeled.

Traditionally, array processors have modeled propagating signals as plane waves

following a straight line path from the source to the array of sensors. This corresponds

to an implicit model of the propagation medium as being homogeneous and infinite

in extent and the source being far from the array. The propagation of acoustic waves

through the ocean is not modeled accurately in this manner. Both the time-invariant

and the time-varying temperature, salinity, and pressure structures of the ocean are

spatially-variant. When coupled with the finite extent (principally the finite depth)

of the oceans, these spatially-variant structures cause acoustic signals to propagate in

a manner which deviates significantly from that predicted by the plane-wave model.

This deviation has both adverse and advantageous consequences. The adverse

consequence is that, if a plane-wave model is used by the processor, the spatial char-

acteristics of the signal of interest may not match those estimated by the processor.

In this situation, which is referred to as model mismatch, the processor may treat the
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signal of interest as an interfering signal and attempt to reject it. A more detailed

discussion of this problem is contained in Section 1.3. The advantageous consequence

is that, if the processor uses a fairly accurate environmental and propagation model,

it is possible to achieve source localization accuracies which far exceed those which

are available in an infinte, homogeneous medium [11].

A class of processors which has been developed to take advantage of this improved

accuracy and to eliminate the model mismatch problems caused by the use of the

plane-wave model is referred to as the Matched Field Processor. First proposed

in [12], these processors use fairly complete environmental and propagation models

to make a priori estimates of the spatial structure of received signals as a function

of environmental condition and source location. The processors use these spatial

structure estimates to operate on the received sound field and generate estimates

of signal parameters of interest. The spatial structure of the signal of interest is

parameterized by the signal replica vector as defined in the following section.

1.2 The Signal Replica Vector

The signal replica vector is a parameterization of the spatial characteristics of a

propagating signal as a function of the location of the source of the signal and the

propagation characteristics of the medium. Traditionally, the signal replica vector is

defined for a narrowband signal propagating through a time-invariant medium. In

this case, the signal replica vector is, to within a complex scaling factor, a replica of

the deterministic narrowband signal emitted by a source at the location z as received

at the array of sensors. Thus, given that a source at the location z emits the complex

exponential Ae j27' f t and the medium is time-invariant, the signal received by the array

of sensors can be expressed as

_(t) = B ei2lrftq(f, z,_)
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where A is a complex random variable, (f, z, ) is the signal replica vector, is

a parameterization of the characteristics of the propagation environment and the

receiving array (e.g., the sound speed profile, the depth of the ocean, the sensor

locations, etc.), and B = cA for some complex constant c which depends on the

signal attenuation and progagation delay between the source and the sensor array

and the manner in which the replica vector in normalized. The signal replica vector

is usually normalized so that its magnitude equals one.

For this work, the signal replica vector is defined in a stochastic signal framework

as
(fz E[X(f z)Xk(, z) I ! 11

E[Xk(f,z)X*(f,Z) I ] (.1)

where Xk(f, z) is the discrete-time Fourier transform at the frequency f of the signal

emitted by a source at the location z as received at the k th array sensor, X(f, _) is

the discrete-time Fourier transform of the same signal as received at the entire array

of sensors, and the kth sensor is the reference sensor of the array. Thus, the signal

replica vector is the normalized cross-correlation between the discrete-time Fourier

transform of the signal of interest as received at the reference sensor and the same

signal as received at the entire array of sensors. It is important to note that the

signal replica vector is defined in terms of the propagating signal as received at the

array of sensors. This new defintion is used for two reasons. First, it explicitly allows

the parameterization of the spatial structure of a signal emitted by stochastic source

and which propagates through a random medium. Second, this parameterization

incorporates all of the the information concerning spatial structure of the signal of

interest which can be exploited by a linear processor which is optimized to minimize

a mean-squared error criterion.

When the source at the location z emits the complex exponential Aej 2wft and the

medium is time-invariant as described previously, the signal replica vector as defined

in (1.1) is, to within a complex scaling factor, identical to the traditionally defined

replica vector also described previously.

The term in the denominator of (1.1) is a normalization term which yields
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qk(f, _ ,) = 1. Another normalization convention is proposed in Subsection 3.1.3. A

different definition of the replica vector is proposed in Subsection 3.2.3. This defi -

tion is similar in concept to (1.1) in that it is based upon the spatial cross-correlation

of the signal of interest and, in a time-invariant propagation environment, these defi-

nitions are roughly equivalent. However, in a random time-varying medium, they are

different, and the definition proposed in Subsection 3.2.3 yields better results.

1.3 Array Processor Performance in Uncertain

Propagation Environments

As mentioned earlier, array processors exploit the fact that the spatial characteristics

of a signal as received at an array of sensors depend on the location of the source

of the signal in order to differentiate among signals emitted by sources at different

locations. High resolution processors are able to discriminate among signals whose

spatial characteristics, parameterized here by the signal replica vector, differ only

slightly. While the ability to discriminate among signals whose replica vectors differ

only slightly provides good spatial resolution, it also makes the processor sensitive to

changes in the propagation characteristics of the environment. A small change in the

characteristics of the propagation medium resulting in a small change in the signal

replica vector, may cause the processor to inaccurately estimate the location of the

source of the signal.

Adaptive processors, such as Capon's MVDR Processor [9], are particularly sen-

sitive to inaccuarate or imprecise knowledge of the characteristics of the propagation

environment (referred to as model mismatch). This sensitivity stems from the fact

that, if the processor incorrectly calculates the signal replica vector, then the received

signal emitted by a source at the location of interest will not be recognized as such.

Consequently, the processor will attempt to reject (i.e., filter out) that signal. The

sensitivity of various adaptive and non-adaptive processors to model mismatch has

been analyzed extensively [13, 14, 15].

Several approaches to reducing the sensitivity of adaptive processors to model
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mismatch have been proposed. The most commonly proposed approach, which is

applicable to linear processors, is to add an additional constraint to the array weight

optimization problem which places an upper bound on the norm of the array weight

vector. A survey of these methods is contained in [8]. The motivation for these

approaches is that the sensitivity of a processor to spatially uncorrelated perturbations

to the nominal spatial characteristics of a signal is proportional to the norm-squared

of the array weight vector. A related approach, referred to as the Generalized Cross-

Spectral Method [16], is to add a penalty function proportional to the norm-squared

of the array weight vector to the criterion, which is minimized or maximized by the

selection of the optimal array weight vector.

Another approach to reducing the sensitivity of linear processors to model mis-

match is to constrain the response of the linear weight-and-sum beamformer over a

range of environmental conditions. One example is the Multiple Constraints Method

[17], which accomplishes this goal by placing equality constraints on the response of

the beamformer at a number of locations surrounding the location of interest. Relying

on the fact that the signal replica vector is a smooth function of both the source loca-

tion and the environmental conditions, the equality constraints at different locations

surrounding the location of interest also constrain the response of the beamformer at

the location of interest for various environmental conditions which are close to the

nominal environmental condition. A more direct approach using the multiple con-

straints approach [18] places equality constraints on the response of the beamformer

for a number of environmental conditions which result from small perturbations to a

nominal environmental condition. A related approach [19] uses inequality constraints

on the response of the processor to insure that for various environmental conditions,

the actual response is within some tolerance factor of the desired response.

A third approach to reducing the sensitivity of array processors to model mis-

match, which is not limited in applicability to linear beamformers, is the random

environment approach. here, the environmental parameters are considered random

parameters with known probability distributions. The array weight vector or the esti-

mate of the signal parameters are chosen to mininimize or maximize a criterion which
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is averaged over the possible values of the environmental parameters. A Maximum

A Posteriori source location estimator utilizing this approach is proposed in [20].

There are several drawbacks to these approaches. First, the approaches using

linear equality constraints lose one degree of freedom in the beamformer for each

constraint. This level of reduction in degrees of freedom may not be necessary to

accomplish the desired goal. Second, the selection of the response levels, the norm

bounds, and the tolerance factors is, in general, an ad hoc procedure without clearly

defined criteria. Finally, the processors developed using the random environment ap-

proach may exhibit poor performance for particular sets of environmental conditions

even though their average performance is good.

This work seeks to develop an array processor which exhibits the efficient use of

degrees of freedom and the interference rejection capability characteristic of adaptive

array processors, and the source localization capability characteristic of the matched

field processors while operating with only approximate information about the prop-

agation characteristics of the medium. The minmax signal processing approach is

proposed to develop such a processor. The minmax approach requires that an error

criterion which is a function of the environmental conditions as well as the processor

characterists be defined. Using this criterion as a measure of processor performance,

the maximum value of the criterion taken over a user-specified range of environmental

parameters is minimized. If this is done in an adaptive manner, the processor should

be able to efficiently use its degrees of freedom to improve the performance of the

processor for the environmental conditions where the performance is most critical.

The use of the minmax approach to develop a processor which is insensitive to

modeling uncertainties has been studied previously ([21] and references therein). How-

ever, the signal processing techniques developed therein are not applicable to the prob-

lem of achieving spatial discrimination in an uncertain propagation environment, and

are not adaptive in the sense described in Subsetion 1.1. Therefore, the Adaptive

Minmax Matched Field Processor described in Chapter 2 is proposed to achieve the

goal of this work.
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Chapter 2

Minmax Array Processing

For the reasons stated in Chapter 1, a minmax approach is used here to develop an

adaptive array processor which is robust with respect to uncertainties in the prop-

agation environment. Section 2.1 presents a general minmax framework for signal

processing along with a characterization theorem for the solutions to a large class of

minmax signal processing problems. Using this theorem as a basis, an algorithm for

adaptive minmax matched field processing is developed in Section 2.2. Section 2.3

addresses the implementation of the Adaptive Minmax Matched Field Processor. A

new algorithm is developed to solve a particular class of quadratic minmax problems

which includes the minmax portion of the Adaptive Minmax Matched Field Proces-

sor. This algorithm has the desirable property of being guaranteed to converge to

an exact solution in a finite number of iterations. Finally, a new approach to the

development of minmax estimation error bounds is proposed in Section 2.4.

2.1 The Minmax Signal Processing Framework

The framework in which the array processing algorithm described in Section 2.2 is

developed is minmax signal processing. In general terms the framework addresses

the problem of developing a processor whose worst-case performance evaluated over

a given class and range of uncertainties is as favorable as possible. Specifically, let

g(y, w) be a processor parameterized by the vector w which operates on an observed
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X x

Figure 2.1: The Minmax Signal Processor

signal y to generate an estimate of some signal or parameter of interest x (Figure 2-1).

The (.) symbol denotes an estimate of the variable over which it is positioned (e.g., i

denotes an estimate of the vector X.). The set of allowable values for the parameter

vector w is denoted by W. In the case where g(y, w) is a linear filter with N taps, the

vector w could contain the filter weights and W could be the space of N-dimensional

complex numbers CN.

The parameters which govern the relationship between the observed signal y and

the signal or parameter of interest x are referred to as the environmental parameters

and denoted by the vector _. In the context of array processing problems where y is

the received signal and x is a particular signal of interest, the vector 0 could contain

the location of the array sensors or the phase, gain, and directional characteristics of

those sensors. It could also contain a parameterization of the interfering signals or the

characteristics of the propagation medium. The ability of any particular processor

as determined by the choice of w to estimate x depends upon the particular envi-

ronmental condition under which the processor operates. Thus, a particular value of

w which yields good processor performance under one environmental condition may

yield very poor performance under another environmental condition. A real valued

error function e(w, _) is used as a figure of merit to evaluate the performance of any

particular processor operating under any particular environmental condition.

If the processor has perfect knowledge of the environmental conditions (e.g.,

- = 0), then the processor parameters can be chosen to minimize e(w, ). However,

in many situations the processor does not have perfect knowledge of the environmen-

tal conditions under which it must operate, but instead knows only that the uncertain

environmental parameter _ falls within some range denoted by the set . The pro-
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cessor should then be designed to operate over this entire range.

As discussed in Section 1.3, one possible approach to designing the processor to

operate over 4 is to treat , as a random parameter with an assigned pdf (probability

distribution function) pO and then select w to minimize the average value of c(w, _)

taken over v with respect to p_. That is,

w_t = arg min/ P0(0o) (w, O) dO
MwEW - -0

However, this approach requires that a pdf be explicitly assigned to , and does

not necessarily solve the problem of the processor performance being very poor for

particular environmental conditions under which it may have to operate.

The minmax signal processing framework makes it possible to avoid these prob-

lems when selecting w by treating , as a nonrandom parameter. Then, under the

assumptions that e(w, 4) is a continuous function of , for every w E W and is a

compact set contained in a metric space, the worst-case performance of the processor

over the range of the environmental parameters is defined as

A( max (w, ).

A(w) is referred to as the extremal value for the processor parameter vector w. The

optimal minmax processor parameter vector is defined as that which minimizes this

extremal value. Mathematically, this is stated as

_.pt= arg mlin A(w) = arg min max e(w, 4).
EW w EW EO'

As in any optimization problem, the specification of the necessary conditions which

must be met by the optimal solution and the sufficient conditions which guarantee that

a solution is optimal are of central importance. The specification of such conditions

for minmax optimization problems requires the definition of extremal points, extremal

point sets, the convex hull of a set of points, and the gradient operator. An extremal

point is any environmental point contained in 4 at which the error function e(w, 4)
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achieves the extremal value A(w). The extremal point set, denoted by M(w), is the

set of all extremal points. That is,

M(w)_{+E I 6(w, · ) =

Given any set of points A contained in a metric space S, the convex hull of the set

A in S, denoted by X (A), consists of all points s E S which can be expressed as the

convex combination of the points a E A. That is,

X(A) = {sES13J>O, a.EA, and piCR, for i=l,...,J
J J

s.t. Pi > i = l,...,J, Epi = and s=Zpia}
i=l i=1

A final required definition is that of the gradient operator. Let (w, 0) be any

real valued scalar function of the vectors w and _. Then the gradient operator of e

with respect to w is any vector function of w and _, denoted by Vwe (w, ), which

is continuous with respect to w and and for which the following is true: There

exists a real, positive scalar constant k such that for any particular processor pa-

rameter vector (o) and environmental condition (i), the incremental change in e

corresponding to an incremental change in w away from w, denoted by 6w, is equal

to k < V (,o, w >, where < , > denotes the inner product. A formal state-

ment of this definition is contained in Appendix A. The definition of the gradient as

a vector of partial derivatives is not used because the error function used later in this

chapter is not differentiable with respect to the elements of the complex vector w.

Given the preceding definitions, the following Minmax Characterization Theorem,

which is a generalization of that given in Chapter 6 of [1] for the case of minmax

approximation with differentiable functions, states the conditions which characterize

the optimal solution to a general class of minmax problems.

Theorem 1 Let be a compact set contained in a metric space denoted
by , W be an open set of a Euclidian metric space denoted by E, e:
W x - R be a continuous function on both W and for which, at each
w E W, a directional derivative with respect to w can be defined on ,
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and V"s (wI ) be the gradient of e with respect to w. Then a necessary
condition for w E W to be a solution to the following minmax problem

wopt = argmin max e(w,),
wEW EO

is that
0 E ( V, (.)| E M(,w)})

If, in addition, e is a convex function of w and W is a convex set, this
condition is a necessary and sufficient condition for w. E W to be the
solution to the stated minmax problem.

A proof of this theorem is contained in Appendix A. This theorem states that a

necessary (and sufficient if e is convex on W and W is itself convex) condition for the

optimality of w.o is that the origin, denoted by Q, is contained in the convex hull of the

set of gradients of e with respect to w evaluated at the extremal points of e(w, ).

The following example may be useful to clarify the definitions and the concepts

introduced thus far and to provide an intuitive interpretation of the Minmax Char-

acterization Theorem.

Example: Assume that w is a two-dimensional real vector, W = R 2, 2

is a real scalar variable, ~ is the closed interval between zero and one (i.e.
= [0, 1]), and (w, d) is a real-valued scalar function which is convex

with respect to w for all and continuous with respect to .
For some i,, Figure 2-2a shows the error function plotted as a function

of with the extremal value A(_) and the extremal point set M(g,) =
{1l, 2, 03} labeled. The gradients of e with respect to w evaluated at
w and each of the three extremal points are shown in Figure 2-2b. The
convex hull of this set of vectors is the shaded region. The origin is not in
this convex hull and therefore wA, is not an optimal solution. This can be
seen by noting that, if we can choose a direction vector such as d for which
dtV (l, Xi) < 0 for i = 1, 2, 3, then the initial change in e evaluated
at each of the extremal points will be negative as we move away from wl
in the direction of d. Since the value of is simultaneously reduced at
each of the extremal points as we move away from wl, the extremal value
of e will be reduced as we move away from wl and therefore wl cannot be
an optimal solution.

For some w2, Figure 2-3a shows the error function plotted as a function
of with the extremal value A(w2) and the extremal point set M(w2) =
{4, d5, 6} labeled. The gradients of e with respect to w evaluated
at w2 and each of the three extremal points are shown in Figure 2-3b
with the convex hull denoted as before. In this case, the origin is in the
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convex hull and therefore w is an optimal solution. This can be seen
by noting that, for any direction vector such as d which we choose, the
inner product dtV,e (wi, O) will be greater than zero for at least one
of the three gradient vectors (in the case shown, dtV,,e (, 6) > 0).
Therefore, as we move away from w2 in any direction d, the initial change
in e evaluated at one or more of the extremal points will be positive. Since
the value of e increases at one or more of the extremal points as we move
away from _2, the extremal value of e will be increased as we move away
from w2. Therefore, w2 is a locally optimal solution. However, since e is
a convex function of w for all , ti(w) is also a convex funtion of w. (See
Lemma A.2 in Appendix A). Therefore, w2 is a globally optimal solution.

2.2 The Adaptive Minmax Matched Field Processor

2.2.1 Signal Model

The Adaptive Minmax Matched Field Processor takes as its input the signal received

by an array of sensors which has been low-pass filtered to prevent frequency domain

aliasing and then sampled. This input is denoted by the vector time series y[m]. This

input signal is assumed to be the sum of propagating background noise generated

by spatial spread sources, such as, breaking surface waves, sensor noise which is

assumed to be spatially white, and propagating signals generated by spatially-discrete

point sources such as marine mammals, ships, etc.. xrm, z] denotes the time sampled

received signal which was emitted by a point source at the spatial location z. n[m]

denotes the sum of the sensor noise and the received propagating background noise.

It is assumed that n[m] and x[m, z] are uncorrelated zero mean wide-sense stationary

random processes for each z and that _[m, _] and x[m, z2] are uncorrelated for any

two source locations z 1 # _ 2. Thus, y[m] is a zero mean random process represented

by

y[m] = n[m] + [m
z_

The modeling of x[m, j as a zero mean random process can include a signal

emitted by a stochastic source propagating through either a deterministic or a random

environment, or a signal emitted by a deterministic source propagating through a
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random environment.

2.2.2 Processor Structure

The Adaptive Minmax Matched Field Processor was developed to achieve the effective

sidelobe control which is characteristic of adaptive processors such as Capon's MVDR

Processor [9], and the improvement in spatial resolution provided by matched field

processing techniques such as those presented in [11], without exhibiting the extreme

sensitivity to mismatch in the estimation of the characteristics of the propagation

environment which is exhibited by these algorithms and techniques [13, 17]. The

quantity estimated by the processor is the average power in a selected frequency

component of the signal emitted by a point source at a location of interest as received

at one array sensor (the reference sensor). The location of interest is referred to as

the array focal point. The signal emitted by a point source at the array focal point

and received at the reference sensor is referred to as the desired signal and denoted

by xk[m, z]. Here the kth sensor is the reference sensor and z is the array focal point.

Unlike the case of traditional array processors, the desired signal is not the signal as

emitted by a source at the array focal point. Instead, the desired signal is the signal

emitted by a source at the array focal point as received at the reference sensor. The

array focal point can be swept through space and the selected frequency can be swept

through the frequency spectrum to generate an estimate of the average power in the

desired signal as a function of spatial location and temporal frequency. This estimate

is denoted by o2 (f, z).

Conceptually, the processor which generates this estimate consists of three mod-

ules (Figure 2-4). The first module divides the time-sampled signal received by the ar-

ray y[m] into segments M samples in length which may be overlapping, and computes

the vector discrete-time Fourier transform of each segment at the selected frequency

M-1

Y_(f) = E y[m]e-J2 a
m=O

I indicates the segment number, y'[m] is the mth sample of the Ith segment, and At
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is the sampling period. Here, f is the frequency expressed in cycles per second which

satisfies [ f 1< . f is not the normalized frequency expressed in cycles per sample

which satisfies f 1 . The linearity of the Fourier transform yields

Y'(f f ) + L(f)

where the summation is over the locations of the point sources. The transformed seg-

ments are known as "snapshots" and Xt(f, _) denotes the snapshot of the Ith segment

of x[m, _]. Yi(f) denotes the discrete-time Fourier transform of the I h segment of

the signal received by the i t array sensor. In effect, the first module is a temporal

filter which selects the frequency component of interest in the received signal.

The snapshots of the received signal are the inputs to the second module which is

a linear weight-and-sum beamformer. This beamformer computes an estimate of the

Fourier transform of the Ith segment of the desired signal using

Xlk (f, ) = whyl (f)

where w is the array weight vector. The beamformer is a spatial filter which attempts

to pass only the desired signal (i.e., that which was emitted by a source at the array

focal point z) while rejecting all other signals received by the array sensors. The final

module computes an estimate of the average power in the desired signal. The overbar

indicates the sample mean taken over all 1. That is, if L is the number of segments

used in estimating a 2 (f, z), then

1L
&2 (f, z) = E I .X (fz)12·

While this structure is the same as that used by many array processors such as

Capon's MVDR Processor, the unique feature of this processor is the manner in which

the array weight vector w is calculated. For this processor, the array weight vector is

the solution to a minmax optimization problem where the error e is a measure of the

spatial filter's ability to pass the desired signal without distortion while rejecting the
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Figure 2-4: Array Processor Structure

interfering signals in a given propagation environment.

2.2.3 The Minmax Array Weight Problem

For any particular array focal point, frequency, array weight vector, and propagation

environment, the error function for the Adaptive Minmax Matched Field Processor

is the a priori mean-squared error in the estimation of Xk(f,_) conditioned on the

characteristics of the propagation environment. That is

e(f,z,w, i) = E[l Xk(f,z) -,f,j) 121 ij (2.1)

= E[I X,(f,_) - wh Y(f) 12 I ~J,

where the characteristics of the propagation environment are parameterized by the

vector _.

For a given array focal point and frequency, the optimal array weights are defined

as

w.t(fz) = arg min maxe (f,z,w,), (2.2)
!ECCN E

where N is the number of array sensors and is the user specified range of the

environmental parameters over which the processor must operate.

Under the assumption stated earlier that the desired signal and the interfering

signals are uncorrelated, (2.1) can be rewritten as

(f,z,w_,) = E[Xk(f,z)Xk(f,&) - (2.3)

2 Real(E[X(f,)Xk(f, ) I jh w) + w h E[Y(f)y(f)h I ,
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where the superscript * denotes complex conjugate.

The expectation in the last term of (2.3) is the cross-spectral correlation matrix of

the received signal conditioned on the environmental parameter _. The cross-spectral

correlation matrix is the parameterization used by the processor to characterize the

spatial structure of the total signal field, and it is the input to the processor which

enables the processor to adapt to reject unwanted signals. Here, the matrix will not be

treated as a function of the particular environmental conditions or the characteristics

of any particular propagating signal. Instead it wil be treated as a property of the

total signal field. Therefore, the conditioning of the expectation in the last term

of (2.3) is dropped and the actual ensemble cross-spectral correlation matrix, S(f),

is used. In most cases, this ensemble cross-spectral correlation matrix is unknown

to the processor. Therefore, the sample cross-spectral correlation matrix given by

S(f) 1 _ Z=a yl(f)yl(f)h will be substituted for S(f). Nothing in the derivation of

the algorithm in the remainder of this chapter depends upon this substitution.

The expectation in the second term of (2.3) can be expressed as

EX* (E[X(f,z)X*(f, z) I ]E[Xk(fz)X~(fz) I _]E[Xk(f,z)Xk*(fz) i'

The quotient is the signal replica vector defined in Section 1.2 as

A E[X(f, )Xk(f,_z) I _]
f, Z E[Xk(f, )Xk(f, z) I J'

Therefore, the second term can be expressed as

2 E[Xk(f, z)Xk(f, z) I ]Real(qh(f, z, ) w) (2.4)

The signal replica vector in this factorization is the means by which the a priori model

of the dependence of the desired signal's spatial characteristics on the environmental

conditions is incorporated into the processor.

The expression E[Xk(f, z)Xk(f, z) I ] appears in the first term of (2.3) and, as

a result of the factorization in (2.4), will also appear in second term of (2.3). This
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expression is the conditional average power in the desired signal, and will be replaced

by the actual average power in the desired signal 2(f,z) E[Xk(f,)X*(f,)].

Given the factorization and the substitutions detailed above, the error criterion can

be expressed as

e(f,z ,w,,o' 2 (f,z )) = 2 (f,z) - 22 (f,I)Real(qh(f,z,) w) + w h (f) w, (2.5)

where the dependence of the error on the average power in the desired signal is

explicitly shown.

The optimal array weights minimize the maximum value of this error taken over

the operating range of the environmental parameters. Conceptually, they can be

considered those of a data-adaptive Wiener filter which is robust with respect to

changes in the spatial correlation of the signal to be estimated.

The Adaptive Minmax Processor described in this subsection can also be inter-

preted as an efficient implementation of a bank of MVDR Matched Field Processors,

each using a different assumed value of the environmental parameter vector () and

therefore of the signal replica vector (q(f, _, _)) (Figure 2-5). The range of assumed

values of is the range of environmental conditions over which the processor is de-

signed to operate. The Adaptive Minmax Processor output is the output of the

MVDR Processor with the largest estimated average power. The derivation of this

interpretation is detailed in Section 3.1 where the processor bank interpretation is

equivalent to the Two-Stage MVDR Matched Field Processor interpretation.

2.2.4 The Minmax Array Processing Algorithm

A problem in calculating the solution to the minmax problem in (2.2) is that the error

criterion and therefore the optimal array weights are functions of a 2(f, z). However,

the array processor does not have knowledge of the true value of a 2(f, z), but estimates

it to be the sample average power in the output of the weight-and-sum beamformer.
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Figure 2-5: The MVDR Processor Bank

That is,

a2 (f,z) = Xl(f,z) 12 =_ 1 L ()y(f)WZYx~W~) = -hsfflw.
1=1

Therefore, the error criterion and optimal array weights depend upon the average

power in the frequency component of interest in the desired signal and the estimate

of this average power depends upon the array weights used by the beamformer. This

interdependence makes it necessary to jointly calculate the optimal array weights and

estimate the average power.

This joint calculation and estimation problem is addressed by requiring that the

average power in the desired signal used when calculating the optimal array weights

weights be equal to the estimated average power in the desired signal resulting from

the use of those weights. The joint array weights calculation/power estimation prob-

lem can be posed as finding _,, t (f, z, &2(f, )) and 8 2(f, z) so that

,pt(f, Z2(f, Z)) = arg min max (f, z , , &2 (f, )), (2.6)
tECN ~_
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and

b2(fz) = _(fz, &2(f, )) S(f) sWopt(fz&,b 2(f,_)), (2.7)

where the dependence of the optimal array weights on the average power is explicitly

shown.

A trivial solution to the problem expressed in (2.6) and (2.7) is w t(f, z, 0) = 

and &2(f, z) = 0. The existence of a non-trivial solution and an algorithm for jointly

finding the nonzero W_ op(,z& 2(f,)) and a 2(f, ) which satisfy (2.6) and (2.7) is

based upon the following theorem, a proof of which is given in Appendix B.

Theorem 2 Let a2 be any real positive number, t be a compact set
contained in a metric space, q(f, z, _) be a continuous function on t, and

Wopt(f, Z r 2) = arg min max e(f,z, w, , o2).
WECN #E -

Then for any real non-negative u2 , the solution to the problem

opt(, , cr2 ) = arg min max e(f, , o, ,o 2 )
XEC N E

is given by
Wopt(f)z_., 2) = ( 2 /o 2 ) wopt(f, ,2).

Therefore, given wopt(f, z,,o 2) for any real positive o 2, the solution to (2.6) can be

expressed as

W (z, a 2(f, z)) = (&2(f, )/ao2) p(f, . (2.8)

Subsituting (2.8) into (2.7) yields

&2(f = ( 2(f, = )/2)2 (pt(f, zo 2) S(f) Wt(f,Zo2)). (2.9)

Solving (2.9) for &2(f, z) yields

&2 (f,z) (2)2 (pt(f, z, ao2) S(f) Wvt(z 2))- (2.10)

The optimal array weights which are consistent with this average power estimate can

be calculated using (2.8). Therefore, the following algorithm can be used to solve the
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joint optimal array weights calculation and average power estimation problem defined

by (2.6) and (2.7).

1. Assign any real, positive value to ar. Calculate wpt(f, Z,. ) as given by

wpt(f, z, oo) = arg min max e(f, Zs w l, 2).

2. &2 (f, z) = (2)2 (whpt(f, z, 2) S(f) Wot(f, Zs ,o 2)) 1

3. Wpt(f, z, , 2 (f, )) = ( 2(f, )/o 2) wot(f, Zs ,2)

Step 1 can be implemented using any complex minmax approximation algorithm

capable of handling quadratic forms. The development of an efficient algorithm to

solve this particular minmax problem is detailed in Section 2.3.

2.3 Solution of the Minmax Problem

Step 1 of the array processing algorithm developed in Section 2.2 requires the solution

of a quadratic minmax problem. A major impediment to the implementation of min-

max signal processing algorithms has been their relatively high computational com-

plexity. The minmax signal processing solutions which have gained widespread use

are those for which either analytic solutions are available (e.g., the Dolph-Chebyshev

window [22]) or those for which computationally efficient algorithms have been devel-

oped (e.g., real linear-phase minmax filter design using the Parks-McClellan algorithm

[23]). By exploiting the special structure of the quadratic minmax problem contained

in Step 1 of the array processing algorithm, the algorithm developed in this section

to solve the minmax problem is relatively efficient computationally and is guaranteed

to converge in a finite number of iterations.
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2.3.1 Characterization of 2w(f, z, a 2)

From Step 1 of the algorithm in Section 2.2, the minmax problem which must be

solved is

W.t(f, Z, a 2 ) = arg min max e(f, z, w, , ao2),
S_ECNV ±E -

where (f, z, w, , oa2) is the conditional mean-squared estimation error and can be

expressed as

:c(fz a='- 22Real((f, z, , w,) -,) w.- 2Ral((f, S(f) w. (2.11)

The following characterization theorem for the minmax array weight problem states

the necessary and sufficient conditions satisfied by wopt(f, z, r2) .

theorem is contained in Appendix B.

Theorem 3

A proof of this

Let be a compact set contained in a metric space and
q(f, z, _) be a continuous function on A. Then a sufficient condition for
wo to be a solution to the following minmax problem

Wopt(f, Z, ao2 ) = arg min max e(f, z, w, , o2),
~CN E 

is that
3J >0, (2.12)

and
3.(w0 ) = {_,j,} M(), (2.13)

such that

0 E ({(()wo - 2q(f,_,~)) I EM(W .)}). (2.14)

A necessary condition for w to be a solution to the following minmax
problem

w.ot( z, ao2) = arg min max e(f, z, w, q, a2),
ECN tEh

is that
3J E {1,...,2N+ 1}

for which (2.13) and (2.14) are satisfied.

(2.15)
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(2.14) is equivalent to

J

0 = EPi (S(f)w - ~Oq(f, Za.)), (2.16)
i=1

where p, > 0 and >=1 pi = 1. Algebraic manipulation of (2.16) yields the following

expression for wo.
J

WAO = a02 S(f) ̀  Pi(f,z,.)
i=1

Therefore, the following corollary to Theorem 3 states an equivalent set of necessary

and sufficient conditions satisfied by w _ 2(f, ,).

Corollary 1 Let be a compact set contained in a metric space and
q(f, z, _) be a continuous function on A. Then a sufficient condition for

wro E CN to be a solution to the following minmax problem

wopt(f, , o2) = arg min max (f, z, w, , 2),

is that
3J > 0, (2.17)

3(w_.) = {~by.. .,d} C M(), (2.18)3M~~~~~~w w ~ ~~~(.18)
and

J

3Pi,.-,pj ER, p, ... ,p > , pi = 1, (2.19)
i=1

such that

Wo = ,0 §S(f) 1- Pi U' Z' 'O). (2.20)
i=1

A necessary condition for w E CN to be a solution to the following min-
max problem

__pt(f, Z ) _= arg minma (f, z, w, , 2)
0 XECN #- _

is that
3J E {1,...,2N + 1} (2.21)

for which (2.18) through (2.20) are satisfied.

Therefore, if the appropriate set of extremal points and convex weights can be

determined, the optimal array weight vector can be calculated directly. The minmax

problem can thus be reformulated as jointly finding the J, - .. , j, p .. . pJ, and
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, E CN which satisfy (2.17) through (2.20). The key to finding the appropriate

set of extremal points, convex weights, and array weight vector lies in reformulating

the minmax estimation problem as a Wiener filtering problem with the uncertain

environmental parameter treated as a random parameter.

2.3.2 The Least Favorable PMF Random Parameter Framework

From Section 2.1, in the minmax signal processing framework the uncertain environ-

mental parameter is treated as a nonrandom parameter. However, an efficient method

for calculating the optimal minmax array weights can be developed by treating the

uncertain environmental parameter as a random parameter with a particular proba-

bility function and then solving for the minimum mean-squared error array weights

(i.e., Wiener filter weights). As a computational necessity and to ensure that q(f, z,_ )

is a continuous function on 4, the range of the environmental parameter will be sam-

pled (i.e., t = {1x, ... K}), and the minmax problem will be solved on this discrete

set of environmental conditions. The issues associated with the effect of this sampling

are treated in Subsection 3.1.4. Therefore, the probability function assigned to the

environmental parameters will take the form of a pmf (probability mass function)

rather than the form of a pdf. The pmf will be denoted by E E RK and is defined by

pi-Probability[_ = ,].

Since p is a pmf, it must satisfy

K

pi > 0 and i = 1.
/=1

These are the same conditions which must be satisfied by the convex weights used to

calculate the points in the convex hull of a set of points and therefore by the weights

which are used to calculate the optimal minmax weight vector in (2.20). This fact

will be used to relate the Wiener filter weight vector to the optimal minmax weight

vector.
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For any pmf and array weight vector, the mean-squared estimation error is

K

c(f, z, w, p, o.) E[I Xk'(f, z)-Xk(fz) 12] = Pi e(fz, ,,oo2). (2.22)
i=1

Substituting (2.5) into (2.22) and carrying out the algebraic manipulation yields

K

(f, z, w, po) = o2 2 ao2 Real(( pi q(f, z,_.))hw) + wh (f)w (2.23)
i-1

Define the Wiener filter weight vector to be

Wmme (f, z,o o, p)- arg min e(f, z, w, p, o2).
tuEC

Then, unconstrained complex quadratic minimization methods yield

K

w---rnme(fz,° ,P) = o.2 (f) 1 Pi (f,z (2.24)
i=21

(2.20) and (2.24) differ only in the respect that in (2.20) the summation is over J

extremal points contained in M(wo) while in (2.24) the summation is over all envi-

ronmental conditions contained in 4. Therefore, if a pmf p can be found such that pi

is greater than zero only if 0 E M(wmme(f, z, o, A)), then the summation in (2.24)

will effectively be over only the extremal points contained in M(wmme(fz, o,p)).

In this case, the sufficient conditions in Corollary 1 will be satisfied by K, Pi, ,... ,K,

Ol* I '±K' and Wmm(fez, or 0, p).

The key to finding the correct pmf can be discerned by observing the behavior of

the mean-squared error function (f,z .mmee(f, Z,2, p), p, u2) and the conditional

mean-squared error function (f,z, moe(f, , o,),4, o.2) as p is allowed to vary.

e(f,_z,_.mme(f, z, ,p),p, 2), which will be abbreviated as (f,zw__mne,p, Oo2) is

the minimum mean-squared estimation error achievable by any array weights given

the pmf p. That is,

e(f, mmoe,po 2 ) = min c(f, Z Wp, O2).
_ CN
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E(f, z, W.ma(f z, o, p), , 2o), which will be abbreviated as e(f, z, Wmme(E), 4, o2), is

the conditional mean-squared estimation error achieved by the Wiener array weights

for the pmf p conditioned on the environmental variable 4.

Define wopt( z, o, e 2) as

W_opt(fz_,,r2) A arg min (fz,,, 2) =2 S (f)-l q(f, z, 04 ).
_EC

Then, wmme,,(f, z, a 2 ,p) can be expressed as

K
=~~~~~~~~~~~~Wmme (fi Zsa s = EP p ,)

i=1

Therefore, as Pm is increased incrementally and p, is decreased incrementally for

some m and n (p is a pmf and therefore pn must be decreased for some n when Pm, is

increased for some m), Wmme(f, , o2, p) should become more like w opt(f, ,ao 2)

and less like w opt(fz,_, ao2). Therefore, e(f, z,w .m°c(p), ,, eo) should decrease

and e(f, z, w,mmse(P), ,, ao2) should increase. Furthermore, since

K

E(f, ZmMsepo) f)= E P o), (2.25)
i=l

6(f, _, wmmse, A ao) should increase if e(f, z, Wmms.e (), I_ oI) > e(f, , mme(R) , _, T).

With this intuition in mind, consider the following example.

Example: Assume that 4 is a discrete-valued real scalar variable and

that for some pmf po, e(f, , wmme(p o), ao2) is as shown in Figure 2-

6. Then, if we select any extremal point Om E M(wmm(Po)) and any

nonextremal point On M(gmm,,(Po)) for which po, > 0, we can increase

Po, and decrease pon incrementally. The effect will be that the mean-
squared estimation error E(f, Z Wmmse, oo) and the conditional mean-

squared estimation error conditioned on 4 = On (E(f, Z, wmm,, (PO), n,, ao2))
will increase, and the conditional mean-squared estimation error con-

ditioned on 4 = ,n (e(f,Z,__mmse(po),4,,o2)) will decrease. Further-

more since E(fz_,wmm,(Po),4,,2) will be decreased at the extremal

point, the extremal value A(wmm,(po)) will be decreased. Conceptu-

ally, this process can be repeated until pn = 0 for all nonextremal points

On V M(Mmms(Po))' When this is the case, the sufficient conditions in

Corollary 1 will be satisfied and wmm,,e(po) will be the optimal minmax
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Figure 2-6: Conditional Mean-Squared Estimation Error

array weights. Any further change to po involving an extremal and a
nonextremal point will require lowering the probability corresponding to
the extremal point and raising the probability corresponding to the nonex-
tremal point. This would result in lowering the mean-squared estimation
error e(f, z, wmeoe,2, r). Thus, the desired should be that which
maximizes z(f, z, Wrmmae,, -)'

The intuitive result illustrated in the preceding example is formalized in the fol-

lowing theorem, a proof of which is contained in Appendix B.

Theorem 4 Let P be the set of all possible pmfs which may be assigned
to and define the least favorable pmf as

-arg max min 6(f zwp = arg max e(fz, wmmc(f z p), p, )
PEP wECN PEP

(2.26)
Then

W 2) 2) Z= 72 f__oPt (fi, a a arg mim maxe(f!,iw0aO) = Wnmmse(f,7 ,Ejj).
WEECN 

This theorem states that the least favorable pmf is the pmf for which the minimum

mean-squared estimation error is maximized and the Wiener filter weight vector for

the least favorable pmf is also the optimal minmax array weight vector.
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2.3.3 Solving for the Least Favorable PMF

By combining (2.23) and (2.24) and carrying out algebraic manipulation, the mini-

mum mean-squared estimation error can be expressed as

K K

Ufz?,P )= o (1- (2 (I p, q(f,z,.))h S(f) ' (I pi (f,.,))). (2.27)
i=1 i=1

Defining the matrix Q(f,z) as Q(f,) A [I(f,, ... ,(f, ,O)], (2.27) can be

rewritten as

(f, , , p, a2) = o2 (1a2 ptQ(f, )h^S(f)-l Q(f, p).

Finding the p to maximize this quantity is equivalent to finding the p to minimize

the matrix quadratic product in the second term. Therefore, (2.26) can be rewritten

as

pf =argmax min (f, zw, p, ,o2 ) = argminptQ(f,z)h,(f)-Q(f,)p. (2.28)
PEP MECN 0PEP -

Since Q(f, z)hS(f)-lQ(f, ) is a Hermitian matrix and p is a real vector,

ptQ(f, )h§(f)-Q(f, )P = pt Real(Q(f, Z)h(f)- Q(f,)) p.

Defining the real matrix T(f,) Real(Q(f, )hS(f)-lQ(f, )), explicitly defining

the set P, and letting the vector e = [1,..., lit, the optimization problem in (2.28)

can be expressed as the following real constrained quadratic minimization problem.

Pl = arg min p T(f,) p (2.29)
r.~o

A solution to (2.29) is guaranteed to exist because rt T(f,z) p is a continuous

function of p and the set P is a compact set. Since S(f) is a positive definite Her-

mitian matrix, Q(f,I)h§(f)-Q(f,) is a positive semi-definite Hermitian matrix.
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Therefore, T(f, _) is a positive semi-definite symmetric matrix and pt T(f, z) p is a

convex function of p. There are a number of algorithms available for solving linearly

constrained convex quadratic minimization problems such as (2.29). An efficient al-

gorithm, based on complementary pivot theory, was proposed by Lemke in [24] and is

described in a more readable form in Chapter 11 of [25]. The basic intuition behind

the use of the complementary pivot theory to solve a quadratic problem is that the

necessary and sufficient conditions, known as the Kuhn-Tucker conditions for to

be a solution to the problem in (2.29), are largely a set of linear equations. The

Kuhn-Tucker conditions can be written as [25]

p > 0, etp = 1, 3u E R, and 3v > 0 s.t. (2.30)

2& = 0 and (2.31)

v - T(f,) po + u e = 0. (2.32)

Given that p. > 0 and v > 0, (2.31) requires that if po, > 0 then vi = 0 and if vi >

0 then Po, = 0. This condition is known as the complementary slackness condition;

po, and vi are known complements of each other and together they are known as

a complementary pair. The primary fact is that, with the exception of (2.31), the

Kuhn-Tucker conditions are a set of linear equations (equalities and inequalities) and

any solution to this set which also satisfies the complementary slackness condition

will be a solution to (2.29).

If i E 1,...,K} s.t. T(f,z)ii < T(f,)ji j i, then letting p = 1, pi =

0 Vj $ i, vi = 0, vj = T(f, )ji- T(f, )jj Vj # i, and u = T(f, z)ii will satisfy the

Kuhn-Tucker conditions. If such a solution is not apparent, the complementary pivot

algorithm can be used to find a solution.

(2.30) through (2.32) are not in a form which allows direct solution using the

complementary pivot algorithm. The algorithm presented in [24] and [25] does not

allow the inclusion of the unrestricted variable u and the vector e which are associated

with the linear equality constraint that _etpo = 1. However, with some algebraic
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manipulation, the Kuhn-Tucker conditions can be rewritten as

> 0, and 3 > 0 s.t. (2.33)

Yp= 0 and (2.34)

- M(f,z)P = r(fz) , (2.35)

where P = [vI, po2, Po3, . Po ] and ft = Po, v2 , v 3 ,. . . ,vK ]. Using the following

notation for T(f,z)

T(f,z) = [ T 1 (f,z_) t (f~z_) 1
[ t(f, z) T(f, z)

r(f, z) is given by

r_=
_(f,z)- TI(f, z)e ;

and M(f, z) is the following matrix

M(f,z) = 0 - et]
e /(f,_) '

and M(f, z) = T(f, z)+ T1(f,z)eet - eI(f,z) -i(f, z)e t . Any and b which satisfy

(2.33) through (2.35) will yicld a v and for which (2.30) through (2.32) will be

satisfied for some u; and any v and p for which a u exists, satisfying (2.30) through

(2.32), will yield a p and v which satisfy (2.33) through (2.35). Therefore, a solution

to (2.30) through (2.32) can be found by solving (2.33) through (2.35); and (2.33)

through (2.35) are in a form for which a solution can be found directly using the

complementary pivot algorithm.

The complementary pivot algorithm used to find a solution to (2.33) through (2.35)

is referred to as Scheme I in [24]. The algorithm finds a solution by introducing a

slack variable z and a vector with positive entries d and then conceptually solving

the problem

min zo s.t. (2.36)
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z0, , > 0, (2.37)

t p = 0, and (2.38)

v- M(f, z) -d z = r(f, z). (2.39)

Since a solution to (2.33) through (2.35) is guaranteed to exist, the solution to (2.36)

through (2.39) will be zo = 0 with a v and P which satisfy (2.33) through (2.35).

The details of the complementary pivot algorithm can be examined in [24] or

[25]. In concept, the complementary pivot algorithm is very similar to the simplex

method [25] for solving linear programming problems. The algorithm is solving for

2K + 1 real nonnegative variables and at the solution to (2.36) through (2.39), z = 0.

(2.39) is a set of K linear equations and is satisfied at each iteration of the algorithm.

By construction, at each iteration of the algorithm, at least K + 1 of the unknown

variables equal zero. Using the terminology from the simplex method, the term non-

basic variables" will refer to K + 1 of the variables which equal zero. The term "basic

variables" will refer to the other K variables. Collectively, the basic variables are

referred to as the basis. It is not required that every basic variable be non-zero. It is

only required that every non-basic variable equals zero.

At each iteration of the algorithm, a new basis is selected in a manner which

guarantees that (2.37), (2.38), and (2.37) are satisfied. When the variable z leaves

the basis, which guarantees that z = 0, the algorithm terminates. The fundamental

difference between the simplex method and the complementary pivot algorithm is that

in the complementary pivot algorithm, only one variable from each complementary

pair can be in the basis at any given time. This is enforced to guarantee that (2.38)

will be satisfied.

The critical property of the algorithm for the purpose this work is its convergence

property. The essential points of the convergence proof for the complementary pivot

algorithm [26] are that, at each iteration the basis changes, no basis can be visited

by the algorithm more than once, and there are a finite number of possible bases.

These three points lead to the conclusion that the algorithm must terminate in a

finite number of iterations.
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The following two claims, for which proofs are contained in Appendix B, are

necessary in order to analyze the convergence of the algorithm in a more rigorous

manner.

Claim 1 M(f, z) is a co-positive-plus matrix.

Claim 2 The set of equations (2.33) through (2.35) are consistent.

Given Claims 1 and 2, Theorem 11.1.8 on page 446 of [25] states that, if each almost

complementary basic feasible solution to (2.37) through (2.39) is nondegenerate, then

the complementary pivot algorithm will terminate in a finite number of iterations

with a solution to (2.33) through (2.35).

The outstanding condition on which this finite convergence property of the algo-

rithm depends is that each almost complementary basic feasible solution to (2.37)

through (2.39) is nondegenerate. In [26] this is referred to as the system being non-

degenerate. Lemma 4 on page 616 of [26] states that almost every vector d will yield

a nondegenerate system. Therefore, in practice, system degeneracy is usually not a

problem. However, should the degeneracy of the system be a concern, a modification

of the complementary pivot algorithm can be used (Section 7 of [26]). Given Claims 1

and 2, Theorem 2 on page 618 of [26] states that the modified algorithm will converge

in a finite number of iterations with a solution to (2.33) through (2.35). A clear

explanation of the modified algorithm is given on pages 80 and 81 of [27]. The form

in which the modified algorithm is presented in [27] is slightly different from the form

used in [26], but the two algorithms are identical.

Conceptually, the modification to the complementary pivot algorithm is that the

system of linear equalities (2.39) is modified to

- M(f, z) - d z = r(f, z) + I, (2.40)

where I is the identity matrix, b = [ 62, . ., S'K]i, and 6 is an arbitrarily small pos-

itive constant which remains unspecified throughout the execution of the algorithm.

This small perturbation to (2.39) can be shown to always create a nondegenerate sys-

tem (2.37), (2.38), and (2.40). In practice, the modification requires simply that the
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scalar comparisons of the updated ratios () in Step 1 of the original complemen-di

tary pivot algorithm (page 440 of [25]) be replaced by lexicographic comparisons of

the updated vector ratios I'( i , where r(f, z) I i denotes the i row of the updated

righthand side matrix [r(f, z) I].

2.3.4 Least Favorable PMF form of the Array Processing

Algorithm

Given the least favorable pmf, the optimal minmax array weights can be calculated by

applying Theorem 4 and (2.24). The power estimate can be calculated using (2.10).

These can be combined to yield the following three-step algorithm for implementing

the Adaptive Minmax Matched Field Processor which does not require an a priori

assumption about the average signal power.

1. Use the (modified) complementary pivot algorithm to calculate

f = arg min Et T(f,) p .
e'P=1

2. &2 (f, ) = ( T(f ) )'

3. w__op(f z,2(fz)) - 2 (fz) S(f)- Q(f,z) of

2.4 Minmax Estimation Error Bounds

In Section 2.1, a general framework for minmax signal processing was described and

a theorem characterizing optimal minmax estimators was developed. However, this

characterization required that the estimator be parameterized by a vector w and that

the problem be reduced to finding the optimal parameter vector w. This parameteri-

zation requires that the optimal" estimator lie within a particular class of estimators

(e.g., linear estimators). While the resulting estimator is the best from within the cho-

sen class of estimators, it is usually not possible to make a definitive statement about
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how the estimator's performance compares to that of arbitrary unspecified classes of

estimators. Therefore, it is useful to develop lower bounds on the performance (as

measured by the error functions e and A) of any estimator. While not explicitely

calculating any bounds, this section proposes an approach to the development of such

performance bounds for the case where e is the conditional mean-squared estimation

error. In the development of this approach, the form of the optimal minmax estimator

and an achievable lower bound are derived.

The problem for which the bound is proposed is the estimation of a scalar param-

eter 0 E R based upon observations x E X where X is the observation space. Given

any estimator g X -+ 1R, the mean-squared estimation error of 0 is assumed to

depend on some environmental parameters 4 E . In the literature, these parameters

are also referred to as nuisance parameters. The bound developed will be a lower

bound on the extremal value

A(g) = max c(g,4q)

for the case where

c(g, b) - E[(O - g(x))2 l1], (2.41)

the conditional expectation is taken over all 0 and x; and g is any function mapping

X into R.

The approach to bounding A(g) is developed using the least favorable pmf frame-

work where the environmental parameter b is considered to be a random parameter.

This is the same framework used in Section 2.3 to develop an efficient algorithm for

solving the minmax problem. As in this earlier development, the set of possible values

for the environmental paramters f is sampled to yield a finite discrete set and the

vector p is the pmf for on this set. In the earlier development, the sampling was

needed for computational reasons as well as to ensure that the error measure and its

gradient were both continuous on . However, here the sampling is needed only for

computational reasons.

The following theorem, which is needed to prove Theorem 6, provides some insight
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into the proposed approach to bounding A(g). A proof of this theorem is contained

in Appendix A.

Theorem 5 Let e(g, 4) be any performance measure for the estimator
g given the environmental condition . Let X = {1l,... K} and let
p E P = {p E RKI P > 0 and e p = 1} be any pmf assigned to on .
Let e(p, g) = , pie(g, 4i) and let (p) be any global lower bound on
e(p,g). That is,

(p) < min (p,g).
g:X-R

Then, i(p) is also a lower bound on A(g). That is,

min A(g) > (p).
g:X-.Jl

The implication of Theorem 5 is that, if e(g, 4) is the conditional mean-squared

estimation error as given in (2.41), then e(p, g) is the mean-squared estimation error

and the traditional methods of bounding e(p,g) (e.g., the Cramer-Rao bound, the

Weiss-Weinstein bound, etc.) can be applied to bounding A(g). Since the inequality

d(p) < A, holds for any pmf, p can be chosen to maximize the bound being used

/(p). However, this may not be useful unless the derived bounds are reasonably tight.

The following theorem, a proof of which is contained in Appendix A, specifies the

optimal minmax estimator and an achievable bound on A(g), and sheds some light

on the tightness which can be expected of the bounds developed using the approach

in the preceding paragraph.

Theorem 6 Let 0 = {1, ... , OK}, P = {p E RK I p > 0 and ep_ = 1},
and go X x P - R be given by

g() 1 Pi pz&(x I 4i)E[O I OI, (2.42)o( ,p) = dlP zl( i (2.42)= p, 1 x I 4,)

where pl( jO(x i) is the conditional pdf or pmf of the observation xz given
that the environmental parameter 4 = 4i. Let e(g, ) = E[(O-g(x))2 4].

Let the least favorable pmf pI E P be defined as

K

f argmax Pi (g(Xp),Oi)-
PEP

=1

Then
go(x,pf) = arg min maxe(g,,),

g:x--.R 46e
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and the quantity
K

EPlf, 6(g. (X af ), 0i
i=1

is an achievable lower bound on

A(g) = max (g,).

If b is considered a random parameter with the pmf p, then (2.42) can be rewritten

as

g0 (,p) = E[O I x],

and go(x, p) is the minimum mean-squared error estimator of 0 given x. e(p, g) is the

mean-squared estimation error achieved by g(z) given the pmf p; and e(p, go(x, p)) is

the minimum achievable mean-squared estimation error given the pmf p. Therefore,

Pf is the pmf for which the minimum achievable mean-squared estimation error is

maximized, hence the term least favorable pmf.

In most situations, it will be impractical to compute the least favorable pmf pf,

the optimal minmax estimator g0(x,t l), or the associated achievable minmax es-

timation error bound A, = V= plf, E(0- go(x,f))2 4i] However, Ao is an

achievable minmax bound and equals the achievable mean-squared estimation error

bound given the least favorable pmf. Therefore, it is reasonable to expect that the

bound development approach outlined earlier (i.e., choosing the pmf to maximize

a mean-squared estimation error bound such as the global Cramer-Rao bound) will

yield minmax bounds which are at least as tight as the mean-squared estimation error

bound. The further investigation of this approach is left for future work.
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Chapter 3

Analysis and Interpretation of the

Adaptive Minmax Matched Field

Processor

The analysis of the algorithm developed in Chapter 2 is complicated by the lack of

illustrative analytical solutions to the minmax problem. The analysis of the charac-

teristics of the Adaptive Minmax Matched Field Processor presented in Section 3.1 is

based upon the interpretation of the processor as a Two-Stage MVDR Matched Field

Processor and is qualitative rather than quantitative in nature. This analysis moti-

vates a modification to the definition of the signal replica vector which is presented

in Subsection 3.1.3. A quantitative analysis of the algorithm based upon numeri-

cal simulations is presented in Section 3.2. The cases which are considered involve

propagation in a deterministic ideal waveguide, a deterministic horizontally-stratified

ocean, and a random ideal waveguide. The results for random ideal waveguide are

presented in Subsection 3.2.3. They motivate a further modification of the definition

of the signal replica vector and show clearly the shortcomings of the MVDR, Bartlett,

and Adaptive Minmax Processors when signal coherence over the array aperture is

reduced. Finally, Section 3.3 contains a brief analysis of the computational complex-

ity of the modified complementary pivot algorithm used to solve the minmax problem

in Step 1 of the Adaptive Minmax Matched Field Processor.
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Figure 3-1: The Two-Stage MVDR Matched Field Processor

3.1 MVDR Interpretation of the Adaptive Min-

max Matched Field Processor

The Adaptive Minmax Matched Field Processor developed in Chapter 2 can be in-

terpreted as the combination of an algorithm which calculates an effective replica

vector, which will be denoted by qff', and a MVDR Matched Field Processor [9, 11]

which uses ff as the replica vector of the desired signal (Figure 3-1). For several

reasons, this interpretation is useful. First, it relates the minmax array processor to

an array processor whose properties ae well-understood. Second, it makes possible

a qualitative analysis of the properties of the minmax array processor. Finally, the

interpretation motivates a modification of the replica vector normalization convention

used in the minmax array processor, which improves the performance of the proces-

sor. Subsection 3.1.1 details the new interpretation of the minmax array processor.

Subsection 3.1.2 uses this interpretation to analyze some properties of the minmax

array processor while Subsection 3.1.3 motivates a modification to the minmax array

processor as developed in Chapter 2 and details the modified algorithm. Finally, Sub-

section 3.1.4 uses this interpretation to formulate guidelines for the required sampling

of · in creating the discrete set of replica vectors over which the minmax optimiza-

tion is carried, and discusses some factors which effect the selection of the uncertainty

range of environmental parameters over which the processor must operate.

The structure of the MVDR Processor [9] is identical to the structure the Adaptive

Minmax Processor as shown in Figure 2-4. The array weights of the matched field
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implementation of the MVDR Processor [11] in a deterministic medium are given by

= ~~h (3.1)wt = arg min w S(f) w (3.1)
ue

such that eh( f, , )w = 1,

where the replica vector is defined in the traditional manner as described in Section 1.2

and 00 is the parameterization of the assumed environmental conditions. The solution

to (3.1) is given by

'Pt S~~(f )-I q(f, A, o) 32
3_opt = qh(f,z, o) A(f)-lq(f,z,_) (3.2)

and the resulting estimate of the average power in the signal emitted by the source

at the array focal point is

&a2(f, ) = (qh(f, z, ) §(f)-1 q(f, Z,)) - (3.3)

The relationship between the Adaptive Minmax Matched Field Processor and the

MVDR Matched Field Processor which is developed in this section is built upon the

similarity between the form of the solutions in (3.2) and (3.3) and the solutions for

the weights and estimated average power in Steps 2 and 3 of the algorithm detailed

in Subsection 3.1.1 which implements the Adaptive Minmax Processor. In comparing

these solutions, it is understood that two processors use different definitions of the

signal replica vector, and that under some signal and environmental conditions and

vector normalization conventions, the two definitions are equivalent.

3.1.1 The Two-Stage MVDR Matched Field Processor

The interpretation of the Adaptive Minmax Matched Field Processor as the Two-

Stage MVDR Matched Field Processor shown in Figure 3-1 is motivated by noting

that the algorithm detailed in Subsection 2.3.4 can be rewritten as
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1. Use the (modified) complementary pivot algorithm to calculate

pf = arg min Q(fz)S(f)-lQ(fz) .
etp=l

2. &2(f, z) = (e Qh(fz)S(f)-lQ(f,z) fi)-1

3. w (f,z, & 2(f,z)) = &2 (f,z) S(f)-l Q(f ) &f

The set Q(f,z)p p > 0 and _etp = 1} is the convex hull of the set of column

vectors in Q(f, z) (i.e. fq(f,_z,), ,q(f,z, K)}). Defining Q(f,z) to be this set of

replica vectors (column vectors of Q(f,z)), the following algorithm is equivalent to

the Adaptive Minmax Matched Field Processor.

1. Use the (modified) complementary pivot algorithm to calculate

qf -= arg min qh ()q

2 2 (f,z)= (qff S(f)qf )-1

3. wopt (fz, ' 2(f, z)) -- If() - ,,

1:ff s(f)-Iq.f 

Steps 2 and 3 of this algorithm are the MVDR Matched Field Processor given the

replica vector ff

3.1.2 Analysis of the Two Stage MVDR Matched Field Pro-

cessor

From Steps 1 and 2 of the Two-Stage MVDR Matched Field Processor, qff is the

vector contained in H (Q(f, z)) which maximizes the power passed through the re-

sulting MVDR Matched Field Processor. A principal characteristic of the processor

is brought to light by this interpretation.

The processor treats any energy in any of the rank one subspaces spanned by the

replica vectors in H (Q(f, z)) as energy of the desired signal and attempts to pass
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as much of that energy as possible through the MVDR Matched Field Processor.

The processor does this by first hypothesizing a rank one signal subspace. It chooses

the basis for this subspace (f f) from within X (Q(f, z)) to maximize the energy in

this subspace as measured by the MVDR Matched Field Processor. This hypothesis

of a rank one signal subspace spanned by some replica vector in NI (Q(f, z)) causes

performance problems in a random propagation medium as demonstrated by the

results in Subsection3.2.3).

This characteristic of the processor is seen explicitly when Step 1 of the algorithm

is written as
N

f = arg min E A 12,

where (i, v) are the ith eigenvalue and eigenvector, respectively, of S(f). Assume

that all vectors in XH ((f, )) have approximately the same norm (the effect of vec-

tors with widely different norms is analyzed in Subsection 3.1.3). Since S(f)- is

Hermitian, its eigenvectors will comprise an orthonormal set which spans CN. There-

fore, E=l 1vaq 12 = q 12. Since all q E X (Q(f, z)) have approximately the same

norm, E= A,' vq 12 can be minimized only by adjusting the relative magnitudes

of the projections of q on each of the eigenvectors. Within the constraints imposed

by - ((f, )), the solution qff will have a minimal projection on the eigenvectors

whose corresponding eigenvalues are small (i.e., At is large) and a larger projection

on the eigenvectors whose corresponding eigenvalues are large (i.e., A 1 is small).

Conceptually, this corresponds to the processor maximizing the projection of ff on

the portion of the subspace of the received signal (desired signal plus noise) with the

largest average power.

The characteristics of the processor and the tradeoffs which it makes in calculating

2fy can be seen more clearly by considering the following special case. Assume

that the desired signal is a deterministic narrowband signal and that the medium is

deterministic. Then the subspace of the desired signal will have rank one and the
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cross-spectral correlation matrix of the received signal will be

S(f) = arS.(f) + Al. !.L

Here, S,,(f) is the normalized cross-spectral correlation matrix of the noise, q is

the actual replica vector of the desired signal, and a: and ao are the average power

of the noise and the desired signal, respectively. For this example, it is assumed that

S(f) = S(f).

Several concepts and quantities are useful in analyzing the processor for this special

case [13]. The first of these is the array gain denoted by G. Considering the array

processor to be a spatial filter, the array gain is a function of the filter weights. It is

defined as the ratio of the signal to noise ratio at the output of the filter to the signal

to noise ratio at the input of the filter where the signal to noise ratio is defined as

S/N - . For the special case under consideration, the array gain is given by
n0

I hq 12
--... (3.4)G(w) = _hsf). (3.4)

In Section 3.2, the rate of decay of the array gain as a function of changes in

act will be used as a measure of the robustness of a processor. It can be shown

that the linear filter weights which maximize the array gain are given by wa =

Sn(f)-qct Substituting these weights into (3.4) yields Gmax = h S(f)-l t

and the maximum achievable signal to noise ratio at the output of a linear filter as

(S/N)max = 4 sqh (f) 1,

A useful measure of the similarity of two vectors is based on the generalized angle

between the vectors. For any positive-definite Hermitian matrix C, the inner product

between the vectors a, b E CN can be defined as ah C b. Given this inner product, the

cosine-squared of the generalized angle between a and b is defined as

Cos (a b C) a& I a-hC b 2
( = (ah C a) (h C b)'

The cosine-squared will always be greater than or equal to zero and less than or equal
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to one. It will equal one if b is a scalar multiple of a and will equal zero if a and b

are orthogonal with respect to the inner product defined earlier. Treating the inner

product and the cosine-squared as measures of the similarity of a and _, the inclusion

of the matrix C places greatest weight on the similarity or dissimilarity of a and b

in the subspace spanned by the eigenvectors of C with the largest eigenvalues, and

places little emphasis on the similarity or dissimilarity in the subspace spanned by

the eivenvectors with small eigenvalues. These measures and concepts provide the

tools needed to analyze some aspects of the performance of the processor.

Using the identity

(A + bbh)- = A - - A-lbb hA- l (1 + bhA-lb) -1,

the adaptive replica vector calculation problem can be expressed as

-1 =q arg mm (qh S m(f) i ) -cos

(3.5)

From this expression, it can be seen that, when the maximum achievable signal to

noise ratio is low, the processor will use most of the available degrees of freedom to

minimize hf S Y(f)- gf (i.e., select ff to lie in the noisy subspace) and will place

little emphasis on maximizing cos(,qt, qff; Sn(f)-1 ) (i.e., select qeff to match qt

as closely as possible in the relatively noise-free subspace. A low maximum achievable

signal to noise ratio could be the result of either a low input signal to noise ratio or

a low Gma, (i.e., the actual replica rector t lying in a noise subspace with a large

average power). If the latter is the cause, then the expected difference between qff

and q.t which results from lff lying in the noisy subspace will be small because

.ct lies in the noisy subspace and the processor may be able to choose f to lie

in the noisy subspace and be close to q.. However, if the former is the cause and

Act does not lie in the noisy subspace, the expected difference between q and t

will be larger. This increased mismatch is the price which is paid for a significant

amount of noise power existing in a rank one subspace spanned by a replica vector
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in XH ((f, )). However, the results developed by Cox [13] indicate that for cases

such as this, where the input signal to noise ratio is low, the array gain will not

decrease significantly as the mismatch between the actual and effective replica vectors

increases. The large amount of noise power which will be passed through the filter

in this case is consistent with the processor selecting eLff to pass as much power as

possible through the resulting MVDR linear filter.

If the maximum achievable signal to noise ratio is high, the processor will place an

increased emphasis using the available degrees of freedom to maximize cos2(L4c, qfI; Sn (f)-).

Thus, as the maximum achievable signal to noise ratio increases, the processor will

reduce the mismatch between tot and f f. The tendency of the processor to place an

increased emphasis on increasing cos2(d, 2jIf; Sn(f)- ) as the maximum achievable

signal to noise ratio is increased is verified numerically in Section 3.2.

The effect of the adaptive replica vector calculator on the array gain of the result-

ing processor can be seen by rewriting (3.4) as [13]

-~ ) = Gma,, cos2(_.,qff; S.(f)- 1)

G( f -1 + 2Gmax(2 + _ Gmax) (1 cos 2 (qctqf;S()))

Here, the array gain is expressed as a function of the qeff because the array weights

are a function of Lff. Consider the effect on the array gain if 2 is increased

qff does not change, and cos2(qqtqff;S.(f)-l) ¢ 1.0. In this case, G(qff) will

decrease. However, from the preceding analysis, the processor adjusts to an increase

in . (and the corresponding increase in (S/N)max) by adjusting q~ to increase

cos2(q, If;S(f)-). This adjustment reduces the mismatch between qf and

qeff and therefore reduces the loss in array gain.

The preceding example provides a qualitative analysis of the Adaptive Minmax

Matched Field Processor using the interpretation of the processor as a Two-Stage

MVDR Matched Field Processor. The assumption throughout this analysis has been

that all of the replica vectors contained in ' (Q(f, z)) have approximately the same

norm. Should this assumption be violated, the characteristics of the processor may

differ greatly from what would be expected based upon this analysis. The effect of
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replica vectors with widely different norms on the performance of the processor and a

modification to the algorithm which mitigates this effect are covered in the following

subsection.

3.1.3 Replica Norm Considerations and a Normalization

Modification

In defining the signal replica vector in Section 1.2, the normalization convention was

that the kth term equals one where k is the number of the reference sensor. This con-

vention was adopted to facilitate the factorization of the cross-correlation function

E[X(f, )X;(f, ) I ] into a 2(f, z)q(f, z, _) where o2 (f, ) is the average power in the

desired signal as received at the reference sensor. When using large aperture arrays

in the ocean environment, it is possible for different environmental conditions to yield

different ratios of the average power in the desired signal at the reference sensor to

the norm of the cross-correlation vector E[X(f,z)X(f, ) _]. For example, if the

receiving array is a large vertical array and a deterministic Normal Mode propaga-

tion model is used (see Section 4.3 for a discussion of the normal mode propagation

model.), then different environmental conditions will result in different mode shapes

and there will be different distributions of signal energy as a function of depth. This

will result in the ratio of the average power at the reference sensor to the norm of the

cross-correlation vector varying with different environmental conditions. Therefore,

the normalized cross-correlation vectors (replica vectors) for different environmental

conditions may have different norms.

To understand the effect that replica vectors with different norms may have on

the adaptive replica vector calculation problem, note that (3.5) can be expressed as

qf = arg minQ )) 1q1 2 [qS.(f) q (1S/N)max + l cos2( ;S(f ))]

(3.6)

The factor in the brackets [ ] is independent of the norm of , depending upon

only the direction of q. The processor will jointly adjust the norm and the direction
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Figure 3-2: The Convex Hull of Replicas with Different Norms

of q within the constraints imposed by Ii (Q(f, z)) to balance the minimization of

the norm-squared of q and the factor in the brackets, respectively. Consider the

case shown in Figure 3-2, where q E R2 and the norm of one replica vector in Q

is significantly less than the norm of the other replica vectors in Q. In this case,

the adaptive replica vector calculator will tend to select ff to lie in the vicinity of

q(0 2), regardless of the direction of qg. This will greatly limit the adjustment of

the direction of qel reducing the ability of the processor to adapt to different actual

replica vectors, and will cause mismatch between q and qt

The array gain (3.4) is a function of the direction of the array weight vector rather

than its norm. The direction of the array weight vector (Step 3 of the algorithm in

Subsection 3.1.1) is a function of the direction of the ff but not its norm. Therefore,

the array gain is a function of the direction of the f rather than its norm. Therefore,

it is desirable for the processor to adjust the direction of ff without regard to

the resulting norm of qff. The ability to adjust tff is improved significantly by

modifying the definition of the replica vector so that the replica vectors have a norm

of one. That is, define the replica vector as

q(f,z, _) - E[X(f,z)Xk(f,z) I ]/ E[X(f,z)Xk(f,z) | ] I.
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Figure 3-3: The Convex Hull of Replicas with Unit Norms

As a result, a2 (f, z) no longer has the strict interpretation as the average power in the

desired signal as received at the reference sensor. However, in numerical simulations,

this modification significantly increased the ability of the adaptive replica vector

calculator to adjust qIef to track t as the latter changed. There was a smaller

mismatch between Iff and t nd an improved performance of the processor.

A second, related modification, which also improved the performance of the pro-

cessor is motivated by considering Figure 3-3, which shows the convex hull of four

replica vectors, all of which have been normalized to have a norm of one. Clearly,

even though the vectors which define the convex hull (i.e., the vectors in Q(f,))

have a norm of one, the convex hull contains vectors which have norms of less than

one. However, from Subsection 3.1.2, the function of qff is to define a rank one

signal subspace in which the processor estimates the average power using the MVDR

Matched Field Processor. Since the subspace spannedby qff is independent of the

norm of qff, the resulting estimated average power should be independent of the

norm of qff. This desired property is accomplished by normalizing qff to have a
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norm of one. This normalization is implemented by modifying Steps 2 and 3 of the

algorithm. The resulting algorithm is

1. Use the (modified) complementary pivot algorithm to calculate

Ef = arg min Qh(f, z)S(f)-lQ(fz) p,

where all the columns of Q(f, _) are normalized to have a norm of one.
efQ(f,- Q(f..S

2. f _Z) = A'
P.f Qn(flz)sMl)-lO(I'~ pif

AStg(f,.(f)-l Q(f,z) p

3. wOpt (fz, & 2(f,z)) = 2(l, o(f) Q(f,-) )

As with the two modifications detailed previously in this subsection, Qh(f, z)(f)-' Q(f, z)

can be replaced by Real(Qh(f,z)S(f)-lQ(f,z)) in Steps 1 and 2 of the algorithm.

For the same reason, Qh(f, z) Q(f, z) can be replaced by Real(Qh(f,z) Q(f,z)) in

Steps 2 and 3.

The preceding two modifications do not entirely eliminate the norm of qeff as a

factor in selecting the direction of the effective replica vector (i.e. ql] ). Referring to

Figure 3-3, it is clear that even though the replica vectors in Q(f, z) have unit norm,

vectors with norms less than one will be contained in X (Q(f, z)). Therefore, while

the effect of vector norms is greatly reduced by normalizing the replica vectors, the

selection of eff according to (3.6) will be biased towards the minimum norm area of

the convex hull. This is verified numerically in Subsection 3.2.1.

3.1.4 The Range and Sampling of the Environmental Pa-

rameter Set D

In Section 2.3, a method of solving the minmax problem in Step of the algorithm

was developed which required the range of environmental parameters over which the

processor is designed to operate to be sampled to yield a finite set = { ,.. ., K}.

The interpretation of Step 1 of the processor as an adaptive signal replica calculator
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which selects E ( ( f , ) where (f,) {q(f,,) I i = 1,..., K} provid3s

some insight into the desired location of the samples of the operating range which are

included in the finite set . Using the term extreme point to refer to any point in

a set which is not representable as the convex combination of two other points in the

set, a convex hull is completely defined by its extreme points. Therefore, nothing is

gained by including a point in t for which the corresponding replica vector is not an

extreme point of C (Q(f, z)). Referring to Figure 3-2, q(01), q(2), and q(3) are

the extreme points of the convex hull.

Referring to Figure 3-3, suppose that the operating range of the processor includes

the continuous set of points whose replica vectors fill the continuous arc on the circle

between q(1) and q(q4). Then, the convex hull of these replica vectors includes

the region bounded by the arc between q( 1) and q(04) and the chord subtended

by that arc (i.e., the straight line connecting q(01) and q(04)). This convex hull

can be approximated closely by including several environmental points in whose

corresponding replica vectors are spaced evenly along the arc between q(+X) and q(q4)

(02 and 3 in the example shown). However, with further analysis, it can be seen

that this step is unnecessary.

Any point in the convex hull shown in Figure 3-3 which does not fall on the chord

connecting q(&1) and q(0 4) can be expressed as a point on that chord multiplied

by a real number greater than one. Therefore, referring to (3.6), the term in the

brackets will be the same for both the point not on the chord and the corresponding

point on the chord. However, the norm-squared term will be smaller for the point on

the chord. Therefore, gaff will always lie on the chord connecting q(0) and q(04).

The solution from within the convex hull of the continuous set of replica vectors will

therefore always fall within X ({q(01), q(04)}). Thus, no performance will be lost if

4 = {'1, 4}-

This analysis can be extended to higher dimension replica vectors to determine the

number and the location of the samples of the continuous environmental parameter set

required to insure that the sampling process does not result in a loss in performance.

The requirement which must be met is that the replica vectors at the selected samples
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should define a convex hull which is a subset of the convex hull of the continuous set of

replica vectors and which contains a set of points which is guaranteed to contain f f

(such as the chord in the two-dimensional example above). One problem which may

occur in higher dimensions but does not occur in two-dimensions is that the required

convex hull may have an infinite number of extreme points. Therefore, it can only

be approximated by the convex hull of a finite set of replica vectors. If the actual

replica vector falls outside the approximating convex hull, then mismatch between

qeff and t will occur. The resulting MVDR processor will tend to reject (filter

out) the desired signal and will suffer the same performance degradation problems

which are characteristic of the MVDR Matched Field Processor in the presence of

environmental mismatch [13, 17]. The significance of this degradation will depend on

the extent to which L, falls outside of (Q(f, z)). Numerical results illustrating

the dependence of processor performance on the sampling density of the set i and

the performance degradation which results when falls outside of 'H ((f, )) are

presented in Subsection 3.2.2.

The performance degradaton which will occur if t falls outside of XH (Q(f, ))
highlights a conflicting requirement in selecting the range of the environmental pa-

rameters over which the processor is designed to operate. As described in Subsec-

tion 3.1.2, the processor will treat any portion of the received signal which falls within

any rank one subspace spanned by a replica vector in Ii (Q(f, z)) as desired signal,

and will select Lff to pass as much of this signal as possible through the resulting

spatial filter. If $ is large, there will tend to be a wide range of rank one subspaces

spanned by the replica vectors in 7( (Q(f, )). In this case, the processor may select

qf to lie in a noisy subspace which contains very little of the power of the desired

signal; and the spatial filter will pass a lot of noise and little of the desired signal. If

4 is small, then (Q(f, z)) will tend to be small and the probability that the actual

replica of the desired signal will not fall within (O(f,z )) will increase. In this

case, mismatch will occur and, as stated in the preceding paragraph, the tendency of

the processor will be to reject (filter out) the desired signal resulting in performance

degradation. Therefore, it is important to balance the selection of a large operating
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range to avoid filtering out the desired signal with the selection of a small operating

range to avoid passing a lot of noise through the filter.

The tradeoff in the selection of 4 between filtering out as much noise as possible

and avoiding the rejection of the desired signal can be analyzed using the probability

of false alarm (PF) and probability of detection (PD) performance measures. Assume

that a fourth stage is added to the Adaptive Minmax Processor to perform a threshold

hypothesis test to estimate whether or not a point source is present at the array focal

point. That is, letting H0 be the hypothesis that there is no point source at the array

focal point (i.e., the received signal consists of just noise) and H1 be the hypothesis

that there is a point source at the array focal point (i.e., the received signal consists of

the desired signal plus noise), the hypothesis test selects between the two hypotheses

using the decision rule

Ho: (f, z) <Y

H 1 : 2(f,.) > 

where is the decision threshold. PF is defined as the probability that the test will

select H 1 when no point source is present at the array focal point and PD is defined

as the probability that the test will select H 1 when there is a point source present at

the array focal point.
2 (f, z) is calculated with the following two steps:

qff = arg min qh ()-l q
_..f f ar T/(Q(f, ))

and
h2 flqf fI

Zff Sm= c !Lff

Let S be the noise cross-spectral covariance matrix and Sd.() be the cross-spectral

covariance matrix of the desired signal given the environmental conditions _. Then,
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PF and PD can be written as

/h

PF = Prob s f qfeff
qeff S(f)- ff

> 0I I S(f)

PD = Prob h-e f f ef fqhff (f)-1 qff
> 17 I S(f) = S +Sd,())

I q = 1 q E Q(f,z) implies that I q I 1 q E X (Q(f, z)). Therefore, defining

I qIin Ai n -~, min I I2,
_E'H (Q(f, Z))

the following relationship holds Vf 1.

1 2
Iq Ifn)

,qff (f)-' qcff

h 

< q-f qf < 1
-q f! g(f)-l f - .eff (f)- ql

Therefore, PF and PD can be bounded by

PF < PFb - Prob (3 E X (Q(f, z)) s.t. qh S(f)- < ,-1 I S(f)= s.)

PF > PFb - Prob (3q E R (Q(f, z)) s.t. qh S(f)q < I q1i - I S(f) = sn)

PD < PD.b = Prob (3q E H (Q(f, z)) s.t. S(f)- < 7- I S(f) = S + Sds())

PD > PDb Prob (3q E tH (Q(f,z)) s.t. h S(f)- < I ]in /' | S(f) = Sn + Sds(O))

Let q, Q(f, Z), I q 12. PFUb, PF~b PDub, PDb and ', Q'(f, Z), I q 12 F,., P' FP

PD, PDb' be two sets of operating ranges of environmental parameters, replica vec-

tors, and associated bounds. Assume that C V'. Then h (Q(f, z)) c t (Q'(f, z))

and q > q 12,. Therefore, PF..b < P. and PD,, < P.b. However, since
2 > 2~~~~I

I q 12 I l q 12i the same conclusion cannot be drawn about the corresponding lower

bounds. Therefore, as the operating range of environmental parameters is increased,

the upper bounds on the probabilities of false alarm and detection are increased.

However, as stated at the end of Subsection 3.1.3, if · is increased to the point that

q 12 i becomes small, the mismatch between and ,ct will tend to increase when
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the SNR is low. This increased mismatch will result in a reduction in ambiguity

function of the processor at the source location and therefore reduce the probability

of detection. This analysis is supported by the numerical results shown in Figure 3-16

in Subsection 3.2.1. Therefore, at low SNRs, the probability of detection is not likely

to increase as much as would be inferred from the increase in PD,, as 0 is increased.

3.2 Numerical Analysis of the Adaptive Minmax

Matched Field Processor

The analysis of many characteristics of the Adaptive Minmax Matched Field Pro-

cessor is improved considerably by the inclusion of numerical results. A principal

reason for this is the lack of illustrative analytical solutions to Step 1 of the array

processing algorithm. Several numerical examples are included here to assist in the

analysis of different characteristics of the algorithm. Subsection 3.2.1 presents results

characterizing the performance of the algorithm in a deterministic ideal waveguide.

In this case, the uncertain environmental characteristic is the depth of the waveguide.

Subsection 3.2.2 presents results which characterize the performance of the algorithm

in a deterministic horizontally-stratified ocean with an arctic sound speed profile.

Here, the uncertain environmental characteristic is the sound speed profile in the

surface layer of the ocean. Finally, Subsection 3.2.3 presents results describing the

performance of the algorithm in a randomly time-variant ideal waveguide where, as

before, the uncertain environmental characteristic is the depth of the waveguide. In

this case, the random perturbations to the ocean are perturbations to the sound speed

structure as presented in Chapter 4. These results are presented to allow comparison

of the performance of the processor in deterministic and random media.

In all the numerical simulations, an important parameter is the signal to noise

ratio. For the purpose of these simulations, the signal to noise ratio is defined as

the ratio of the average power per array sensor in the desired signal to the average

power per array sensor in the spatially white sensor noise. For the case where there is

propagating background noise, the background noise to sensor noise ratio is similarly
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defined. Thus, if the SNR is 20 dB and the background noise to sensor noise ratio is

10 dB, then the signal to background noise SNR is 10 dB. In all cases, the average

power measurements are taken after the temporal processing by the discrete-time

Fourier transform.

None of the results presented were generated with Monte Carlo simulations. In

all cases, it is assumed that the processor has perfect knowledge of the cross-spectral

correlation matrix. That is, S(f) = S(f). All units of distance measurement used in

this section are metric.

3.2.1 The Deterministic Ideal Waveguide

The first set of numerical results were generated using an ideal waveguide model

of the ocean and a normal mode representation of the propagating signals. (See

Section 4.3 for an introduction to the normal mode representation of signals). In

addition, the ocean is assumed to be a deterministic (i.e., time-invariant) medium.

The salient parameters of the simulation are that the ocean is assumed to be an

isovelocity waveguide with a sound speed of Z(z) = 1500 m/s where ~(z) is the

time-invariant depth dependent component of the sound speed defined in Chapter 4,

and an unknown but constant depth H between 290 meters and 310 meters. The

sea surface is assumed to be a free surface and the ocean bottom is assumed to be

infinitely rigid. The source is assumed to be a deterministic complex exponential

with a frequency of 20 Hz. In addition, the source is assumed to be sufficiently far

from the array so that the horizontal propagation of the modes can be modeled by a

complex exponential rather than a Hankel function.

With these assumptions, the waveguide supports eight propagating modes. The

mode shapes are a function of depth z and given by

qn(z) = sin(kvnz) nl = 1,...,8,

where ky = (2n-)ir is the vertical wavenumber of the nth mode. The mode shape
(Z) should not bee environmental parameter 2. The propagating

On~(Z) should not be confused with the environmental parameter ±b. The propagating
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signal at the range r, depth z, and time t is given by (4.12)

S

x(r, z, t) = e 2 t (kH.r)-e- jkur sin(kv.zo,,c) sin(kv/z)

where kH = (k2- k 2) is the horizontal wavenumber of the n th mode and k = 2

is the wavenumber of the signal.

The receiving array is a nine-element vertical array with the top element at 30

meters depth and the bottom element at 270 meters depth. The inter-element spacing

is therefore 30 meters. For all the examples in this subsection, the sources are assumed

to be at a range of 50 km from the array and there is assumed to be no propagating

background noise (i.e., the received signal consists of spatially white sensor noise

and narrowband signals emitted by point sources). In addition, in this section, the

localization problem is assumed to be a one-dimensional (depth only) problem. That

is, it is assumed that the true range to the source(s) is known and the processor is

trying to determine the source depth(s). These assumptions are made to simplify

the presentation of the results and the analysis of the salient characteristics of the

processor.

For the first results in this subsection, a single source is placed at a depth of

150 meters with an SNR of 10 dB. The purpose of these results is to illustrate the

effect which the ocean depth uncertainty has on the MVDR Matched Field Processor,

the Bartlett Matched Field Processor, and the Adaptive Minmax Matched Field

Processor, and to provide a qualitative comparison of the resolution of each processor.

Figures 3-4a through 3-8a show the depth ambiguity functions generated by each

processor for the cases where the actual ocean depth is 290 meters; and Figures 3-4b

through 3-8b show the depth ambiguity functions generated by each processor for the

cases where the actual ocean depth is 310 meters.

The results in Figure 3-4 are generated using a MVDR Processor assuming that the

ocean depth is 290 meters. When the ocean depth assumption is accurate (Figure 3-

4a), the processor generates a sharp peak in its ambiguity function at the true source

depth; when the depth assumption is inaccurate (Figure 3-4b), the peak level of the
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ambiguity function drops by approximately 17 dB and there is no single significant

peak. The sidelobe suppression of the perfectly matched processor (approximatly

18 dB below the main peak level) is good and the peak in the ambiguity function

is sharp. Figure 3-5 shows the complementary results generated using a MVDR

Processor assuming that the ocean depth is 310 meters.

The results in Figure 3-6 are generated using a Bartlett Processor which assume

that the ocean depth is 290 meters. As was the case with the MVDR Processor,

the perfectly matched Bartlett Processor (Figure 3-6a) generates a single significant

peak at the true source depth; the ambiguity function generated by the mismatched

Bartlett Processor (Figure 3-6b) has no single significant peak. However, there are

three significant differences in the ambiguity functions generated by the processors.

First, the sidelobe suppression of the Bartlett Processor is not nearly as good as that

of the MVDR Processor with the peak sidelobe level for the perfectly matched Bartlett

Processor only 7 dB below the main peak level (compared to 18 dB for the MVDR

Processor). Second, the mainlobe width for the perfectly matched Bartlett Processor

is much wider than that generated by the MVDR Processor. Finally, the mismatched

Bartlett Processor does not experience the significant loss in the peak level of the

ambiguity function as was experienced by the mismatched MVDR Processor. These

ambiguity function peaks, generated by the mismatched processors, are sidelobes in

the source depth/ocean depth plane. Thus, the low peak levels in the ambiguity

function of the mismatched MVDR Processor are characteristic of the low sidelobe

levels of MVDR Processor and the high peak levels in the ambiguity function of

the mismatched Bartlett Processor are characteristic of the high sidelobe levels of

the Bartlett Processor. Figure 3-7 shows the complementary results generated by a

Bartlett Processor which assumes that the ocean depth is 310 meters.

Finally, the results in Figure 3-8 are generated using the Adaptive Minmax Pro-

cessor. In this case, the processor assumes that the ocean depth may be between

290 and 310 meters. With only this approximate knowledge of the ocean depth, the

ambiguity function generated by the processor shows a single significant peak at the

true source depth for the case where the ocean depth is 290 meters and the case where
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the ocean depth is 310 meters. The sidelobe suppression (approximately 15 dB) is

comparable to that of the perfectly matched MVDR Processor and is significantly

better than that of the perfectly matched Bartlett Processor. The same observation

can be made about the sharpness of the mainlobe. This final observation leads to the

qualitative conclusion that the resolution of the Adaptive Minmax Processor is com-

parable to that of the perfectly matched MVDR Processor and significantly better

than than of the perfectly matched Bartlett Processor. This conclusion is supported

quantitatively by results contained later in this subsection..

Figure 3-9 shows the ambiguity functions of the perfectly matched MVDR and

Bartlett Processors and the Adaptive Minmax Processor for the case where the actual

ocean depth is 310 meters, the source is located at 150 meters depth, and the SNR is

0 dB. These results are presented to illustrate that, in general, the ambiguity functions

do not change qualitatively when the SNR is lowereed to 0 dB. One significant change

is that the peak level of the ambiguity function of the Adaptive Minmax Processor is

no longer equal to that of the perfectly matched MVDR and Bartlett Processors as

is the case when the SNR is 10 dB. The peak level in this case has dropped to about

2.5 dB below that of the MVDR and Bartlett Processors. This loss in peak level will

be analyzed later in this subsection.

As demonstrated with the preceding results, the response of the Adaptive Minmax

Processor in the environmental parameter space (in this case ocean depth) is consid-

erably broader than that of the MVDR Processor. That is, the Adaptive Minmax

Processor will detect signals from a wider range of environmental parameters than

the MVDR Processor. Qualitatively, the signal replica vector is a relatively smooth

function of both the source location and the environmental conditions. Therefore,

since both processors characterize signals by their replica vectors, it is reasonable to

conclude that the response of the Adaptive Minmax Processor in the source location

space would be broader than that of the MVDR Processor. The Multiple Constraints

Matched Field Processor [17] makes use of this fact and broadens the response of

the processor in the environmental parameter space by intentionally broadening the

response of the processor in the source location space. The result is a reduction in
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the sensitivity of the processor to environmental mismatch and a corresponding re-

duction in the spatial resolution of the processor. Therefore, an issue of concern is

how much spatial resolution must be sacrificed to create the broad response of the

Adaptive Minmax Processor in the environmental parameter space.

The next results are presented to allow quantitative comparison of the resolution of

the perfectly matched MVDR Processor, the perfectly matched Bartlett Processor,

and the Adaptive Minmax Processor. The actual ocean depth for this simulation

is 310 meters. Two equal strength sources, each with a 10 dB SNR, are located

at a depth of 155 + Adepth meters where 2Adepth is the depth separation between

the sources. Characteristic ambiguity functions generated by the Adaptive Minmax

Processor for this two-source case are shown in Figure 3-10. In Figure 3-10a, at a

source separation is 8 meters, the processor is unable to resolve the two sources. In

Figure 3-lOb, at a source separation is 24 meters, the processor is able to resolve the

sources.

As a measure of a processor's ability to resolve sources, the response ratio, defined

as 10 loglo0 (.), is used. For the case shown in Figure 3-10a, where there is a single

peak in the ambiguity function between the two source locations; 2 is the peak

value of the ambiguity function between the two source locations. For the case shown

in Figure 3-lOb, where the processor resolves two distinct peaks in the ambiguity

function; &2 is the minimal value of the ambiguity function between the two source

locations. For the case shown in Figure 3-10a, where there is a single peak in the

ambiguity function between the two source locations; 2 is the smaller of the values

of the ambiguity function evaluated at the two source locations. For the case shown

in Figure 3-lOb, where the processor resolves two distinct peaks in the ambiguity

function; A2 is the smaller of the two peak values. Therefore, if the response ratio is

greater than zero, the processor is unable to resolve separate peaks in the ambiguity

function. If the response ratio is less than zero, the processor resolves two distinct

peaks in the ambiguity function and the depth of the dip in the ambiguity function

between the peaks equals the response ratio in dB. Thus, the lower the response ratio

at any source separation, the better the ability of the processor to resolve sources
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with that separation.

Referring to Figure 3-11, the MVDR and Adaptive Minmax Processors are able

to resolve separate peaks for source separations greater than 17 and 18 meters, re-

spectively, and the Bartlett Processor requires approximately 28 meters separation

in order to be able to resolve separate peaks. The depth of the dip between source

peaks is between .1 and 2 dB less for the Adaptive Minmax Processor than it is for

the MVDR Processor. The depth of the dip for the Bartlett Processor is approxi-

mately 7 dB less than it is for the Adaptive Minmax and MVDR Processors. Thus,

the resolution of the Adaptive Minmax Processor is slightly less than than that of

the perfectly matched MVDR Processor but it is significantly greater than that of

the perfectly matched Bartlett Processor.

The preceding results provide a means of assessing the capabilities of the Adap-

tive Minmax Processor. The following two sets of results illustrate characteristics of

the processor in order to better understand how the processor functions. The second

stage of the processor (Figure 2-4) is a linear spatial filter, the coefficients of which

are calculated in Step 3 of the array processing algorithm. For each array focal point,

a different set of weights are calculated. Just as a frequecy response is defined for any

set of weights of a linear temporal filter, a source location/environmental condition

response can be defined for each set of weights of the linear spatial filter. In the

ideal waveguide example, where source location is parameterized by the source depth

.;d the environmental conditions are parameterized by the ocean depth, the de-

sired response is the source depth/ocean depth response. Letting X(z,H) be the

snapshot of a signal emitted by a source at the depth z given the ocean depth H, the

source depth/ocean depth response for the weights w is given by W(z, H) L WhXI(z,H)I.
-i(z,H)tI

This magnitude response is the gain which the spatial filter applies to a signal emitted

by a source at depth z and which propagates through an ocean with depth H.

For the results shown in Figures 3-12 through 3-15, a single source is located at 250

meters depth with an SNR of 20 dB. Figure 3-12 shows the source depth/ocean depth

response of the array weights generated by the Adaptive Minmax Processor when the

array focal point is 175 meters depth and the actual ocean depth is 290 meters. The
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magnitude response evaluated at an ocean depth of 290 meters (Figure 3-12a) has a

sharp null at the source depth of 250 meters. This is consistent with the processor

attempting to null the signal emitted by a source at the depth of 250 meters which

propagates through an ocean of depth 290 meters. The magnitude response evaluated

at an ocean depth of 310 meters (Figure 3-12b) has no sharp null at the source depth of

250 meters. This is consistent with the fact that the received signal has no component

which propagated through an ocean for which depth was 310 meters. Hence, there is

no signal with a replica vector characteristic of this point (250 meters source depth,

310 meters ocean depth) to cancel. Figure 3-13 shows a complementary set of results

for the case where the actual ocean depth is 310 meters. Here, the sharp null appears

in the response evaluated at an ocean depth of 310 meters but does not appear in the

response evaluated at an ocean depth of 290 meters.

Figure 3-14 shows the source depth/ocean depth response of the array weights

generated by the Adaptive Minmax Processor when the array focal point is 250 meters

and the actual ocean depth is 290 meters. The response evaluated at an ocean depth
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of 290 meters (Figure 3-14a) is close to one at the source depth of 250 meters. This is

consistent with the interpretation of the spatial filter as a Two-Stage MVDR Processor

where the filter response at the point corresponding to the effective replica vector

equals one, and is also constitent with the conclusion in Subsection 3.1.2 that the

effective replica vector will be very close to the actual replica vector at high SNRs.

The response evaluated at an ocean depth of 310 meters (Figure 3-14b) is not close

to one which is also consistent with the above interpretation. Since the received signal

contains no component which propagated through an ocean of depth 310 meters, the

signal power which the processor detects at this point is small. Thus ff is not

forced to be near the replica vector for this point, and the response at this point is

not constrained to be close to one. Figure 3-15 shows a complementary set of results

for the case where the actual ocean depth is 310 meters.

The final results in this subsection allow an assessment of how the difference in the

norms of the replicas contained in (Q(f, z)) can adversely affect the performance

of the Adaptive Minmax Processor at low SNRs. These results were generated with a

source at 250 meters depth and an actual ocean depth of 310 meters. The focal point

of the Adaptive Minmax Processor is 250 meters depth. For this particular case,

where the noise consists of only spatially white sensor noise, (3.6) can be rewritten

as

2f! = arg min ]q ICos (N q;N--

As the SNR decreases, the first term in the parenthesis increases, the reduction of the

norm of f is emphasized, and the reduction of the mismatch between qff and t

(i.e. increasing cos2( 1ff, ;I)) is deemphasized. Therefore, cos2(q I, qct;I) should

decrease as the SNR decreases. Figure 3-16a supports this conclusion.

Figures 3-14a and 3-15b show that, at a high SNR, the source depth/ocean depth

response of the weights generated by the Adaptive Minmax Processor equals one

when the array focal point is the source location and the response is evaluated at

the actual source depth and the actual ocean depth. However, when the SNR is

decreased, Figure 3-16b shows that the response evaluated at the actual source depth
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and actual ocean depth drops below one. This drop can be partially attributed to

the increase in processor mismatch as measured by the difference between ff and

act, which results from a decrease in SNR; this is illustrated in Figure 3-16a. The

increased mismatch and resulting drop in the magnitude response partially accounts

for the drop in the peak level of the ambiguity function of the Adaptive Minmax

Processor which was discussed earlier and illustrated in Figure 3-9.

3.2.2 The Arctic Ocean

The second set of numerical results were generated modeling the ocean as a deter-

ministic horizontally-stratified medium with the arctic sound speed profile shown in

Figure 3-17. The dominant characteristic of the sound speed profile is the strong

surface duct created as a result of the location of the sound speed minimum at the

surface. Propagating sound will be refracted to the surface and tend to stay in the

duct close to the surface as it propagates. The sound speed profile at depths greater

than or equal to 85 meters is assumed to be known to the processor. The sound speed

in the top 85 meters of the water column is assumed to vary in a pseudo-linear fash-

ion (i.e., varies linearly with depth) between an unknown value at the surface

and a known value at the depth of 85 meters. Therefore, the sound speed profile is

completely parameterized by the surface sound speed U(0) and v is the set of pos-

sible values for C(0). The salient parameters of the simulation are that the ocean

depth is 3800 meters, the sea surface is assumed to be a free surface, and the ocean

bottom is assumed to be a soft bottom so that no bottom reflected waves are able

to reach the array sensors. The array is an 18 element vertical array with the top

element at a depth of 60 meters and the bottom element at a depth of 570 meters

(inter-element spacing is 30 meters). All of the results shown here were generated

with a single omnidirectional 20 Hz source located at a depth of 190 meters and a

range of 250 km from the array. In all cases, the range of the surface sound speed

given to the Adaptive Minmax Processor () is from C(0) = 1430.75 meters/second

to C(0) = 1432.25 meters/second.

The noise field consists of both sensor noise and surface-generated background
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noise. Consistent with the surface noise model in [35], the surface noise is modeled

as generated by a horizontal sheet of stochastic monopole sources which are spatially

uncorrelated and located 0.5 meters below the surface.

Figures 3-18 through 3-21 show the ambiguity functions for the Matched and the

Mismatched MVDR Processors, the Matched Bartlett Processor, and the Adaptive

Minmax Processor. In all cases, the actual surface sound speed is 1431 meters/second,

the SNR is 20 dB, and the background noise to sensor noise ratio is 10 dB. Therefore,

the signal to background noise SNR is 10 dB. The Mismatched MVDR Processor

operates with an assumed surface sound speed of 1432 meters/second resulting in a

1 meter/second mismatch in surface sound speed. The first figure for each processor

shows the ambiguity function evaluated on a course grid (45 meters vertical spacing,

2 km horizontal spacing) over the range of 10 to 1000 meters depth and 150 to 300 km

range. The second figure for each processor shows the ambiguity function evaluated

on a much finer grid (5 meters vertical spacing, 250 meters horizontal spacing) over

the range of 140 to 240 meters depth and 241 to 259 km range.

A common feature of all of the ambiguity functions is the range-extended band
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of elevated response in the upper 300 meters of the ocean. In other numerical ex-

periments not detailed here, it is indicated that when the source is removed, the

ambiguity functions in this upper layer of the ocean for the Matched MVDR and

Adaptive Minmax Processors drop approximately 3 to 4 dB in the regions away from

the source location and drop approximately 17 dB at the source location. The am-

biguity functions for the no-source case shows levels in the upper 250 meters of the

ocean to be approximately 4 dB above those in the ocean below 350 meters depth

for both the MVDR and the Adaptive Minmax Processors. Therefore, the elevated

response in this region is partially due to the inability of the processors to resolve

the source location in range and partially due to the presence of surface-generated

background noise. The Matched Bartlett Processor shows a comparable ambiguity

function in the no-source case in the upper layer of the ocean. In the lower layer of

the ocean for the no-source case, the level of the ambiguity function for the Bartlett

Processor is only 1 to 2 dB below that in the upper layer, which is consistent with the

inferior depth resolution of the Bartlett Processor when compared to the MVDR and

the Adaptive Minmax Processors. When the source is added, the ambiguity function

in the entire upper layer increases by approximately 14 db; the ambiguity function

in the lower layer increases by approximately 4 dB. Therefore, the high level of the

ambiguity function of the Bartlett Processor in the upper layer of the ocean is due

primarily to the poor range resolution of the Bartlett Processor (i.e., high sidelobes).

The ambiguity functions for the Matched MVDR Processor (Figure 3-18), the

Matched Bartlett Processor (Figure 3-20), and the Adaptive Minmax Processor (Fig-

ure 3-21) have global maxima at the true source location at a normalized level of

approximately 0 dB. The Mismatched MVDR Processor (Figure 3-19) has a global

maximum at a depth of 185 meters and range 250.25 km at a normalized level of

-1.15 dB. The slight mismatch of 1 meter/second in surface sound speed results in a

slight offset of the peak location and a loss of 1.15 dB in the peak response of the

MVDR Processor. Consistent with the spatial resolution results in Subsection 3.2.1,

the mainlobe of the Adaptive Minmax Processor is slightly broader than the mainlobe

the MVDR Processor and considerably narrower than the mainlobe of the Bartlett
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Processor.

The array gain defined in Subsection 3.1.2 is a good measure of a processor's ability

to separate a desired signal from the noise in which it is embedded. Figure 3-22 shows

the array gain of the Matched and the Mismatched MVDR Processors, the Matched

and the Mismatched Bartlett Processors, and the Adaptive Minmax Processor as a

function of SNR for several surface sound speeds when the array focal point is the

source location. In all cases, the mismatched processors operate with an assumed

surface sound speed of 1432 meters/second and the background noise to sensor noise

ratio is 10 dB. In all the figures, the independent variable is source to background

noise SNR rather than the source to sensor noise SNR. The array gain shown has

been normalized so that the gain of the Matched Bartlett Processor equals one.

For all SNRs and surface sound speeds shown, the array gain of the Adaptive

Minmax Processor is less than the array gain the Matched MVDR Processor and

greater than the array gain of the Matched MVDR Processor. As the amount of the

mismatch between the surface sound speed assumed by the mismatched processors

and the actual surface sound speed increases, the gain of the Mismatched MVDR

Processor falls when compared to the Matched MVDR Processor and the Adaptive

Minmax Processor. As the SNR increases, a loss of array gain in the Adaptive Minmax

Processor results from the small mismatch between ff and q.t An interesting note

is that, for small amounts of mismatch between the assumed and the actual surface

sound speeds, the gain of the Mismatched Bartlett Processor is greater than that

of the Matched Bartlett Processor. This result would be impossible in a spatially

white noise field because the Matched Bartlett and the Matched MVDR Processors

maximize the array gain when the noise field is spatially white. The equivalence of

the Matched Bartlett and the Matched MVDR Processors in this case is based upon

the assumption that S(f) = (f).

In Subsection 3.1.3, it is concluded that, for the case where the array focal point

is the source location, the mismatch between tff and qct will decrease as the SNR

increases and, as a result, cos2(. 1 , , ;Sn(f)-1 ) will increase as the SNR increases.

Figure 3-23, which shows the generalized cosine-squared between ff and qTat as a
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function of the source to background noise SNR for various surface sound speeds when

the array focal point is the source location, supports this conclusion. However, the re-

suits in Subsection 3.2.1 demonstrated the same dependence of cos2 (Lff, t; S,(f)-1)

on the SNR for the case where S,(f) = I. Therefore, it i unclear as to whether

the cause of this dependence is the processor attempting to reduce I qff 12 or it is

the processor attempting to reduce .(f) f The role of these quantities can
ef f f f

be seen in (3.6).

The Adaptive Minmax Processor adjusts tff by adjusting the least favorable

pmf (f). As the actual surface sound speed changes, it is reasonable to expect

that when the array is focused at the source location, p will change to exhibit a

peak in the neighborhood of the actual surface sound speed. Numerical simulations

were run to test whether or not the processor exhibits this behavior. In these tests,

there is no propagating background noise, the signal to sensor noise SNR is 10 dB,

and the source location and array focal point are both at a range of 250 km and a

depth of 190 meters. The environmental parameter set t is sampled at seven points

(1430.75 meters/second through 1432.25 meters/second in 0.25 meters/second incre-

ments) and the actual surface sound speed is varied between 1430.75 meters/second

and 1432.25 meters/second in 0.125 meters/second increments. As shown in Fig-

ures 3-24 and 3-25, the Adaptive Minmax Processor exhibits the expected behavior

while the actual surface sound speed is in the lower part of this range. However, when

the actual surface sound speed is in the range between 1431.75 meters/second and

1432.0 meters/second, Pf does not peak in the neighborhood of the actual surface

sound speed. However, the results presented in Figure 3-26 and discussed in the fol-

lowing paragraph indicate that this failure of f to peak as expected for some values

of the actual surface sound speed does not adversely affect the performance of the

Adaptive Minmax Processor.

In Subsection 3.1.4 the effect on the performance of the Adaptive Minmax Pro-

cessor of the range and sampling density of the environmental parameter set is

qualitatively analyzed. A set of simulations were run with different ranges and sam-

pling densities to quantitatively evaluate the effect. The test conditions are a signal to
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surface noise SNR of 10 dB and a signal to sensor noise SNR of 20 dB. A single source

is located at a range of 250 km and a depth of 190 meters. Tests were run for actual

surface sound speeds of 1431.5 meters/second, 1431.625 meters/second, 1431.75 me-

ters/second, 1431.875 meters/second, 1431.9375 meters/second, 1432.0 meters/second,

1432.125 meters/second, and 1432.25 meters/second and for an array focal point

of a range of 250 km and a depth of 190 meters (i.e., the source location). The

peak response loss, which is defined as the estimated average signal power generated

by the Adaptive Minmax Processor minus that generated by the Matched MVDR

Processor, is plotted versus actual surface sound speed in Figure 3-26. The three

cases shown are for the sampling of at two points (1431.0 meters/second and

1432.0 meters/second), three points (1431.0 meters/second, 1431.5 meters/second,

and 1432.0 meters/second), and seven points (1430.75 meters/second through 1432.25 me-

ters/second in 0.25 meters/second increments). The Adaptive Minmax Processor

shows almost no loss in response relative to the MVDR Processor for all cases when

the actual surface sound speed falls within the interval spanned by the samples of

the surface sound speed parameter set Q. This indicates that for this class of envi-

ronmental uncertainties, the performance of the Adaptive Minmax Processor is fairly

insensitive to changes in the sampling density of 0. However, when the actual sur-

face sound speed falls outside the interval spanned by the the samples of the surface

sound speed parameter set $ (i.e., U(0) > 1432.0 meters/second for the two and three

sample cases), the Adaptive Minmax Processor shows a dramatic loss in performance

as measured by the peak response loss. For this same range, the Adaptive Minmax

Processor utilizing seven sample of shows no loss in performance. Therefore, as

predicted in Subsection 3.1.4, the Adaptive Minmax Processof suffers a significant

degradation in performance when the actual environmental conditions which are en-

countered fall outside the range of the sampled environmental parameter set .

The norm-squared of the array weight vector of a linear weight-and-sum beam-

former is often used as a measure of the sensitivity of the processor to environmental

mismatch [8]. However, the use of this measure depends upon the processor using

a replica vector which is calculated a priori rather than adaptively as is done in the
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Two-Stage MVDR Processor interpretation of the Adaptive Minmax Processor.

A set of tests were run to measure the norm-squared of the weight vectors of the

Matched MVDR and Adaptive Minmax Processors under varous conditions. In all

cases, the signal to surface noise SNR is 10 db, the signal to sensor noise SNR is

20 db, the source is at a range of 250 km and a depth of 190 meters, and the set 

is sampled at seven points as described in the preceeding paragraph. Tables 3.1 and

3.2 list the norm-squared of the array weight vectors for the MVDR and Adaptive

Minmax Processors when the range of the array focal point is 250 km and the focal

point depth and actual surface sound speed take on several values. Note that the

norm-squared of the weight vectors for the two processors are comparable under

equivalent conditions. The large norm-squared when the depth of the array focal

point is 165 meters can be attributed to the processors attempting to null out the

source at 190 meters depth while maintaining a reasonable response (equal to one

in the MVDR case) to a signal emitted by a source at 165 meters depth. Under

the standard criterion, these weight vector norms would indicate that the MVDR
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focal depth 140 meters 165 meters 190 meters
c(O) = 1430.75 m/s 11.41 24.67 6.11

c(0) = 1431.375 m/s 13.19 36.61 4.49
c(0) = 1431.9375 m/s 11.37 30.39 1.18

c(0) = 1432.00 m/s 18.93 39.15 3.13

Table 3.1: Norm-Squared of Matched MVDR Processor Weight Vectors

focal depth 140 meters 165 meters 190 meters
c(0)- = 1430.75 m/s 12.19 24.66 5.70 

c(0) = 1431.375 m/s 14.13 35.64 1.22
c(0) = 1431.9375 m/s 11.03 30.55 1.24

c(0) = 1432.00 m/s 20.29 39.13 1.12

Table 3.2: Norm-Squared of Adaptive Minmax Processor Weight Vectors

and Adaptive Minmax Processors ae equally sensitive to environmental mismatch.

This is consistent with the loss in performance by the Adaptive Minmax Processor

when the actual environmental condition encountered falls outside the range of ~.

However, the results presented in this chapter indicate that when the environmental

conditions fall within the range of , the Adaptive Minmax Processor does not suffer

a degradation in performance as the environmental conditions change. Therefore, the

norm-squared of the array weight vector is an inappropriate measure of the capability

of the Adaptive Minmax Processor to adjust to changing environmental conditions

within the range of ; but is a good measure of the processor's loss of performance

when the environmental conditions fall outside the range of .

3.2.3 The Random Ideal Waveguide

This final set of numerical results were generated using an ideal waveguide model

of the ocean and a normal mode representation of the propagating signals. The

ocean is assumed to be a randomly time-variant medium with the salient parameters

of the simulation being the same as in Subsection 3.2.1. That is, the deterministic

component of the ocean is assumed to be an isovelocity waveguide with a sound speed
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of C = 1500 rn/s and an unknown but constant depth H between 290 meters and

310 meters. The sea surface is assumed to be a free surface and the ocean bottom is

assumed to be infinitely rigid. The source is assumed to be a deterministic complex

exponential with a frequency of 20 Hz. In addition, the source is assumed to be

sufficiently far from the array so that the horizontal propagation of the modes can be

modeled by a complex exponential rather than a Hankel function.

The receiving array is also the same as in Subsection 3.2.1. It is a nine-element

vertical array with the top element at 30 meters depth, the bottom element at 270

meters depth, and an inter-element spacing of 30 meters. In all cases here, there is a

single source at a depth of 150 meters and at a range of 50 km from the array. There

is assumed to be no propagating background noise and the localization problem is

assumed to be a one-dimensional (depth only) problem.

As before, the deterministic component of the waveguide supports eight propa-

gating modes. The mode shapes are a function of depth z and given by

( = sin(kvz) n = 1,...,8.

From (4.10) the deterministic component of the nth mode of the desired signal received

at the it h array sensor is, to within a scale factor, given by

i.(t) = (kH.R)- ej(2' lftkHnR) sin(kvz,),

where R is the horizontal range from the source to the array sensors and zi is the

depth of the ith array sensor.

The second order characterization of the reduced wavefunctions O, used here dif-

fers slightly from that given in Section 4.3. The key difference is that, in Section 4.3,

the modal phases are assumed to be incoherent between modes. Here, it is assumed

that the phase of the reduced wavefunction of the n th mode at a range R is given

by L,,(R, O) = 06(R) where 0,,(R) is a zero-mean Gaussian random variable with

E[0n(R) 0m(R)] = R nnm. is the modal phase decorrelation range. Then, using
the identity E[e] e for 0 a zero-mean Gaussian random variable with va-the identity E[ess ] = er for 0 a zero-mean Gaussian random variable with vari-
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ance a2, the cross-correlation function of the reduced wavefunction required for the

computation of the replica vector is assumed to be given by

sin(kv.B 7~r) sin(kvm.Zorce)2
E[4.(R, 0)tk(R, 0)] ( sin(kvzo.,c,) ) I sin(kvzoos,,) I) (W,(R) Wm(R))1 e-(l 6nm)

Wn(R) is the power in the nt mode at range R and evolves according to the differ-

ential equation in (4.20).

With these assumptions and letting

i(Rn) = ((R) sin(kv. zource) eiksmR sin(kvzi),
R kH,, sin(kvz..rce) |

the ensemble cross-spectral correlation matrix of the desired signal is given by

8 8

S=, (f) = E[Xi(f)Xl (f)] = E E v,(R,n) v'(R,m) e (16 -m) (3.7)
n=1l m=1

The ith element of the signal replica vector is, prior to normalization, equal to Sk(f)

evaluated at the appropriate set of environmental conditions. For the case where

R > 3, the modal phases are incoherent, e- s 0, and (3.7) reduces to

8 8

S,,(f) = E vi(R,n) vl'(R,n) = (k.R)-' sin(kv.zi)sin(kv,,nz)W,,(R),
n=1 n=1

which, when evaluated at = k yields (4.22). For the case where R < P, the modal

phases are perfectly coherent, e-f ; 1, and (3.7) reduces to

Sx,(f) = ( vi(R,n) ( vt(Rn) .
n=1 ~

The performance of the MVDR, the Bartlett, and the Adaptive Minmax Pro-

cessors will be shown to suffer when modal phase coherence is reduced. There are

several reasons for the performance loss. The first is that, as modal phase coherence

is reduced, the correlation among the desired signal as received at each of the array

sensors is reduced. As a result, the cross-spectral correlation matrix of the desired
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signal will begin to resemble the cross-spectral correlation matrix of the propagating

background noise. In the limiting case of a total loss of correlation among the desired

signal as received at each of the array sensors, the cross-spectral correlation matrix

of the desired signal will be the same as the cross-spectral correlation matrix of sen-

sor noise. In this limiting case (assuming that the noise field consists of only sensor

noise), the array gain
w h S(f) WG(w) = w_h S(f) (3.8)

will be one for all array weight vectors (i.e., the array processing yields no improve-

ment in SNR). In (3.8), the cross-spectral correlation matricies are normalized to

have traces equal to one. In the more general case, as signal coherence is lost and

S,(f) becomes more like S,(f), the maximum array gain achievable by any linear

array processor will be reduced. This is a fundamental limitation on the performance

of any array processor which utilizes a linear filter to achieve spatial discrimination.

The second cause of performance loss is particular to linear processors using the

same signal model as that used by the MVDR, the Bartlett, and the Adaptive Min-

max Processors. For the case where R < , the cross-spectral correlation matrix of

the desired signal and the signal subspace will be rank one. In addition, the normal-

ized signal replica vector will be the eigenvector which corresponds to the non-zero

eigenvalue of S,(f). However, for the case where R > ,3, the cross-spectral correlation

matrix and the signal subspace can have a rank of up to M. The MVDR, the Bartlett,

and the Adaptive Minmax Processors all model the signal subspace as having rank

one and attempt to pass only those signals falling within that subspace. Thus, at

ranges where modal coherence is reduced, and more generally for situations where

signal coherence across the array is reduced, these processors can miss a significant

portion of the power in the desired signal. In this case, the MVDR and the Adap-

tive Minmax Processors will attempt to adapt and filter out a significant portion of

the desired signal. This problem is a model mismatch problem since it results in a

mismatch between the assumed and the actual second-order statistics of the desired

signal.
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To illustrate the performance degradation of the processors as modal coherence

is lost, several tests were run with different modal phase decorrelation ranges and

without modal coupling. That is,

( sin(kvz.oure) t) W,(R)2 = sin(kvz.o,,c).

While this assumption of no modal coupling in a random waveguide is unrealistic,

it is made in order to isolate the cause of the performance degradation as the loss

of modal phase coherence. The introduction of modal coupling can be expected

to further degrade the depth resolution of the processors because the source depth

information is carried in the relative amplitudes of the modal excitations [36]; and

when modal coupling is present, the modal powers will tend to an equilibrium state

which may not depend on the initial levels of modal excitation. For example, in the

case where all of the modal coupling parameters am defined in (4.21) equal one,

the equilibium state of the modal powers is Wn(R) = Wm(R) for all n and m. In

this case, the processor will not have depth resolution once the equilibrium state is

reached.

As a measure of the extent to which the modal phase decorrelation affects the

distribution of signal power among the eigenvectors of the cross-spectral correlation

matrix of the desired signal, Figure 3-27 shows the relationship between the maximum

eigenvalue of the normalized cross-spectral correlation matrix expressed in dB (i.e.,

10 * ogl 0(Am.,)) and the extent of the modal phase decorrelation as measured by
R R

eT. e- = 1 indicates perfectly correlated modal phases and e* = 0 indicates

uncorrelated modal phases. The cross-spectral correlation matrix is normalized so

that the sum of the eigenvalues equals one. This maximum eigenvalue is the maximum

signal power which exists in any rank one subspace. As the maximum eigenvalue

decreases, the signal power lost by any linear processor which assumes a rank one

signal subspace will increase.

Figures 3-28 through 3-31 show the ambiguity functions for the MVDR, the

Bartlett, and the Adaptive Minmax Processors for the cases where / = oo, 2R,
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R, and 0 (e- = 1, .607, .368, and 0, respectively). ]I = oo corresponds to the

deterministic ideal waveguide, the analysis of which is presented in Subsection 3.2.1.

/ = 0 corresponds to the modal phase decorrelation model assumed in [32]. All

of the processors use the correct values for P. The ocean depth in all cases is 310

meters. In the figures, the terms "Matched" and "Mismatched" refer to the assumed

ocean depth used by the processors in calculating the signal replica vectors. The

"Matched" processors use the correct value of the ocean depth. The "Mismatched"

processors use an assumed ocean depth of 290 meters. The localization performance

of the Matched MVDR Processor, the Matched Bartlett Processor, and the Adaptive

Minmax Processor shows a significant deterioration as the modal phase correlation

decreases.

The evolution of the ambiguity functions of the Matched MVDR, the Matched

Bartlett, and the Adaptive Minmax Processors as - 0 is characteristic of what

could be expected with increasing model mismatch. The model mismatch is not

caused by an incorrect assumed value of the ocean depth or of P, but by an incorrect
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implicit model of the signal subspace as having rank one. The ambiguity functions

of these processors in Figures 3-29 through 3-31 show reduced peak levels when com-

pared to those shown in Figure 3-28 and show peak locations which are slightly offset

from the true source depth of 150 meters.

The model mismatch problems which the MVDR, the Bartlett, and the Adaptive

Minmax Processors have in the random waveguide motivates a modification to the

definition of the replica vector which slightly improves the performance of the proces-

sors in random media. The modification is motivated by the observation that the rank

one signal subspace containing the greatest amount of signal power is that spanned

by the eigenvector of the cross-spectral correlation matrix of the desired signal which

corresponds to the largest eigenvalue. Thus, the replica vector is redefined to be the

eigenvector which corresponds to the largest eigenvalue. The magnitude normaliza-

tion convention applied to the replica vector is that it has a norm of one, and the

phase normalization convention is that the element corresponding to the reference

sensor is real and non-negative. In the case where the signal subspace has rank one,

this definition of the replica vector is equivalentto the definition of the replica vector

contained in Subsection 3.1.3.

Figures 3-32 through 3-35 show the ambiguity functions generated by processors

using this new definition of the replica vector for test conditions which are identical to

those used to generate Figures 3-32 through 3-35. As was the case with the previous

set of results generated using the definition of the replica vector from Subsection 3.1.3,

the ambiguity function of the Adaptive Minmax Processor shows characteristics which

are superior to either of the mismatched processors. For the Matched MVDR Proces-

sor, the Matched Bartlett Processor, and the Adaptive Minmax Processor, the peak

levels of the ambiguity functions are greater than those in the previous set of results.

With the exception of the case of the Adaptive Minmax Processor for = 0, the

peaks of the ambiguity functions occur at the true source depth. The peak in the

ambiguity function of the Adaptive Minmax Processor for the case where = 0

occurs at a depth of 147.5 meters compared with the true source depth of 150 meters.

These results indicate a reduction in the "mismatch" caused by the implicit rank one
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signal subspace assumption.

The peaks of the ambiguity functions of the Matched MVDR and Bartlett Pro-

cessors for the cases where ] < oo, when compared to the peak value for the case

where /3 = oo, show a loss which is, to within 0.08 dB, equal to the reduction in the

magnitude of the maximum eigenvalue of the normalized cross-spectral correlation

matrix for the appropriate values of /3 (Figure 3-27). This indicates that these pro-

cessors are correctly estimating the power contained in the rank one signal subspace

spanned by the replica vector. However, the peak value losses for the Adaptive Min-

max Processor are greater than those which would be predicted by the reduction in

the maximum eigenvalue of the cross-spectral correlation matrix. This increased loss

can be explained using the results from Subsection 3.2.1 for the deterministic ideal

waveguide. Figure 3-16 shows the source depth/ocean depth response evaluated at

the true source depth and ocean depth of the weights of the Adaptive Minmax Pro-

cessor when the focal point is the source depth. This response drops in magnitude

as the SNR decreases. In this case, the decrease in the power in the rank one signal

subspace spanned by the eigenvector corresponding to the maximum eigenvalue and

the corresponding increase in the power in the other portions of the signal subspace is

interpreted by the processor as a decrease in SNR. Therefore, the magnitude response

of the processor at the source location when the processor is focused on the source

location drops. The peak in the ambiguity function will exhibit a corresponding drop.

Sidelobe suppression remains a significant problem in all of the processors. This

indicates that the eigenvector corresponding to the maximum eigenvalue of the cross-

spectral correlation matrix is an ambiguous characterization of the spatial structure

of the desired signal as a function of source depth for cases where the signal subspace

has a rank greater than one. Future work on this problem is discussed in Chapter 5.

3.3 Algorithm Complexity

The solution of the minmax problem in Step 1 of the Adaptive Minmax Matched

Field Processor is by far the most computationally complex of the tasks which must

116



.18

4

2

0 .

4 

2

0 So0 100 50 200 250 300

DEPTN o.)

(a) Matched MVDR Processor

A
MIs
a

I Isa
U

Y t4I
Y

12

U o
N

IC 

N

(

)

0 50 100 150 200 250 30

DET (n.)

(b) Mismatched MVDR Processor

A

I
U

I

F
U
N
C
T

0
N

I(

0 5o0 1oo00 150 200 250 300o

DEPTH (l.)

(c) Matched Bartlett Processor

A

u

Y0
U
1
I

F
U
N
C
T

0
N

a5

(d) Mismatched Bartlett Processor

0
DEPTH (.)

(e) Adaptive Minmax Processor

Figure 3-32: Ambiguity Functions for = oo with redefined Replica Vector

117

A
M1I

U
It

T

TF

0

Ut#
C

I

0
N

A

0
U

I
Y

I

0
N

41

DEPTHN (M.)

~D



0 50 100 150 200 250
DEPTH m)

(a) Matched MVDR Processor

DEPTH (mun)

(c) Matched Bartlett Processor

A

I

U
T
V

P

U

NCV
0
N

I

(b) Mismatched MVDR Processor

DEPTH (mln)

(d) Mismatched Bartlett Processor

A

a

1T 1 4

T

12

F

IU toNC

(4

d'2
T0

0 50o 100 10O 200 250 300
DlEPTH (w)

(e) Adaptive Minmax Processor

Figure 3-33: Ambiguity Functions for - = 2R with redefined Replica Vector

118

A
MI l

U
1 14
T
Y

F
U o

CyE
T |

I0 

N

A
oils

a I
U
J114

Y

12

P
U o
N

';u Sc

c0 .

O 

4

312

300 0 s0 10C1 150 200
DEPTHi (M)

250 300

A

N

0
U

TI
V

P
U
N
C
V

0
N

I

S1

zS f

c i i I I I I

20.



0 so 100 150 200 250 300
D3PTN e.mu)

(a) Matched MVDR Processor

0 50 100 150 200 250 300
DEPTN (m .)

(c) Matched Bartlett Processor

A

0 s

T
Y

12

P
U 
N
C
T

I0*
N

(4dl4
3 2

(b) Mismatched MVDR Processor

A

o '

T

U

C1

I
I 2U to

)

0 50 100 15O 200 250 300
DEPTH (m.)

(d) Mismatched Bartlett Processor

300

(e) Adaptive Minmax Processor

Figure 3-34: Ambiguity Functions for P = R with redefined Replica Vector

119

A

a
I 18
0
II

T¥
Y

12

IrU lC#CT 
0 .

)

DEiTm s)

A
N18
B
0 l

U

t 14
7
I

12

U 1.
N
C

0~T a
N

I(4

32

0 So0 100 I150 200 250
DEfTN (ie )

zu | . . . ZO. . . . .

0 ,I I I ! I

c I & I I !



A
N Ia

o 15
U

114
T

Y 12

P
U 1o
N

CT 8

I

N

d
3 2

0 50 100 1I0 200 250
DEPTH (mn.)

(a) Matched MVDR Processor

0 so50 100 150 200
DEPTH (.)

250

(c) Matched Bartlett Processor

20

A
Ill

51

U

l14
T
Y

12

F
U o

NC

0 -

H
(4

3 2

0 50 100 150 200
DEPTH (a.)

A
M la

a Iis

T
V

12

P

N
C
T

N

A
32

0 5so 100 150 200 250
DEPTHN m.)

300 300

(b) Mismatched MVDR Processor

A

a
I0 16
U14

TV

Y12

P
U 
N
C
T"

0 6
I'r

(4H

5 2

0 50 100 150 200 250 300

DEPTH (.)

(d) Mismatched Bartlett Processor

250 300

(e) Adaptive Minmax Processor

Figure 3-35: Ambiguity Functions for / - 0 with redefined Replica Vector

120

A
5 18
a

I160 I

14
T

Y 12

F
U to
N

CCTa

o a
N10

(4

32

2C p 

U! I I 

20 I . . . .

I . . A . . I rc ! . . i i 

. . .

c ] . . i . i-

v
JM



K 11 22 33 44
min 2 3 4 5
max 18 32 38 46
ave 8.12 13.62 17.56 20.49

Table 3.3: Iterations of Complementary Pivot Algorithm vs K

be performed. From Section 2.3, this problem is solved by finding the nonnegative

vectors P and v contained in RK (where K is the number of points in the sampled

environmental parameter set ) and the real nonnegative real scalar z which satisfy

min zo s.t.

zo, v, > 0,

= 0, and

- M(f,z) p- d z = r(f,z) + I .

During numerical tests of the Adaptive Minmax Matched Field Processor using the

deterministic and random ideal waveguide acoustic propagation models, the number

of iterations required to solve the minmax problem were tabulated. These tests were

not Monte Carlo simulations. The tests were conducted for K = 11, 22, 33, and 44.

The results in Table 3.3 show the minimum, the maximum, and the average number

of iterations required to find a solution to the minmax problem. These results are

based on 4830 trials.

The upper bound on the number of required iterations can be explicitely calcu-

lated. By construction of the complementary pivot algorithm, only one variable from

each complementary pair can be in the basis at any given time. With the exception

of the termination of the algorithm when the variable z leaves the basis, there will

be one and only one complementary pair which has neither variable in the basis. At

termination, each complementary pair will have one variable in the basis and one vari-

able outside the basis. Therefore, since there are K complementary pairs of variables,

there are K2(K-1) possible non-terminating bases.
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From Section 2.3, two of the essential points of the convergence proof for the

complementary pivot algorithm [26] are that, at each iteration the basis changes and

no basis can be visited by the algorithm more than once. Therefore, since there are

only K2(K- l ) possible non-terminating bases, this number is also an upper bound on

the number of iterations required to find a solution.

This number shows an exponential growth in complexity with the number of

environmental states. This is an upper bound on the number of iterations, and does

not accurately reflect the actual complexity of the algorithm. Treating M(f, z) and

r(f, z) as random variables with some restrictions on their distributions, the results

presented in Section 2.5 of [27] place an upper bound on the mean number of iterations

required to find a solution. This upper bound is K(K+1). This indicates O (K 2) growth4

in the expected number of iterations required to find a solution. When compared to

results in Table 3.3, the upper bounds on both the maximum number of iterations

and the mean number of iterations appear to be very conservative.

Finally, the results shown above use the required number of iterations to find a

solution as a measure of the complexity of the complementary pivot algorithm. Of

equal importance is the amount of computation required for each iteration. The bulk

of the computation in each iteration of the algorithm involves computing K ratios to

determine which variable will leave the basis at that iteration, and implementing the

Gaussian elimination which adds one variable to the basis and removes another vari-

able from the basis which requires K multiplications and 2K 2 additions. Therefore,

each iteration requires approximately 2K 2 additions and 2K multiplications.

122



Chapter 4

Matched Field Calculation of the

Signal Replica Vector

Matched field calculation of the signal replica vector requires that the cross-correlation

functions of the signals received at each of the array sensors be calculated taking into

account the propagation characteristics of the ocean environment. These characteris-

tics are parameterized by the statistics of the temporally and spatially varying sound

speed structure of the ocean C(j, t). This chapter does not present original work

on the development of methods to calculate the required cross-correlation functions

given the statistics of C(_, t). Rather, it explains how the theory and the methods

developed by others can be applied to the calculation of the required cross-correlation

functions.

In general, for each region in the oceans, season, and time of day, it is fairly

accurate to model C(, t) as the sum of a time-invariant equilibrium component and

a time-varying stochastic component. The equilibrium component is a function of

only the depth. The stochastic component is a function of the three-dimensional

location and the time [30, 32]. That is,

C(z, t) = Co(1 + Uo(z) + Y(, t)),

where z denotes depth, z denotes three-dimensional location, and CO is a reference
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sound speed. Z(z) Co(1 + Uo(z)) is the equilibrium (or deterministic) component

of the sound speed structure. This component is dominated by the seasonally and

geographically varying temperature and salinity profiles of the ocean and the constant

pressure gradient of the oceans. Cop(z, t) is a zero-mean stochastic process capturing

the random component of the sound speed structure. In the open oceans, Cop(z,t)

is dominated by the internal waves propagating in the oceans [30] and the tides [31].

It is assumed that p(z, t) is a temporally wide-sense stationary process.

The relationship between the signal replica vector and the spatial/temporal cross-

correlation function of the desired signal is derived in Section 4.1. There are a number

of methods available for calculating the spatial/temporal correlation function of the

desired signal given C(z) and the second-order statistics of Cop(z, t). One of these

methods utilizes the ray approximation to the solution of the wave equation and is

described in Section 4.2. Another method uses the normal mode approximation to

the solution of the wave equation and is described in Section 4.3. A third method,

which is to numerically solve the wave equation without approximations, is briefly

described in Section 4.4.

4.1 The Spatial/Temporal Cross-Correlation Function

For the three definitions of the signal replica vector contained herein, the signal replica

vector depends on only the conditional a priori cross-correlation of the snapshots of

the desired signal as received at different array sensors. That is,

E[X,(f, z)Xk(f, z) I ~,

where the superscript denoting the DTFT segment number has been dropped. From

Section 2.2
M-1

Xi,(f)= i[mei 2 wfmAt
m=O

and x'[m, ] is a multi-dimensional temporally wide-sense stationary random process.

Ignoring the distortion to the desired signal introduced by the continuous-time anti-
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aliasing filter and the temporal sampling process, the cross-correlation function can

be expressed as

(M-1)
E[Xi(f,z)Xk(f,) I = (M-j s I)e-j2fl°" E[xi(sAt,z)x,(O,z) I ], (4.1)

,--(M-l)

where xi(t,_) is the continuous-time desired signal received at the it h array sensor.

Therefore, the calculation of the signal replica vector requires calculating the spa-

tial/temporal correlation function of the desired signal at the array sensors.

From Subsection 2.2.1, the point source at the array focal point is assumed to

be a wide-sense stationary random process. Let E[xi(sAt, j)x(O, z) , fo] be the

cross-correlation function on the righthand side of (4.1) for the case where the point

source emits a deterministic complex exponential ej2wfot. Let Px(f) be the power

spectral density of the wide-sense stationary point source. Then, assuming that the

ocean is a linear acoustic medium, the spatial/temporal cross-correlation function in

(4.1) for the wide-sense stationary point source is

E[xi(sAt, z)k(O, ) I = L P.(fo) E[x,(sAt, )xk(O, ) fo] dfo.

Therefore, (4.1) can be rewritten as

(M-1)
E[X,(f,)X;,(f,_) j ~ =] P(fo) ~ (M- I I)-J 'f°A'E[ x (sA,I)x;,(O, ) I q,f]df.

-~~ a=-(Mt-1)
(4.2)

That is, the cross-correlation function of the snapshots of the desired signal can be

calculated by integrating the individual contributions made by sources emitting de-

terministic complex exponentials over an appropriate range of frequencies. Therefore,

for the remainder of this chapter, it will be assumed that the signal emitted by the

point source at the array focal point is the deterministic complex exponential e 2
rfot
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and the development will focus on calculating

(M-1)

E[X,(f, )Xk(f, z) ,o] -= (M- Is I)e-i2rf''E[Xi(sAt, Z)Xk(O, ) ,fo].
,=-(M-l)

(4.3)

As a practical matter, the frequency selectivity of the DTFT makes it possible to

closely approximate (4.2) by considering the frequencies fo in a small neighborhood

of f, the extent of which is roughly inversely proportional to the segment length of

the DTFTs and At. The dependence of E[X(f,z)X(f, A) , fo] on the quantity

(f - fo) is explicitly shown in (4.7), (4.8), (4.22), and (4.24). These equations provide

some insight into the extent of the neighborhood of f over which it is necessary to

evaluate E[Xi(f, z)Xk (f, z) I _' fo].

Given that the deterministic ocean component is modeled as being horizontally-

stratified, the sound field received at any sensor which would have propagated through

the deterministic ocean can be assumed to have propagated completely within the

vertical plane containing both the source and the sensor. Any location within this

plane will be denoted by its horizontal range from the source r and its depth z.

The horizontal distance from the source to the it h array sensor will be denoted by Ri.

Throughout this section, the dependence of the desired signal on the source location z

will be assumed to be understood and the source location argument will be dropped

from the desired signal (t,z ). In addition, for the remainder of this section, the

dependence of the calculations required to compute the expectations in (4.3) on the

assumed value of the environmental parameter _ will be assumed to be understood

and the environmental parameter will be dropped from the conditional expectation

notation.

4.2 Ray Approximation

The ray treatment of the effects of the deterministic and stochastic components of

the sound speed structure on the propagation of sound is developed in [30]. The ray

approximation models the behavior of the propagating sound field by assuming that
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the direction of propagation at any point is in a direction normal to the wavefront

at that point. This approximation is only valid at sufficiently high frequencies, the

definition of which depends on the scale size of the sound speed fluctuations in the

ocean. In general, the smaller the scale size, the higher the frequency necessary in

order for this approximation to be valid.

At frequencies for which the ray approximation is valid, the sound field is modeled

as propagating along paths which obey Snell's law. The sound field received at

any point can then be expressed as the sum of the fields which propagated along

the possibly multiple paths which obey Snell's Law and connect the source to the

receiver. Here, the term ray will denote a path from the source to any location of

interest, which obeys Snell's Law and is calculated using the deterministic sound

speed structure Z(z). The term path will be used to refer to an actual path followed

by the sound as it propagates from the source to any location of interest calculated

using the true sound speed structure C(_, t). A path results from the perturbations

to a ray caused by the fluctuating ocean processes modeled by P(z, t).

The paths which result from the perturbations to a particular ray lie within a

ray tube surrounding the ray. The size of this ray tube depends upon the strength

and scale length of the random process (z, t). Following the convention, but not the

notation of [30], the received signal which propagated through the n th ray tube from

the source to the it'h array sensor can be expressed as the product of the signal which

would have propagated along the n th ray in an unperturbed deterministic ocean and

a reduced wavefunction which is a stochastic process dependent on P(z, t)) along

the propagation paths within the nth ray tube. That is,

Nj

zi(t) = E W,
n=1

and

sin.t - 'i.~ f in t)

ij,(t) is the signal emitted by the source which would have been received at the

i th array sensor via the n th ray in a deterministic ocean. Ni is the number of rays
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connecting the source with the i h array sensor. i. (t) is the reduced wavefunction

which accounts for random perturbations in xi. (t) due to the random perturbations

of the sound speed structure along the possibly multiple time-varying paths within

the nth ray tube.

The ray approximation developed in [30] treats the deterministic ocean as a linear

time-invariant system. Therefore, ii"(t) is the product of ej2' lf t and a complex scaling

constant which accounts for the losses and the time delay along the n th ray between

the source and the i th sensor. tk,(t) can be considered a modulating signal which

accounts for the Doppler spread introduced by the random ocean component.

The spatial/temporal correlation functions required in (4.3) can be expressed as

N Nk

E[x,(sAt)x*(0) I f = 1 injst) nm(O) E[tj(jst)k* (0) fo] (4.4)
n=l m=1

The expectation operator has been removed from the first two factors of each term

in (4.4) because they are not stochastic processes. These factors can be evaluated by

calculating the delay and attenuation introduced along each ray by the horizontally-

stratified deterministic ocean. The second factor in each term can be evaluated by

calculating the statistics of the fluctuations in xin(t) caused by the random ocean

component p(z, t) along the nt h ray.

The calculation of i,,(sAt) required in (4.4) is conceptually straightforward. The

only rays which are considered are those which are fully refracted within the ocean

(i.e.,those which do not have surface or bottom interaction). Therefore, the rays

considered are those whose angle with respect to the horizontal is always fairly small

(the cutoff of 15° is used in [30]).

For long-range propagation, the exclusion of bottom-reflected rays is reasonable,

because the high losses which usually occur during bottom interaction prevent the

rays having such interaction from contributing much energy to the received signal.

A slight modification to the techniques developed in [30], which makes possible the

inclusion of surface-reflected rays, is presented at the end of this section.

Given the small-angle assumption, Snell's Law relating the depth of the n th ray
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connecting the source to the i th sensor at a range r from the source is

2zi. (r) aU(zi())
+ ax = ,

Or2 + 1 + Uo(z(r)) =

z,(O) = Zour and

Oz,3 (r) r-tO = e,.(0).
Or

0,.(0) is the initial angle of the ray with respect to the horizontal, z8o,*e is the source

depth, and z(r) is the depth of the n th ray at the range r. If the vertical separation

of the source and the it array sensor is small compared to their horizontal separation

R., the acoustic path length along the nth ray can be reasonably approximated by

R/ + Si. where

Alo 2 o r ) 1 [Ozi"(d 2Sin = R -1(Ozs~(r)) 2 - U(z,n(r)) dr,2 Or
and Si. is called the eikonal. Then, ~i.(s/t) can be expressed as

L
i. (s/t) = R K i e( 2rfot-ko(RJ+Sj. )) (4.5)

where ko = 27rfo/Co is the nominal wavenumber of the signal and Kin is the normal-

ization factor mentioned on page 83 and discussed in Part IV of [30]. This calculation

can be carried out for all rays connecting the source to each of the array sensors.

Here, the signal attenuation due to absorption by the medium has been ignored. If

the difference in the absorption along different rays may be significant, an absorption

factor can be included in (4.5).

The calculation of the second-order statistics of Oij(sAt), which are required to

evaluate (4.4), is much more involved. To begin, several parameters used to charac-

terize the behavior of the medium within each ray tube are introduced. The first is

the Fresnel-zone radius, RF(r), at the horizontal distance r from the source. Here, the

indices i and n, denoting the endpoint of the ray and the ray number, are dropped.

Intuitively, RF(r) is a measure of the radius of a ray tube through which a path could

pass without having its acoustic path length differ from the acoustics path length

of the ray by more than half a wavelength. More precisely, RF(r) is defined as the
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maximum distance such that for any point po = (zo, r) for which Izo-z,.(r)l < RF(r),

the following is condition holds. As the point p is moved from (zi.(r), r) to po, let

the n th ray from the source to the ith array sensor be continuously deformed into two

rays, one from the source to p and the other from p to the i array sensor. Then, the

sum of the acoustic path lengths of the two rays must always differ from the acoustic

path length of the n th ray by less than half a wavelength.

The next parameter is a measure of the strength of the sound speed fluctuations

modeled by p(r, z, t) along any ray where, as mentioned before, the location parame-

ters r and z denote the horizontal range from the source and the depth in a vertical

plane containing the ray of interest. Let T/.(r) = 1 + (dr)2 Then, using

the small-angle approximation made possible by the exclusion of the rays which are

not fully refracted, this strength parameter ti. (not to be confused with the set of

environmental conditions ~ defined earlier) is defined as

2
'-"E Ti.(r)j(rzi.(r),t) dr\ ],

where the dependence of Ai. on fo is not shown in the notation. For the cases

where the signal propagates through the ray tube via only a single path, this strength

parameter is the mean squared phase fluctuation in xi"(t).

The final parameter is a measure of the diffraction caused by the spatial extent of

sound speed fluctuations along any ray. This diffraction parameter Ai. is a weighted

average of (RF)2 along the ray and can be calculated as described in Chapter 7 of

[30]. Here, RF is the Fresnel-zone radius defined earlier and L is the scale length of

the stochastic process . For large Ai, the sound field propagating within a ray tube

of radius RF may see very different sound speed structures within any cross-section

of the tube. The sound field will be diffracted, resulting in many paths within the

ray tube. For small Ai, and small ti~, the sound field propagating within a ray tube

of radius RF will pass through roughly the same sound speed structure within any

cross-section of the tube and will propagate along only a single path within the tube.

With these dofomed parameters, the Ai.i space is divided into three regions.
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The first, referred to as the saturated region, is defined as the region where Ai. i. > 1

and bi. > 1. In this region, the sound speed perturbations are of sufficient strength

and with a sufficiently small scale length so that the acoustic field propagating in the

ray tube follows multiple paths, called micromultipaths. In addition, the micromulti-

paths are spread over a sufficiently large area so that the sound speed perturbations

along each of the different micromultipaths are uncorrelated. The second region,

referred to as the unsaturated region, is defind as the region where AiA? < 1 or

· i < 1. In this region, the scale length of the sound speed perturbations is large

enough or the strength of these perturbations is small enough so that the acous-

tic field continues to propagate along a single path within the ray tube. The final

region, referred to as the partially-saturated region, is defined as the region where

Ai.~ 2. > 1 and Ai.li. < 1. In this region, the sound field follows several different

micromultipaths along which the sound speed perturbations are correlated.

The reduced wavefunction for any particular ray can be expressed as

i.(t) = J d(paths)[ejo C(h(ph(.))Tt()('zpth(r)tPth(r)) dr]

where the first integral is over all micromultipaths in the ray tube, zpth(r) is the

depth of the particular micromultipath at the horizontal range r from the source, and

tpath(r) is the time at which the sound field received at time t at the ith sensor via

the particular multipath would have been at a horizontal range r from the source.

For conceptual and notational simplicity, it has been assumed here that the paths

resulting from perturbation to a particular ray remain in the vertical plane containing

that ray. The second integral has the interpretation of the phase difference between

ii (t) and the signal received at the ith array sensor via the particular path over which

the integration is carried out.

In the unsaturated region, the reduced wavefunction accounts for the random

phase perturbation to the received signal resulting from the perturbation to the ray

which yields a single path within the ray tube. In the partially-saturated and sat-

urated regions, the reduced wavefunction has the interpretation of representing the
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random phase and amplitude perturbations to the received signal resulting from the

addition of the signals which were subject to possibly uncorrelated random phase

perturbations as they propagated along the multiple paths within the ray tube. Un-

der the assumption that the random fluctuations in the sound speed structure do not

increase or decrease the energy in the received sound field, E[oin(t)o? (t) fo] = 1.

Assuming that the phase perturbations introduced along the individual paths

are jointly Gaussian random variables, the quantity E[tki(sAt)k*,k(0) I fo] can be

expressed as

E[On(_At)kmI(0) I f] = D(inkmAtf

D(in, km, sAt, fo) is the phase-structure function for the spatial separation between

the ith and kth array sensors and the temporal separation of sat. D(i, km,sAt, fo)

can be interpreted as the variance of the phase difference between signals received at

different points in space and time caused by the random fluctuations in the sound

speed structure of the ocean. D(in, km, sAt, fo) is defined as

D(inkmsAtifo) ( Cfo)2 (4.6)

E(fO indr - f:o Tkm(r)/(rzk(r),tk(r))dr)]

Here ti. (r) is the time at which the signal received at the ith array sensor via the nth

ray at the time t = st would have been at the range r from the source. Likewise,

tkm(r) is the time at which the signal received at the k th array sensor via the mth ray

at the time t = 0 would have been at the range r from the source. As defined earlier,

zin (r) is the depth of the nt h ray from the source to the i th array sensor at the range

r from the source. The assumption has been made that the radius of any ray tube

is small compared to the scale over which the statistics of p(z, t) undergo significant

change. This allows the statistics of b(t) for a ray tube to be calculated using the

statistics of (z, t) along the ray within that tube.

As mentioned earlier, D(in, km, sAt, fo) can be interpreted as the variance of the

phase difference between signals received at different points in space and time caused

by the random fluctuations in the sound speed structure. As either the temporal
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separation, sAt, or the average spatial separation between the n t' ray to the ith array

sensor and the mth ray to the kth array sensor increase, the correlation between the

random fluctuations in the phases of xi.(sAt) and Xkm(0) is reduced. Therefore,

as either the temporal or the average spatial separation increases, D(in, km, At, fo)

approaches a limit of the sum of the variance of the random phase fluctuations in

each of the two signals. That is, D(in, km, sAt, fo) -_ b? + ) In addition,

D(in, k,,sAt, fo) is roughly proportional to <) and <2m. Therefore, as either of

these parameters increases, the cross-correlation between t~i(sAt) and tkkm(O) goes

to zero.

The evaluation of (4.6) can be handled as two separate cases. In the first case, the

nth ray from the source to the ith array sensor can be considered a simple shifting of

the mth ray from the source to the kth array sensor. The rays in Figure 4-1 illustrate

such a case. In this case, the perturbations introduced along each of the two rays may

or may not be correlated. In order to allow for the possiblity of this correlation, the

phase-structure function must be evaluated as described in Section 7.3 of 130]. Using

the method described therein, the integration of the statistics of p(r, z(r), t(r)) along

the nt h and mth rays is approximated by an integration along a ray midway between

the two rays. In the second case, the nth ray from the source to the ith array sensor

has an entirely different form than the mth ray from the source to the kth array sensor.

The rays in Figure 4-2 illustrate such a case. In this case, the perturbations introduced

along each of the two rays can be assumed to be uncorrelated. As mentioned in the

preceding paragraph, the phase-structure function for this case reduces to

D(i, km, At, fo) = ' + ,

With appropriate substitutions made, (4.3) can be written as

N Nk
E[Xi(f,z)Xk(f,_) I _ ] = (RkRA)-ek O(Rk- R ) E KinKkme k° (Skm- Sin)

n=1 m=l

[Es-(M- 1) e-i 2 r(f-fo)t(M- I s I)e-fD(ikm, ' t )] (47)~s=-(M (- IsJe) (4.7)
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Figure 4-1: Similar Rays
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Figure 4-2: Distinctly Different Rays
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The term in the square brackets is the windowed DTFT of e D(i" 'k °Lt) evaluated

at the frequency (f - fo).

If the correlation time (or time-constant) of the random sound speed fluctuations is

greater than the segment length used by the DTFT ((M- )Lt), then the temporal

incoherence between the signals received at different times separated by less than

(M- 1)At can be ignored. That is, defining B as the bandwidth of the

first stage DTFT of the array processor and T as the correlation time (or time-

constant) of p, the temporal incoherence can be ignored when BT > 1. In this case,

D(kn, km, sAt, fo) : D(kn, km, 0, fo) and (4.7) can be simplified to

E[X (f,)Xj*(f,) I qfo] (RkR)-Lejko(Rk- R) (sin 2( T (f -fo)AtM))
sin - fo)L)

:N, I N, -i
~. f K,. Kk.B ejk°(Skm -S)e-4D(i,k",Oo) (4.8)

The calculation of the strength parameter, the diffraction parameter, and the

phase-structure function can be done using the spectral functions of the internal-

wave field and the tidal variations. If other sources of perturbation to the sound

speed structure are to be considered, the spectral function must include the effects

of these processes. Measurements of the amplitude and phase fluctuations of a signal

propagating within a single ray tube have indicated that the phase fluctuations are

less than, and the amplitude fluctuations are greater than, those predicted by ray-

based random propagation theory [31].

It is important to note that only the components of the temporal spectrum cor-

responding to fluctuations with time constants of on the order of or smaller than

the observation interval ((M- 1)At) should be included in these calculations. The

processes with time constants much greater than the observation interval will not

show strong fluctuations over the interval and are more appropriately treated as

time-invariant but unknown characteristics of the medium.

As presented thus far, the ray treatment of the effects of the deterministic and

stochastic components of the sound speed structure of the ocean on the propagation

of sound considers only fully refracted rays. As mentioned earlier, bottom-reflected
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rays can be ignored because of the high losses which usually occur during bottom

interaction. However, the exclusion of surface-reflected rays which have no bottom

interaction cannot be justified on this basis. Such rays will be those emitted by sources

which ae much closer to the surface than to the bottom and for which the initial

angle of propagation with respect to the horizontal is fairly small. The following minor

modification, exploiting the Lloyd mirror effect, extends the treatment to handle these

rays [40].

For the purpose of calculating the rays from a source at depth Zo,,rce, to each

array sensor, an image ocean is placed on top of the actual ocean and the ocean

surface is ignored. Therefore, letting Zd be the ocean depth, the propagation medium

extends from Zd to -Zd rather than from 0 to Zd where z = 0 is the actual ocean

surface. The sound speed profile of the image ocean is the mirror image of the sound

speed profile of the real ocean (i.e., Z(z) = C(-z)). In addition, an image source

is placed at the depth -zBoo,,c and an image sensor is placed at the corresponding

image position of the real sensor. A ray is then traced from the actual source to

the actual sensor with an initial propagation angle of 0 and possibly passing through

both the actual and the image ocean. A corresponding ray is traced from the image

source to the image sensor. The combination of the portions of these two rays which

lie in the actual ocean (shown by the dotted line in Figure 4-3) is the actual ray from

the actual source to the actual sensor with an initial propagation angle of . This

modification allows the surface-reflected rays, the corresponding eikonals (Si/), and

the corresponding deterministically-propagated signals (j(sAt)) to be calculated by

selecting zi,, (r) to follow the ray contained in the actual ocean.

An additional effect which must be considered is the increased perturbation to

the reduced wavefunction caused by the scattering of the reflected signal from the

turbulent sea surface. This is accomplished by modifying the definition of the phase-

structure function (4.6) to include a term D,, which is proportional to the number of

surface reflections and the strength of the surface turbulence and which is inversly-

proportional to the spatial correlation distance and the temporal correlation time

of the surface turbulence. Experimental results [40] indicate that, for moderate and
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Figure 4-3: The Lloyd Mirror Effect Modification

long-range propagation problems, this term is much smaller than the term accounting

for the signal fluctuations induced by the internal wave field and can be safely ignored.

4.3 Normal Mode Approximation

The normal mode treatment of the effects of the deterministic and stochastic compo-

nents of the sound speed structure on the propagation of sound is developed in [32].

The normal mode approximation models the behavior of the propagating sound field

by asuming that the field is the sum of horizontally-propagating vertical standing

waves called normal modes. The standing waves are the result of the constructive

and destructive interference between successive upward or downward-going wavefronts

which have been reflected from the sea surface and bottom. This approximation is

valid at sufficiently low frequencies, the definition of which depends on the depth of

the ocean. In an ocean with a depth of 4000 meters, the frequency at which the

normal mode approximation breaks down is somewhere between 200 Hz and 500 Hz

[33]. As the ocean depth decreases, the frequency above which the normal mode

approximaton is no longer valid will increase.

Each normal mode is characterized by its modal shape 4n(z) (not to be confused

with the environmental parameter _ defined earlier) and its horizontal wavenumber

kH.. 4,(z) is the vertical standing wave set up by the reflections of the propagating

sound field from the sea surface and bottom. Assuming the ideal case where the sea

surface is modeled as a free surface and the sea bottom is modeled as a perfectly
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rigid bottom, the set of horizontal wavenumbers for any temporal frequency of at

which the modes exist will be a discrete set. Therefore, there will exist only a finite

number of modes with a vertical wavenumber small enough so that the horizontal

wavenumber is a real number (kH = Vk 2 - k 2) where k is the wavenumber and

kV is the vertical wavenumber). Therefore, there are only a finite number of modes

for which the vertical standing wave propagates in the horizontal direction. The

evanescent (non-propagating) modes decay exponentially in range. Due to this rapid

attenuation, they are ignored here.

A more realistic assumption about the sea bottom is that it is not perfectly rigid

and is characterized by a finite sound speed Cb and a finite density pb. Then, for wave-

fronts with propagation angles greater than the critical angle of the water/bottom

interface (here the propagation angle is measured with respect the horizontal), the

sound field will not be entirely reflected back into the water column and some energy

will propagate into the bottom. For these wavefronts, perfect cancellation of succes-

sive bottom reflections by destructive interference is not possible. Thus, a continuum

of horizontal wavenumbers in the region k < kcosO¢ will correspond to propagating

modes. These modes are referred to as the continuous spectrum. [34]

For wavefronts with horizontal wavenumbers in the region k > kcosOc, the mag-

nitude of the bottom reflection coefficient will be one, and perfect cancellation will

occur. Therefore, in this region the set of horizontal wavenumbers corresponding to

propagating modes will be a finite discrete set. These modes are referred to as the

discrete spectrum.

Due to the leakage of the modes in the continuous spectrum into the bottom,

these modes are attenuated rapidly. A good rule of thumb is that at ranges greater

than 3 or 4 times the ocean depth, the contribution of the continuous spectrum to

the propagating sound field can be ignored [39]. Therefore, it will be assumed that

the desired signal received by the array sensors consists of only propagating modes

in the discrete spectrum.

Following the convention in [32], it will be assumed that all array sensors lie in

a vertical plane which also contains the source, and the signal reaching any of these
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sensors will be assumed to have propagated within this plane. Therefore, the spatial

coordinate system used will be the same as that used in Section 4.2 with z representing

depth and r representing range from the source. z.o, will denote the depth of the

source and the pair (, zi) will denote the position of the i t1h array sensor.

As mentioned earlier, the propagating sound field is considered to be the finite

sum of propagating modes. Each propagating mode is expressed as the product of

two factors. The first accounts for the effect which the deterministic ocean has on

the propagating modes. The second factor, the reduced wavefunction, is a stochastic

process which accounts for the effects which the random ocean has on the propagating

modes. Therefore, the sound field received at the ith array sensor can be expressed as

M

X ,(t) = xi(
n=1

where

Xin(t) = i,,(t ,b,"t.

xi"(t) is, to within a scale factor, the nth mode of the signal emitted by the source

which would have been received at the ith array sensor in a deterministic ocean. M

is the number of propagating modes in the discrete spectrum. in(t) is the reduced

wavefunction which accounts for the amplitude of the excitation of the mth mode by

the source, as well as the random perturbations in xin(t) due to the perturbations

of the sound speed structure ((r, z, t)) in the region between the source and the

ith array sensor. The development in [32] assumes that the array sensors lie at a

common range from the source. This restriction is not a problem when computing

the products involving x(t) at two different ranges, but is restrictive when computing

the cross-correlation of the reduced wavefunction at two different ranges. Therefore,

the normal mode approximation presented here is applicable for computing the signal

replica vector for only vertical arrays (i.e., R _ RA = Ri Vi,j).

Using the same notation as in Section 4.2, the spatial/temporal correlation func-
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tions required in (4.3) can be expressed as

M M

E[xi(sAt)x*(0) I fo] = E i,"(Gst) 'm.(O) E[Oi,(s/,t)Ok*L(0) fo]. (4.9)
n=1 m=l

The calculation of Fi(sAt) is straightforward. At ranges where R is sufficiently

large so that the argument kHnR justifies the use the large argument approximation

of the Hankel function of the second kind [5], ii(sAt) can be expressed as

~i,(is) = (kH.R)-e(2'fo -8kHR)q,(zi). (4.10)

Substituting (4.10) into the homogeneous wave equation yields the following differ-

ential equation which must be satisfied by On and kHn.

49_Z2 + =? ) On(z) k n(Z) (4.11)

The boundary conditions on the solutions to (4.11) are those corresponding to the

ideal case of a free surface and a perfectly rigid bottom. These correspond to zero

pressure at the surface ((0) = 0) and zero particle displacement at the bottom

(L (-) I=H= 0 where H is the ocean depth). Given these boundary conditions,

the solutions to (4.11) will be orthogonal functions (i.e., foH qOn(z)im(z)dz = nm

where m,,, is the Dirac delta function) [4]. The M solutions to (4.11) corresponding

to the discrete propagating modes are generally arranged in descending order of kHn.

Throughout this section, 4bn(z) will denote the solutions to (4.11), which are calculated

using C(z) as the sound speed structure.

As was the case with the ray approach to calculating the signal replica vector,

the calculation of the second order statistics of the reduced wavefunction is much

more involved than the calculation of i(t). The fundamental phenomenon affecting

the reduced wavefunction is as modal coupling. To understand modal coupling, first

consider the case of the deterministic horizontally-stratified ocean modeled by C(z).

In this case, n (t) = On (Zsouro). The level of modal excitation depends on only the

mode shape and the source depth. At the range r the propagating sound field is
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given by
M

z(r, z,t) = (kH r e(2fot o) (Z.ource)kn(Z)(4.12)
n=1

Then, by the application of Huygens' principle, the field propagating forward from

range r can be considered to have been excited by a continuum (in depth) of point

sources at range ro, each with a source level equal to x(ro, z, t). That is, the excitation

level of the mth mode in the field propagating forward from range r can be expressed

as
H

f o t(z')x(ro, z', t)dz'. (4.13)

Substituting (4.12) into (4.13) and using the orthogonal relationship between the

modal shapes, the excitation level for the mth mode reduces to

(km. r )- eJ(2 fot-khm°o)q (zo ). (4.14)

Therefore, the m th mode is excited at range r if and only if the mth mode was

originally excited by the source and it is excited at range r with an amplitude equal

to its original amplitude reduced by an amount to account for the loss due to geometric

spreading. Modal propagation which obeys this model is referred to as adiabatic mode

propagation, implying the independent propagation of the individual modes.

Now, assume that the deterministic sound speed profile changes at the range r.

Then the modal shapes for r > ro, denoted by 0'(z), will be different from those for

r < r. Thus, substituting (4.12) into (4.13) to yield an expression for the excitation

level of the mth mode propagating forward from the range r results in

I.(2./rtks.,.oZ(kHr)i ei(2 rfotkHno)4n(zsour) j M(z')n(z')dz'. (4.15)
n=1

Since the modal shapes for r > r ( (z)) are the solutions to a different differential

equation than the modal shapes for r < r ((z)), an orthogonal relationship between

these mode shapes does not necessarily exist; therefore, (4.15) cannot be reduced in

the fashion which yielded (4.14). Therefore, in the situation where the deterministic

sound speed profile changes at r = ro, the excitation level of the mth mode propagating

141



forward from the range r is coupled to the excitation level of all of the modes at the

range ro. Consistent with the development in [32], the waves traveling backward in

range resulting from the reflection off of the discontinuity in the sound speed profile

at the range r will be ignored. The resulting propagation model is referred to as the

forward scattering approximation to coupled mode propagation.

While the deterministic sound speed profile is range-invariant, the actual sound

speed structure changes with range as a result of the effect of the random process

u(r, z, t). The modal coupling which is introduced by these random fluctuations in

the sound speed structure is represented by the reduced wavefunction. For the case

where p(r, z, t) < 1 (which holds for almost all ocean acoustics problems [40]), the

coupling coefficient between the mth and n th modes is

Rnm(r,t) = ° p(r, z, t)m(z)on(z)dz.
(kHm kH.) 

The coupling coefficient is a function only of range and time, which results in the

reduced wavefunction being a function only of range and time. Under the reasonable

assumption [32] that 90(,t) is small, referred to as the quasistatic approximation,IN

the reduced wavefunction evolves according to the following differential equation,

d~r = -j E Rn.(rt)ei(H".-kuH)b(r t) n E {1,. ,M}, (4.16)
Or m-1

with the initial conditions (O, t) = ¥n(z.oure) Vn.
By previous assumption, the ranges R = R = R and as a result, 0bi"(t) =

On(R, t) = t,n(R, t). Therefore, the cross-correlation required in (4.9) can be ex-

pressed as

E[0in(SLt)km(O) o] = E[On(R sAt)Ob(RO) I fo]. (4.17)

The modal approximation theory developed in [32] does not yield an expression

which accounts for the temporal decorrelation of the reduced wavefunction at a par-

ticular range. However, as described in Section 4.2, when BT, > 1, (4.17) can be
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closely approximated by

E[ijn(sAt)ttbm(0) f0] - E[tO(R,0)0.,(R,0) fo]. (4.18)

The cross-correlation function of the solutions to the differential equation (4.16)

is given by

E[O.n(R, 0)0.(R, 0) I f] = W.(R) din (4.19)

The assumption which underlies this expression is that, at the ranges for which the

normal mode approximation as given in (4.10) is valid, the modal phases are inco-

herent from mode to mode. Experimental evidence [41] has indicated that the modal

phases may be partially correlated at these ranges. Therefore, the validity of this

assumption may be in doubt.

Wn(r) is the power in the nth mode at range r and can be shown to be the solution

to the following differential equation.

dWn(r) M

dr = E anm(Wm(r)- Wn(r)), (4.20)
m$n

with the initial conditions W,(0) = (Zource) n. am is the non-negative constant

described in the following paragraph. The fact that anm is non-negative indicates

that the effect of the modal coupling will be to transfer power from the modes with

greater amounts of power to the modes with lesser amounts power.

anm is a modal coupling parameter given by

anm = E[I f Rnm(r)e i(kxkHm)rdr 12] (4.21)

where is the small parameter described on page 358 of [32]. is roughly equal to

LR where L is the scale length in range for changes in the random process / and

R is the scale length in range for changes in the random process Rnm. Under the

assumption that is a wide-sense stationary random process in range (i.e., spatially
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homogeneous in range), (4.21) can be expressed as

anm kCX 1010 F((kHm - kH), z, z') On(Z)qOm(Z) n (Z') jm(z') dz dz.am=27r kHs. kHn 

Here,
,00~~~~~aF(k, z, z') = L E[p(A, z', t)p(0, z, t)] e-jk dŽ,

-00

is the horizontal wavenumber/vertical position spectrum of the random process p and

can be determined from the spectrum of the internal waves, tidal oscillations, and

other sources of significant perturbations in the sound speed structure of the ocean;

and K is a constant which is roughly equal to . As was the case in Section 4.2, it is

important to note that only the components of the temporal spectrum corresponding

to fluctuations with time constants of on the order of or smaller than the observation

interval ((M- )At) should be included in these calculations.

Combining (4.19), (4.18), (4.10), (4.9), and (4.3) yields the following expression

for Sik(f) given the deterministic source e t.

sin2 (ir(f -oAtM)M
E[Xi(f,z)Xz(f,z) I ,fo] , sin 2 (r(f- f)A) )Z)(RkHn)-ln(zi) n(zk)Wn(R)

(4.22)

4.4 Numerical Solution of the Wave Equation

The numerical solution of the wave equation does not require approximation to the

wave equation but can handle the dependence of the signal replica vector on only

C(z). The solution is the signal as received at the it h array sensor assuming that

the source emits the deterministic complex exponential ej 2 lfo t and that the ocean is a

deterministic horizontally-stratified medium. Assuming that the ocean is also a linear

acoustic medium, the solution to the wave equation can be expressed as

Xi(t) = ej2rf°t i(fo)
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where i(fo) is the transfer function of the ocean between the source and the it h

array sensor. With these assumptions, the expression for the spatial/temporal cross

correlation function of the desired signal reduces to

E[xi(sAt)x*(O) f = ejIoti,(f 0) 4(f.). (4.23)

Substituting (4.23) into (4.3) and evaluating the DTFT of the triangle function yields

E[Xi(f,z)X(fz) I f] sin2 (r(f - f)A) )M ii(fo)&k(fo). (4.24)

Efficient algorithms such as the SAFARI program [29] are available to numerically

compute solutions to the wave equation. Since this approach cannot take into account

the effect of the random perturbations to the sound speed structure of the ocean, it

should only be used in situations where the temporal coherence interval of the ocean

is longer than the segment length used by the first stage DTFT of the array processor

and where perfect spatial coherence can be assumed across the aperture of the array.

The first of these two conditions is roughly equivelent to BT, > 1.
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Chapter 5

Conclusions and Future Work

The problem of matched field processing without precise knowledge of the charac-

teristics of the propagation environment has been addressed herein. Previous work

summarized in Section 1.3 has documented and analyzed the performance degreda-

tion which both adaptive and non-adaptive matched field processors suffer when a

mismatch exists between the environmental conditions assumed by the processor and

those which actually exist. A new algorithm for implementing a matched field proces-

sor which is capable of operating with only approximate environmental information

yet which offers the high resolution and interference rejection capability characteris-

tic of adaptive processors has been developed using the framework of minmax signal

processing.

The matched field processor developed consists of discrete-time Fourier Trans-

form, followed by a linear weight-and-sum beamformer, followed by a module which

averages the magnitude squared of the output of the beamformer. This output of

this final module is an estimate of the average power in a narrowband signal emit-

ted by a source at the array focal point as received at a particular sensor in the

array. This signal is referred to as the desired signal and the particular sensor is

referred to as the reference sensor. The weights of the beamformer are choosen to

minimize the maximum conditional mean-squared error between the output of the

beamformer and the desired signal. The error is conditioned on the characteristics

of the propagation environment and the maximum is evaluated over a user specified
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range of environmental conditions over which the processor is designed to operate.

The processor developed using this minmax framework achieves good performance

over a range of environmental conditions and does not require precise knowledge of

the characteristics of the propagation environment.

The fundamental theorem upon which the minmax signal processing framework

is built is the Characterization Theorem. This theorem, which is presented in Sec-

tion 2.1, provides a nice physical interpretation of the necessary and sufficient condi-

tions satisfied by the solutions to a large class of minmax approximation problems.

The practical importance of the theorm lies in the fact that makes possible the de-

velopment of an efficient algorithm to solve for the optimal minmax array weights

when the average signal power is initially unknown. First, in Section 2.2 it is used

to prove that the solution to the minmax array weight problem given any assumed

average signal power can be expressed as a real non-negative constant multiplied by

the solution to the minmax array weight problem given any other non-zero assumed

average signal power. Finally, in Section 2.3 it is used to prove that the optimal min-

max array weights are equivalent to the minimum mean-squared error array weights

when the "least favorable pmf" is assigned to the environmental conditions. This

least favorable pmf interpretation of the optimal minmax array weights motivates

the development of an efficient algorithm to solve for this particular pmf and makes

possible the efficient solution of the minmax array weight problem which is of interest.

The Characterization Theorem has two other important consequences. First,

it motivated the work in in Section 2.4 in which the form of the optimal minmax

mean-squared error estimator and an approach to developing bounds on the minmax

mean-squared error performance achievable by any estimator are derived. Finally,

in Section 3.1 the algorithm derived using the Characterization Theorem leads to

the interpretation of the Adptive Minmax Matched Field Processor as a Two-Stage

Minimum Variance Distortionless Response (MVDR) Matched Field Processor. This

relates the minmax processor to a processor whose performance characteristics are

well understood, improves the understanding of what the minmax processor does and

how it can be expected to perform, and motivates two small modifications to the
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minmax processor.

The numerical analysis of the processor's performance shows that in a determi. -

istic medium (Subsections 3.2.1 and 3.2.2), the processor is able to maintain good

performance in the presence of environmental uncertainty. However, the results in

Subsection 3.2.3 show that when the medium in randomly time-variant, the per-

formance of both the Adaptive Minmax Matched Field Processor and the MVDR

Matched Field Processor suffers. Part of this performance loss can be atributed

the loss of signal correlation across the aperture of the array which makes it diffi-

cult for any processor which incorporates a linear beamformer to perform effectively.

However, some of this performance degradation is attributed to the fact that both

processors model the desired signal as having a rank one cross-spectral correlation

matrix. Therefore, since the cross-spectral correlation matrix has a rank of greater

than one in random propagation medium, the processors are not correctly matched

to the signal characteristics in this case.

In applications where the random media fluctuations are dominated by the internal

waves propagating in the ocean, the processor's poor performance in random media

may not be a significant handicap. This can be observed by noting that the spectrum

of the internal waves is dominated by components below around 3 cycles per hour

[37, 38]. Therefore, for observation intervals on the order of several seconds the

media will appear to be effectively time-invariant but unknown during any observation

interval. In these cases, the sample cross-spectral correlation matrix will have a low-

rank and the rank one model will be applicable.

Further work needs to be done to develop methods appropriate for applications

where significant ocean variation is expected over a single observation inverval. Using

the notation of Chapter 4, these methods must be able to deal with uncertainty in

the deterministic depth-dependent sound speed structure (C(z)) of the oceans while

accommodating the random ocean fluctuations (C0op(z,t)) which may be significant

over a single observation interval.
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Appendix A

Proofs for General Minmax

Problems

The following two definitions will be used in the proofs in Appendicies A and B.

Definition: Open Neighborhood of a Set Let A be a subset of the metric
space S. Then, for any 6 > 0, the open neighborhood A of radius 6 in S is

B(A, 6) {a E S 3ao E A s.t. d(ao, a) < 6}

where d: S x S -- R is the distance function for the metric space S.

Definition: Closed Neighborhood of a Set Let A be a subset of the metric
space S. Then, for any 6 > 0, the closed neighborhood of A of radius 6 in S, denoted
by B(A, 6), is the closure of B(A, 6) in S.

A number of theorems taken directly from [2] will be used in the proofs in Appen-

dicies A and B. They will be referred to by their number in [2] and are stated below

without proof.

Theorem 2.19 Every neighborhood is an open set.

Theorem 2.23 A set E is open if and only if its complement is closed.

Theorem 2.24(a) For any collection {G.} of open sets, U. G,, is open.

Theorem 2.35 Closed subsets of compact sets are compact.

Corollary to Theorem 2.35 If F is closed and K is compact, then F n K is
compact.

Theorem 4.6 Suppose X and Y are metric spaces, E C X, p E E, p is a
limit point of E, and f maps E into Y. Then, f is continuous at p if and only if
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lim.p f(x) = f(p).

Corollary to Theorem 4.8 A mapping f of a metric space X into a metric space
Y is continuous if and only if f-l(C) is closed in X for every closed set C in Y.

Theorem 4.9 Let f and g be complex continuous functions on a metric space X.
Then f + g, fg, and f/g are continuous on X.

Theorem 4.14 Suppose f is a continuous mapping of a compact metric space X
into a metric space Y. Then f(X) is compact.

Theorem 4.16 Suppose f is a continuous real function on a compact metric space
X, and

M = sup f(p), m = inf f(p).
pEX pEX

Then there exist points p, q E X such that f(p) = M and f(q) = m.

Theorem 4.19 Let f be a continuous mapping of a compact metric space X into
a metric space Y. Then f is uniformly continuous on X.

Theorem 5.10 If f is a real continuous function on [a, b] which is differentiable in
(a, b), then there is a point z E (a, b) at which f(b)- f(a) = (b- a)f'(x).

In addition, there are two theorems in [3] which will be used in the proofs in

Appendicies A and B. They will be referred to by name and are stated below without

proof.

Theorem of Caratheodory Let A be a subset of an n-dimensional linear space.
Every point in the convex hull of A ( (A)) is expressible as a convex linear combi-
nation of n + 1 or fewer elements of A.

Theorem on Linear Inequalities Let U be a compact subset of R1 N. A necessary
and sufficient condition that the system of linear inequalities < u, z > > 0 Vu E U
be inconsistent is that 0 E X (U).

The following three lemmas will be used in later proofs of theorems.

Lemma A.1 Let A be a subset of the Euclidian metric space E, B be a compact
subset of the metric space r, and f A x B R be a continuous function on A and
B. Then

/\(a) A max f(a, b)
bEB

is a continuous function on A.

Proof: f(a, b) is a real function continuous on B. Then, by Theorem 4.16, for each
a E A, 3bo E B such that f(a, b) = supbEB f(a, b) and therefore A(a) = f(a, b).

Assume that A(a) is not continuous on A. Then a0 E A and o > 0 such that
V 0 > 0, al E A such that d(ao,a,) < 6o and A(ao)- A(al) I > o.

Assume that A(ao) > A(al). If this is not the case, the roles of ao and a can
be switched in the remainder of the proof. As established earlier, 3bo E B such that
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f(ao, bo) = A(ao). By definition, f(al, bo) < A(al). Therefore, f(ao, bo) - f(al, bo) I
> 'E0.

Therefore 3ao E A and co > 0 such that V > 0, 3al E A such that d(ao, al) 
6o and I f(ao, bo)- f(a,,bo) > . Therefore, f is not continuous at a which
contradicts the continuity of f on A. Therefore, the assumption must be wrong.

Therefore, A(a) is continuous on A. 

Lemma A.2 Let A be a convex subset of the Euclidian metric space E, B be a
compact subset of the metric space r, and f: A x B - R be a convex function on A
a continuous function on B. Then

8(a)- max f(ab)
bEB

is a convex function on A.

Proof: f(a, b) is a real function continuous on B. Then, by Theorem 4.16, for each
a E A, 3b0 E B such that f(a, bo) = supbEB f(a, b) and therefore A(a) = f(a, bo).

Choose any a 0, al E A such that ao & al. Then by the convexity of A and of f on
A

VAE [0,1], Vb E B, f(Aao+(1 - )a, b) <Af(ao, b) + (1 -A)f(a, b).

By definition, Vb E B, f(ao, b) < A(ao) and f(a,, b) < A(al). Therefore,

VA E [0,1], Vb E B, f(Aao + (1 - A)al, b) < AA(ao) + (1 - )A(al). (A.1)

As established earlier

VA E [0,11 3b(A) E B s.t.
f(Aao + (1 - A)ai, b(A)) = A(Aao + (1- A)aj). (A.2)

Choosing b in (A.1) to be b(A) and substituting (A.2) into (A.1) yields

VA E [0,1] A(Aao + (1 - A)aj) < AA(ao) + (1 - A)A(al).

Since this is true for any a0 , al E A, A(a) is a convex function on A. 

Lemma A.3 Let X, Y, and Z be metric spaces with distance functions dx(, ),
dy(, ), and dz(, ), respectively. Suppose A X and B C C C Y, and that
g : A B and f: C Z are continuous functions. Then, fog : A Z is a
continuous function.

Proof: Select any p E A and e > 0. Then, by the continuity of f, 3to > 0 such
that Vb E B, d(bg(p)) < o - dz(f(b),f(g(p))) < . By the continuity of g,
36 i > 0 such that Va E A, dx(a,p) < -. dy(g(a),g(p)) < o. Therefore, 3, > 0
such that Va E A, dx(a,p) < b1 - dz(f(g(a)),f(g(p))) < . Therefore, f og is a
continuous function on A. 

153



The following definition of the gradient operator is required in order to prove the

Minmax Characterization Theorem which follows the definition.

Definition: Gradient Operator Let v be a subset of a metric space denoted
by r, W be a subset of a Euclidian metric space denoted by E, e : W x -* 1R be
a continuous function on both W and for which, at each w E W, a directional
derivative with respect to w can be defined on 4. Then the gradient of e with respect
to w, denoted by V.e (w, ), is defined as any function Ve: W x 4 - E which is
continuous on W and 4 and for which the following is true.

Vd E E, Vw E W, V E Oe(_ + d, IA=o k < V6(,) d >,
O9A

where k is a real positive constant and <, > denotes the inner product defined on
E.

Theorem 1 Let be a compact set contained in a metric space denoted by r,
W be an open set of a Euclidian metric space denoted by E, e: W x 4 - R be
a continuous function on both W and 4 for which, at each w E W, a directional
derivative with respect to w can be defined on , and Ve (w ) be the gradient of
e with respect to w. Then a necessary condition for w E W tobe a solution to the
following minmax problem

wopt = arg min max e(w,),
XEW E6

is that
0 E ( Vi (, +)|+E M(Xw-)})-

If, in addition, is a convex function of w and W is a convex set, this condition is
a necessary and sufficient condition for w E W to be the solution solution to the
stated minmax problem.

Proof: e(, ) is continuous on 4 and is compact. Therefore, by Theorem 4.16,
3 E such that (wo) = supE (w, = A(). Therefore, M(w) is
not an empty set.

e(w,_ ) is continuous on , and R are metric spaces, and the singleton set
{A(w)} is closed in R. Therefore, by Theorem 4.8, M(w) is closed in 4.

M(wo) is closed in t, and is compact. Therefore, by Theorem 2.35, M(,w) is
compact.

V (t I,) is a continuous function on and M(wO) is compact. Therefore, by

Theorem 4.14, the set {V. (o, ±) I E M(w.)} is compact.
The necessary condition portion of the theorem will be proven first.
Assume that

( ( V (W i,) I ' E M()})

{Vwe (, 4) I E e M(w.)} is a compact subset of the Euclidian metric space E.
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Therefore, by the Theorem on Linear Inequalities, 3d E E such that

< Vw (,.), d > < 0 V E M(X). (A.3)

Let e0 = sUPEM(wO) < Ve (w ) d >

V,e (, ±) is a continuous function on W and . Therefore, by Theorem 4.9,

< V (w, ), d > is a continuous real function on W and 4.

< Ve (_, ~), d > is a continuous real function on and M(,) C v is compact.
Therefore, by Theorem 4.16, e = maxeM ) < Ve (o,, ),d >. Therefore, (A.3)
implies that eo < 0.

< V,c (, ), d > is a continuous real function on v and is compact. There-

fore, by Theorem 4.19, < V,,, (, q),d > is a uniformly continuous function on
4.

<Ve , ) d > is a uniformly continuous function on and VO E M(w) C 4,

< V (., ) , d > < o < 0. Therefore, by the definition of a uniformly continuous
function and Theorem 4.6,

3o > 0 s.t. V E (M(,w), o)fn 4, < Vw (, ), d > < o/2 < 0.

B(M(wo), 6o) is closed and is compact. Therefore, by the Corollary to Theo-
rem 2.35, (M(,), 6o) n is compact.

< V (w, ),d > is a continuous real function on W and B(M(,w1 ), 6o) nl is
compact. Therefore, by Lemma A.1,

max < VW (w,_)d >
4EB(M(w),6o)n*

is a continuous function on W. Therefore,

3b1 > 0 s.t. Vw E B({iw },6l)nW, max < Ve (w,_),d > < o/4 < 0.
_,Ef(m(yt.)So)n*

The crucial result of the first portion of this proof can therefore be summarized
as,

3b,61 > s.t. Vw E B({}, 6) n W and V E B(M(wo), 6 o) n 4, (A.4)

< Ve (_, ),d > < co/4 < 0. (A.5)

By Theorems 2.19 and 2.24(a), B(M(w), 6o) is an open set. Therefore, by The-
orem 2.23, the set {I - B(M(w.o), 6o)} is closed in 4. Therefore, since is compact,
by Theorem 2.35, {4 - B(M(,), 6o)} is compact.
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Note that V_ E {l - B(M(wo), 60)}, e(w, ) < A(w_), and let

el = sup 6(3Wo )
4$Ef-B(M(-.c),6o)}

e(wo, ) is a continuous real function on t and {t - B(M(wo),6o)} is compact.
Therefore, by Theorem 4.16,

el = max
,0Ef*-B(M(V),6o)j

In addition, since e(wo, q) is a continuous real function on W, by Lemma A.1,

max (w, )
_Efe,-B(M(w),~o)}

is a continuous function on W.
Let 2 = (A(wo) + el)/2. Then el < 2 < A(Wo). Therefore, since

max C(w, )
E {a -B(M(wf),6o)}

is a continuous function on W,

362 > 0 S.t. VW E B({w}, 62) n w, max e(w,_ )_OE{f,-B(M(w),So)}

Then, since { - (M(wo),o)} C {- B(M(w), 6o)}, the crucial result from
the second portion of this proof can be expressed as

362 > 0 s.t. V E B({w,}, 62) n w and VE {-B7(M(wo), 6o)} n ,

W is open. TI

min(6l, 62, 63)/(2 I
w(A) E B(WEo, ,l) n

ierefore, 363 > 0

d 1)
W

such that B(w, 63) C W.

(A.7)

Then let A =
> 0, and define w(A) = + Ad. Then, VA [0, A0],

and w(A) E B(,o, 62) n W. Therefore, by (A.4) and (A.5),

A E [0, Ao] - VO e (M(.o), 6o) n P,

By definition,

9 A A , I=o = k <Vt (W),d >,
where k is a real positive constant. Therefore,

where k is a real positive constant. Therefore,

A E [0, Ao] --+ E B(M(wo), o) ,
O((A), )

OA

< Co/4 < O.

< keo/4 < O. (A.8)

w(A) is a continuous function on R and e(w, ) is a continuous function on W.
Therefore, by Lemma A.3, e(w(A), 4) is a continuous function on R. Therefore, by
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(A.6)

C(_W_-'_0) < A(-w-.)-

C (W, ±) < C2 < A (-W) -

< V'C (x(A), �), d >



(A.8) and Theorem 5.10,

V_ E B(M(W), 6o) n o, (_(o), _) < e(w, _) + Aokco/4.

By definition, e(w(Ao), 4) A(w,), and A, k > 0 and co < 0. Therefore, letting
c3 = A(w) + Aokeo/4,

V_ E B(M(w_),/ o) no, e (w(AO), < e < A(w)- (A.9)

Let e4 = max(e 2, 3 ) < A(w_). Then, since VA e [0,Ao], (A) E B(w.,6 2 ) n W,
(A.6), (A.7), and (A.9) can be combined to yield

V E , 6(i(Ao),_±) < 4 < A(W).

Therefore, A((A0)) < A(~,).
Therefore, w, is not a minimizing point of A(w) on W. Therefore, a necessary

condition for w E W to be a solution to the following minmax problem

w = arg min maxe(w, ),
3XEW #OE-

is that
0 E ?({Vwe(i ) I 4E M(,)})

The sufficient condition portion of the theorem will now be proven.
Assume that W is a convex set, e(w, _) is a convex function on W, and that

0 e H ( Vw (W.+ E M (X)})-

{v (, _) I E M(W)} is a compact subset of the Euclidian metric space E.
Therefore, by the Theorem on Linear Inequalities, Vd E E, 3 E M(X,) such that

< v~(~,),d > >0.
Select any wl E W. Let d = -w, E E and define w(A) as before. Then
= w(A) Ix=o and w1 = w(A) I1-.= Then, by the definition of the gradient

operator, 30 E M(w) such that o(!_(x),) o > 0.
By the definition of convex functions and convex sets,

VA E [0, 1], (w(A), o) < (1 - A)e(w, o) + Ae(wj, ).

This can be rewritten as

E [0,11, e(w(A),_.) < (wo,__O) + A(e(wj,__O) -_(wO)). (A.10)

By the definition of the directional derivative

O(w(A) ) =o e(w(A), ) - (°-- (A.11) OA A=0 = lim A 0. (A.11)OA k--.o+A
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Combining (A.10) and (A.11) and carrying out some algebraic manipulation yields
e(w,o) > e(w _o) Since 0, E M(), e(,) = A(Wo). Furthermore,
A(wl) e(wl,_o). Therefore, A(k) > A(w). This is true for any w E W.
Therefore, w is the minimizing point of A(w) on W.

Therefore, if e(w, _) is convex on W and W is a convex set, then

Q E ( V. (-, ±) I E M(Mw-)})

is a sufficient condition that w is a solution to

w0,pt = arg min max (w, ).

Theorem 5 Let (g, 4) be any performance measure for the estimator g given the
environmentalcondition . Let = 1,..., qK} and let p E P = { E RK p > 0 and et p = 1}
be any pmf assigned to 0 on d. Let e(p, g) = i pe(g, 4i) and let (p) be any global
lower bound on e(p, g). That is,

,(P) < min e(p, ).
-:x-.R

Then, 3(p) is also a lower bound on A(g). That is,

Ao min (g) > (p).
a:X-.JR

Proof:

K K

e(pg) = 'pie(g, i) < Ep(maxe(g, )) = maxe(g,) = A(g)
i=1~~~=I '~t'E

This hold true Vg: X - R and Vp E P. Therefore,

/(p) < min (p,g) < min A(g) = A o.
g:X-.:R - g:x-.:R

This holds true for any p E P. Therefore,

vp P, (R) A.

Theorem 6 Let $ = {1,..., 4 K}, P = {p E RK I E > 0 and et = 1}, and
go: X x P --+ R be given by

go(xp) = E.- Pi Pxli( I )E[0 It, ,I] (
go 1 ppX I 4' ) (A.12)t=1 Pi PX1~~'0( i
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where PI4(x I Xi) is the conditional pdf or pmf of the observation z given that the
environmental parameter = Oi. Let e(g, 4) = E[(O _- g(z)) 2 j ].

Let the least favorable pmf pf E P be defined as

K

pf arg max EPi e(go(x,), 0j).

Then
g0(z,&f) = arg min maxe(g,O),

g:X-.JR #~E

and the quantity
K

vpf, e(go(X, &f)' Oi)
i--1

is an achievable lower bound on

8(g) = max (g, ).

Proof: This proof closely parallels that of Theorem 4.
Consider to be a random parameter and let p be any assigned pmf. Then

K

e(p, g) = pi e(g, ,)
i=1

is the mean squared estimation error for the estimator g and algabraic manipulation
of (A.12) shows that g(x, p) = E[6 Ix] and is therefore the minimum mean squared
error estimator of 0 given the observation x. Therefore,

Vg: X-. R and VE E P, (p, go(x,p)) < (p,g).

Therefore, e(R,g(x, p)) is a global lower bound on e(p,g) and, by Theorem 5,

VP E P, 6(p9,g(x,p)) < Lo- min (g). (A.13)
g:X-..P,

It will now be shown that e(p 1,go(x,pf)) > Ao,. Recall that

K

C(p,go(X,p)) = p E[( _ g 0(z,p))2 I Xi].
i=1

Therefore,

K a El0- g+o(x, p)) I Xi]ac (' g. (x, = (-g=o(X, p 2 [ 4j] + K Opi - (A.14)
9pj - i=1 jpi
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aE[(- go(x,p))2 I I
apj = - 2E[(O- g o(,))OO(XP) ilOpi (A.15)

Substituting (A.15) into (A.14) and carrying out the summation yields

e(p,g (x, P)) = E[(O - o(x,p))2 I il - 2E[(O - go(x,p)) 
api Op

(A.16)

Recall that g9o(x, p) = E[ I zx] is the minimum mean squared error estimator of 0
given x. Therefore,

E[(O - 90(zxp)) ao , ) = E[(O- E[O Ix]) g(pj )

Since O9g(p) is a function of z and is not a function of 0, the application of the
orthogonafity principle yields

a0o(x, p)] =E[(0 - E[0 I ]) ap (, I=0 (A.18)

Substituting (A.17) and (A.18) into (A.16) yields

ae(pg(X,P)) = E[( - go(xp))' I il
ap,

Let m E {1,...,K} be any index such that Pif., > 0 and n E {{1,...,K}
be any other index. For A E [0,Plifm] define p(A) as follows: pi(A) = Plf,
{{1,. . , K} - {m, n}}, pm(A) = Plfm - A, and pn(,A) = Plf. + A.

Using the chain rule,

(A.19)

-m}}for i Efor/i 

8(p_(A), go(X, p())) K oC(_(,), o( ,p(A))) op,(A)
= p(A) 
i=1 ~()0

Substituting (A.19) into (A.20) and noting that

api(A) = Ii E {{1,, K}-{m ,n}},
aA

OP(A) = -1, andaA
aOpN(A) = 1
aA

e(p(A), go(X, R(A)))
= (g(X,P(\)), n) - (go(X,rP()), 4m).

Note that by the definition of pf,

VA E pifim ],
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(A.17)

yields

(A.20)

(A.21)

= '6(g-(X'P-)'0j)-

,e(g.(xE(A)),p(A)) < c(g.(xpf),&f);



and by the definiton of p(A),

e(go(Z,P(A)),E(>)) IA=o = (go(dff)rfu)

Therefore,
= arg max (g(X,p(A)),P(A)).

AE[OpIqm]

Therefore,
ac(p(A),g (,p (A))) I=o < 0. (A.22)

aA
Substituting (A.21) into (A.22) and noting that g(z,p(A)) I=o= g(xp,1) yields

e(go(xPf),O, ) < e(o(Eq) ,) (A.23)

Since (A.23) holds for any index m such that Pfim > 0 and for any other index n, it
can be concluded that

Plum > 0 -- (go(xjpf),m) = (9go(x,p)).

Using this result and noting that the following sum can be carried out over only those
indecies for which f > 0 and that e't p = 1 yields

K

,-(&f xg°(X Pi)) = E pfi6(g(:p1 )SXi) = (9o(X }N))-
i=1

Therefore,

Ao min A(g) < A(go(XPf)) = e(~f1 ,go(X,~p))- (A.24)
g:X-*R

Combining (A.13) and (A.24) and noting that (A.13) holds for any pmf yields

A, = min (g) = A(g0 (X,f)) = 6(Pfgo(Zf))-
g:x--JR

Therefore,
K

,-(Ptf t0(XsPlf)) = EPhi e(g0(:xPf), Xi)
i=1

is an achievable lower bound on A(g) and this bound is achieved by g0 (x,pf). a
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Appendix B

Proofs Specific to the Adaptive

Minmax Array Processor

In the adaptive minmax array processing problem, the set W and the Euclidian

metric space E defined in Appendix A are both the N-dimensional complex plane

denoted CN. This is a 2N-dimensional Euclidian metric space with the inner product

of u,v E CN defined as

< u, > Real(uhv),

the norm of u E CN defined as

IL- <U,>,

and the distance between u E CN and v E CN defined as

dcN(U,-)- I- U - I

For the error function e(f, _, w, , 2) as expressed in (2.11), the gradient operator

is given by [28]

V _ (w,) = g(f )w - q(f, z,). (B.1)

Under the assumption that q(f, z, _) is continuous on t and with the constant k = 2,
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this gradient operator meets all of the requirements set forth in the definition of the

gradient operator contained in Appendix A.

The following array weight characterization theorem sets out the necessary and

sufficient conditions for a set of array weights to be the solution to the minmax array

weight problem.

Theorem 3 Let be a compact set contained in a metric space and q(f, z, _) be
a continuous function on t. Then a sufficient condition for w to be a solution to the
following minmax problem

w .pt(f., _ 2 ) = arg min max e(f, z, w, , o2),
3ECCN OE -

is that
3J > , (B.2)

and
3M~~~~~~w w -~~~~~B3)3/(w_.o) = (_~,...,__j} C_ M(w.o), (B.3)

such that
0_ E ({(S() - a2q(f, z, )) I e kM((w.o)}). (B.4)

A necessary condition for wo to be a solution to the following minmax problem

w-pt(f, z, a2 ) = arg min max (f, z, w, , ),
XvECN E$

is that
3J E {1,...,2N + 1} (B.5)

for which (B.3) and (B.4) are satisfied.

Proof: E(f, z, w, , ao2) is a continuous function of w and q(f, z, _); and q(f, z, 4) is
a continuous function on . Therefore, by Lemma A.3, e(f, z, w, , ~o2) is a continuous
function on CN and ~. O is compact and at each w E CN, a directional derivative with
respect to w can be defined on . In addition, S(f) is positive definite and therefore
~(f, , , O 2) is convex on CN. CN is a convex set. Therefore, by Theorem 1 and
the definition of the gradient operator at the beginning of this appendix, a necessary
and sufficient condition for w to be a solution to the following minmax problem

wt(f, Z, 0 2 ) = arg min max 6(f, z, w, d,~),
mEECN E--

is that
0 E ({(I(f)w - J2(f,,)) E M(w.)}). (B.6)

If (B.6) is satisfied on a countable subset of M(wo) then it is also satisfied on M(wo).
Therefore, replacing M(wo) in (B.6) by an arbitrary countable subset M(wo) and
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noting that (B.6) is a sufficient condition yields the sufficient conditions, (B.2) through
(B.4), for wo to be the desired solution.

CN is a 2N-dimensional linear space. Therefore, if (B.6) is satisfied on M(wo)
by the Theorem of Carath'odory it must also be satisfied on a subset of M(wo)
containing 2N + 1 or fewer elements. Therefore, noting that (B.6) is a necessary
condition yields the necessary conditions, (B.5), (B.3) and (B.4), for wo to be the
desired solution. a

Using Theorem (3), the following theorem can be proven.

Theorem 2 Let uo2 be any real positive number, v be a compact set contained in
a metric space, q(f, z, _) be a continuous function on 0, and

wt(f, Z, 0 2) = arg min max e(f, ez , , 2).
XECN ±0

Then for any real non-negative o 2, the solution to the problem

Wopt(f, a, ,2) = arg min maxe(f, z, w, b, 2 )
ECN 

is given by
wt(f, z, 2) = (2/a2) wopt(f,z , 2) .

Proof: The following notation, which is more explicit than that used in the body
of this thesis and in the proofs of the other theorems, will be used in this proof. The
extremal value will be denoted by A(f,z,w , a 2) and the extremal point set will be
denoted by M(f, zw,w, 2) where

A(f,z,w, o 2) _A~f, ffi w, a= maxe(f, , w_, , 2)

and
M(f, Z M ,2)__ {E I e(f, z, w, , 2 ) = (f, zw ,2)}

For any positive real o2, let

w_t(f, , o2 ) = arg min max ,e(f, ,i w, , vo2).
SECN _~ 

For any positive real 2, define

W(a2)i (,22/,2) wt(f, z_, 2). (B.7)

By Theorem 3,

o E X ({((f) (f,,o)-o (f,,)) I E _OM(fz_,wt(z,2)o2)})
(B.8)
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Substituting (B.7) into (B.8) yields

Q E ({(a/a2) (S(f) w(a2) - a2 (f,Z,)) M(fw t(fzao 2)}).

This implies that

0 E H ({((f) w(a2) - 2 (f, ,))I M(fZ,Wt(fZ,,o),o)}) (B.9)

Substituting (B.7) into (2.11) and carrying out some algebraic manipulation yields
the following expression for e(f, z, jw( 2), 0, a2).

C(f, z, w(a2),_, 2) = ( 2 /uo2)2 c(f, z, Wt(f, ,o), ,o2) + (2 ( 2)2 /uo2).

Note that (f, z, w( 2 ), , a2 ) is a equal to e(f, z, w (f, z, o2), , ao2) multiplied by a
positive number which is independent of and added to a number which is indepen-
dent of . This implies that

M(f, z, W(a2), a 2) = M(f, , (, 2, ), ) (B.10)

Substituting (B.10) into (B.9) yields

Q E ({((f)w(2) _-,2 q (f, z, Z()) I )}) E.

Therefore, w(a2) satisfies the requirements of Theorem 3. This implies that

w(a2 ) = arg min max (f, z, , , 2 ).
wECN EO

Therefore,
oo(f, z, 2 ) = (2/oa2)wt(f, ao).

0~~~~~~

Theorem 4 Let P be the set of all possible pmfs which may be assigned to · and
define the least favorable pmf as

2 2pf = arg max min (f z, w, p, ao02) = arg max (f, z, Wm ( Z ao p p a)Elf~ PEP EcN -E (f -, -

(B.11)
Then

t(fz, ) - arg min max(fZw o ) = wmmae(f, z, O f) 

Proof: From (2.22), C(f, ,!Wmm,,p,, ao2) can be expressed as

K

C(,, mmaCR, ) = i p Pi (f, Z, Wmo,(P), j, ao).
i=1
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Therefore,

K

= g6(f2, m.(r ),j,) + z
i=1

&'(f , wmmse.(p), ~, 2)
Pi lopi

(B.12)
Combining (2.5) and (2.24) yields

-(f,z, Wmme(p), ~ ,o a ) =
K

O2 - 2(2)2 Rzal(eh(f,&,),)(f)-'lEp, (f, Z,!)) +
1=1

K K

(2)2 E p, i-(f, 1
1=1 m=1

Therefore,

'oe(f, , , (P), , 2)

aPj

K

= 2(ao) 2 (p al((f z S(f)-l (f ,z, j)) _
=1

Real(e(f, _, ) §,(f)-' t(f, z_,_))).

Noting that the first term is independent of the index i and carrying out the summa-
tion over i in (B.12) yields

=0.

Therefore,

e(f, , 2.mm..(r), _j, a2)·&(f z Wmm p 2)

api

Let m E {1, ... , K} be any index such that ptf/ > 0 and n E {{1,
be any other index. For A E [0,Pufm] define p(A) as follows: i(A)
{{1, .. ,K}-{m,n}}, pm(A) = Plf -A, and pn(A) = pf +A.

Using the chain rule,

... ,K}
= Pfi

(B.13)

-{m}}
for i E

9E(f, , w=.me, p(A), uo2 ) K &(f, z, wmm,, p(A), 2)

ax : = ap,(A)

Substituting (B.13) into (B.14) and noting that

Opi(A) O= Vi {{1, ... ,K}
aA~~~~" - {m,n}}, aPm(A)OA =-1, and OpN(A) = 1

OA

= (f, z_, .W(p(5)) , -(zwmm_(P()), ±_, ,).

(B.15)
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yields

(B.14)

s(f zw_.mo,,p(A), a)
OA

ac (f, 1, -W-Mmse (P 2)), 'O., ao
F, F S
i=1 Opi

SM-'Wl&l±,n)Pm-



Note that by the definition of pi

VA E [0, pifm], e(f, z,imma, p(A),7 ao) < e(f,z, m,pf ,o2);

and by the definiton of p(A),

( , Zs wimmae, p(A), ao) I=o = C(f, z, W.mmoe qf' 7 2)'

Therefore,
0 = arg max (fzwmmep(A) a2)

,Xe[O,pll,.]-

Therefore,
ae (f'z-' w-'m'°er(x)"2)I=o<0i96(exZ7Wmm~c7P(), o) I'\=o < O (B.16)

OA
Substituting (B.15) into (B.16) and noting that Wmme(p(A)) IA=o= W_mmoe(Pf) yields,

U(s Z o a 0 _jf ) } aO<± eZmb y a02) *(B. 17)I ,_Mw.mo,(&f),~b_,:O'o) _~ e(f'z,W__mm(),_, o2 . S1

Since (B.17) holds for any index m such that Pim > 0 and for any other index n, it
can be concluded that

Plf > -. me(fZ,-_-m.e(P),_ = L(_a(jf))

Therefore

Plf > 0 - m E M(Mm,(f,z_,2,s))

Using the notation of Corollary 1 to Theorem 3, the desired subset of the extremal
point set can be selected as

2
M(wms, (f, z,~ ao )) s = {E v pli > 0}.

Recall from (2.24) that

K

Wmmse( z of) = a' S(f) 1 Z pf, q(f, z,).
i=l

Since all environmental conditions for which the pmf is non-zero are contained in the
selected subset of the extremal point set, this summation can be carried out over
only this subset Therefore, __mm e(f, z, ao2, f ) and M(Wmm(f, z, o, pf )) as selected
satisfy the sufficient conditions of Corollary 1 to Theorem 3. Therefore,

2)~~~~
wopt(fzo )-= mme(f,z,o'o2,&.).

Claim 1 M(f, z) is a co-positive-plus matrix.
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Proof: From [24]

Co-positive matricies are (square) matricies M such that

x> 0 xtMx > 0.

Co-positive-plus matricies are co-positive matricies such that

x > and xt Mx = - (M + M t )x = 0.

... The class of co-positive-plus matricies also includes positive-semidefinite
matricies, ...

Therefore, it is sufficient to show that M(f, z) is a positive-semidefinite matrix.
Recall that

T(f,a) 4 Real(Q(f, )h(f)-IQ(fz)),

that T(f, z) can be broken into the following components

T(f, z) = [TI(fz) (f, (B.18)

and that S(f) is a positive-definite matrix. Therefore, T(f, _) is a positive-semidefinite
matrix.

Recall that M(f, z) is the following matrix

Mf)=[ M(f.) = [ ez) ]

where the minor

M(f, z) = T(f,z) + T1(f,z) eet - e tt(f z)-t(fz) et. (B.19)

Select any vector x = [xl, t]t E RK. Then

x M(f, z) = t M(f, z) 

Substituting (B.19) into this expression yields

x' M(f, z) x = t T(fz) - 2(e_ x) ( t (fz) x) + T(f, z) (et x)2. (B.20)

Let = [-et ,t]t E RK. Then, since T(f, ) is positive-semidefinite, the
quadratic product y tT(f,)y is non-negative. Using (B.18) to expand this quadratic
product yields

y tT(f, )y = x '(f,z) i-2(e t) ( t (fz) i) + T(f,) (et )2 > 0. (B.21)
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Note that the righthand side of (B.20) equals the center section of (B.21). Therefore,

x t M(f, ), = tT(f,= y 0.

Since this is true for any vector x E RK, the matrix M(f, z) is positive-semidefinite.
Therefore, M(f, z) is a co-positive-plus matrix. a

Claim 2 The set of equations (B.22) through (B.24) are consistent.

> 0, and 3 > 0 s.t. (B.22)
V = 0 and (B.23)

- M(f, z) = I(f Z), (B.24)

Proof: Assume that the set of equations (B.22) through (B.24) are inconsistent.
Then, since (B.22) through (B.24) are simply the result of the algebraic manipulation
of (B.25) through (B.27), (B.25) through (B.27) must also be inconsistent.

Po > p = 10 , 3u E R, and 3v > s.t. (B.25)

vto = 0 and (B.26)

v - T(f, ) E, +ue = 0. (B.27)

Therefore, since (B.25) through (B.27) are the necessary and sufficient conditions
which must be met by any solution to the constrained quadratic minimization problem
(B.28), this problem cannot have a solution.

f = arg mip pt T(f, ) p. (B.28)
PEP

However, pt T(f, z) p is a continuous function of E and the set P = {i E RK >

0 and e t p = 1} is compact. Therefore, by Theroem 4.16, 3p E P such that

p T(f, _) p = inf p T(f, ) p = min p T(f, z) p.
pEP - pEP

Therefore, iv is a solution to (B.28) which contradicts the statement that the problem
cannot have a solution. Therefore, the assumption must be wrong.

Therefore, the set of equations (B.22) through (B.24) are consistent. a
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