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Abstract

Adaptive array processing algorithms have achieved widespread use because they are
very effective at rejecting unwanted signals (i.e., controlling sidelobe levels) and in
general have very good resolution (i.e., have narrow mainlobes). However, many
adaptive high-resolution array processing algorithms suffer a significant degradation
in performance in the presence of environmental mismatch. This sensitivity to envi-
ronmental mismatch is of particular concern in problems such as long-range acoustic
array processing in the ocean where the array processor’s knowledge of the propaga-
tion characteristics of the ocean is imperfect. An Adaptive Minmax Matched Field
Processor has been developed which combines adaptive matched field processing and
minmax approximation techniques to achieve the effective interference rejection char-
acteristic of adaptive processors while limiting the sensitivity of the processor to
environmental mismatch. '

The derivation of the algorithm is carried out within the framework of minmax
signal processing. The optimal array weights are those which minimize the maximum
conditional mean squared estimation error at the output of a linear weight-and-sum
beamformer. The error is conditioned on the propagation characteristics of the envi-
ronment and the maximum is evaluated over the range of environmental conditions in
which the processor is expected to operate. The theorems developed using this frame-
work characterize the solutions to the minmax array weight problem, and relate the
optimal minmax array weights to the solution to a particular type of Wiener filtering
problem. This relationship makes possible the development of an efficient algorithm
for calculating the optimal minmax array weights and the associated estimate of the
signal power emitted by a source at the array focal point. An important feature of
this algorithm is that it is guarenteed to converge to an exact solution for the array
weights and estimated signal power in a finite number of iterations.




The Adaptive Minmax Matched Field Processor can also be interpreted as a two-
stage Minimum Variance Distortionless Response (MVDR) Matched Field Processor.
The first stage of this processor generates an estimate of the replica vector of the signal
emitted by a source at the array focal point, and the second stage is a traditional
MVDR Matched Field Processor implemented using the estimate of the signal replica
vector.

Computer simulations using several environmental models and types of environ-
mental uncertainty have shown that the resolution and interference rejection capabil-
ity of the Adaptive Minmax Matched Field Processor is close to that of a traditional
MVDR Matched Field Processor which has perfect knowledge of the characteristics
of the propagation environment and far exceeds that of the Bartlett Matched Field
Processor. In addition, the simulations show that the Adaptive Minmax Matched
Field Processor is able to maintain it’s accuracy, resolution and interference rejection
capability when it’s knowledge of the environment is only approximate, and is there-
fore much less sensitive to environmental mismatch than is the traditional MVDR
Matched Field Processor.
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Chapter 1

Introduction

The signals received by spatial arrays of sensors are often composed of the sum of
signals emitted by sources at different locations. In order to estimate the signal, or
the parameters of the signal, emitted by a source at a particular location, the array
processor must often separate that signal from the other signals which are received.
This separation of signals based upon the location of the source is referred to as
spatial filtering. Thus, the spatial filtering of signals received by an array of sensors
to generate estimates of the parameters of the signals emitted by sources at locations
of interest is an important operation in many array processing applications.

Array processors achieve spatial discrimination through filtering by exploiting the
fact that the spatial characteristics of a propagating signal as received at an array of
sensors depend upon the location of the source of the signal. However, the spatial
characteristics of a propagating signal also depend upon the characteristics of the
medium through which the signal is propagating. Therefore, if a processor has in-
accurate or incomplete information concerning the characteristics of the propagation
environment, it may be unable to determine the spatial characteristics which should
be exhibited by a signal emitted by a source at the location of interest. In this case,
the processor may have difficulty in accomplishing the spatial filtering necessary to
estimate the parameters of the signal of interest. This work proposes an approach to
array processing which yields a processor capable of operating with only approximate

environmental information while at the same time achieving levels of spatial discrim-
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ination which are close to those achieved by adaptive processors having accurate and
detailed environmental information.

The remainder of this chapter contains general background information on array
processing. Section 1.1 discusses general linear, adaptive, and matched field pro-
cessing. Section 1.2 describes a parameterization of the spatial characteristics of
propagating signals, which is useful for the class of algorithms considered herein. The
problems which array processors exhibit when the environmental information is in-
accurate, and possible approaches to developing processors which are able to operate
effectively with inaccurate or imprecise information are reviewed in Section 1.3. This
section also introduces the minmax signal processing approach, which is proposed
herein to address the problem of array processing with only approximate environ-
mental information.

The theoretical foundations of the minmax approach, based on the Minmax Char-
acterization Theorm, are developed in Chapter 2. This theorem sets forth the neces-
sary and sufficient conditions which must be met by any solution to a general class
of minmax problems. The details of the proposed array processor, referred to as the
Adaptive Minmax Matched Field Processor, are presented. A computationally effi-
cient algorithm which is guaranteed to converge to an exact solution of the minmax
optimization problem of interest is developed by exploiting the special structure im-
posed on the solution by the Minmax Characterization Theorem. Finally, an approach
to bounding the minmax performance achievable by any processor is proposed.

In Chapter 3, the structure imposed by the Minmax Characterization Theorem is
again exploited to relate the Adaptive Minmax Matched Field Processor to Capon’s
Minimum Variance Distortionless Response (MVDR) Matched Field Processor [9, 11].
The relationship developed leads to a qualitative analysis of the processor. This anal-
ysis motivates a small change to the algorithm developed in Chapter 2. A quantitative
analysis of the algorithm based on results of numerical simulations is also presented.
These numerical results are generated for both deterministic time-invariant and ran-
dom time-varying propagation environments. The results for the latter case motivate

another small change to the algorithm which is also detailed.
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Chapter 4 addresses the problem of generating a priori estimates of the spa-
tial/temporal characteristics of a propagating signal as a function of environmental
conditions and source location. This chapter does not present original work. Instead,
it presents results developed by others [29, 30, 31, 32, 33, 40, 41] on the propagation
of signals through random media and outlines how this work can be applied to gen-
erating estimates of the spatial/temporal signal characteristics. Finally, the results

generated herein are summarized and future work is discussed in Chapter 5.

1.1 Linear, Adaptive, and Matched Field Processing

Many types of array processors either implicitly or explicitly incorporate a linear
weight-and-sum beamformer to implement spatial filtering. This filtering allows the
processor to discriminate among signals based upon the location of the source of
the signals. Given an input y (the joint temporal/spatial filtering of the sampled
vector time series y[n] will not be considered in this introduction), the outpui of a
linear weight-and-sum beamformer is £ = w*y where w is the array weight vector,
the superscript h denotes complex conjugate transpose (i.e., Hermitian), and % is an
estimate of the signal emitted by a source at a location of interest.

Linear beamformers enjoy widespread use for several reasons. First, they generally
have the lowest computational complexity of the available methods of implementing
a spatial filter (given an N element array, the filtering operation is an O (N) opera-
tion and, if required, the calculation of the array weights to minimize a squared error
criterion is often an O (N3) operation). Second, when the array weights are chosen to
minimize a mean-squared estimation error criterion, the solution for the optimal ar-
ray weights is a convex quadratic minimization problem and is analytically tractable.
Third, linear filtering preserves the actual time-series of the signal of interest which
is important in many applications. Finally, when the received signal consists of the
sum of a signal of interest and interfering signals,the spatial correlation of the inter-
fering signals is different from that of the signal of interest, and the signal of interest

is correlated across the aperture of the array, the linear beamformer is effective at
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filtering out the interfering signals and generating an estimate of th signal of interest.

Another class of array processors which enjoys widespread use it the adaptive
array processor. Adaptive array processors use observations of, or information about,
the signal, noise, and propagation environments to adjust the characteristics of the
processor to minimize or maximize some performance criterion. The processors are
able to efficiently use the degrees of freedom available to the processor to adjust to
the environment in which the processor is operating. [6] The most widely-used type of
adaptive processors are those incorporating adaptive linear beamformers (7, 8]. Two
such examples are Capon’s MVDR Processor [9] and the Applebaum Beamformer
[10]. These processors use observations of the combined signal and noise environment
to adaptively adjust the array weight vector to optimally pass the signal of interest
through the filter and while controlling the sidelobes of the filter’s spatial response to
reject the interfering signals contained in the received signal. In order to distinguish
between the signal emitted by a source at the location of interest from all other signals,
the processor uses a priori estimates of the spatial characteristics of the signals of
interest. These a priori estimates depend upon the manner in which the propagating
signals are modeled.

Traditionally, array processors have modeled propagating signals as plane waves
following a straight line path from the source to the array of sensors. This corresponds
to an implicit model of the propagation medium as being homogeneous and infinite
in extent and the source being far from the array. The propagation of acoustic waves
through the ocean is not modeled accurately in this manner. Both the time-invariant
and the time-varying temperature, salinity, and pressure structures of the ocean are
spatially-variant. When coupled with the finite extent (principally the finite depth)
of the oceans, these spatially-variant structures cause acoustic signals to propagate in
a manner which deviates significantly from that predicted by the plane-wave model.

This deviation has both adverse and advantageous consequences. The adverse
consequence is that, if a plane-wave model is used by the processor, the spatial char-
acteristics of the signal of interest may not match those estimated by the processor.

In this situation, which is referred to as model mismatch, the processor may treat the
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signal of interest as an interfering signal and attempt to reject it. A more detailed
discussion of this problem is contained in Section 1.3. The advantageous consequence
is that, if the processor uses a fairly accurate environmental and propagation model,
it is possible to achieve source localization accuracies which far exceed those which
are available in an infinte, homogeneous medium [11].

A class of processors which has been developed to take advantage of this improved
accuracy and to eliminate the model mismatch problems caused by the use of the
plane-wave model is referred to as the Matched Field Processor. First proposed
in [12], these processors use fairly complete environmental and propagation models
to make a priori estimates of the spatial structure of received signals as a function
of environmental condition and source location. The processors use these spatial
structure estimates to operate on the received sound field and generate estimates
of signal parameters of interest. The spatial structure of the signal of interest is

parameterized by the signal replica vector as defined in the following section.

1.2 The Signal Replica Vector

The signal replica vector is a parameterization of the spatial characteristics of a
propagating signal as a function of the location of the source of the signal and the
propagation characteristics of the medium. Traditionally, the signal replica vector is
defined for a narrowband signal propagating through a time-invariant medium. In
this case, the signal replica vector is, to within a complex scaling factor, a replica of
the deterministic narrowband signal emitted by a source at the location z as received
at the array of sensors. Thus, given that a source at the location z emits the complex
exponential Ae??*/t and the medium is time-invariant, the signal received by the array

of sensors can be expressed as

z(t) = Be'q(f,z,9),
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where A is a complex random variable, ¢(f,z,¢) is the signal replica vector, ¢ is
a parameterization of the characteristics of the propagation environment and the
receiving array (e.g., the sound speed profile, the depth of the ocean, the sensor
locations, etc.), and B = cA for some complex constant ¢ which depends on the
signal attenuation and progagation delay between the source and the sensor array
and the manner in which the replica vector in normalized. The signal replica vector
is usually normalized so that its magnitude equals one.

For this work, the signal replica vector is defined in a stochastic signal framework

s E[X(f,2)Xi(f,2) | 4]

-q‘-(f’-""é)zE[x,,(f,;)x,:(f,;) ik (1.1)

where Xi(f, z) is the discrete-time Fourier transform at the frequency f of the signal

emitted by a source at the location z as received at the k** array sensor, X(f,z) is
the discrete-time Fourier transform of the same signal as received at the entire array
of sensors, and the k* sensor is the reference sensor of the array. Thus, the signal
replica vector is the normalized cross-correlation between the discrete-time Fourier
transform of the signal of interest as received at the reference sensor and the same
signal as received at the entire array of sensors. It is important to note that the
signal replica vector is defined in terms of the propagating signal as received at the
array of sensors. This new defintion is used for two reasons. First, it explicitly allows
the parameterization of the spatial structure of a signal emitted by stochastic source
and which propagates through a random medium. Second, this parameterization
incorporates all of the the information concerning spatial structure of the signal of
interest which can be exploited by a linear processor which is optimized to minimize
a mean-squared error criterion.

When the source at the location z emits the complex exponential Ae?2"f* and the
medium is time-invariant as described previously, the signal replica vector as defined
in (1.1) is, to within a complex scaling factor, identical to the traditionally defined
replica vector also described previously.

The term in the denominator of (1.1) is a normalization term which yields
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ax(f,2,¢) = 1. Another normalization convention is proposed in Subsection 3.1.3. A -
different definition of the replica vector is proposed in Subsection 3.2.3. This defi: -
tion is similar in concept to (1.1) in that it is based upon the spatial cross-correlation
of the signal of interest and, in a time-invariant propagation environment, these defi-
nitions are roughly equivalent. However, in a random time-varying medium, they are

different, and the definition proposed in Subsection 3.2.3 yields better results.

1.3 Array Processor Performance in Uncertain

Propagation Environments

As mentioned earlier, array processors exploit the fact that the spatial characteristics
of a signal as received at an array of sensors depend on the location of the source
of the signal in order to differentiate among signals emitted by sources at different
locations. High resolution processors are able to discriminate among signals whose
spatial characteristics, parameterized here by the signal replica vector, differ only
slightly. While the ability to discriminate among signals whose replica vectors differ
only slightly provides good spatial resolution, it also makes the processor sensitive to
changes in the propagation characteristics of the environment. A small change in the
characteristics of the propagation medium resulting in a small change in the signal
replica vector, may cause the processor to inaccurately estimate the location of the
source of the signal.

Adaptive processors, such as Capon’s MVDR Processor [9], are particularly sen-
sitive to inaccuarate or imprecise knowledge of the characteristics of the propagation
environment (referred to as model mismatch). This sensitivity stems from the fact
that, if the processor incorrectly calculates the signal replica vector, then the received
signal emitted by a source at the location of interest will not be recognized as such.
Consequently, the processor will attempt to reject (i.e., filter out) that signal. The
sensitivity of various adaptive and non-adaptive processors to model mismatch has
been analyzed extensively [13, 14, 15].

Several approaches to reducing the sensitivity of adaptive processors to model
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mismatch have been proposed. The most commonly proposed approach, which is
applicable to linear processors, is to add an additional constraint to the array weight
optimization problem which places an upper bound on the norm of the array weight
vector. A survey of these methods is contained in [8]. The motivation for these
approaches is that the sensitivity of a processor to spatially uncorrelated perturbations
to the nominal spatial characteristics of a signal is proportional to the norm-squared
of the array weight vector. A related approach, referred to as the Generalized Cross-
Spectral Method [16], is to add a penalty function proportional to the norm-squared
of the array weight vector to the criterion, which is minimized or maximized by the
selection of the optimal array weight vector.

Another approach to reducing the sensitivity of linear processors to model mis-
match is to constrain the response of the linear weight-and-sum beamformer over a
range of environmental conditions. One example is the Multiple Constraints Method
[17], which accomplishes this goal by placing equality constraints on the response of
the beamformer at a number of locations surrounding the location of interest. Relying
on the fact that the signal replica vector is a smooth function of both the source loca-
tion and the environmental conditions, the equality constraints at different locations
surrounding the location of interest also constrain the response of the beamformer at
the location of interest for various environmental conditions which are close to the
nominal environmental condition. A more direct approach using the multiple con-
straints approach [18] places equality constraints on the response of the beamformer
for a number of environmental conditions which result from small perturbations to a
nominal environmental condition. A related approach [19] uses inequality constraints
on the response of the processor to insure that for various environmental conditions,
the actual response is within some tolerance factor of the desired response.

A third approach to reducing the sensitivity of array processors to model mis-
match, which is not limited in applicability to linear beamformers, is the random
environment approach. here, the environmental parameters are considered random
parameters with known probability distributions. The array weight vector or the esti-

mate of the signal parameters are chosen to mininimize or maximize a criterion which
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is averaged over the possible values of the environmental parameters. A Maximum
A Posteriori source location estimator utilizing this approach is proposed in [20].

There are several drawbacks to these approaches. First, the approaches using
linear equality constraints lose one degree of freedom in the beamformer for each
constraint. This level of reduction in degrees of freedom may not be necessary to
accomplish the desired goal. Second, the selection of the response levels, the norm
bounds, and the tolerance factors is, in general, an ad hoc procedure without clearly
defined criteria. Finally, the processors developed using the random environment ap-
proach may exhibit poor performance for particular sets of environmental conditions
even though their average performance is good.

This work seeks to develop an array processor which exhibits the efficient use of
degrees of freedom and the interference rejection capability characteristic of adaptive
array processors, and the source localization capability characteristic of the matched
field processors while operating with only approximate information about the prop-
agation characteristics of the medium. The minmax signal processing approach is
proposed to develop such a processor. The minmax approach requires that an error
criterion which is a function of the environmental conditions as well as the processor
characterists be defined. Using this criterion as a measure of processor performance,
the maximum value of the criterion taken over a user-specified range of environmental
parameters is minimized. If this is done in an adaptive manner, the processor should
be able to efficiently use its degrees of freedom to improve the performance of the
processor for the environmental conditions where the performance is most critical.

The use of the minmax approach to develop a processor which is insensitive to
modeling uncertainties has been studied previously ([21] and references therein). How-
ever, the signal processing techniques developed therein are not applicable to the prob-
lem of achieving spatial discrimination in an uncertain propagation environment, and
are not adaptive in the sense described in Subsetion 1.1. Therefore, the Adaptive
Minmax Matched Field Processor described in Chapter 2 is proposed to achieve the
goal of this work.
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Chapter 2

Minmax Array Processing

For the reasons stated in Chapter 1, a minmax approach is used here to develop an
adaptive array processor which is robust with respect to uncertainties in the prop-
agation environment. Section 2.1 presents a general minmax framework for signal
processing along with a characterization theorem for the solutions to a large class of
minmax signal processing problems. Using this theorem as a basis, an algorithm for
adaptive minmax matched field processing is developed in Section 2.2. Section 2.3
addresses the implementation of the Adaptive Minmax Matched Field Processor. A
new algorithm is developed to solve a particular class of quadratic minmax problems
which includes the minmax portion of the Adaptive Minmax Matched Field Proces-
sor. This algorithm has the desirable property of being guaranteed to converge to
an exact solution in a finite number of iterations. Finally, a new approach to the

development of minmax estimation error bounds is proposed in Section 2.4.

2.1 The Minmax Signal Processing Framework

The framework in which the array processing algorithm described in Section 2.2 is
developed is minmax signal processing. In general terms the framework addresses
the problem of developing a processor whose worst-case performance evaluated over
a given class and range of uncertainties is as favorable as possible. Specifically, let

g(y,w) be a processor parameterized by the vector w which operates on an observed
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[>4)

= g(y,w)

Figure 2-1: The Minmax Signal Processor

signal y to generate an estimate of some signal or parameter of interest Z (Figure 2-1).
The (A) symbol denotes an estimate of the variable over which it is positioned (e.g., £
denotes an estimate of the vector z.). The set of allowable values for the parameter
vector w is denoted by W. In the case where g(y,w) is a linear filter with N taps, the
vector w could contain the filter weights and W could be the space of N-dimensional
complex numbers CN.

The parameters which govern the relationship between the observed signal y and
the signal or parameter of interest z are referred to as the environmental parameters
and denoted by the vector ¢. In the context of array processing problems where y is
the received signal and z is a particular signal of interest, the vector ¢ could contain
the location of the array sensors or the phase, gain, and directional characteristics of
those sensors. It could also contain a parameterization of the interfering signals or the
characteristics of the propagation medium. The ability of any particular processor
as determined by the choice of w to estimate z depends upon the particular envi-
ronmental condition under which the processor operates. Thus, a particular value of
w which yields good processor performance under one environmental condition may
yield very poor performance under another environmental condition. A real valued
error function e(w, @) is used as a figure of merit to evaluate the performance of any
particular processor operating under any particular environmental condition.

If the processor has perfect knowledge of the environmental conditions (e.g.,
¢ = ¢), then the processor parameters can be chosen to minimize ¢(w, ¢ ). However,
in many situations the processor does not have perfect knowledge of the environmen-
tal conditions under which it must operate, but instead knows only that the uncertain

environmental parameter ¢ falls within some range denoted by the set ®. The pro-
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cessor should then be designed to operate over this entire range.

As discussed in Section 1.3, one possible approach to designing the processor to
operate over ® is to treat ¢ as a random parameter with an assigned pdf (probability
distribution function) ps and then select w to minimize the average value of ¢(w, ¢)

taken over ¢ with respect to pg. That is,

Wept = arg min [’ ps(8,) e(ws 9,) dg,.

However, this approach requires that a pdf be explicitly assigned to ¢ and does
not necessarily solve the problem of the processor performance being very poor for
particular environmental conditions under which it may have to operate.

The minmax signal processing framework makes it possible to avoid these prob-
lems when selecting w by treating ¢ as a nonrandom parameter. Then, under the
assumptions that e(w, 4) is a continuous function of ¢ for every w € W and @ is a
compact set contained in a metric space, the worst-case performance of the processor

over the range of the environmental parameters is defined as
A(w)2 maxe(w, ¢).
— 2 € o -—)

A(w) is referred to as the extremal value for the processor parameter vector w. The
optimal minmax processor parameter vector is defined as that which minimizes this
extremal value. Mathematically, this is stated as
N . .
Wopr= arg Wi A(w) = arg min max e(w, 8).

As in any optimization problem, the specification of the necessary conditions which
must be met by the optimal solution and the sufficient conditions which guarantee that
a solution is optimal are of central importance. The specification of such conditions
for minmax optimization problems requires the definition of extremal points, extremal

point sets, the convex hull of a set of points, and the gradient operator. An extremal

point is any environmental point ¢ contained in ® at which the error function e(w, ¢)
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achieves the extremal value A(w). The extremal point set, denoted by M(w), is the
set of all extremal points. That is,

Mw)2{¢ € & | e(w, ¢) = A(w)}-

Given any set of points A contained in a metric space S, the convex hull of the set
Ain S, denoted by H (A), consists of all points s € S which can be expressed as the

convex combination of the points g; € A. That is,

H(A) = {s€S8|3J>0, g;€ A, and p;CR, for i=1,...,J

J J
st. p>0i=1,...,J, Y.p=1 and s=) pg}.

=1 =1

A final required definition is that of the gradient operator. Let e(w, ¢) be any
real valued scalar function of the vectors w and ¢. Then the gradient operator of ¢
with respect to w is any vector function of w and ¢, denoted by Ve (y:_, Q), which
is continuous with respect to w and ¢ and for which the following is true: There
exists a real, positive scalar constant k éuch that for any particular processor pa-
rameter vector (w,) and environmental condition (4 ), the incremental change in ¢
corresponding to an incremental change in w away from w,, denoted by éw, is equal
tok < Vye (w_o, -2 ) , 6w >, where< , > depotes the inner product. A formal state-
ment of this definition is contained in Appendix A. The definition of the gradient as
a vector of partial derivatives is not used because the error function used later in this
chapter is not differentiable with respect to the elements of the complex vector w.

Given the preceding definitions, the following Minmax Characterization Theorem,
which is a generalization of that given in Chapter 6 of [1] for the case of minmax
approximation with differentiable functions, states the conditions which characterize

the optimal solution to a general class of minmax problems.

Theorem 1 Let ® be a compact set contained in a metric space denoted
by I'y W be an open set of a Euclidian metric space denoted by E, ¢ :
Wx® — R be a continuous function on both W and & for which, at each
w € W, a directional derivative with respect to w can be defined on ®,
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and Ve (g, gé) be the gradient of € with respect to w. Then a necessary
condition for w, € W to be a solution to the following minmax problem

= in maxe(w
Wopt a'rggéw e (—aé_)’

is that
0eH ({Vme (wo,_dz) | ¢ € M(w-—o)})'

If, in addition, ¢ is a convex function of w and W is a convex set, this
condition is a necessary and sufficient condition for w, € W to be the
solution to the stated minmax problem.

A proof of this theorem is contained in Appendix A. This theorem states that a
necessary (and sufficient if € is convex on W and W is itself convex) condition for the
optimality of w, is that the origin, denoted by 0, is contained in the convex hull of the
set of gradients of € with respect to w evaluated at the extremal points of £(w,, ¢).
The following example may be useful to clarify the definitions and the concepts
introduced thus far and to provide an intuitive interpretation of the Minmax Char-

acterization Theorem.

Example: Assume that w is a two-dimensional real vector, W = R?, ¢
is a real scalar variable, ® is the closed interval between zero and one (i.e.
® = [0, 1]), and &(w, ¢) is a real-valued scalar function which is convex
with respect to w for all ¢ and continuous with respect to ¢.

For some w,, Figure 2-2a shows the error function plotted as a function
of ¢ with the extremal value A(w;) and the extremal point set M(w,) =
{¢1, &2, ¢3} labeled. The gradients of ¢ with respect to w evaluated at
w,; and each of the three extremal points are shown in Figure 2-2b. The
convex hull of this set of vectors is the shaded region. The origin is not in
this convex hull and therefore w; is not an optimal solution. This can be
seen by noting that, if we can choose a direction vector such as d for which
d'Vye(wy,4i) < 0for i =1, 2, 3, then the initial change in ¢ evaluated
at each of the extremal points will be negative as we move away from w,
in the direction of d. Since the value of ¢ is simultaneously reduced at
each of the extremal points as we move away from w;, the extremal value
of ¢ will be reduced as we move away from w, and therefore w; cannot be
an optimal solution.

For some w,, Figure 2-3a shows the error function plotted as a function
of ¢ with the extremal value A(w,) and the extremal point set M(w,) =
{04, ¢s5, ¢6} labeled. The gradients of ¢ with respect to w evaluated
at w, and each of the three extremal points are shown in Figure 2-3b
with the convex hull denoted as before. In this case, the origin is in the
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convex hull and therefore w, is an optimal solution. This can be seen
by noting that, for any direction vector such as d which we choose, the
inner product Q’V&e (w3, ¢:) will be greater than zero for at least one
of the three gradient vectors (in the case shown, &'V (w;, d¢) > 0).
Therefore, as we move away from w, in any direction d, the initial change
in € evaluated at one or more of the extremal points will be positive. Since
the value of ¢ increases at one or more of the extremal points as we move
away from w,, the extremal value of € will be increased as we move away
from w,. Therefore, w, is a locally optimal solution. However, since ¢ is
a convex function of w for all ¢, A(w) is also a convex funtion of w. (See
Lemma A.2 in Appendix A). Therefore, w, is a globally optimal solution.

2.2 The Adaptive Minmax Matched Field Processor

2.2.1 Signal Model

The Adaptive Minmax Matched Field Processor takes as its input the signal received
by an array of sensors which has been low-pass filtered to prevent frequency domain
aliasing and then sampled. This input is denoted by the vector time series y[m]. This
input signal is assumed to be the sum of propagating background noise generated
by spatial spread sources, such as, breaking surface waves, sensor noise which is
assumed to be spatially white, and propagating signals generated by spatially-discrete
point sources such as marine mammals, ships, etc.. z[m, z] denotes the time sampled
received signal which was emitted by a point source at the spatial location 2. n[m]
denotes the sum of the sensor noise and the received propagating background noise.
It is assumed that n[m] and z[m, z] are uncorrelated zero mean wide-sense stationary
random processes for each z and that z[m, z;] and z[m, z,] are uncorrelated for any
two source locations z, # z,. Thus, y[m] is a zero mean random process represented
by
glm] = nlm] + T afm, 2.

The modeling of z[m,z] as a zero mean random process can include a signal
emitted by a stochastic source propagating through either a deterministic or a random

environment, or a signal emitted by a deterministic source propagating through a
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Figure 2-2: Non-Optimal Solution: w = w,
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(b) Extremal Point Gradients and Convex Hull

Figure 2-3: Optimal Solution: w = w,
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random environment.

2.2.2 Processor Structure

The Adaptive Minmax Matched Field Processor was developed to achieve the effective
sidelobe control which is characteristic of adaptive processors such as Capon’s MVDR
Processor [9], and the improvement in spatial resolution provided by matched field
processing techniques such as those presented in [11], without exhibiting the extreme
sensitivity to mismatch in the estimation of the characteristics of the propagation
environment which is exhibited by these algorithms and techniques [13, 17]. The
quantity estimated by the processor is the average power in a selected frequency
component of the signal emitted by a point source at a location of interest as received
at one array sensor (the reference sensor). The location of interest is referred to as
the array focal point. The signal emitted by a point source at the array focal point
and received at the reference sensor is referred to as the desired signal and denoted
by zx[m, z]. Here the k** sensor is the reference sensor and z is the array focal point.
Unlike the case of traditional array processors, the desired signal is not the signal as
emitted by a source at the array focal point. Instead, the desired signal is the signal
emitted by a source at the array focal point as received at the reference sensor. The
array focal point can be swept through space and the selected frequency can be swept
through the frequency spectrum to generate an estimate of the average power in the
desired signal as a function of spatial location and temporal frequency. This estimate
is denoted by o2(f, z).

Conceptually, the processor which generates this estimate consists of three mod-
ules (Figure 2-4). The first module divides the time-sampled signal received by the ar-
ray y[m] into segments M samples in length which may be overlapping, and computes

the vector discrete-time Fourier transform of each segment at the selected frequency
M-1 )
Y(f) = 3 glmlesimen,

m=0

| indicates the segment number, y/[m] is the m* sample of the I** segment, and A,

29




is the sampling period. Here, f is the frequency expressed in cycles per second which
satisfies | f |[< zx-. f is not the normalized frequency expressed in cycles per sample

which satisfies | f |< 1. The linearity of the Fourier transform yields
Y(f) = Y X!(f,2) + N'(f),

where the summation is over the locations of the point sources. The transformed seg-
ments are known as “snapshots” and X'(f, z) denotes the snapshot of the I** segment
of z[m,2]. Y!(f) denotes the discrete-time Fourier transform of the I** segment of
the signal received by the i** array sensor. In effect, the first module is a temporal
filter which selects the frequency component of interest in the received signal.

The snapshots of the received signal are the inputs to the second module which is
a linear weight-and-sum beamformer. This beamformer computes an estimate of the

Fourier transform of the I** segment of the desired signal using
Xi(f,2) = &*Y'(f),

where w is the array weight vector. The beamformer is a spatial filter which attempts
to pass only the desired signal (i.e., that which was emitted by a source at the array
focal point z) while rejecting all other signals received by the array sensors. The final
module computes an estimate of the average power in the desired signal. The overbar
indicates the sample mean taken over all I. That is, if L is the number of segments

used in estimating o?(f, z), then

L -
&2(f’1) = %; |Xllc(f7§) |2 .

While this structure is the same as that used by many array processors such as
Capon’s MVDR Processor, the unique feature of this processor is the manner in which
the array weight vector w is calculated. For this processor, the array weight vector is
the solution to a minmax optimization problem where the error ¢ is a measure of the

spatial filter’s ability to pass the desired signal without distortion while rejecting the
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Figure 2-4: Array Processor Structure

interfering signals in a given propagation environment.

2.2.3 The Minmax Array Weight Problem

For any particular array focal point, frequency, array weight vector, and propagation
environment, the error function for the Adaptive Minmax Matched Field Processor
is the a priori mean-squared error in the estimation of Xi(f,z) conditioned on the

characteristics of the propagation environment. That is

€(f,§,w,@ = E[I Xk(fvl) - Xk(fal) ‘2 | 2] (21)
= E[I Xk(f’.z.) - .w..h K(f) |2 I 2],

where the characteristics of the propagation environment are parameterized by the

vector Q

For a given array focal point and frequency, the optimal array weights are defined

Wopt(f,2) = arg ;rel(i:r},rgggce(f,z,w,é), (2:2)

where N is the number of array sensors and @ is the user specified range of the
environmental parameters over which the processor must operate.
Under the assumption stated earlier that the desired signal and the interfering

signals are uncorrelated, (2.1) can be rewritten as

e(f,éyﬁ*:é) = E[Xk(fsi)xz(faé) IQ] - (23)
2 Real(E[X(f,2)X;(f,2) | d]" w) + »* EX(NHX())* | 8] w,
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where the superscript * denotes complex conjugate.

The expectation in the last term of (2.3) is the cross-spectral correlation matrix of
the received signal conditioned on the environmental parameter ¢. The cross-spectral
correlation matrix is the parameterization used by the processor to characterize the
spatial structure of the total signal field, and it is the input to the processor which
enables the processor to adapt to reject unwanted signals. Here, the matrix will not be
treated as a function of the particular environmental conditions or the characteristics
of any particular propagating signal. Instead it wil be treated as a property of the
total signal field. Therefore, the conditioning of the expectation in the last term
of (2.3) is dropped and the actual ensemble cross-spectral correlation matrix, S(f),
is used. In most cases, this ensemble cross-spectral correlation matrix is unknown
to the processor. Therefore, the sample cross-spectral correlation matrix given by
5(5) 2 ik, Y!(£)Y'(f)* will be substituted for S(f). Nothing in the derivation of
the algorithm in the remainder of this chapter depends upon this substitution.

The expectation in the second term of (2.3) can be expressed as

E[X(f,2)X;(f.2) 4]
E[Xk(fag.)xl:(f,l) IQ]

E[Xi(f,2)Xi(f,2) | 4]

The quotient is the signal replica vector defined in Section 1.2 as

a EX(f,2)X;(f,2) | 4]
9$,5,4)= E[Xk(f,2)Xi(f,2) | ]

Therefore, the second term can be expressed as

2 E[Xi(f,2)Xi(f,2) | ¢|Real(¢"(f,2,¢) w) (2.4)

The signal replica vector in this factorization is the means by which the a priori model
of the dependence of the desired signal’s spatial characteristics on the environmental
conditions is incorporated into the processor.

The expression E[Xi(f,2)X;(f,2) | 4] appears in the first term of (2.3) and, as

a result of the factorization in (2.4), will also appear in second term of (2.3). This
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expression is the conditional average power in the desired signal, and will be replaced
by the actual average power in the desired signal o?(f,z) 2 E[Xi(f,2) X (f, 2)].
Given the factorization and the substitutions detailed above, the error criterion can

be expressed as

e(f 2w, 6,0%(f,2) = 0*(f,2) — 20*(f,z) Real(¢*(f, 2, ¢) w) + w* S(f) w, (2.5)

where the dependence of the error on the average power in the desired signal is
explicitly shown.

The optimal array weights minimize the maximum value of this error taken over
the operating range of the environmental parameters. Conceptually, they can be
considered those of a data-adaptive Wiener filter which is robust with respect to
changes in the spatial correlation of the signal to be estimated.

The Adaptive Minmax Processor described in this subsection can also be inter-
preted as an efficient implementation of a bank of MVDR Matched Field Processors,
each using a different assumed value of the environmental parameter vector (¢) and
therefore of the signal replica vector (g( f; z,9)) (Figure 2-5). The range of assumed
values of ¢ is the range of environmental conditions over which the processor is de-
signed to operate. The Adaptive Minmax Processor output is the output of the
MVDR Processor with the largest estimated average power. The derivation of this
interpretation is detailed in Section 3.1 where the processor bank interpretation is

equivalent to the Two-Stage MVDR Matched Field Processor ihterpretation.

2.2.4 The Minmax Array Processing Algorithm

A problem in calculating the solution to the minmax problem in (2.2) is that the error
criterion and therefore the optimal array weights are functions of o%(f, z). However,
the array processor does not have knowledge of the true value of 0?(f, z), but estimates

it to be the sample average power in the output of the weight-and-sum beamformer.
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Figure 2-5: The MVDR Processor Bank
That is,

- L .
5(f,2) = | XWfoix) PP = lgjwhx‘(f)z‘(f)“u = W(Hw.

|

Therefore, the error criterion and optimal array weights depend upon the average
power in the frequency component of interest in the desired signal and the estimate
of this average power depends upon the array weights used by the beamformer. This
interdependence makes it necessary to jointly calculate the optimal array weights and
estimate the average power.

This joint calculation and estimation problem is addressed by requiring that the
average power in the desired signal used when calculating the optimal array weights
weights be equal to the estimated average power in the desired signal resulting from
the use of those weights. The joint array weights calculation/power estimation prob-

lem can be posed as finding w,(f, z,5%(f, 2)) and 6*(f, z) so that

Wopt(f,2,6%(f, 2)) = arg yrgg}, maxe(f, 2,1, ¢, &*(f,2)), (2.6)

34




and

§(f,2) = wh(f, 2,6%(f,2)) $(f) wem(f, 2,8*(f, 2)), 2.7)

where the dependence of the optimal array weights on the average power is explicitly
shown.

A trivial solution to the problem expressed in (2.6) and (2.7) is w,,,(f,2,0) = 0
and 6%(f,z) = 0. The existence of a non-trivial solution and an algorithm for jointly
finding the nonzero w,,(f,z2,6%(f,z)) and &%(f,z) which satisfy (2.6) and (2.7) is
based upon the following theorem, a proof of which is given in Appendix B.

Theorem 2 Let 02 be any real positive number, ® be a compact set
contained in a metric space, ¢(f, z, ¢) be a continuous function on ®, and

2 s 2
Wope(f, 2,0,) = arg min, IélgE(f, z,w,$,0,).

Then for any real non-negative o2, the solution to the problem

2y _ H 2
wo?t(f:iaa ) - a'rg:’zg}v %‘gg‘e(f‘)la w’éva )

is given by
wopt(f, 2, 02) = (02/03) Qopt(f’ FA) 03)‘

Therefore, given w,,(f,2,02) for any real positive o2, the solution to (2.6) can be

expressed as

wo(f,2,6%(f,2)) = (6%(f,2)/02) wope(f, 2, 52). (2.8)

Subsituting (2.8) into (2.7) yields
5*(f,2) = (8*(f,2)/3)? (whie(f, 2, 92) 8(F) wope(f,2,92)). (2.9)
Solving (2.9) for 62(f,z) yields
*(f,2) = (02)? (whye(f,2,52) $(f) wom(f,2,0%)7. (2.10)

The optimal array weights which are consistent with this average power estimate can

be calculated using (2.8). Therefore, the following algorithm can be used to solve the
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joint optimal array weights calculation and average power estimation problem defined

by (2.6) and (2.7).

1. Assign any real, positive value to o2. Calculate w,,(f,z,02) as given by

. 2
Wopt(f,2,03) = arg ;elg}' lgge(f,z, w, $,07).

2. &2(fa E) = (0'3)2 (Qgpt(fv 2, 03) g(f) t—"-opt(f’lv ag))—l
3' wopt(fv 2, &2(.{? g)) = (&2(f1 g)/ag) -u-zopi(f’ 2, 03)

Step 1 can be implemented using any complex minmax approximation algorithm
capable of handling quadratic forms. The development of an efficient algorithm to

solve this particular minmax problem is detailed in Section 2.3.

2.3 Solution of the Minmax Problem

Step 1 of the array processing algorithm developed in Section 2.2 requires the solution
of a quadratic minmax problem. A major impediment to the implementation of min-
max signal processing algorithms has been their relatively high computational com-
plexity. The minmax signal processing solutions which have gained widespread use
are those for which either analytic solutions are available (e.g., the Dolph-Chebyshev
window [22]) or those for which computationally efficient algorithms have been devel-
oped (e.g., real linear-phase minmax filter design using the Parks-McClellan algorithm
[23]). By exploiting the special structure of the quadratic minmax problem contained
in Step 1 of the array processing algorithm, the algorithm developed in this section
to solve the minmax problem is relatively efficient computationally and is guaranteed

to converge in a finite number of iterations.
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2.3.1 Characterization of w,u(f,z,0?)

From Step 1 of the algorithm in Section 2.2, the minmax problem which must be

solved is

2 : 2
Wop(f,2,0,) = arg mig, rgge(f, z,w,$,0;),

where ¢(f,z,w, $,02) is the conditional mean-squared estimation error and can be

expressed as

e(f,2,w, 4,02) = 62 — 20%Real(¢*(f,2,¢) w) + w* §(f) w. (2.11)

The following characterization theorem for the minmax array weight problem states
the necessary and sufficient conditions satisfied by w,,.(f,z,02). A proof of this

theorem is contained in Appendix B.

Theorem 3 Let ® be a compact set contained in a metric space and
¢(f,2,¢) be a continuous function on @. Then a sufficient condition for
w, to be a solution to the following minmax problem

2 * 2
_w.opt(f’ 2, 0’0) = arg :2&1}4 IgEag( E(f, £, W, Q’ Uo),

is that
iJ > 0, (2.12)
and 3
AM(w,) = {,,---,9,} € M(w,), (2.13)
such that
0e H({(8(Nw — o¥e(f,2.8) | ¢ € M(w,)}). (2.14)
A necessary condition for w, to be a solution to the following minmax
problem
2y _ : 2
Wope(f,2,05) = arg i xgeagce(f,z, w, $,0;),
is that

IJe€{1,...,2N +1} (2.15)
for which (2.13) and (2.14) are satisfied.
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(2.14) is equivalent to

J ~
0=3 5 (S(fw. — 02¢(f,2,8), (2.16)
=1
where p; > 0and L, p; = 1. Algebraic manipulation of (2.16) yields the following

expression for w,.

. J
w, = o S(N) Y pig(fizg)

i=1
Therefore, the following corollary to Theorem 3 states an equivalent set of necessary

and sufficient conditions satisfied by w,(f, z,02).

Corollary 1 Let ® be a compact set contained in a metric space and
q(f,2,¢) be a continuous function on ®. Then a sufficient condition for

w, € CN to be a solution to the following minmax problem

Wop(f,2,07) = arg mip, max¢(f, z,w, $,97),

weC" ¢
is that
aJ > 0, (2.17)
IM(w,) = {¢,,.--,8,} C M(w,), (2.18)
and ,
3p,...,00 €ER, p1yo.ps 20, Y pi =1, (2.19)
=1
such that ;
w, = a2S(H) Y pigf.z9) (2:20)

=1
A necessary condition for w, € CV to be a solution to the following min-
max problem

wopt(faz, ‘73) = arg mél‘lv I?eaéxe(fs 2, Lv_’é’ 03),

weC™ 2

is that
3J € {1,...,2N + 1} (2.21)

for which (2.18) through (2.20) are satisfied.

Therefore, if the appropriate set of extremal points and convex weights can be
determined, the optimal array weight vector can be calculated directly. The minmax

problem can thus be reformulated as jointly finding the J, ¢,,...,¢,, p1,...,ps, and
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w, € CV which satisfy (2.17) through (2.20). The key to finding the appropriate
set of extremal points, convex weights, and array weight vector lies in reformulating
the minmax estimation problem as a Wiener filtering problem with the uncertain

environmental parameter treated as a random parameter.

2.3.2 The Least Favorable PMF Random Parameter Framework

From Section 2.1, in the minmax signal processing framework the uncertain environ-
mental parameter is treated as a nonrandom parameter. However, an efficient method
for calculating the optimal minmax array weights can be developed by treating the
uncertain environmental parameter as a random parameter with a particular proba-
bility function and then solving for the minimum mean-squared error array weights
(i.e., Wiener filter weights). As a computational necessity and to ensure that ¢( f, 2, ¢)
is a continuous function on @, the range of the environmental parameter will be sam-
pled (i.e.,® = {4,,...,8,}), and the minmax problem will be solved on this discrete
set of environmental conditions. The issues associated with the effect of this sampling
are treated in Subsection 3.1.4. Therefore, the probability function assigned to the
environmental parameters will take the form of a pmf (probability mass function)

rather than the form of a pdf. The pmf will be denoted by p € RX and is defined by
piSProbability[g = .

Since p is a pmf, it must satisfy

K
pi 2 0 and Zp.'=1.
i=1
These are the same conditions which must be satisfied by the convex weights used to
calculate the points in the convex hull of a set of points and therefore by the weights
which are used to calculate the optimal minmax weight vector in (2.20). This fact
will be used to relate the Wiener filter weight vector to the optimal minmax weight

vector.
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For any pmf and array weight vector, the mean-squared estimation error is

K
e(f,zw,p,0d) SE| XL(f,2) - XLf2D) ) = X pe(frzw 8,02). (2.22)

=1

Substituting (2.5) into (2.22) and carrying out the algebraic manipulation yields

e(f,zw,p,0)) = o) — 24} R!3«3\1((‘2“ pig(fiz,8)'w) +w*S(flw.  (2.23)

=1

Define the Wiener filter weight vector to be

A .
Winmse(f,2,05,p) = arg min e(f,z,w,p,07).
we

Then, unconstrained complex quadratic minimization methods yield

. K
wmmae(fvi’ UZ?B) = 0'3 S(f)—l Z Pi ﬂ(f’iaé.-)' (224)

=1

(2.20) and (2.24) differ only in the respect that in (2.20) the summation is over J
extremal points contained in M(w,) while in (2.24) the summation is over all envi-
ronmental conditions contained in ®. Therefore, if a pmf p can be found such that p;
is greater than zero only if §. € M(Wmmse(f,2,02,p)), then the summation in (2.24)
will effectively be over only the extremal points contained in M(Wym,e(f>2,02,p)).
In this case, the sufficient conditions in Corollary 1 will be satisfied by K, py,...,pxk,
b1r- - byr 20 Lonmaelf 2,07, p).

The key to finding the correct pmf can be discerned by observing the behavior of
the mean-squared error function &(f, 2, Wym,e(f; 2,03, p), p,02) and the conditional
mean-squared error function &(f, 2, Wmmse (S, 2,02,p), ¢,02) as p is allowed to vary.
(fs 2, Wmmae(f, 2,02, p), p,02), which will be abbreviated as &(f, z, Wnmse, P, 02), is
the minimum mean-squared estimation error achievable by any array weights given

the pmf p. That is,

€(f1 2, Wnmees P,0,) = min, &(f,z,w,p,07) .
we
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e(fy 2 Wenmee (> 2, 02, P)» 8, 02), which will be abbreviated as £(f, z, Wnmae(2): & a;),is
the conditional mean-squared estimation error achieved by the Wiener array weights

for the pmf p conditioned on the environmental variable ¢.

Define _U_’opt(f, 2, ip 03) as

Wt f12,8,,0%) E arg min, e(f,2.6,07) = a2 $(f) a(f>2.4,)-

we!

Then, Wmse(f> 2,02, p) can be expressed as

K
Womee(fr2:0%p) = Y Pi Wops(f12,8,,95) -

i=1

Therefore, as pn is increased incrementally and p, is decreased incrementally for
some m and n (p is a pmf and therefore p, must be decreased for some n when py, is
increased for some m), Womse(f»2,02,p) should become more like Wi (f12:9,.,07)
and less like w,,(f,2,8,,02). Therefore, e(f, 2, Womee(P)> 8,,,05) should decrease

and €(f, z, Wmmse(P) Qﬂ,af) should increase. Furthermore, since

K
s(f’&’wmmae’l_)’ 03) = E p‘ e(faiﬁwmmse(z_’)iép 03) ’ (2'25)

=1

£(f, 2 Wenmee, p» 02) should increase if £(f, 2, Wenmse (2): 8,1 92) > €(f,2) Wanmae(P)s 8,1 95)-

With this intuition in mind, consider the following example.

Example: Assume that ¢ is a discrete-valued real scalar variable and
that for some pmf p, &(f, 2, Wmm.e(,): # 0?) is as shown in Figure 2-
6. Then, if we select any extremal point ¢m € M(Wnm.(p,)) and any
nonextremal point ¢n & M(Wmmae(p,)) for which po, > 0, we can increase
Po,. and decrease p,, incrementally. The effect will be that the mean-
squared estimation error &(f, z, Wmmses P, ,02) and the conditional mean-
squared estimation error conditioned on ¢ = ¢, (€(f, 2, Wnmae (P, )s $ny02))
will increase, and the conditional mean-squared estimation error con-
ditioned on ¢ = ¢, (e(f, 2 gmm,,(go),d),.,ag)) will decrease. Further-
more, since &(f, 2, Wmmae(P, ), $,02) will be decreased at the extremal
point, the extremal value A(Wmmse(p,)) Will be decreased. Conceptu-
ally, this process can be repeated until p, = 0 for all nonextremal points
$n € M(W,mse(p,))- When this is the case, the sufficient conditions in
Corollary 1 will be satisfied and Wpmse(p,) Will be the optimal minmax
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e(f, 2, w,..p ). 9.03)

o0, o 6 o

Figure 2-6: Conditional Mean-Squared Estimation Error

array weights. Any further change to p involving an extremal and a
nonextremal point will require lowering the probability corresponding to
the extremal point and raising the probability corresponding to the nonex-
tremal point. This would result in lowering the mean-squared estimation
error €(f, 2, WmmaesP,,05). Thus, the desired p should be that which
maximizes £(f, 2, Wmmaes P,» 92)-

The intuitive result illustrated in the preceding example is formalized in the fol-

lowing theorem, a proof of which is contained in Appendix B.

Theorem 4 Let P be the set of all possible pmfs which may be assigned
to ® and define the least favorable pmf as

A .
By = argmax miy e(f,z,w,p,03) = argr!pea,;w(f,z,wmme(f,z, o2,p),p,07) .

we
(2.26)
Then

Ja .
Wop(f,2,0) = arg min, axe(f,2,2,,0) = Wnmee(f,2,90:8;) -
weC™ ¢

This theorem states that the least favorable pmf is the pmf for which the minimum
mean-squared estimation error is maximized and the Wiener filter weight vector for

the least favorable pmf is also the optimal minmax array weight vector.
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2.3.3 Solving for the Least Favorable PMF

By combining (2.23) and (2.24) and carrying out algebraic manipulation, the mini-

mum mean-squared estimation error can be expressed as

K X K
e(frzw,p,0l) = o2 (1-02 (X pig(f,2,8))* S(H' (X pig(f.2.9)) - (2:27)

=1 =1

Defining the matrix Q(f,2) as Q(f,2) £ (g(f,2,8,),---,9(f,2,8,)], (2:27) can be

rewritten as

e(f,zw,p,0%) = o (1—0? P'Qf, 2)'S(F) ' Q(f, 2)p) -

Finding the p to maximize this quantity is equivalent to finding the p to minimize
the matrix quadratic product in the second term. Therefore, (2.26) can be rewritten

as

a : 2y st R&( £ -1
P, = argglea,gt;lg,w(f,z,w_,g,%) = argmipp Q(f,2)*S(f)'Q(f,z)p. (2.28)

Since Q(f,2)*S(f)~'Q(f, z) is a Hermitian matrix and p is a real vector,

P'Q(f,2)"8(£)'Q(f, 2)p = p' Real(Q(f£,2)*S(N)™'Q(f,2) p.-

Defining the real matrix T'(f, z) 2 Real(Q(f, _z_)"g( )'Q(f, 2)), explicitly defining
the set P, and letting the vector ¢ = [1,...,1]%, the optimization problem in (2.28)

can be expressed as the following real constrained quadratic minimization problem.

= in p' T 2.29
p, = argmin pT(f,2)p (2:29)

e'p=1

A solution to (2.29) is guaranteed to exist because p* T'(f,z) p is a continuous
function of p and the set P is a compact set. Since S(f) is a positive definite Her-

mitian matrix, Q(f,2)*S(f)1Q(f,z) is a positive semi-definite Hermitian matrix.
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Therefore, T'(f, 2) is a positive semi-definite symmetric matrix and p* T'(f,2) pis a
convex function of p. There are a number of algorithms available for solving linearly
constrained convex quadratic minimization problems such as (2.29). An efficient al-
gorithm, based on complementary pivot theory, was proposed by Lemke in [24] and is
described in a more readable form in Chapter 11 of [25]. The basic intuition behind
the use of the complementary pivot theory to solve a quadratic problem is that the
necessary and sufficient conditions, known as the Kuhn-Tucker conditions for p_to
be a solution to the problem in (2.29), are largely a set of linear equations. The

Kuhn-Tucker conditions can be written as [25)

p, >0, g’go =1, Jue R, and 3p >0 s.t. (2.30)
y_‘eo = 0 and (2.31)
v - T(f,z)p, +ue =0. (2.32)

Given that p > 0 and v > 0, (2.31) requires that if p,, > 0 then v; =0 and if v; >
0 then p,, = 0. This condition is known as the complementary slackness condition;
Po; and v; are known complements of each other and together they are known as
a complementary pair. The primary fact is that, with the exception of (2.31), the
Kuhn-Tucker conditions are a set of linear equations (equalities and inequalities) and
any solution to this set which also satisfies the complementary slackness condition
will be a solution to (2.29).

If 3 € {1,...,K} st. T(f,2)i < T(f,2);i Vj # i, then letting p; = 1, p; =
0Vj#: vi=0, vj =T(f,2);i — T(f,2)i Vj #1i,and u = T(f,2z); will satisfy the
Kuhn-Tucker conditions. If such a solution is not apparent, the complementary pivot
algorithm can be used to find a solution.

(2.30) through (2.32) are not in a form which allows direct solution using the
complementary pivot algorithm. The algorithm presented in [24] and [25] does not

allow the inclusion of the unrestricted variable u and the vector e which are associated

with the linear equality constraint that g'go = 1. However, with some algebraic
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manipulation, the Kuhn-Tucker conditions can be rewritten as

p>0, and 35> 0 s.t. | (2.33)
&'p = 0 and (2.34)
f’. - M(f’.%)é = Z’.(fai)’ (235)

where p' = [U1, Pog, Poss -+ sPog ] a0d & = [poy, V2, v, ...,vk ]. Using the following
notation for T'(f, 2)
T2 = [Tu(f,_z_) ) ]

i(f,2) T(f,2)

r(f, 2) is given by

1 .
- [z(f,g)-rn(f,z)g]’

and M(f,z) is the following matrix

Y
T e M) |

and M(f,z) = T(f,2) + Tu(f,z) e’ — ef (f,2) —£(f,2) ¢'. Any p and § which satisfy
(2.33) through (2.35) will vicld a v and p_for which (2.30) through (2.32) will be
satisfied for some u; and any v and p_for which a u exists, satisfying (2.30) through
(2.32), will yield a p and © which satisfy (2.33) through (2.35) . Therefore, a solution
to (2.30) through (2.32) can be found by solving (2.33) through (2.35); and (2.33)
through (2.35) are in a form for which a solution can be found directly using the
complementary pivot algorithm.

The complementary pivot algorithm used to find a solution to (2.33) through (2.35)
is referred to as Scheme I in [24]. The algorithm finds a solution by introducing a
slack variable z, and a vector with positive entries d and then conceptually solving

the problem

min z, s.t. (2.36)
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20, 8, p 20, (2.37)
#p =0, and (2.38)
& - M(f,2)p—dz = r(f,2). (2.39)

Since a solution to (2.33) through (2.35) is guaranteed to exist, the solution to (2.36)
through (2.39) will be z, = 0 with a § and p which satisfy (2.33) through (2.35).

The details of the complementary pivot algorithm can be examined in [24] or
[25]. In concept, the complementary pivot algorithm is very similar to the simplex
method [25] for solving linear programming problems. The algorithm is solving for
2K +1 real nonnegative variables and at the solution to (2.36) through (2.39), z = 0.
(2.39) is a set of K linear equations and is satisfied at each iteration of the algorithm.
By construction, at each iteration of the algorithm, at least K + 1 of the unknown
variables equal zero. Using the terminology from the simplex method, the term “non-
basic variables” will refer to K + 1 of the variables which equal zero. The term “basic
variables” will refer to the other K variables. Collectively, the basic variables are
referred to as the basis. It is not required that every basic variable be non-zero. It is
only required that every non-basic variable equals zero.

At each iteration of the algorithm, a new basis is selected in a manner which
guarantees that (2.37), (2.38), and (2.37) are satisfied. When the variable z leaves
the basis, which guarantees that z = 0, the algorithm terminates. The fundamental
difference between the simplex method and the complementary pivot algorithm is that
in the complementary pivot algorithm, only one variable from each complementary
pair can be in the basis at any given time. This is enforced to guarantee that (2.38)
will be satisfied.

The critical property of the algorithm for the purpose this work is its convergence
property. The essential points of the convergence proof for the complementary pivot
algorithm [26] are that, at each iteration the basis changes, no basis can be visited
by the algorithm more than once, and there are a finite number of possible bases.
These three points lead to the conclusion that the algorithm must terminate in a

finite number of iterations.
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The following two claims, for which proofs are contained in Appendix B, are
necessary in order to analyze the convergence of the algorithm in a more rigorous

manner.
Claim 1 M(f,z) is a co-positive-plus matrix.
Claim 2 The set of equations (2.33) through (2.35) are consistent.

Given Claims 1 and 2, Theorem 11.1.8 on page 446 of [25] states that, if each almost
complementary basic feasible solution to (2.37) through (2.39) is nondegenerate, then
the complementary pivot algorithm will terminate in a finite number of iterations
with a solution to (2.33) through (2.35).

The outstanding condition on which this finite convergence property of the algo-
rithm depends is that each almost complementary basic feasible solution to (2.37)
through (2.39) is nondegenerate. In [26] this is referred to as the system being non-
degenerate. Lemma 4 on page 616 of [26] states that almost every vector d will yield
a nondegenerate system. Therefore, in practice, system degeneracy is usually not a
problem. However, should the degeneracy of the system be a concern, a modification
of the complementary pivot algorithm can be used (Section 7 of [26]). Given Claims 1
and 2, Theorem 2 on page 618 of [26] states that the modified algorithm will converge
in a finite number of iterations with a solution to (2.33) through (2.35). A clear
explanation of the modified algorithm is given on pages 80 and 81 of [27]. The form
in which the modified algorithm is presented in [27] is slightly different from the form
used in [26], but the two algorithms are identical.

Conceptually, the modification to the complementary pivot algorithm is that the
system of linear equalities (2.39) is modified to

I

- M(fa&)é-izo = .'.‘.(f,é)+1§, (240)

where I is the identity matrix, § = [6, 6%,...,6K]!, and 6 is an arbitrarily small pos-
itive constant which remains unspecified throughout the execution of the algorithm.
This small perturbation to (2.39) can be shown to always create a nondegenerate sys-

tem (2.37), (2.38), and (2.40). In practice, the modification requires simply that the
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scalar comparisons of the updated ratios f!%ﬁ in Step 1 of the original complemen-
tary pivot algorithm (page 440 of [25]) be replaced by lexicographic comparisons of
the updated vector ratios 5—(1;—5,2—1‘, where r(f, z) I; denotes the i** row of the updated

righthand side matrix [r(f, z) I].

2.3.4 Least Favorable PMF form of the Array Processing
Algorithm

Given the least favorable pmf, the optimal minmax array weights can be calculated by
applying Theorem 4 and (2.24). The power estimate can be calculated using (2.10).
These can be combined to yield the following three-step algorithm for implementing
the Adaptive Minmax Matched Field Processor which does not require an a priori

assumption about the average signal power.

1. Use the (modified) complementary pivot algorithm to calculate

— : t
py = agmin pT(f,2)p.

e'p=1

2. 6%(f,2) = (g}, T(f,2) )™
3. wop(f>2,6(f,2)) = 6*(f,2) $()* Q(f,2) p,

2.4 Minmax Estimation Error Bounds

In Section 2.1, a general framework for minmax signal processing was described and
a theorem characterizing optimal minmax estimators was developed. However, this
characterization required that the estimator be parameterized by a vector w and that
the problem be reduced to finding the optimal parameter vector w. This parameteri-
zation requires that the “optimal” estimator lie within a particular class of estimators
(e.g., linear estimators). While the resulting estimator is the best from within the cho-

sen class of estimators, it is usually not possible to make a definitive statement about
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how the estimator’s performance compares to that of arbitrary unspecified classes of
estimators. Therefore, it is useful to develop lower bounds on the performance (as
measured by the error functions € and A) of any estimator. While not explicitely
calculating any bounds, this section proposes an approach to the development of such
performance bounds for the case where ¢ is the conditional mean-squared estimation
error. In the development of this approach, the form of the optimal minmax estimator
and an achievable lower bound are derived.

The problem for which the bound is proposed is the estimation of a scalar param-
eter § € R based upon observations z € X where X is the observation space. Given
any estimator ¢ : X — R, the mean-squared estimation error of 8 is assumed to
depend on some environmental parameters ¢ € ®. In the literature, these parameters
are also referred to as nuisance parameters. The bound developed will be a lower

bound on the extremal value

A(g) £ max e(g,9)

for the case where

e(9,¢) = E[(0 - g(z))* | 4], (2.41)

the conditional expectation is taken over all § and z; and g is any function mapping
X into R.

The approach to bounding A(g) is developed using the least favorable pmf frame-
work where the environmental parameter ¢ is considered to be a random parameter.
This is the same framework used in Section 2.3 to develop an efficient algorithm for
solving the minmax problem. As in this earlier development, the set of possible values
for the environmental paramters ® is sampled to yield a finite discrete set and the
vector p is the pmf for ¢ on this set. In the earlier development, the sampling was
needed for computational reasons as well as to ensure that the error measure and its
gradient were both continuous on ®. However, here the sampling is needed only for
computational reasons.

The following theorem, which is needed to prove Theorem 6, provides some insight

49




into the proposed approach to bounding A(g). A proof of this theorem is contained
in Appendix A.
Theorem 5 Let £(g,$) be any performance measure for the estimator
g given the environmental condition ¢. Let ® = {¢1,...,4x} and let
peP={peR¥|p>0andep=1} be any pmf assigned to ¢ on ®.

Let £(p,g) = YK pie(9,¢:) and let B(p) be any global lower bound on
&(p, g)- That is,

< min_&(p,g)-
" < i, )
Then, B(p) is also a lower bound on A(g). That is,

. gg?.i.li{ Alg) 2 B(p)-

The implication of Theorem 5 is that, if (g, #) is the conditional mean-squared
estimation error as given in (2.41), then ¢(p,g) is the mean-squared estimation error
and the traditional methods of bounding €(p,g) (e.g., the Cramer-Rao bound, the
Weiss-Weinstein bound, etc.) can be applied to bounding A(g). Since the inequality
B(p) < &, holds for any pmf, p can be chosen to maximize the bound being used
B(p). However, this may not be useful unless the derived bounds are reasonably tight.

The following theorem, a proof of which is contained in Appendix A, specifies the
optimal minmax estimator and an achievable bound on A(g), and sheds some light
on the tightness which can be expected of the bounds developed using the approach
in the preceding paragraph.

Theorem 6 Let ® = {1,...,4x}, P={p€ R¥ |p>0and ¢ p=1},
and ¢, : X x P — R be given by
K 1pi pois(z | $)E | 7, 64)
TEipips(zld)
where p;j4(z | ¢:) is the conditional pdf or pmf of the observation z given

that the environmental parameter ¢ = ¢;. Let (g, ¢) = E[(0—g(2))? | ¢].
Let the least favorable pmf p, s € P be defined as

9o(z,p) = (2.42)

a & '
Elf = arg r’r’leagczp, E(go(x,z), ¢i)'

=1

Then
9(z,p,) = argg:?irhrgeage(y, ),
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and the quantity
K
2 pisi €(90(5 py,)s 60)

i=1

is an achievable lower bound on
Ag) = max (9, 9)-

If ¢ is considered a random parameter with the pmf p, then (2.42) can be rewritten

as

g.(z,p) = E[8]3],

and g,(z, p) is the minimum mean-squared error estimator of § given z. ¢(p, g) is the
mean-squared estimation error achieved by g(z) given the pmf p; and £(p, g.(z, p)) is
the minimum achievable mean-squared estimation error given the pmf p. Therefore,
Py is the pmf for which the minimum achievable mean-squared estimation error is
maximized, hence the term least favorable pmf.

In most situations, it will be impractical to compute the least favorable pmf p, P
the optimal minmax estimator g,(z,p, f), or the associated achievable minmax es-
timation error bound A, = K, piy, E[(6 — go(z,p, f))z | ;] . However, A, is an
achievable minmax bound and equals the achievable mean-squared estimation error
bound given the least favorable pmf. Therefore, it is reasonable to expect that the
bound development approach outlined earlier (i.e., choosing the pmf to maximize
a mean-squared estimation error bound such as the global Cramer-Rao bound) will

yield minmax bounds which are at least as tight as the mean-squared estimation error

bound. The further investigation of this approach is left for future work.
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Chapter 3

Analysis and Interpretation of the
Adaptive Minmax Matched Field

Processor

The analysis of the algorithm developed in Chapter 2 is complicated by the lack of
illustrative analytical solutions to the minmax problem. The analysis of the charac-
teristics of the Adaptive Minmax Matched Field Processor presented in Section 3.1 is
based upon the interpretation of the processor as a Two-Stage MVDR Matched Field
| Processor and is qualitative rather than quantitative in nature. This analysis moti-
vates a modification to the definition of the signal replica vector which is presented
in Subsection 3.1.3. A quantitative analysis of the algorithm based upon numeri-
cal simulations is presented in Section 3.2. The cases which are considered involve
propagation in a deterministic ideal waveguide, a deterministic horizontally-stratified
ocean, and a random ideal waveguide. The results for random ideal waveguide are
presented in Subsection 3.2.3. They motivate a further modification of the definition
of the signal replica vector and show clearly the shortcomings of the MVDR, Bartlett,
and Adaptive Minmax Processors when signal coherence over the array aperture is
reduced. Finally, Section 3.3 contains a brief analysis of the computational complex-
ity of the modified complementary pivot algorithm used to solve the minmax problem

in Step 1 of the Adaptive Minmax Matched Field Processor.
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Figure 3-1: The Two-Stage MVDR Matched Field Processor

3.1 MYVDR Interpretation of the Adaptive Min-
max Matched Field Processor

The Adaptive Minmax Matched Field Processor developed in Chapter 2 can be in-
terpreted as the combination of an algorithm which calculates an effective replica
vector, which will be denoted by g¢_ 0 and a MVDR Matched Field Processor [9, 11]
which uses g, g 38 the replica vector of the desired signal (Figure 3-1). For several
reasons, this interpretation is useful. First, it relates the minmax array processor to
an array processor whose properties are well-understood. Second, it makes possible
a qualitative analysis of the properties of the minmax array processor. Finally, the
interpretation motivates a modification of the replica vector normalization convention
used in the minmax array processor, which improves the performance of the proces-
sor. Subsection 3.1.1 details the new interpretation of the minmax array processor.
Subsection 3.1.2 uses this interpretation to analyze some properties of the minmax
array processor while Subsection 3.1.3 motivates a modification to the minmax array
processor as developed in Chapter 2 and details the modified algorithm. Finally, Sub-
section 3.1.4 uses this interpretation to formulate guidelines for the required sampling
of ® in creating the discrete set of replica vectors over which the minmax optimiza-
tion is carried, and discusses some factors which effect the selection of the uncertainty
range of environmental parameters over which the processor must operate.

The structure of the MVDR Processor [9] is identical to the structure the Adaptive

Minmax Processor as shown in Figure 2-4. The array weights of the matched field
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implementation of the MVDR Processor [11] in a deterministic medium are given by

Wopt = argwnel(izx}vm" S(Hw (3.1)

such that gh(f s 2y 20)1_0. = 1,

where the replica vector is defined in the traditional manner as described in Section 1.2
and ¢_is the parameterization of the assumed environmental conditions. The solution

to (3.1) is given by )
5()'e(f,24)

Yot = (o1 8) S q(frm8)

and the resulting estimate of the average power in the signal emitted by the source

(3:2)

at the array focal point is

&*(f,2) = (¢"(f,28,) S() " ¢(f,2,8,) " (3.3)

The relationship between the Adaptive Minmax Matched Field Processor and the
MVDR Matched Field Processor which is developed in this section is built upon the
similarity between the form of the solutions in (3.2) and (3.3) and the solutions for
the weights and estimated average power in Steps 2 and 3 of the algorithm detailed
in Subsection 3.1.1 which implements the Adaptive Minmax Processor. In comparing
these solutions, it is understood that two processors use different definitions of the
signal replica vector, and that under some signal and environmental conditions and

vector normalization conventions, the two definitions are equivalent.

3.1.1 The Two-Stage MVDR Matched Field Processor

The interpretation of the Adaptive Minmax Matched Field Processor as the Two-
Stage MVDR Matched Field Processor shown in Figure 3-1 is motivated by noting

that the algorithm detailed in Subsection 2.3.4 can be rewritten as
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1. Use the (modified) complementary pivot algorithm to calculate

2, = argmin p' Q"(£,25()7'Q(f:2) p.

g’.z=l

2. 6%(f,2) = (g}, Q"(£,25(f)'Q(f,2) p,,)
3. wo(f,2,6%(f,2)) = 6*(£,2) 8(f)™ Q(f,2)

The set {Q(f,z)p | p > 0 and ¢'p = 1} is the convex hull of the set of column
vectors in Q(f, z) (i.e. {¢(f,2,8,),---,9(f>2,¢,)}). Defining Q(f, ) to be this set of

replica vectors (column vectors of Q(f,z)), the following algorithm is equivalent to

the Adaptive Minmax Matched Field Processor.

1. Use the (modified) complementary pivot algorithm to calculate

= arg min 7 g(f)"g .
41 (Q(f,2))

Less

2. 6%(f,2) = (g%, S(£) g,

S(1) g,

52 =
3 won(f,2,6%(f,2)) = Ggyie
Steps 2 and 3 of this algorithm are the MVDR Matched Field Processor given the

replica vector g, it

3.1.2 Analysis of the Two Stage MVDR Matched Field Pro-

cessor

From Steps 1 and 2 of the Two-Stage MVDR Matched Field Processor, g, ‘1 is the
vector contained in H (Q( 5 g)) which maximizes the power passed through the re-
sulting MVDR Matched Field Processor. A principal characteristic of the processor
is brought to light by this interpretation.

The processor treats any energy in any of the rank one subspaces spanned by the

replica vectors in H (Q( 1 g)) as energy of the desired signal and attempts to pass
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as much of that energy as possible through the MVDR Matched Field Processor.
The processor does this by first hypothesizing a rank one signal subspace. It chooses
the basis for this subspace (g,, ) from within H (Q( £ _z_)) to maximize the energy in
this subspace as measured by the MVDR Matched Field Processor. This hypothesis
of a rank one signal subspace spanned by some replica vector in H (Q( 1 g)) causes
performance problems in a random propagation medium as demonstrated by the
results in Subsection3.2.3).

This characteristic of the processor is seen explicitly when Step 1 of the algorithm

is written as
N

_ . -1,k |2
where ()\;, v;) are the i** eigenvalue and eigenvector, respectively, of S(f). Assume
that all vectors in H (Q( £ g)) have approximately the same norm (the effect of vec-
tors with widely different norms is analyzed in Subsection 3.1.3). Since S(f)~! is
Hermitian, its eigenvectors will comprise an orthonormal set which spans C". There-
fore, *N, | vtq|*=|g[®. Since all g€ H (Q( f, g_)) have approximately the same
norm, "N, A\7! | v2¢ |? can be minimized only by adjusting the relative magnitudes
of the projections of ¢ on each of the eigenvectors. Within the constraints imposed
by ‘H (Q( f, _z_)), the solution g, y will have a minimal projection on the eigenvectors
whose corresponding eigenvalues are small (i.e., A\;! is large) and a larger projection
on the eigenvectors whose corresponding eigenvalues are large (i.e., ;! is small).
Conceptually, this corresponds to the processor maximizing the projection of 4.4, 00
the portion of the subspace of the received signal (desired signal plus noise) with the
largest average power.

The characteristics of the processor and the tradeoffs which it makes in calculating
q,,, can be seen more clearly by considering the following special case. Assume
that the desired signal is a deterministic narrowband signal and that the medium is

deterministic. Then the subspace of the desired signal will have rank one and the
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cross-spectral correlation matrix of the received signal will be

S() = o28a(f) + 0%, ¢

Here, Sn(f) is the normalized cross-spectral correlation matrix of the noise, ¢_, is
the actual replica vector of the desired signal, and o2 and o2 are the average power
of the noise and the desired signal, respectively. For this example, it is assumed that
5(f) = 8(f).

Several concepts and quantities are useful in analyzing the processor for this special
case [13]. The first of these is the array gain denoted by G. Considering the array
processor to be a spatial filter, the array gain is a function of the filter weights. It is
defined as the ratio of the signal to noise ratio at the output of the filter to the signal
to noise ratio at the input of the filter where the signal to noise ratio is defined as

SIN = f;— For the special case under consideration, the array gain is given by

(3.4)

In Section 3.2, the rate of decay of the array gain as a function of changes in
g,., Will be used as a measure of the robustness of a processor. It can be shown
that the linear filter weights which maximize the array gain are given by w,,,, =
Sa(f)'q,,- Substituting these weights into (3.4) yields Gmaz = ¢, Sa(f)™' ¢,,,

and the maximum achievable signal to noise ratio at the output of a linear filter as
2

(S/N)maz = 2 ¢b, Sa(f) " ¢,

A useful measure of the similarity of two vectors is based on the generalized angle
between the vectors. For any positive-definite Hermitian matrix C, the inner product
between the vectors a,b € CV can be defined as a* C b. Given this inner product, the

cosine-squared of the generalized angle between a and b is defined as

Igthlz
(¢"Ca) (B CH)

-—) =)

cos*(a, b; C) =
The cosine-squared will always be greater than or equal to zero and less than or equal
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to one. It will equal one if b is a scalar multiple of @ and will equal zero if @ and b
are orthogonal with respect to the inner product defined earlier. Treating the inner
product and the cosine-squared as measures of the similarity of @ and b, the inclusion
of the matrix C places greatest weight on the similarity or dissimilarity of g and b
in the subspace spanned by the eigenvectors of C' with the largest eigenvalues, and
places little emphasis on the similarity or dissimilarity in the subspace spanned by
the eivenvectors with small eigenvalues. These measures and concepts provide the
tools needed to analyze scme aspects of the performance of the processor.

Using the identity
(A+b8)7 = A7 - A7BB AT (1 + B'ATD) 7,

the adaptive replica vector calculation problem can be expressed as

= ar min kS (f)? M — cos? o SN ).
ty = w8 @S0 (Clr=tt - costgug8u0™)

(3.5)
From this expression, it can be seen that, when the maximum achievable signal to
noise ratio is low, the processor will use most of the available degrees of freedom to
minimize g: ” Sa(f)™? 4y (i.e., select ¢ 14 to lie in the noisy subspace) and will place
little emphasis on maximizing cos*(g, ,, g, ;3 Sn(f)™") (i.e., select g, . to match g,
as closely as possible in the relatively noise-free subspace. A low maximum achievable
signal to noise ratio could be the result of either a low input signal to noise ratio or
a low Gpa; (i.e., the actual replica rector 4,.; lying in a noise subspace with a large
average power). If the latter is the cause, then the expected difference between ¢, 15
and ¢ . which results from ¢ " lying in the noisy subspace will be small because
g, lies in the noisy subspace and the processor may be able to choose ¢ s b0 lie
in the noisy subspace and be close to ¢ ,. However, if the former is the cause and
4., does not lie in the noisy subspace, the expected difference between ¢ 15 and ¢_,
will be larger. This increased mismatch is the price which is paid for a significant

amount of noise power existing in a rank one subspace spanned by a replica vector
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in H (Q( fs _z;)) However, the results developed by Cox [13] indicate that for cases
such as this, where the input signal to noise ratio is low, the array gain will not
decrease significantly as the mismatch between the actual and effective replica vectors
increases. The large amount of noise power which will be passed through the filter
in this case is consistent with the processor selecting ¢, " to pass as much power as
possible through the resulting MVDR linear filter.

If the maximum achievable signal to noise ratio is high, the processor will place an
increased emphasis using the available degrees of freedom to maximize cos*(g__,, g, e S=(f)71).
Thus, as the maximum achievable signal to noise ratio increases, the processor will
reduce the mismatch between ¢__, and ¢_ " The tendency of the processor to place an
increased emphasis on increasing cos?(g, ,, ¢, 5 Sa(f)™!) as the maximum achievable
signal to noise ratio is increased is verified numerically in Section 3.2.

The effect of the adaptive replica vector calculator on the array gain of the result-

ing processor can be seen by rewriting (3.4) as [13]

Gz COSz(gm,g,”; Sn(f)_l)
1 + HGmac(2 + HGmas) (1 — cos*(q, 14, ;i Sn()™))

Gley,) =

Here, the array gain is expressed as a function of the g, 15 because the array weights
are a function of ¢, 4 Consider the effect on the array gain if f% is increased ,
q,;; does not change, and cos’(gm,geﬂ;su(f)"l) # 1.0. In this case, G(g,,,) will
decrease. However, from the preceding analysis, the processor adjusts to an increase
in ‘;’g- (and the corresponding increase in (S/N)maz) by adjusting g, ¢y to increase
cos*(q, ,» 4, y I;S"( f)7'). This adjustment reduces the mismatch between g¢_ 4 and
Less and therefore reduces the loss in array gain.

The preceding example provides a qualitative analysis of the Adaptive Minmax
Matched Field Processor using the interpretation of the processor as a Two-Stage
MVDR Matched Field Processor. The assumption throughout this analysis has been
that all of the replica vectors contained in (Q( f, g)) have approximately the same

norm. Should this assumption be violated, the characteristics of the processor may

differ greatly from what would be expected based upon this analysis. The effect of
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replica vectors with widely different norms on the performance of the processor and a
modification to the algorithm which mitigates this effect are covered in the following

subsection.

3.1.3 Replica Norm Considerations and a Normalization

Modification

In defining the signal replica vector in Section 1.2, the normalization convention was
that the k** term equals one where k is the number of the reference sensor. This con-
vention was adopted to facilitate the factorization of the cross-correlation function
E[X(f,2)X;(f,2) | ¢] into o(f, 2)q(f, z, ¢) where o%(, z) is the average power in the
desired signal as received at the reference sensor. When using large aperture arrays
in the ocean environment, it is possible for different environmental conditions to yield
different ratios of the average power in the desired signal at the reference sensor to
the norm of the cross-correlation vector E[X(f,z)X;(f,2) | 4]. For example, if the
receiving array is a large vertical array and a deterministic Normal Mode propaga-
tion model is used (see Section 4.3 for a discussion of the normal mode propagation
model.), then different environmental conditions will result in different mode shapes
and there will be different distributions of signal energy as a function of depth. This
will result in the ratio of the average power at the reference sensor to the norm of the
cross-correlation vector varying with different environmental conditions. Therefore,
the normalized cross-correlation vectors (replica vectors) for different environmental
conditions may have different norms.

To understand the effect that replica vectors with different norms may have on

the adaptive replica vector calculation problem, note that (3.5) can be expressed as

= arg min

M (Q(f, 2)) 1 [ lql?

q

" S.(f) ' q ( (S/N)maz +1
Leff

($/N)maz c0s*(q, . & Sn(f)“)ﬂ :

(3.6)
The factor in the brackets [ ] is independent of the norm of ¢, depending upon

only the direction of g. The processor will jointly adjust the norm and the direction
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Figure 3-2: The Convex Hull of Replicas with Different Norms

of ¢ within the constraints imposed by H (Q( £ g)) to balance the minimization of
the norm-squared of ¢ and the factor in the brackets, respectively. Consider the
case shown in Figure 3-2, where ¢ € R? and the norm of one replica vector in Q
is significantly less than the norm of the other replica vectors in Q. In this case,
the adaptive replica vector calculator will tend to select g, 44 t0 lie in the vicinity of
¢(42), regardless of the direction of g ,. This will greatly limit the adjustment of
the direction of ¢, 14 reducing the ability of the processor to adapt to different actual
replica vectors, and will cause mismatch between g, 14 and ¢_ ..

The array gain (3.4) is a function of the direction of the array weight vector rather
than its norm. The direction of the array weight vector (Step 3 of the algorithm in
Subsection 3.1.1) is a function of the direction of the ¢, . but not its norm. Therefore,
the array gain is a function of the direction of the ¢, 11 rather than its norm. Therefore,
it is desirable for the processor to adjust the direction of ¢_ 14 without regard to
the resulting norm of ¢, e The ability to adjust ¢, 11 is improved significantly by
modifying the definition of the replica vector so that the replica vectors have a norm

of one. That is, define the replica vector as

q(f,28) 2EIX(f,2)X;(f,2) | 8/ | EIX(f,2)X;(f,2) | 4]].
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Figure 3-3: The Convex Hull of Replicas with Unit Norms

As a result, 0(f, z) no longer has the strict interpretation as the average power in the
desired signal as received at the reference sensor. However, in numerical simulations,
this modification significantly increased the ability of the adaptive replica vector
calculator to adjust ¢, 44 to0 track ¢, as the latter changed. There was a smaller
mismatch between ¢_ . and ¢_, and an improved performance of the processor.

A second, related modification, which also improved the performance of the pro-
cessor is motivated by considering Figure 3-3, which shows the convex hull of four
replica vectors, all of which have been normalized to have a norm of one. Clearly,
even though the vectors which define the convex hull (i.e., the vectors in Q(f,z))
have a norm of one, the convex hull contains vectors which have norms of less than
one. However, from Subsection 3.1.2, the function of 9ot is to define a rank one
signal subspace in which the processor estimates the average power using the MVDR
Matched Field Processor. Since the subspace spannedby g, 15 is independent of the
norm of ¢_ 9 the resulting estimated average power should be independent of the

norm of ¢, " This desired property is accomplished by normalizing g, 45 to have a
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norm of one. This normalization is implemented by modifying Steps 2 and 3 of the

algorithm. The resulting algorithm is

1. Use the (modified) complementary pivot algorithm to calculate

2y, = agmin p' QY(f,25(A)7Q(f,2) .
e'p=1
where all the columns of Q(f, z) are normalized to have a norm of one.

2 oy B, QUDQUDE,
2. 8%/, 2) = ka8t ;g

52(42) 8()7 QU 5,
(2}, "1 QU2 p, )

3. wou(f,2,6%(f,2)) =

As with the two modifications detailed previously in this subsection, Q*(f, _z_)g( NQf,2)
can be replaced by Rea.l(Q"(f,g)g(f)‘lQ(f,g)) in Steps 1 and 2 of the algorithm.
For the same reason, Q*(f,z) Q(f,z) can be replaced by Real(Q"(f,z) Q(f,z)) in
Steps 2 and 3.

The preceding two modifications do not entirely eliminate the norm of ¢ sy 882
factor in selecting the direction of the effective replica vector (i.e. ]‘—:;5-;1!-,) Referring to
Figure 3-3, it is clear that even though the replica vectors in @(f,2) have unit norm,
vectors with norms less than one will be contained in ‘H (Q( f, 5)) Therefore, while
the effect of vector norms is greatly reduced by normalizing the replica vectors, the
selection of g, . according to (3.6) will be biased towards the minimum norm area of

the convex hull. This is verified numerically in Subsection 3.2.1.

3.1.4 The Range and Sampling of the Environmental Pa-

rameter Set @
In Section 2.3, a method of solving the minmax problem in Step 1 of the algorithm
was developed which required the range of environmental parameters over which the

processor is designed to operate to be sampled to yield a finite set ® = {¢,..., 4, }.

The interpretation of Step 1 of the processor as an adaptive signal replica calculator
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which selects ¢, . € M (Q(f,g_)) where Q(f,z) 2 {a(f,2,6,) |i=1,...,K} provides
some insight into the desired location of the samples of the operating range which are
included in the finite set ®. Using the term extreme point tobrefer to any point in
a set which is not representable as the convex combination of two other points in the
set, a convex hull is completely defined by its extreme points. Therefore, nothing is
gained by including a point in @ for which the corresponding replica vector is not an
extreme point of H (Q( I g)) Referring to Figure 3-2, ¢(41), ¢(42), and g(43) are
the extreme points of the convex hull.

Referring to Figure 3-3, suppose that the operating range of the processor includes
the continuous set of points whose replica vectors fill the continuous arc on the circle
between g(¢;) and g(¢4). Then, the convex hull of these replica vectors includes
the region bounded by the arc between ¢(4;) and g¢(44) and the chord subtended
by that arc (i.e., the straight line connecting g(¢:) and ¢(¢4)). This convex hull
can be approximated closely by including several environmental points in ¢ whose
corresponding replica vectors are spaced evenly along the arc between ¢(4;) and g(¢4)
(¢2 and ¢3 in the example shown). However, with further analysis, it can be seen
that this step is unnecessary.

Any point in the convex hull shown in Figure 3-3 which does not fall on the chord
connecting ¢(¢:) and ¢(¢4) can be expressed as a point on that chord multiplied
by a real number greater than one. Therefore, referring to (3.6), the term in the
brackets will be the same for both the point not on the chord and the corresponding
point on the chord. However, the norm-squared term will be smaller for the point on
the chord. Therefore, g, will always lie on the chord connecting g(¢1) and g(¢4).
The solution from within the convex hull of the continuous set of replica vectors will
therefore always fall within H ({g(cﬁ;), _q_(¢4)}). Thus, no performance will be lost if
® = {41, d4}.

This analysis can be extended to higher dimension replica vectors to determine the
number and the location of the samples of the continuous environmental parameter set
required to insure that the sampling process does not result in a loss in performance.

The requirement which must be met is that the replica vectors at the selected samples

65




should define a convex hull which is a subset of the convex hull of the continuous set of
replica vectors and which contains a set of points which is guaranteed to contain g, 't
(such as the chord in the two-dimensional example above). One problem which may
occur in higher dimensions but does not occur in two-dimensions is that the required
convex hull may have an infinite number of extreme points. Therefore, it can only
be approximated by the convex hull of a finite set of replica vectors. If the actual
replica vector falls outside the approximating convex hull, then mismatch between
9esy and g, will occur. The resulting MVDR processor will tend to reject (filter
out) the desired signal and will suffer the same performance degradation problems
which are characteristic of the MVDR Matched Field Processor in the presence of
environmental mismatch [13, 17]. The significance of this degradation will depend on
the extent to which g, falls outside of H (Q( £ _z_)) Numerical results illustrating
the dependence of processor performance on the sampling density of the set ® and
the performance degradation which results when ¢__, falls outside of H (@( £ g)) are
presented in Subsection 3.2.2.

The performance degradaton which will occur if ¢, falls outside of H (Q( f, g))
highlights a conflicting requirement in selecting the range of the environmental pa-
rameters over which the processor is designed to operate. As described in Subsec-
tion 3.1.2, the processor will treat any portion of the received signal which falls within
any rank one subspace spanned by a replica vector in H (Q( fs g)) as desired signal,
and will select ¢, ;¢ Yo pass as much of this signal as possible through the resulting
spatial filter. If ® is large, there will tend to be a wide range of rank one subspaces
spanned by the replica vectors in H (Q( £ g)) In this case, the processor may select
4.4 to lie in a noisy subspace which contains very little of the power of the desired
signal; and the spatial filter will pass a lot of noise and little of the desired signal. If
® is small, then H (Q( 1 _z_)) will tend to be small and the probability that the actual
replica of the desired signal will not fall within H (Q(f, g)) will increase. In this
case, mismatch will occur and, as stated in the preceding paragraph, the tendency of
the processor will be to reject (filter out) the desired signal resulting in performance

degradation. Therefore, it is important to balance the selection of a large operating
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range to avoid filtering out the desired signal with the selection of a small operating
range to avoid passing a lot of noise through the filter.

The tradeoff in the selection of ® between filtering out as much noise as possible
and avoiding the rejection of the desired signal can be analyzed using the probability
of false alarm (Pr) and probability of detection (Pp) performance measures. Assume
that a fourth stage is added to the Adaptive Minmax Processor to perform a threshold
hypothesis test to estimate whether or not a point source is present at the array focal
point. That is, letting Hp be the hypothesis that there is no point source at the array
focal point (i.e., the received signal consists of just noise) and H; be the hypothesis
that there is a point source at the array focal point (i.e., the received signal consists of
the desired signal plus noise), the hypothesis test selects between the two hypotheses

using the decision rule

H, : &2(.[’.‘1) <7
H, : &2(f$£) >

where 7 is the decision threshold. Pr is defined as the probability that the test will
select H; when no point source is present at the array focal point and Pp is defined
as the probability that the test will select H; when there is a point source present at
the array focal point.

6%(f, z) is calculated with the following two steps:

- . h & -1
Lo = 8 {Blrz? "0 2

and

h
X 2444
§(f2) = I
Zes SUN7 44
Let S, be the noise cross-spectral covariance matrix and Sg,(¢) be the cross-spectral

covariance matrix of the desired signal given the environmental conditions ¢. Then,
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Pr and Pp can be written as

A
Pr = Prob( - gf”gc_flf >0 |S(f) = S,.)
%es SUN™ 4egy

Lersess
Pp = Prob 5 S(f) = Sa+Sa
b ro (thf S(H)1g,, > 1 |8(f) d (Q))

| ¢|= 1V g€ Q(f,z2) implies that | ¢ | < 1V q € H(Q(f,2)). Therefore, defining

—4 1 2
lqm £ H (mdflf,.z.)) lql%

the following relationship holds Vg_ e

' q Imm < g;]fgcff < _ 1 .
ggj}' S(f) 1 -eff h ‘_I:ff S(f)—l _(lc” - ngf S(f)"l gcfj

Therefore, Pr and Pp can be bounded by

Pr < Pr,, = Prob(3g€ H(Q(f,2)) s.t. *S(f)'g < n7* | S(f) =

Pr > Pr, = Prob(3g € H(Q(f,2))s:t- " 8(f)7'g < g2 n™ | S(f) =

Pp < Pp,, = Prob(3g € H(Q(f,2)) s.t- 4" 8(f) "¢ < 07! | S(f) = Sa+Sus(9)

Pp > Pp, = Prob(3g€ H(Q(f,2)) s.t. 4" 8(f)'q < | gl2ian™ | S(f) = Su+Su(9)

Let &, Q(f,2), | ¢ ouins Pruss Prie> Pours Pws a0d &', Q(£,2), | ¢ [Bins Phiys Pl
Pp,,» Pp,, be two sets of operating ranges of environmental parameters, replica vec-
tors, and associated bounds. Assume that ® C ®’. Then H(Q(f,2)) C H(Q'(f,2))
and | ¢ |2:,2] ¢ lmm Therefore, Pr,, < Pg, and Pp,, < Pp,. However, since
g 2=l g |mm, the same conclusion cannot be drawn about the corresponding lower
bounds. Therefore, as the operating range of environmental parameters is increased,
the upper bounds on the probabilities of false alarm and detection are increased.

However, as stated at the end of Subsection 3.1.3, if ® is increased to the point that

| ¢ |2.;, becomes small, the mismatch between %, and g, g will tend to increase when
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the SNR is low. This increased mismatch will result in a reduction in ambiguity
function of the processor at the source location and therefore reduce the probability
of detection. This analysis is supported by the numerical results shown in Figure 3-16
in Subsection 3.2.1. Therefore, at low SNRs, the probability of detection is not likely

to increase as much as would be inferred from the increase in Pp_, as ® is increased.

3.2 Numerical Analysis of the Adaptive Minmax
Matched Field Processor

The analysis of many characteristics of the Adaptive Minmax Matched Field Pro-
cessor is improved considerably by the inclusion of numerical results. A principal
reason for this is the lack of illustrative analytical solutions to Step 1 of the array
processing algorithm. Several numerical examples are included here to assist in the
analysis of different characteristics of the algorithm. Subsection 3.2.1 presents results
characterizing the performance of the algorithm in a deterministic ideal waveguide.
In this case, the uncertain environmental characteristic is the depth of the waveguide.
Subsection 3.2.2 presents results which characterize the performance of the algorithm
in a deterministic horizontally-stratified ocean with an arctic sound speed profile.
Here, the uncertain environmental characteristic is the sound speed profile in the
surface layer of the ocean. Finally, Subsection 3.2.3 presents results describing the
performance of the algorithm in a randomly time-variant ideal waveguide where, as
before, the uncertain environmental characteristic is the depth of the waveguide. In
this case, the random perturbations to the ocean are perturbations to the sound speed
structure as presented in Chapter 4. These results are presented to allow comparison
of the performance of the processor in deterministic and random media.

In all the numerical simulations, an important parameter is the signal to noise
ratio. For the purpose of these simulations, the signal to noise ratio is defined as
the ratio of the average power per array sensor in the desired signal to the average
power per array sensor in the spatially white sensor noise. For the case where there is

propagating background noise, the background noise to sensor noise ratio is similarly
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defined. Thus, if the SNR is 20 dB and the background noise to sensor noise ratio is
10 dB, then the signal to background noise SNR is 10 dB. In all cases, the average
power measurements are taken after the temporal processing by the discrete-time
Fourier transform.

None of the results presented were generated with Monte Carlo simulations. In
all cases, it is assumed that the processor has perfect knowledge of the cross-spectral
correlation matrix. That is, $(f) = S(f). All units of distance measurement used in

this section are metric.

3.2.1 The Deterministic Ideal Waveguide

The first set of numerical results were generated using an ideal waveguide model
of the ocean and a normal mode representation of the propagating signals. (See
Section 4.3 for an introduction to the normal mode representation of signals). In
addition, the ocean is assumed to be a deterministic (i.e., time-invariant) medium.
The salient parameters of the simulation are that the ocean is assumed to be an
isovelocity waveguide with a sound speed of C(2) = 1500 m/s where C(2) is the
time-invariant depth dependent component of the sound speed defined in Chapter 4,
and an unknown but constant depth H between 290 meters and 310 meters. The
sea surface is assumed to be a free surface and the ocean bottom is assumed to be
infinitely rigid. The source is assumed to be a deterministic complex exponential
with a frequency of 20 Hz. In addition, the source is assumed to be sufficiently far
from the array so that the horizontal propagation of the modes can be modeled by a
complex exponential rather than a Hankel function.

With these assumptions, the waveguide supports eight propagating modes. The

mode shapes are a function of depth z and given by
én(z) = sin(ky,2) n = 1,...,8,

where ky, = (_2%-}{1)_7: is the vertical wavenumber of the n** mode. The mode shape

#n(2) should not be confused with the environmental parameter ¢ . The propagating
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signal at the range r, depth z, and time ¢ is given by (4.12)

z(r,2,t) = &/t i (ka,r)~Ye 8 sin(kv, Zsource) Sin(kv, 2),
n=1
where kg, = \/(k’ — k%) is the horizontal wavenumber of the n** mode and k = %ﬁ
is the wavenumber of the signal.

The receiving array is a nine-element vertical array with the top element at 30
meters depth and the bottom element at 270 meters depth. The inter-element spacing
is therefore 30 meters. For all the examples in this subsection, the sources are assumed
to be at a range of 50 km from the array and there is assumed to be no propagating
background noise (i.e., the received signal consists of spatially white sensor noise
and narrowband signals emitted by point sources). In addition, in this section, the
localization problem is assumed to be a one-dimensional (depth only) problem. That
is, it is assumed that the true range to the source(s) is known and the processor is
trying to determine the source depth(s). These assumptions are made to simplify
the presentation of the results and the analysis of the salient characteristics of the
processor.

For the first results in this subsection, a single source is placed at a depth of
150 meters with an SNR of 10 dB. The purpose of these results is to illustrate the
effect which the ocean depth uncertainty has on the MVDR Matched Field Processor,
the Bartlett Matched Field Processor, and the Adaptive Minmax Matched Field
Processor, and to provide a qualitative comparison of the resolution of each processor.
Figures 3-4a through 3-8a show the depth ambiguity functions generated by each
processor for the cases where the actual ocean depth is 290 meters; and Figures 3-4b
through 3-8b show the depth ambiguity functions generated by each processor for the
cases where the actual ocean depth is 310 meters.

The results in Figure 3-4 are generated using a MVDR Processor assuming that the
ocean depth is 290 meters. When the ocean depth assumption is accurate (Figure 3-
4a), the processor generates a sharp peak in its ambiguity function at the true source

depth; when the depth assumption is inaccurate (Figure 3-4b), the peak level of the
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ambiguity function drops by approximately 17 dB and there is no single significant
peak. The sidelobe suppression of the perfectly matched processor (approximatly
18 dB below the main peak level) is good and the peak in the ambiguity function
is sharp. Figure 3-5 shows the complementary results generated using a MVDR
Processor assuming that the ocean depth is 310 meters.

The results in Figure 3-6 are generated using a Bartlett Processor which assume
that the ocean depth is 290 meters. As was the case with the MVDR Processor,
the perfectly matched Bartlett Processor (Figure 3-6a) generates a single significant
peak at the true source depth; the ambiguity function generated by the mismatched
Bartlett Processor (Figure 3-6b) has no single significant peak. However, there are
three significant differences in the ambiguity functions generated by the processors.
First, the sidelobe suppression of the Bartlett Processor is not nearly as good as that
of the MVDR Processor with the peak sidelobe level for the perfectly matched Bartlett
Processor only 7 dB below the main peak level (compared to 18 dB for the MVDR
Processor). Second, the mainlobe width for the perfectly matched Bartlett Processor
is much wider than that generated by the MVDR Processor. Finally, the mismatched
Bartlett Processor does not experience the significant loss in the peak level of the
ambiguity function as was experienced by the mismatched MVDR Processor. These
ambiguity function peaks, generated by the mismatched processors, are sidelobes in
the source depth/ocean depth plane. Thus, the low peak levels in the ambiguity
function of the mismatched MVDR Processor are characteristic of the low sidelobe
levels of MVDR Processor and the high peak levels in the ambiguity function of
the mismatched Bartlett Processor are characteristic of the high sidelobe levels of
the Bartlett Processor. Figure 3-7 shows the complementary results generated by a
Bartlett Processor which assumes that the ocean depth is 310 meters.

Finally, the results in Figure 3-8 are generated using the Adaptive Minmax Pro-
cessor. In this case, the processor assumes that the ocean depth may be between
290 and 310 meters. With only this approximate knowledge of the ocean depth, the
ambiguity function generated by the processor shows a single significant peak at the

true source depth for the case where the ocean depth is 290 meters and the case where
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the ocean depth is 310 meters. The sidelobe suppression (approximately 15 dB) is
comparable to that of the perfectly matched MVDR Processor and is significantly
better than that of the perfectly matched Bartlett Processor. The same observation
can be made about the sharpness of the mainlobe. This final observation leads to the
qualitative conclusion that the resolution of the Adaptive Minmax Processor is com-
parable to that of the perfectly matched MVDR Processor and significantly better
than than of the perfectly matched Bartlett Processor. This conclusion is supported
quantitatively by results contained later in this subsection..

Figure 3-9 shows the ambiguity functions of the perfectly matched MVDR and
Bartlett Processors and the Adaptive Minmax Processor for the case where the actual
ocean depth is 310 meters, the source is located at 150 meters depth, and the SNR is
0 dB. These results are presented to illustrate that, in general, the ambiguity functions
do not change qualitatively when the SNR is lowereed to 0 dB. One significant change
is that the peak level of the ambiguity function of the Adaptive Minmax Processor is
no longer equal to that of the perfectly matched MVDR and Bartlett Processors as
is the case when the SNR is 10 dB. The peak level in this case has dropped to about
2.5 dB below that of the MVDR and Bartlett Processors. This loss in peak level will
be analyzed later in this subsection.

As demonstrated with the preceding results, the response of the Adaptive Minmax
Processor in the environmental parameter space (in this case ocean depth) is consid-
erably broader than that of the MVDR Processor. That is, the Adaptive Minmax
Processor will detect signals from a wider range of environmental parameters than
the MVDR Processor. Qualitatively, the signal replica vector is a relatively smooth
function of both the source location and the environmental conditions. Therefore,
since both processors characterize signals by their replica vectors, it is reasonable to
conclude that the response of the Adaptive Minmax Processor in the source location
space would be broader than that of the MVDR Processor. The Multiple Constraints
Matched Field Processor [17] makes use of this fact and broadens the response of
the processor in the environmental parameter space by intentionally broadening the

response of the processor in the source location space. The result is a reduction in
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the sensitivity of the processor to environmental mismatch and a corresponding re-
duction in the spatial resolution of the processor. Therefore, an issue of concern is
how much spatial resolution must be sacrificed to create the broad response of the
Adaptive Minmax Processor in the environmental parameter space.

The next results are presented to allow quantitative comparison of the resolution of
the perfectly matched MVDR Processor, the perfectly matched Bartlett Processor,
and the Adaptive Minmax Processor. The actual ocean depth for this simulation
is 310 meters. Two equal strength sources, each with a 10 dB SNR, are located
at a depth of 155 + Ay, meters where 2A 4., is the depth separation between
the sources. Characteristic ambiguity functions generated by the Adaptive Minmax
Processor for this two-source case are shown in Figure 3-10. In Figure 3-10a, at a
source separation is 8 meters, the processor is unable to resolve the two sources. In
Figure 3-10b, at a source separation is 24 meters, the processor is able to resolve the
sources.

As a measure of a processor’s ability to resolve sources, the response ratio, defined
as 10log,q (%%l), is used. For the case shown in Figure 3-10a, where there is a single
peak in the ambiguity function between the two source locations; &2 is the peak
value of the ambiguity function between the two source locations. For the case shown
in Figure 3-10b, where the processor resolves two distinct peaks in the ambiguity
function; 62 is the minimal value of the ambiguity function between the two source
locations. For the case shown in Figure 3-10a, where there is a single peak in the
ambiguity function between the two source locations; 62 is the smaller of the values
of the ambiguity function evaluated at the two source locations. For the case shown
in Figure 3-10b, where the processor resolves two distinct peaks in the ambiguity
function; 62 is the smaller of the two peak values. Therefore, if the response ratio is
greater than zero, the processor is unable to resolve separate peaks in the ambiguity
function. If the response ratio is less than zero, the processor resolves two distinct
peaks in the ambiguity function and the depth of the dip in the ambiguity function
between the peaks equals the response ratio in dB. Thus, the lower the response ratio

at any source separation, the better the ability of the processor to resolve sources
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with that separation.

Referring to Figure 3-11, the MVDR and Adaptive Minmax Processors are able
to resolve separate peaks for source separations greater than 17 and 18 meters, re-
spectively, and the Bartlett Processor requires approximately 28 meters separation
in order to be able to resolve separate peaks. The depth of the dip between source
peaks is between .1 and 2 dB less for the Adaptive Minmax Processor than it is for
the MVDR Processor. The depth of the dip for the Bartlett Processor is approxi-
mately 7 dB less than it is for the Adaptive Minmax and MVDR Processors. Thus,
the resolution of the Adaptive Minmax Processor is slightly less than than that of
the perfectly matched MVDR Processor but it is significantly greater than that of
the perfectly matched Bartlett Processor.

The preceding results provide a means of assessing the capabilities of the Adap-
tive Minmax Processor. The following two sets of results illustrate characteristics of
the processor in order to better understand how the processor functions. The second
stage of the processor (Figure 2-4) is a linear spatial filter, the coefficients of which
are calculated in Step 3 of the array processing algorithm. For each array focal point,
a different set of weights are calculated. Just as a frequecy response is defined for any
set of weights of a linear temporal filter, a source location/environmental condition
response can be defined for each set of weights of the linear spatial filter. In the
ideal waveguide example, where source location is parameterized by the source depth
:nd the environmental conditions are parameterized by the ocean depth, the de-
sired response is the source depth/ocean depth response. Letting X(z, H) be the

snapshot of a signal emitted by a source at the depth z given the ocean depth H, the

|w"X (z,H H
IX(z,H)| °

This magnitude response is the gain which the spatial filter applies to a signal emitted

source depth/ocean depth response for the weights w is given by W(z, H) =

by a source at depth z and which propagates through an ocean with depth H.

For the results shown in Figures 3-12 through 3-15, a single source is located at 250
meters depth with an SNR of 20 dB. Figure 3-12 shows the source depth/ocean depth
response of the array weights generated by the Adaptive Minmax Processor when the

array focal point is 175 meters depth and the actual ocean depth is 290 meters. The
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magnitude response evaluated at an ocean depth of 290 meters (Figure 3-12a) has a
sharp null at the source depth of 250 meters. This is consistent with the processor
attempting to null the signal emitted by a source at the depth of 250 meters which
propagates through an ocean of depth 290 meters. The magnitude response evaluated
at an ocean depth of 310 meters (Figure 3-12b) has no sharp null at the source depth of
250 meters. This is consistent with the fact that the received signal has no component
which propagated through an ocean for which depth was 310 meters. Hence, there is
no signal with a replica vector characteristic of this point (250 meters source depth,
310 meters ocean depth) to cancel. Figure 3-13 shows a complementary set of results
for the case where the actual ocean depth is 310 meters. Here, the sharp null appears
in the response evaluated at an ocean depth of 310 meters but does not appear in the
response evaluated at an ocean depth of 290 meters.

Figure 3-14 shows the source depth/ocean depth response of the array weights
generated by the Adaptive Minmax Processor when the array focal point is 250 meters

and the actual ocean depth is 290 meters. The response evaluated at an ocean depth
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of 290 meters (Figure 3-14a) is close to one at the source depth of 250 meters. This is
consistent with the interpretation of the spatial filter as a Two-Stage MVDR Processor
where the filter response at the point corresponding to the effective replica vector
equals one, and is also constitent with the conclusion in Subsection 3.1.2 that the
effective replica vector will be very close to the actual replica vector at high SNRs.

The response evaluated at an ocean depth of 310 meters (Figure 3-14b) is not close
to one which is also consistent with the above interpretation. Since the received signal
contains no component which propagated through an ocean of depth 310 meters, the
signal power which the processor detects at this point is small. Thus g, " is not
forced to be near the replica vector for this point, and the response at this point is
not constrained to be close to one. Figure 3-15 shows a complementary set of results
for the case where the actual ocean depth is 310 meters.

The final results in this subsection allow an assessment of how the difference in the
norms of the replicas contained in H (Q( f, g)) can adversely affect the performance
of the Adaptive Minmax Processor at low SNRs. These results were generated with a
source at 250 meters depth and an actual ocean depth of 310 meters. The focal point
of the Adaptive Minmax Processor is 250 meters depth. For this particular case,
where the noise consists of only spatially white sensor noise, (3.6) can be rewritten

as

. o (N§§+1 ’ I))
4.4 = 218 min q "3 — cos’(q, O
1M (Q(f, 2)) N3 ‘

As the SNR decreases, the first term in the parenthesis increases, the reduction of the
norm of ¢_ 15 is emphasized, and the reduction of the mismatch between ¢_ " and g_,
(i.e. increasing cos®(g, PRL I)) is deemphasized. Therefore, cos?(g, 179 Daets I) should
decrease as the SNR decreases. Figure 3-16a supports this conclusion.

Figures 3-14a and 3-15b show that, at a high SNR, the source depth/ocean depth
response of the weights generated by the Adaptive Minmax Processor equals one
when the array focal point is the source location and the response is evaluated at

the actual source depth and the actual ocean depth. However, when the SNR is

decreased, Figure 3-16b shows that the response evaluated at the actual source depth
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and actual ocean depth drops below one. This drop can be partially attributed to
the increase in processor mismatch as measured by the difference between ¢, 11 and
4,.,» Which results from a decrease in SNR; this is illustrated in Figure 3-16a. The
increased mismatch and resulting drop in the magnitude response partially accounts
for the drop in the peak level of the ambiguity function of the Adaptive Minmax

Processor which was discussed earlier and illustrated in Figure 3-9.

3.2.2 The Arctic Ocean

The second set of numerical results were generated modeling the ocean as a deter-
ministic horizontally-stratified medium with the arctic sound speed profile shovs{n in
Figure 3-17. The dominant characteristic of the sound speed profile is the strong
surface duct created as a result of the location of the sound speed minimum at the
surface. Propagating sound will be refracted to the surface and tend to stay in the
duct close to the surface as it propagates. The sound speed profile at depths greater
than or equal to 85 meters is assumed to be known to the processor. The sound speed
in the top 85 meters of the water column is assumed to vary in a pseudo-linear fash-
ion (i.e., 5(%}7 varies linearly with depth) between an unknown value at the surface
and a known value at the depth of 85 meters. Therefore, the sound speed profile is
completely parameterized by the surface sound speed C(0) and @ is the set of pos-
sible values for C(0). The salient parameters of the simulation are that the ocean
depth is 3800 meters, the sea surface is assumed to be a free surface, and the ocean
bottom is assumed to be a soft bottom so that no bottom reflected waves are able
to reach the array sensors. The array is an 18 element vertical array with the top
element at a depth of 60 meters and the bottom element at a depth of 570 meters
(inter-element spacing is 30 meters). All of the results shown here were generated
with a single omnidirectional 20 Hz source located at a depth of 190 meters and a
range of 250 km from the array. In all cases, the range of the surface sound speed
given to the Adaptive Minmax Processor (®) is from C(0) = 1430.75 meters/second
to C(0) = 1432.25 meters/second.

The noise field consists of both sensor noise and surface-generated background
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noise. Consistent with the surface noise model in [35], the surface noise is modeled
as generated by a horizontal sheet of stochastic monopole sources which are spatially
uncorrelated and located 0.5 meters below the surface.

Figures 3-18 through 3-21 show the ambiguity functions for the Matched and the
Mismatched MVDR Processors, the Matched Bartlett Processor, and the Adaptive
Minmax Processor. In all cases, the actual surface sound speed is 1431 meters/second,
the SNR is 20 dB, and the background noise to sensor noise ratio is 10 dB. Therefore,
the signal to background noise SNR is 10 dB. The Mismatched MVDR Processor
operates with an assumed surface sound speed of 1432 meters/second resulting in a
1 meter/second mismatch in surface sound speed. The first figure for each processor
shows the ambiguity function evaluated on a course grid (45 meters vertical spacing,
2 km horizontal spacing) over the range of 10 to 1000 meters depth and 150 to 300 km
range. The second figure for each processor shows the ambiguity function evaluated
on a much finer grid (5 meters vertical spacing, 250 meters horizontal spacing) over
the range of 140 to 240 meters depth and 241 to 259 km range.

A common feature of all of the ambiguity functions is the range-extended band
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of elevated response in the upper 300 meters of the ocean. In other numerical ex-
periments not detailed here, it is indicated that when the source is removed, the
ambiguity functions in this upper layer of the ocean for the Matched MVDR and
Adaptive Minmax Processors drop approximately 3 to 4 dB in the regions away from
the source location and drop approximately 17 dB at the source location. The am-
biguity functions for the no-source case shows levels in the upper 250 meters of the
ocean to be approximately 4 dB above those in the ocean below 350 meters depth
for both the MVDR and the Adaptive Minmax Processors. Therefore, the elevated
response in this region is partially due to the inability of the processors to resolve
the source location in range and partially due to the presence of surface-generated
background noise. The Matched Bartlett Processor shows a comparable ambiguity
function in the no-source case in the upper layer of the ocean. In the lower layer of
the ocean for the no-source case, the level of the ambiguity function for the Bartlett
Processor is only 1 to 2 dB below that in the upper layer, which is consistent with the
inferior depth resolution of the Bartlett Processor when compared to the MVDR and
the Adaptive Minmax Processors. When the source is added, the ambiguity function
in the entire upper layer increases by api)roximately 14 db; the ambiguity function
in the lower layer increases by approximately 4 dB. Therefore, the high level of the
ambiguity function of the Bartlett Processor in the upper layer of the ocean is due
primarily to the poor range resolution of the Bartlett Processor (i.e., high sidelobes).

The ambiguity functions for the Matched MVDR Processor (Figure 3-18), the
Matched Bartlett Processor (Figure 3-20), and the Adaptive Minmax Processor (Fig-
ure 3-21) have global maxima at the true source location at a normalized level of
approximately 0 dB. The Mismatched MVDR Processor (Figure 3-19) has a global
maximum at a depth of 185 meters and range 250.25 km at a normalized level of
-1.15 dB. The slight mismatch of 1 meter/second in surface sound speed results in a
slight offset of the peak location and a loss of 1.15 dB in the peak response of the
MVDR Processor. Consistent with the spatial resolution results in Subsection 3.2.1,
the mainlobe of the Adaptive Minmax Processor is slightly broader than the mainlobe

the MVDR Processor and considerably narrower than the mainlobe of the Bartlett
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Processor.

The array gain defined in Subsection 3.1.2 is a good measure of a processor’s ability
to separate a desired signal from the noise in which it is embedded. Figure 3-22 shows
the array gain of the Matched and the Mismatched MVDR Processors, the Matched
and the Mismatched Bartlett Processors, and the Adaptive Minmax Processor as a
function of SNR for several surface sound speeds when the array focal point is the
source location. In all cases, the mismatched processors operate with an assumed
surface sound speed of 1432 meters/second and the background noise to sensor noise
ratio is 10 dB. In all the figures, the independent variable is source to background
noise SNR rather than the source to sensor noise SNR. The array gain shown has
been normalized so that the gain of the Matched Bartlett Processor equals one.

For all SNRs and surface sound speeds shown, the array gain of the Adaptive
Minmax Processor is less than the array gain the Matched MVDR Processor and
greater than the array gain of the Matched MVDR Processor. As the amount of the
mismatch between the surface sound speed assumed by the mismatched processors
and the actual surface sound speed increases, the gain of the Mismatched MVDR
Processor falls when compared to the Matched MVDR Processor and the Adaptive
Minmax Processor. Asthe SNR increases, a loss of array gain in the Adaptive Minmax
Processor results from the small mismatch between ¢_ 11 and g__. An interesting note
is that, for small amounts of mismatch between the assumed and the actual surface
sound speeds, the gain of the Mismatched Bartlett Processor is greater than that
of the Matched Bartlett Processor. This result would be impossible in a spatially
white noise field because the Matched Bartlett and the Matched MVDR Processors
maximize the array gain when the noise field is spatially white. The