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Abstract

This thesis develops a framework for low-complexity communication over channels with feedback.
In this framework, which is referred to in the thesis as the compressed-error-cancellation frame-
work, data are sent via a sequence of messages: the first message contains the original data; each
subsequent message contains a source-coded description of the channel distortions introduced on
the message preceding it. The usefulness and flexibility of the framework is demonstrated by ap-
plying it to a number of fundamental feedback communication problems.

The framework is first used for coding over known single-user channels. For discrete mem-
oryless channels with complete, noiseless feedback (DMCy's), a coding scheme exploiting low-
complexity lossless source coding algorithms is developed, and the associated encoder and decoder
are shown to use a number of computations growing only linearly with the number of channel inputs
used (linear complexity). The associated error exponent is shown to be optimal in an appropriate
sense and implies that capacity is achievable. Simulations confirm the analytically predicted behav-
ior. For the class of channels with memory known as discrete finite-state channels with complete,
noiseless feedback (DFSCy's), the framework is used to develop linear-complexity coding schemes
performing analogously in terms of rate and reliability to the schemes developed for DMCy's.

The framework is then used for coding over unknown DFSCy's. A linear-complexity universal
communication: scheme whose rate varies with the quality of the realized channel is developed and
analyzed. The asymptotic rate and reliability characteristics of this universal scheme are shown to
be similar to those of the schemes developed for known channels.

An extension of the compressed-error-cancellation framework is developed for discrete mem-
oryless multiple-access channels with complete, noiseless feedback and leads to linear-complexity
coding schemes achieving rates on the frontier of the feedback-free capacity region.

Finally, the compressed-error-cancellation framework is applied to the problem of coding for
channels with noisy and partial feedback. The scheme developed for DMCy's is modified to in-
corporate Slepian-Wolf coded feedback, resulting in a linear-complexity, capacity-achieving coding
scheme with partial, noiseless feedback. This modified scheme, of which the ARQ protocol is
shown to be a special case, is then used as an outer code in a concatenated coding arrangement;
with a forward error-correcting (FEC) code used as the inner code, a framework emerges for inte-
grating FEC coding with feedback coding, leading to a broad class of coding schemes using various
amounts of noiseless feedback. Preliminary investigations on partial-feedback multiple-access sce-
narios and noisy feedback scenarios are also discussed.
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Chapter 1

Introduction

Communication systems are charged with the task of sending data or information from cne place to
another'. A block diagram emphasizing certain elements essential to most communication systems
is shown in Figure 1-1. In this figure, the source generates the raw information to be transmitted.
This information may be speech or video signals, text, computer programs, or a variety of other
data. The encoder takes the source data and processes it so that it is suitable for transmission over
the channel. The channel may be, for example, a telephone link, a radio link, or an underwater
acoustic link. It may deterministically and/or randomly distort the data transmitted over it. The
decoder then processes the output of the channel to try to recover the raw information generated by
the source.

The developments in this thesis are concerned only with the inner three blocks of Figure 1-1
— encoder, channel, and decoder. We assume that the source always generates independent binary
digits. Because of this assumption, our results are most relevant for communication systems in
which the true source is first transformed into such a binary source. An entire branch of information
theory. known as source coding theory, is devoted to this transformation. Yet we should always
keep in mind that communication systems that require this initial transformation are a subset of
all p:»ssible communication systems and may therefore exclude the best possible system, however
“best” may be defined. Nevertheless, the assumption that the true source is initially transformed
into a binary source is widely used, traditional, and most importantly alilows great simplification of
the design and analysis of communication systems.

Shannon [53] developed a powerful mathematical theory, now called information theory, for
communication systems. The theory has two major branches, source coding theory, mentioned
above, and channel coding theory. As we show in the following chapters, the two branches can
hardly be considered separate, but strictly, the work herein lies within channel coding theory, be-
cause it concerns the inner three blocks mentioned above.

In channel coding theory, a channel consists of an input, an output, and a probabilistic relation-
ship between the two. The channel is “used” over time by modulating its input — that is, the inputs
are varied with time in a way that depends on the information to be sent. Discrete-time channels, to
which we restrict our attention throughout the thesis, allow the input to the channel to change at dis-
crete times; the output also changes at the same times. While many real channels allow modulation
of the input in continuous time, these channels can often be converted to discrete-time channels.

! Sometimes storage media are considered communication systems that transfer data from one time to another.
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Figure 1-1: Block diagram of a canonical communication system.

Perhaps the most basic example of a noisy channel, a channel that randomly distorts its input, is
the binary symmetric channel (BSC). A BSC allows inputs with values O or 1 and has outputs with
values O or 1. An input of 0 becomes 1 with some probability € and an input of 1 becomes a 0 with
the same probability. The input passes through undistorted with probability 1 — €. The inputs are
“flipped” independently, making this an example of a memoryless channel.

Even a novice to channel coding theciy can probably imagine that one could convey to another
the value of a single binary digit (bit) acvoss a binary symmetric channel very reliably by repeatedly
sending that bit. That is, n 0's might be put in to the channel if the value of the bit to be conveyed is
0, and n 1's might be put in if the value to be conveyed is 1. To determine whether the value being
conveyed is O or 1, one could observe the corresponding n outputs of the channel, count the number
of 0's and 1's in the output sequence and estimate the value to be 0 if there are more O's than 1's
and estimate the value to be 1 otherwise. If the estimate is wrong, then a decoding error is said to
occur. As n increases, the probability of decoding error decreases. But if we use this procedure to
send each of many bits generated by a source, then as n increases, it takes a longer time to send the
bits. Because we send one bit per n channel uses, we say the rate of the communication system is
1/n, the rate being the number of bits we send per channel input we use. In this example, the rate
goes to zero as the probability of error goes to zero.

Remarkably, Shannon [53] showed that for any channel in a particular class of channels — a
broad class — there is a number C, known as the channel capacity, such that for any rate less than
C, an encoder and decoder can be designed so that the probability of decoding error is arbitrarily
small. Instead of the rate going to zero as the probability of error goes to zero, the rate can remain
constant. Shannon also showed that the probability of error cannot go to zero if the rate is above C.

Shannon showed that this behavior could be achieved by using an appropriate codebook. A
codebook is a set of sequences, each of which corresponds to a message. When the source generates
a message, the corresponding codebook sequence, or codeword, is put into the channel. The decoder
tries to identify the codeword after the channel distorts it and subsequently matches the codeword to
a message. Shannon showed that one can construct a codebook with an arbitrarily small probability
of decoding error. But the length of the codewords in the codebook, the blocklength, must increase
as probability of decoding error decreases. It was subsequently shown (e.g., [23]) that the probabil-
ity of decoding error decays exponentially with blocklength, but that the rate of decay depends on
the rate of the codebook. As the rate approaches the channel capacity, the probability of decoding
error decays more and more slowly, demanding longer blocklengths.

But encoding and decoding of codebooks with long blocklengths seem to require vast compu-
tational resources. If the codebook has rate R and blocklength n, then there are 2% codewords
in the codebook. Unless the codebook has some special structure, such a codebook requires about
n2"® memory elements to store, and the same number of computations to decode with minimum
probability of error. As n becomes very large, the computational resources of any known computer
are quickly exceeded.

Unfortunately, Shannon gave no constructions of specially structured, easily decodable code-
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books for use on a given channel. In fact, he gave no codebook at all—he simply showed that an
appropriate codebook exists. As a result, ever since Shannon put forth his celebrated coding the-
orem, researchers have struggled to find codebooks that attain the promised performance, but can
also be decoded with reasonable amounts of computational resources.

Researchers have met with limited success. Justesen codes [32] and more recently Spielman
codes [56] are two notable examples of codes with polynomial computational complexity?> and
exponentially decaying error probabilities. In fact, the encoding and decoding computational com-
plexity of Spielman codes is linear in the blocklength. But neither Justesen codes nor Spielman
codes give arbitrarily low error probabilities at rates arbitrarily near capacity. Convolutional codes
with sequential decoding {44] form another class of low-complexity encoding/decoding schemes.
The decoding process suffers from a random amount of computation, which in turn requires large
amounts of storage to obtain exponentially decaying error probability. Using a framework he called
concatenated coding, Forney [21] gave a class of codes with polynomial computational complexity
and error probabilities decaying exponentially with blocklength at any rate below capacity. How-
ever, at rates near capacity, as we discuss in Section 2.6, the computation required by concatenated
codes is still far too high for practical implementation. Thus, researchers are still searching for
low-complexity encoding/decoding systems achieving rates near capacity with arbitrarily low prob-
abilities of decoding error. This thesis develops a framework for designing such systems under
special conditions, namely, when feedback is available.

1.1 Feedback in Commumnication

The availability of feedback in a communication system — i.e., a channel from receiver to transmit-
ter through which the receiver passes the transmitter its observations — generally enables schemes
for communicating over the forward channel to have lower computational complexity, higher re-
liability, higher capacity, or a combination of these advantages, in comparison to feedback-free
communication schemes.

The research of Schalkwijk and Kailath [49], Horstein [30], Berlekamp [7], Yamamoto and
Itoh [65], Burnashev [11], Kudryashov [34], Gaarder and Wolf {22], Cover and Leung [13], Veu-
gen [61], and many others attests to these advantages. For example, while Shannon [52] showed that
the capacity of memoryless channels is not increased by feedback, Gaarder and Wolf [22] showed
that the capacity region of a memoryless multiple-access channel can be increased by feedback; in
addition, it is straightforward to construct examples of channels with memory whose capacity is
i~creased by feedback (see, e.g., Section 3.5.2). For the BSC with feedback (BSCy), Horstein [30]
developed a scheme with low complexity and bit error probability that decays exponentially with
decoding delay at any rate below capacity. He also outlined an extension of his scheme for arbi-
trary discrete memoryless channels with noise-free feedback (DMCy's) [29]. Berlekamp [7] and
Schalkwijk et al. {47, 50] also developed low-complexity strategies for the BSCy that, at certain
rates, guarantee correction of the largest possible fraction of errors. For the Gaussian channel with
average-power constraint, Schalkwijk et al. [46, 49] described a low-complexity scheme whose
error probability decays with blocklength as an extremely fast double exponential (272°") at all
rates below capacity. Even the peak-power limited scheme of Schalkwijk and Barron [48] has an

2We make the notion of computational complexity more precise in Section 2.6.
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error probability that decreases exponentially with blocklength with an error exponent that is sig-
nificantly larger than that for the corresponding feedback-free channel. Their scheme was adapted
for use with arbitrary DMCy¢'s by Yamamoto and Itoh [65] and provides similar reliability. Com-
putational efficiency is poor, however, since high-rate random block codes are relied upon. More
recently, Veugen [59, 60, 61] analyzed a low-complexity scheme based on repeated retransmission
of symbols. With this scheme, a price is generally paid in terms of rate — i.e., the resulting schemes
are not typically capacity-achieving.

But even though many communication links can be modeled as channels with feedback (see,
e.g., [61] for a number of examples), system designers have shunned these low-complexity, high-
rate, high-reliability techniques in favor of those that either avoid or minimize their use of feedback.
Indeed, when feedback strategies are used, simple, low-rate feedback, automatic-repeat-request
(ARQ) protocols or variants thereof are most often chosen. Such choices may sometimes be jus-
tified from a purely information-theoretic perspective : given unlim..ed computational resources
for encoding and decoding, exploiting feedback on memoryless single-user channels is inherently
inefficient in terms of bandwidth utilization — i.e., the bandwidth allocated for the feedback link is
better used to directly increase the rate on the forward link.

When computational resources are limited, however, more sophisticated feedback strategies
such as those mentioned above may have a place. Under computational constraints, the use of feed-
back can actually increase bandwidth efficiency on even memoryless two-way communication links.
Specifically, given fixed computational resources, allocating some of the total available bandwidth
for feedback and using a suitably designed coding scheme can increase throughput over feedback-
free schemes at certain bit-error rates.

On a variety of increasingly important asymmetric two-way channels, this potential for through-
put increase via feedback is even greater, because it may be possible to send many more bits per
Hertz over the feedback path than over the forward path. Channels of this type arise rather naturally,
for example, in the context of mobile-to-base communication in contemporary wireless networks.>
In these systems, mobile-to-base transmission is often severely power-limited, wiile much greater
power is available for base-to-mobile feedback. As a result, even a small amount of bandwidth can
support high-rate feedback. Moreover, when the total available bandwidth is large, any reduction in
capacity from reallocating mobile-to-base bandwidth for feedback is typically small, since power
rather than bandwidth is the dominant limitation in this scenario.

But before feedback strategies can compete with feedback-free strategies, a framework for
the design and understanding of feedback strategies is needed. As it stands, the feedback coding
schemes developed in previous research are somewhat loosely related.

In this thesis, we put forth a framework for the design of low-complexity feedback coding
strategies. The central notion underlying the framework, which we term the compressed-error-
cancellation framework, is as follows. The transmitter sends a message (without forward error
correction (FEC) coding) over the forward channel. Via the return path, the receiver feeds back
what was received, so that the transmitter is able to determine what was received in error. The
transmitter then uses source coding to form the smallest possible description of the errors and sends
this description (again without FEC coding) over the forward channel to the receiver, which the
receiver can use for the purposes of error correction. Because the channel introduces new errors
into this compressed error description, an iterative process is required. In particular, the receiver

*Such networks may correspond to, for example, terrestrial cellular or satellite systems.
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again feeds back what was received, and the transmitter again sends a compressed description of
the new errors to the receiver. And so the process repeats.

We should note that an idea of this type was used by Ahlswede in his constructive proof of
the coding theorem for DMCy's [1], though his investigation was rather limited in scope. In this
thesis, we build extensively on this idea, showing how it can be applied to develop low-complexity,
high-rate, high-reliability coding schemes for a wide variety of channels with feedback, including
DMCy's, discrete finite-state channels (DFSCy's), unknown channels, multiple-access channels, and
channels with noisy and partial feedback.

1.2 Overview

The thesis is organized as follows:

In Chapter 2, we introduce the compressed-error-cancellation framework in the context of devel-
oping a low-complexity, capacity-achieving, high-reliability coding scheme for arbitrary DMCs's.
By exploiting low-complexity lossless source-coding algorithms, we develop a coding scheme re-
quiring a number of computations that grows linearly with the total number of channel inputs used
(linear complexity). The error exponent for the scheme is also optimal in a certain sense. We ex-
plore variations of the scheme and also address certain practical considerations such as delays due
to computation and feedback delays. We also demonstrate that the scheme operates as predicted by
simulating it on a digital computer.

In Chapter 3 we consider channels with memory, which arise in a number of practical applica-
tions. We show how the compressed-error-cancellation framework can be used to develop linear-
complexity, high-rate, high-reliability coding schemes for DFSCy¢'s, which constitute a very general
class of channels with memory.

In Chapter 4, we consider an even more complex problem: communicating over a channel that
is unknown to some extent. In practice, this problem arises when, for exariple, the channel varies
with time in an unknown way. While the transmission of training data is a typical solution to this
problem, these information-free transmissions can substantially reduce the rate and error exponent
of a coding scheme. We explore in Chapter 4 how the compressed-error-cancellation framework
can be used to accomplish universal communication — variable-rate communication over unknown
channels with feedback. We see that the framework leads to linear-complexity schemes with some
very attractive asymptotic properties.

In Chapter 5, we consider multiple-access channels, which are becoming increasingly important
in communication within a network of users. When several transmitters send information to a
single receiver, a common scenario, then these transmitters are said to communicate over a multiple-
access channel. In Chapter 5, we extend the compressed-error-cancellation framework to cope with
multiple-access channels with feedback. We show that rate pairs on the frontier of the two-user,
feedback-free, multiple-access capacity region can be achieved with linear complexity.

The schemes we develop in Chapters 2-5 all require complete noiseless feedback. But one of
the obstacles preventing feedback communication systems from seeing more widespread use is that
complete noiseless feedback is often not available in practice. Often the feedback channel is noisy.
It may a'so have insufficient capacity to allow the receiver to feed back is complete observation.
In Chapter 6, we show that the compressed-error-cancellation framework is useful for coding for
channels with partial and noisy feedback.

Concluding remarks are given in Chapter 7.
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1.3 Summary of Notation and Abbreviatiens

The main notational convention of which we must be aware at this point is that if X is a discrete
random variable, then px automatically denotes its pmf, and E[X] automatically denotes its ex-

« pected value. Standard adjustments to this notation are used for conditional and joint pmfs and
expectations.

Remaining notational conventions and abbreviations are introduced as needed throughout the
thesis (often in footnotes). For reference, we summarize here some important conventions and
abbreviations, which should be assumed to hold unless otherwise stated :

Abbreviations:
Bernoulli-e — Bernoulli with probability of equaling one being €
BSC — binary symmetric channel
BSC; — BSC with complete noiseless feedback
BSCpr — BSC with partial noiseless feedback
cdf — cumulative distribution function
CSWCF — concatenated Slepian-Wolf coded feedback
DFSC — discrete finite-state channel
DFSCy — DFSC with complete noiseless feedback
DFSCy¢ — DFSC with partial noiseless feedback
DMC — discrete memoryless channel
DMCs — DMC with complete noiseless feedback
DMC;¢ — DMC with partial noiseless feedback
DMMAC — discrete memoryless multiple-access channel
DMMAC; — DMMAC with complete noiseless feedback
DMMAC,s = DMMAC with partial noiseless feedback
FEC — forward error-correcting
i.i.d. = independent and identically distributed
MABC — multipie-access broadcast channel
pmf — probability mass function
SWCF — Slepian-Wolf coded feedback
UFSC — unknown DFSC
UFSC¢ — UFSC with complete noiseless feedback
UFSC,s — UFSC with partial noiseless feedback

Notational Conventions:

O — marks the end of a proof (1.n
vV — marks the end of a proof of a lemma introduced within a larger proof (1.2)
z[-] — square brackets have no general meaning; they are used as
an alternative or in addition to super- and subscripts. (1.3
on(g(n)) — afunction in the set { f(n) : lim,— f(n)/g(n) =0} (14)

On(g(n)) — afunction in the set {f(n) : liminf,_, f(n)/g(n) > 0and
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lim Sup,._, oo £(n)/g(n) < co}
©.(g(n)) — afunction in the set { f(n) : liminf, o f(n)/g(n) > 0 and
limsup,,_,, f(n)/g(n) < oo}
Z — the set of integers
R — the set of real numbers
N — the set of natural numbers ({0,1,2,---})
|A| — cardinality of the set A
coA — convex hull of the subset A of Euclidean space
A™ — n-fold Cartesian product of A with itself

A" — the set of variable-length tuples with elements in A:

Al = Uz A™
t
al = (as, -+ ,a)
a;oo _)(asaas+la"')
a" — af

£(a) — length of variable-length tuple a:
l(a) =nifaec A"
Opr.a™ = Z a;M™*
=1

[, — nth M-ary expansion digit of = € [0, 1}, where M is determined from

context. When two expansions exist, the one ending with zeros is taken.

l‘{i]] - (z[s]a' o 1x[t])

ot - zm
r 1y — z converges to y from below
[z] — ceiling of z:
[z] = min{z:2 € Z,z> z}
log z — base-2 logarithm of z
In z — natural logarithm of z
expy{z} = 2°
exp{z} - €*
Pr{A} — probability of an event A
Pr{A|B} — probability of an event A conditioned on the event B
px — probability mass function (pmf) for X: px (z) = Pr{X =z}
px|y — pmf for X conditioned on Y: px |y (z|y) = Pr{X = z|[Y =y}
E[X] — expected value of the random variable X:

E[X]=)_ zpx(x)
var(X) — variance of the random variable X:

var(X) = Z(z — E[X])?*px(z)

std(X) — standard deviation of the random variable X:
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(1.5)

(1.6)
(1.7)
(1.8)
(1.9)
(1.10)
(1.11)
(1.12)

(1.13)
(1.14)
(1.15)
(1.16)

(1.17)
(1.18)

(1.19)
(1.20)

(1.21)
(1.22)

(1.23)
(1.24)
(1.25)
(1.26)
(1.27)
(1.28)
(1.29)
(1.30)
(1.31)

(1.32)

(1.33)



std(X) = y/var(X)
H3(€e) — binary entropy function:
Hy(e) = —eloge — (1 - €)log(1 — ¢€)
H(X) — entropy of random variable X
H(X)=-)_ px(z)logpx(z)
H(X,Y) — joint entropy of random variables X and Y:
H(X,Y) == pxy(z,y)logpx,y(z,y)

z,y
H(X|Y) — conditional entropy of X givenY:
HX|Y)=H(X,Y)-H({)
I(X;Y) —» mutual information between X and Y:
I(X;Y)=H(X)+H({Y)-H(X,Y)
H.(X°°) — entropy rate of random process X *°:

oo .1 n
H (X)) = nllinolo EH(X )
Ho (X°,Y°°) — joint entropy rate of random processes X and ¥ *:
Ho(X®,Y®) = lim LH(X" Y™
n-—o00 1N
H,(X*°|Y"*°) — conditional entropy rate X conditioned on Y *°:
Hoo(X®|Y?) = Ho (X, YY) — H(Y™)

Dz (e || @) = Kullback-Leibler distance between Bernoulli pmfs with parameters € and a:

l-a
D(p || ¢) — Kullback-Leibler distance between pmfs p and ¢:

DRI mg%

Dy(ell a) = elogg +(1—¢)log
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(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)
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Chapter 2

Discrete Memoryless Channels: An
Introduction to the Framework

2.1 Introduction

In this chapter, we develop the compressed-error-cancellation framework for coding for feedback
channels, which supports the next four chapters. We convey the central ideas that constitute the
framework via the following three progressively more complicated illustrations.

The first is an illustration of the method used by a man, Tex (Tx), to tell his father, Rex (Rx),
who is losing his faculties, his new address:

Tx.1: “My new address is four twenty-seven Elmwood Avenue, Maplewood, New Jersey, oh
seven oh four one.”

Rx.1: “Your new address is forty-seven Maplewood Avenue, Eimwood, New Jersey, oh seven
oh four one?”

Tx.2: “No, transpose ElImwood and Maplewood and change forty-seven to four twenty-seven.”

Rx.2: “Transpose Elmwood and Maplewood and change forty-seven to twenty-seven?”’

Tx.3: “Not twenty-seven — FOUR TWENTY-SEVEN.”

Rx.3: “Not twenty-seven — four twenty-seven?”

Tx.4: “Right.”

Rx.4: “Ok. Goodbye, son.”

In this illustration, Rex distorts Tex's statements and tells Tex (feeds back) the distorted interpreta-
tion. To guide Rex to an undistorted picture of his original message, Tex makes four progressively
shorter statements with the following property: Tex's ith statement paired with what Rex interprets
his (z — 1)th statement to be is sufficient to determine what Tex's (¢ — 1)th statement truly is. For
example, item Tx.2 above can be recovered from items Rx.2 and Tx.3. That is, Tex immediately
tells Rex, in a compact way, only what errors Rex has made in interpreting his previous statement.

An efficient adaptation of this method for communicating over a noisy channel is suggested
by the following second illustration involving a BSCs with crossover probability e. With Hy(e)
denoting the entropy of a Bernoulli-e random variable, the transmitter (Tx) and receiver (Rx) (and
the channel (Ch)) participate in an iterative coding scheme as follows (also see Figure 2-1 for a
graphical representation of the scheme):
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Original Message

Channel Input: ~ 010111001000011101 01001110
00&
& &
60& ‘.»oé
Additive Noise:  010000000000010000 01000000
¥
Channel Output: 000111001000001101 00001110 1000 10

Figure 2-1: Graphical representation of the iterative coding scheme for a BSCy.

Tx.1: Sends NV uncoded data bits over channel.
Ch.1: Adds (modulo-2) N samples of Bernoulli-€ noise.
Rx.1: Feeds its IV noisy observations back to Tx.
Tx.2: (a) Finds N samples of noise added by channel.
(b) Compresses noise into N H (¢) new data bits.
(c) Sends these data bits uncoded over the channel.
Ch.2: Adds (modulo-2) N H (¢) samples of Bernoulli-¢ noise.
Rx.2: Feeds its NV H (€) roisy observations back to Tx.
Tx.3: (a) Finds NV H (e) samples of noise added by channel.
(b) Compresses noise into N H (¢)? new data bits.
(c) Sends these data bits uncoded over the channel.

If the compression (source coding) steps are assumed lossless, then, like the first illustration, the
data sent in item Tx.3 along with the data received in item Rx.2 is sufficient to determine the data
sent in item Tx.2. More generally, at each iteration, a message is transmitted over the forward
channel without additional redundancy bits for (forward) error correction. The message contains
enough information to cancel the errors in the previous block.

If the process were to continue indefinitely, the number of channel inputs used to send the N
bits would be

N

2 N 3 e = —————
N + NHjy(e) + NHa(€)* + Hy(€)” + l—Hg(G),

which corresponds to a rate of 1 — Hy(e), the capacity of the BSCy. In practice, the process is
terminated after a finite number of iterations by sending a final block using a different coding scheme
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Original Message

0101110010001011 01001110 1010 10
-u J 9 o o
VAt
Q & Q Q Q
g $ & & g
S
Channel Input (X): abbbbababbabbbbabbb bbbabbabbbab baabbbbb bbab
0 0 9] 0
= o = =
g g g g
; 3 -
Channel Output (Y):  Xyyyyyyxyxxyyyyxyyy YYYXXYYyyyyy yXYyyyyx yyyy

Figure 2-2: Graphical representation of the iterative coding scheme for a DMCy with input alphabet
{a, b} and output alphabet {x, y}; the capacity-achieving distribution is such that H(X) < 1.

known as the termination coding scheme. If the receiver decodes this final block correctly, then it
can recursively process the received data to reconstruct the original N-bit message.

The coding scheme illustrated above can be generalized to a coding scheme for an arbitrary
DMC, which gives us the following third illustration. Let gy|x be the channel transition function
of a given DMC, and let gx be its associated capacity-achieving input distribution. For notational
convenience, let X and Y be random variables such that px v (z,y) = gx(z)qy|x(y|z). Then
consider a coding scheme in which the transmitter, receiver, and channel act as follows (also see

Figure 2-2 for a graphical representation):

Tx.1: (a) Precodes N message bits into N; = N/H(X) channel inputs' X that look i.i.d.
according to gx .
(b) Sends XlN ! over channel.
Ch.1: Corrupts XIN1 according to gy | x .
Rx.1: Feeds corrupted data Y;¥* back to Tx.
Tx.2: (a) Using ¥}, compresses XV into Ny H(X|Y) new data bits.
(b) Precodes new data bits into No = N;H(X|Y)/H(X) channel inputs X ﬁl‘:{f’z
which look i.i.d. according to gx.
(c) Sends X N1+N2 over channel.

N;+1

Ch.1: Corrupts X ﬁl‘ilN * according to gy | x -

Rx.2: Feeds corrupted data Y 'V back to Tx.

'As a notational convenience to consolidate lists of variables in this paper, we adopt the shorthand a;, for
(@amy@m+1,---,an), and, in turn, the shorthand @™ for aT. As related notation, we use A™ to denote the n-fold Cartesian
product of a set A with itself, where n may be infinite. This notation holds only for sub- and super-scripted variables that
have not otherwise been specifically defined.
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function feedback_enc (message, it)

if (it > B)
return append(synch_sequence, termination_enc (message)) ;
else
e = precode (message) ;
return append(e, feedback_enc(cond_source_enc(e, channel(e)), it+1l));
end
end

Figure 2-3: Pseudocode for compressed-error-cancellation coding.

Tx.3: (a) Using Y]f,\i 1hN2, compresses X ﬁ;i’{v 2 into N2 H(X|Y') new data bits.
(b) Precodes new data bits into N3 = No H(X|Y')/H(X) channel inputs Xﬁ:iﬁ:ﬂ\'s,
which look i.i.d. according to gx .

(c) Sends X' FN2+Ns over channel.

If we assume both precoding and source coding to be invertible, then items Tx.2, Rx.2, and Tx.3
again have the same relationship as in the previous two illustrations, and more generally, data trans-
mitted at Tx.(i + 1) with data received at Rx.i are sufficient to determine the data transmitted at
Tx.z.

When the process iterates indefinitely, the number of channel inputs used is

N N (H(X|Y) N [(H(X|Y)\? 3 N
BHX) THX) ( H(X) ) H(X)( H(X) ) T HX)-HXY)’

giving an average rate equal to the channel capacity. Again, in practice, we terminate the process af-
ter a finite number of iterations by sending a final block of data over the channel using a termination
coder.

The notions in these three illustrations are compactly summarized in the even more general
description of the framework given by the pseudocode in Figure 2-3, which also highlights the
framework's recursive nature. As the pseudocode suggests, the encoder for a coding scheme based
on the compressed-error-cancellation framework comprises three key components : a precoder, a
source coder, and a termination coder. (A fourth component, the synchronization subsystem, is
needed when the precoder and source coder outputs have variable length.)

The precoder is needed for two reasons: 1) because the input alphabet of a given channel may
not be the binary alphabet {0, 1} and 2) because the optimal way in which the input symbols should
be used may be complex. Neither of these conditions holds for the BSC, which is why the second
illustration above uses no precoder. But for a channel such as a DMC, for example, the frequency
with which each symbol should be used in order to maximize transmission rate is given by the
capacity-achieving input distribution gx. The purpose of the precoder in this case is then to trans-
form a sequence of Bemou]li-% random variables (bits) into a sequence that uses the channel inputs
with the optimal frequency, e.g., a sequence that is i.i.d. according to gx . For more general channels,
the precoder transforms a sequence of bits into a sequence of channel inputs that is appropriately
distributed.
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The source coder is needed to form a compact description of the corruption introduced by the
channel. That is, on a given iteration, the precoder produces a sequence of channel inputs that
are sent over the channel. After seeing the corresponding channel outputs, the receiver has some
remaining uncertainty about the input sequence. The source coder produces data that is sufficient to
resolve this uncertainty.

The termination coder is needed when the recursive process reaches its “base” case. At this
point, a final sequence of bits remains to be transmitted reliably. The termination coder fills this
need.

When we put these three subsystems together in the way suggested by the pseudocode, the re-
sulting system is both easy to understand and elegant. Intuitively, we can see that it is also efficient
in terms of rate. But what justifies its designation as a framework for low-complexity coding? Is it
somehow very practical, too? The answer is “yes”, and “yes” for an important reason. This frame-
work shows the problem of channel coding with feedback to be strongly related to the problem of
source coding. As a result, very general and computationally efficient implementations of codes
based on the compressed-error-cancellation framework are obtained by exploiting the rich theory
and efficient algorithms of lossless source coding [14]. In particular, by using variants of arith-
metic coding [63] and Lempel-Ziv coding [67], we can construct low-complexity feedback coding
schemes for a wide range of channels. Moreover, the Slepian-Wolf source coding theorem [55] has
some important interpretations in the context of our channel coding framework (see Section 6.6.2).

The remainder of this thesis is about the application of this framework to some of the fundamen-
tal scenarios typically addressed in information theory. The remainder of this chapter focuses on a
precise development and analysis of coding schemes for DMCy's. Using the coding scheme we de-
velop for DMCy's as a foundation, subsequent chapters explore coding schemes that are applicable
to different models of both the forward and feedback channels.

The DMC; provides a natural and useful starting point for a number of reasons. First, the DMC
is perhaps the simplest and most fundamental channel in information theory. It is, for example,
the channel emphasized by Shannon in his development of the coding theorem [53]. Shannon also
showed that the presence of feedback does not increase the capacity of DMC's [52], which further
simplifies our discussion. Second, the DMC is also quite a general channel model, requiring only
that the channel input and output alphabets be finite sets and that the channel output at a particu-
lar time be statistically dependent only on the channel input at the same time. As a result, a wide
variety of commonly used channels can be well modeled as DMC's, inciuding, with appropriate
quantization, channels with continuous valued inputs and outputs such as the deep space channel.
Third, the assumption that the forward channel is a DMC coupled with the assumption that a com-
plete, noiseless feedback? channel is available admits the simplest description and analysis of a
coding scheme based on the compressed-error-cancellation framework. While a complete, noise-
less feedback channel may often be a somewhat unrealistic model for a given feedback channel, it
may provide a reasonable model in certain situations, such as those discussed in Chapter 1 in which
the receiver has much greater transmit power available than does the transmitter.

Before turning our attention to the precise development of coding schemes for DMCy's, it is
useful to first make our notions of a DMC and a DMCy precise. A DMC is described by a triple
(X, gy|x,Y). The finite set X is the range of allowable channel inputs, the finite set Y is the range of
possible channel outputs, and gy x is the conditional probability mass function (pmf) of the channel

*Complete, noiseless feedback is also known as information feedback.
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output at time k given the channel input at time & for any integer k¥ > 0. The meaning of this tuple
is defined more formally as follows:

Definition 2.1.1 Let {X;}22, and {Y;}32 , be random processes. Then {Y} }$2 , is the output pro-
cess resulting from passing { Xy}, through a DMC (X, qy|x,Y) (or just gy x) without feedback
if foralln > 0,

n
pynix ("2 = [ avix (uwlze) @.1)
k=1

forall z™ € X™ and y™ € Y".

A DMCy is a DMC with a feedback channel and is also described by a triple that specifies
the DMC. The feedback channel is noiseless, delayless, and has sufficient capacity to feed back
the receiver's complete observation—i.e., at time k, the transmitter knows the value of the channel
outputs from time 1 to time & — 1.

We emphasize that the probability law (2.1) does not hold when feedback is available. For
example, consider the case in which the forward channel is a BSC with crossover probability e.
Suppose that the first channel input is 0 or 1 with equal probability and that all subsequent inputs
are equal to the previous channel output. Then (2.1) would say that given an input sequence, say
z" = (0,1,1,0,1,1,1,0,0). every output sequence has positive probability. But it is clear that only
output sequences of the form (1,1,0,1,1,1,0,0,-) are possible; that is, only two sequences have
positive probability given such an input.

So what is a DMCs? A definition that captures the important features of these channels and the
way they are typically used is as follows:

Definition 2.1.2 Let M be a random variable taking values in M. For all m € M, let {fi}52,
be a sequence of functions, where f,,,; : Y1 — X maps a sequence of i — 1 channel outputs to a
single channel input, and f, ; takes a constant value in X. Then {Y}} is the output process resulting
from passing M through a DMCy (X, gy |x, Y) (or just gy x) via {{fm,i}{2, }mewnm if forall n > 0,

Py (m) = [ avix Wkl fmi (5 71)) (22)
k=1

forally™ € Y" and all m € M.

We now develop in detail a coding scheme for DMCy's. We begin with a formulation of variable-
length coding in Section 2.2, and follow with a description and analysis of a coding scheme for
DMC¥'s in Sections 2.3-2.6. We discuss some variations on the scheme in Section 2.7 and end with
a discussion of remaining practical and theoretical issues in Section 2.8.

2.2 Variable-Length Codes and Their Properties: Rate, Reliability,
and Complexity

A variable-length code is a 4-tuple (V, ¢, {xi}i, A), where N is the number of message bits to be
transmitted, € : {0, 1} x Y>° — X is the encoding function, {x; : Y* — {0,1}}$2, is a sequence
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of stop::ing functions, and® A : Yt — {0,1}" is the decoding function.

The first argument to the encoding function € represents the message to be encoded, while the
second argument represents the stream of feedback coming back to the transmitter. Because of the
causal nature of the feedback, ¢ is restricted to have the form

E(wNa yoo) = (51 (wN)s 52(wNa yl)a 15’3(“]]\75 yz)a s )a (23)

where the range of ; is X for all 4.

In describing the performance characteristics of such a code on a given DMCs (X, gy |x, Y),
we let the random variables W1, --- , W)y represent the IV independent and identically distributed
(ii.d.) equally likely message bits, i.e., the message WP is a discrete random variable that is
uniformly distributed over the set

W = {0,1}V. (2.4)

We then let the process {Yx} be the output process resulting from passing W through the DMCy
gyix via {{&i(m,)}3<; }mefo,1v-

To define the rate of the code, we must define its transmission length, which is the point at
which the receiver stops data acquisition. The stopping functions x; are the mechanism by which
the receiver determines from its observations when to stop data acquisition. By simulating the re-
ceiver using the feedback link, the transmitter can also determine when to correspondingly terminate
transmission. In particular, at each time k, the function x; maps the data observed up to that time,
Y*, into a decision as to whether to terminate transmission; the value one is the signal to terminate,
while the value zero is the signal to continue, i.e., x; : Y — {0,1}. In terms of this notation, the
transmission length is given by the random variable

L* = min{k : xx(YF) =1} (2.5)

The rate of the code (N, &, {xi}32,, A) is then defined to be N/E[L*].
The decoder makes an estimate W of the message sent using its decoding function A : Yt —

W, ie.,
wh =A@, (2.6)

and the associated error probability of the code is Pr{iWW " # WV},

A coding scheme is a function mapping two parameters p; and p; to a variable-length code. A
coding scheme c achieves a rate R if for any § > 0 and any € > 0, there are parameters p; and
p2 such that ¢(p;, p2) has probability of error less than § and rate greater than R — e. A coding
scheme is (feedback-free) feedback-capacity-achieving if it achieves a rate equal to the (feedback-
free) feedback capacity of the channel.

We say a coding scheme c attains an error-exponent function F' : I — Rif foreachrate r € I,
where I C R, there is a sequence of parameter pairs {(p1,(7),P2,n(7))}n such that the resulting
sequence of codes {c(p1n(r),p2,n(r))}n is such that the corresponding rate sequence {R,}, and

31n the descrirtion of variable-length tuples, it is convenient to use A" to denote the set of all tuples whose elements
arcinthe set A, i.e., At = US2,A™.
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the probability of error sequence { P, }, obey

lim R, >r 2.7
n-—00
lim _M& > F(r), (2.8)
n~—»o0 n

where Ny, is the number of message bits for the code ¢(p1,»(r), p2.n(r)). A useful interpretation
is that if an error exponent F(r) is attained, then for any € > 0, a sequence of codes with rates
greater than 7 — € can be generated such that their associated error probabilities decay exponentially
with the expected transmission length with an associated rate of decay greater than F(r) — e —
1.e., the error probability is reduced by at least two when expected transmission length increases by
1/(F(r) —e).

While rate and reliability are two important properties of codes, they say little about the com-
putational resources required by encoding and decoding algorithms. Hence, in addition to assessing
the rate and reliabilities of the various coding schemes we introduce, we also characterize their com-
putational requirements by describing their time and space complexities. We devote the remainder
of this section to making our notions of time and space complexity more precise.

We define time complexity and space complexity to be the asymptotic order of growth of the
time cost and space cost used to run an algorithm on a random-access machine under the uniform-
cost criterion. A random-access machine can be thought of as the usual computer with memory
registers that can perform some basic operations on the contents of its registers, including reading
and writing to its registers. Each register is assumed to be capable of holding an arbitrarily large
integer. Under the uniform-cost criterion, basic operations on registers are assumed to take constant
time independent of the size of the integers in the registers; space cost per register is a constant
independent of the number held in the register.

We break slightly from the usual definition of space complexity and use a more conservative
definition. Normally, input for an algorithm is assumed to be given on a read-only input tape, and
the output is assumed to be written onto a write-once output tape. The size of the input tape and
output tape is then usually not considered in the space complexity. In other words, only memory that
can be both read from and written to is considered in space complexity. But because communication
is by its nature dynamic — i.e., we are not interested in sending one message over and over — the
notion of a read-only input tape and a write-only output tape seems inappropriate. Hence, the
ultimate aim being to characterize the amount of memory that we must have on hand to implement
the entire coding scheme, we feel it is appropriate to count the storage required to store inputs and
outputs, and we do so.

Note that order of growth is generally described relative to the size of the input to the algorithm
but can be described relative to the size of the output, which we do in certain cases. The reason
for these choices of time and space complexity is the combination of intuitive simplicity and the
reasonable degree to which it models computation on contemporary digital computers.

It is important to keep in mind that there are many alternative notions of computational com-
plexity. A number of possible notions are outlined in [54]. No single notion seems to have become
dominant in the channel coding literature. We choose the above measure as for its tractability and
meaningfulness. Under this measure, for example, summing n numbers has O, (n) complexity, the
fast Fourier Transform has O, (n logn) time complexity, and other intuitively satisfying results are
obtained. Yet this count may not accurately reflect the time required to carry out the algorithm on a
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contemporary digital computer if, for example, in the summing of n numbers, n is truly enormous.
Indeed, a more useful measure might be a count of the number of bitwise operations required to
carry out the algorithm. But this measurement is difficult to obtain, requiring us to delve into the
bitwise details of our algorithms. Because it is difficuit to make precise statements about the number
of bitwise computations, we avoid doing so.

Nevertheless, in recognition of the importance of what the bitwise computation model intends
to capture, which is the amount of time required by the algorithm to run on a contemporary digital
computer with finite-length registers, we adopt the following approach: We state the time and space
complexity of our algorithms using the uniform-cost criterion and then comment on issues one
might encounter when implementing the algorithms on a finite-length-register contemporary digital
computer, since this is what is of immediate practical importance. We see that the complexity given
under the uniform-cost criterion should give a fairly accurate characterization of the computational
resources required on such computers for reasonably sized problems.

2.3 A Feedback Coding Scheme for DMCx's

Now that we have defined the elements that constitute a variable-length feedback code, we can
describe a coding scheme cpmc for a given a DMCy (X, gy x, ) based on the compressed-error-
cancellation framework. As stated in the previous section, a coding scheme is a function taking
two parameters as input and returning a code. Our scheme cpmc takes as its two parameters a
message length NV and a termination coder parameter v, which together determine the rate and
probability of error for the code, as we show later. Then epmc(ZV, v) is a variable-length feedback
code (N, e, {xi}2,,A), which we now describe, with primary emphasis on the encoder ¢ — the
corresponding definitions of the decoder and stopping functions are implied by definition of the
encoder. Note that for notational cleanliness, we do not make explicit the dependence of the last
three elements of the 4-tuple on v, N, or the DMC¢ parameters. Also for notational purposes, we
let gx be the capacity-achieving input distribution for the channel, and let X and Y be random
variables that are jointly distributed according to px y (,y) = qx(z)gy|x (y|z), forall z € X and
ally e Y.

2.3.1 Encoding

To define €, we define the sequence of channel inputs e(W",Y) that is transmitted when the
message to be sent to the receiver is W/ and when the sequence Y is fed back.

To describe this sequence of transmitted channel inputs, we make use of the following subsys-
tems: precoders {7} ;, where 7, precodes n bits; lossless source coders {0,}32 ;, where o,
conditionally source codes n channel inputs; and a termination encoder ef;‘j,,, which encodes a
block of xy bits, where s is given further below as a function of IV, at some rate and probabil-
ity of error determined by the parameter v. At this stage, we focus on the basic structure of the
encoding process, deferring a precise description of the functions {7, }7%,, {on}52;, and €77, to
Sections 2.3.1.1-2.3.1.3.

We begin with the simplifying assumption that we have available a length-ty sequence @'~ [N],
where* ¢ty = on(IV), that is perfectly detectable — no false alarms and no missed detections —

o () is the usual order notation with a subscript explicitly denoting the limiting variable, i.e., if f(N)=on (g(N)),
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after passing through the DMC. This assumption is removed in Section 2.5.

The sequence of transmitted channel inputs is generated as follows. On the first iteration, the raw
message bits WV are precoded and transmitted. Each subsequent iteration generates new bits to be
precoded and transmitted that can be used by the decoder to correct errors on the previous iteration.
If the source coding and precoding subsystems are designed appropriately, then the transmission on
a given iteration is about H(X|Y')/H(X) < 1 times as long as the transmission on the previous
iteration on average. After By iterations, some finai bits remain to be transmitted and are sent
with protection from the termination coder. As we show later, if sufficiently few final bits remain,
then overall complexity of the scheme can be kept small compared to N. We can ensure that
the expected number of final bits is small enough for sufficiently large NV by choosing B as the
following function of V:

By = [log? N] (2.9)

The transmissions on each iteration, which are blocks of varying lengths, are denoted by ¢}, £/,
. E'BN _1» Tespectively, and are generated according to the following recursive procedure:

1. Let : = 0 and initialize the block ¥; of data bits to be precoded, the length L¢ of this block,
and the time index A; + 1 of the beginning of the ith block:

U, =W, A; =0, Lf=N

2. Compute the variable-length tuple ¢; that is the precoded version of ¥;, and compute its

length L;:3
g, = mre (¥;) (2.10)
L; = £(e). (2.11)
then
- f(N) _
Mmoo = O

We also use On () and O (-) so that f(IN)=On (g(IV)) means that
.. f(N) S
lmlonof 9N 2 0

. fN)
hglfip 9(N)

< 00,

and f(N)=0On(g(N)) means that
oo V)
it o)

imsup £33

>0

< 0o

The extra subscript is convenient in expressions where dependencies between variables are implicit.
>With N denoting the set of natural numbers {1,2,3,...},welet¢: A" — Nfora given set A denote the function
whose value is the length of its argument; for example, ifa € A", then £(a) = n.
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3. Increment ¢ and compute the new time index A;:

A;i=A; 1+ L;_;. (2.12)

4. Compute the variable-length tuple %; that resuits from source coding the previously trans-
mitted block according to the input distribution given the feedback information, prefix ¥; by
an encoding of the lengths associated with the (7 — 1)th block to form ¥;, and compute the
length L7 of ¥;:

2,‘ =0oL,_, (EZ—I’Y/£:1+1) (2]3)
U; = r((¢(Li-1), #(L{_,), Z:),1) (2.14)
L7 = (T;). 2.15)

In (2.14), the mapping ¢ : {0} UN — {0,1}! returns a sequence of length 2 [logn] + 2
corresponding to a binary representation of its integer argument n with each bit repeated once
followed by a terminating string (0, 1);¢ The invertible mapping’ r : {0,1}{ x N — {0,1}}
is introduced to ensure that ¥; is uniformly distributed over the set {0,1}%7. To do so, r
adds (modulo-2) a pseudorandom Bemoulli--;— sequence to its first argument, using its second
argument as a “seed”. As a result, the output of r is indistinguishable from an i.i.d. Bernoulli-
% source, and r is reversible in the sense that the tuple d can be recovered from r(d, s) and
s.

5. If : = By, stop; otherwise, go to Step 2.

After directly transmitting the blocks &} for i = 0,1,...,By — 1 on successive iterations, a
special encoding is used for the data comprising the final source coded data ¥ p together with the
block lengths Lg_; and L% _, needed for decoding. In particular, these data are transmitted via the
invertible (i.e., uniquely decodable) sequence

G = (p(zBN)a ¢(|"43N /tN]tN - ABN), ¢(LBN——1)1¢(L%N—1)aO7 0,1,9,1,0,1,... )'
(2.16)

In (2.16), the mapping p : {0,1}} — {0,1}! repeats each input bit and adds the terminating
string (0,1).2 It is worth emphasizing that although G is infinite in length, the transmitter stops
transmission when the receiver stops data acquisition, since the transmitter knows the receiver's
actions via the feedback.

Since no subsequent data are transmitted to correct the errors occurring in the transmission of
G, we must use termination coding to protect G*°. Accordingly, the complete encoding function

%For example, ¢(6) = (1,1,1,1,0, 0,0, 1), since the number 6 has binary representation (1, 1, 0).

"We have observed that in practice, the randomizing function 7 in (2.14) is unnecessary; it is, however, convenient for
analysis.

#S0 that, for example, p((1,0,1)) = (1,1,0,0,1,1,0,1).
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€ is given by

e(W",¥Y®) = (ep, €1, €y -1, D, 0N [N],
2 3
:?;':u(GKN) :f:r,lu(Gx':ﬂ}-I) :S:I:u 22:+1) ) (2‘]7)

The synchronization sequence '~ [N] is used to enable correct parsing of the incoming stream by
the receiver, as we discuss in Section 2.3.2. The sequence ®F is a fairly arbitrary length-F “filler”
sequence to be ignored, where ' = [Ap, /tn]tn — A,y < tn; it serves only to ensure that
0t~ [N] is transmitted at an integer multiple of ¢y. Note that we have simplified our notation in
(2.17) by suppressing the (potential) dependence of the termination encoder exny» Which may itself
be a feedback coder, on the appropriate subsequences of Y *°.

Let us now precisely define the precoding, source coding, and termination coding subsystems.

2.3.1.1 Precoding Subsystem

To effect a transformation from a sequence of n i.i.d. Bemoulll-— random variables (bits) into a
sequence that is approximately i.i.d. according to qyx, the precoder 7 2 {0,1}* — XT uses two
key ideas: 1) that a sequence of variables taking values in a discrete set with cardinality M can be
mapped to a real number in [0, 1) via its M -ary expansion; and 2) that a real random variable with
some desired distribution can be created by applying the inverse cumulative distribution function
(cdf) associated with the desired distribution to a uniformly distributed random variable.

The precoding then takes place in three steps: 1) The data bits to be precoded are mapped to a
real number S € [0, 1); 2) an appropriate inverse cdf function F)T{ ! is applied to this real number to
form another real number U € [0, 1); 3) an appropriate number of M -ary expansion digits of U are
taken to be the output of the precoder. These three steps are similar to those taken by a decoder for
an arithmetic source coder.

To define , precisely, we define the sequence of channel inputs 7, (D™) that correspond to
precoding the n data bits D™. We first transform D™ to a real number S € [0, 1) according to

§S=0,.D"+27"Z, (2.18)

where
. J .
O0x.a’ =0k.a102---a; = ZaiK"’, (2.19)

and Z is a random variable that is uniformly distributed over [0, 1). The sole purpose of Z is so S
is uniformly distributed over [0, 1) when D" is uniformly distributed over {0,1}".

Next, assuming X = {0, 1, - — 1} (which sacrifices no generality), we define the cdf Fy
whose inverse is used for the transformatlon Let {X k}re; be an ii.d. process with marginal pmf
gx. We then map this process onto the unit interval [0, 1) by letting X be a random variable defined
by X = 0p.X: X2 ---, and we let F; be the cdf for X.
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With the base of all expansions in this section taken to be M, the precoder 7y, is defined by®

Tn(u) = ult®)] (2.20)
m(D") = To(F7(S)), 221

where the expansion in (2.20) is M-ary, and [, : [0,1) — N is defined as follows to ensure that the
output of the precoder stops after enough digits of the M -ary expansion of Fe 1(S) have been put
out to uniquely determine the first n bits of S. That is, [,, is defined by

In(u) = min{k : Fyg([0ar.ul),0p.ul® + M*)) C 1277, (i + 1)277)}
foru € F;l([iz-", (¢4+1)27 ")) fori =0,---,2" — 1. (2.22)

This definition of 7, implies that the precoder is a lossless coder, i.e., if d* € {0,1}", then
mn(d™) is a variable-length tuple whose elements are in X; from n and 7, (d"), we can determine
d". No knowledge of Z is required by the decoder.

This definition also implies that the distribution of the output of the precoder approximates
the desired channel input distribution in the following sense: If the input to the precoder D" is
uniformly distributed over {0, 1}", then the elements of 7, (D") form a random process that can be
generated by taking an i.i.d. process with marginal pmf ¢x and truncating it according to a stopping
rule [25].

2.3.1.2 Source Coder

We now define the source coding function o, : X® x Y* — {0,1}!. This function compresses its
first argument, a sequence z" € X" representing the channel inputs, using a statistical model for its
dependence on its second argument, a sequence y” € Y” representing the corresponding channel
outputs.

Since z™ is generated by the precoder, whose output is approximately an i.i.d. process, and y™
results from passing z™ through the DMC effectively without feedback, we choose the following
statistical model for use in the source coder. Let {X’l} denote an i.i.d. process with marginal pmf
qx, and let {¥;}%, denote the channel output process resulting from passing {X;} through the
DMC gy |x without feedback. The source coder then assumes that the probability of =™ given y" is
simply

Pin i (2" |Y")- (2.23)

_ Source coding is accomplished with this model via a Shannon-Fano strategy [14]. That is, with
X =0p. X",

on (2", y") = ull (2.24)

°As additional notation, for any given number a € [0,1), we use af,) to denote its ith K-ary (base-K) expansion
digit,i.e,a = > 72, a;,) K" with apy € {0,1,..., K — 1}. When using this notation, the base K of the expansion is
either stated explicitly or clear from context. If a has two K-ary expansions, then a[,) specifically denotes the ith digit of

the expansion that ends in an infinite sequence of zeros. Also, a{:]], where s < t denotes the tuple (a(,), - - - ,af), and

af}} is abbreviated by a[*).
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where the expansion in above is binary, and

U= Fgpn (Op-2[Y") + pgnyyn (™y") /2 (2.25)
I =[-logpgnya(z"ly")] + 1, (2.26)

and Fy ¥ is the cdf for X conditioned on Y™, The source coder is lossless in the sense that ™ can
be recovered from y" with o, (z™, y").

Note that the statistical model used in the source coder is inaccurate: Modeling the precoder
output as n samples of the i.i.d. process {X’ k} o2, is not strictly correct, because n itself is dependent
on the values of X™. Nevertheless, we use this source coder in our overall scheme and show that
these inaccuracies are inconsequential.

2.3.1.3 Termination Coding Subsystem

We now describe the termination encoder €7, that we use in the code cpmc(V,v). The ter-
mination encoder, as we mentioned earlier, protects ky bits with a rate and probability of error
determined by its parameter v. Let us first discuss how many bits xx the termination coder should
be designed to protect.

For the overall scheme to have high reliability, the final data bits should be encoded within a

single x x-bit block, on average. For this reason, we choose ky according to
av = [N1/4]. A .27)

To show that KN is sufficiently large, we let Bg denote the number of «y-bit blocks required to
send the first L bits of G*°, where

L =2¢(Zp,) +2[logt] +2[logLpy_1] +2[log LG, ;] + 10 (2.28)
N N N

represents the number of final data bits that are sent by the termination coder up to and including
the first appearance of the string (0,1,0,1 in G®°. Then

B = H 229)
KN
<L (2.30)
KN

where the inequality follows from the simple ceiling function property [z] < z + 1. Taking expec-
tations of the right-hand side of (2.30),

E[L]+2
KN

E[Bg] <1+ (2.31)
We show in Appendix A.5 that with the precoder and source coder designs given in the previous
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two sections,
E[Bg]=1+on(1), (2.32)

which shows that our choice of xxn gives the desired behavior.

While any of a wide range of codes can be used as the termination coding scheme that protects
the final bits, we choose what we call a modified Schalkwijk-Barron (mSB) coding scheme, so
named because it is based on a coder developed by Yamamoto and Itoh [65] in a paper bearing this
name in the title. The mSB coder is itself a highly reliable feedback coder, which, as we show in
Section 2.4, gives the overall scheme high reliability.

The mSB coder that we use sends a block of xx bits as follows: Let z and =’ be two elements
of X defined by

(z,z') =ar(gﬂ};iXD(QY|x('|$) I ayix(-lz"), (2.33)

where D(- || -) denotes the Kullback-Leibler distance between two pmfs.'® Assuming the channel
has positive capacity, it can be shown easily that the probability of error associated with maximum-
likelihood decoding of the two-codeword, length-xx codebook consisting of the words a*~ [0] 2
(z,--- ,z) and a"V[1] = (z',--- ,x') is below 272*N for some a > 0.

Each of the kx bits is sent via this two-codeword codebook, i.e., the sequence a®V [0] is sent
for a 0 and a*~[1] is sent for a 1. After the xy bits are sent via this procedure, the transmitter
determines whether the receiver has decoded any of the bits incorrectly. Via the union bound, the
probability P, that any of these bits are decoded incorrectly can be shown to be o, (1). If any

. JAN .
errors occur, then the transmitter sends the length-v sequence w” = (z’,--- ,z’). Otherwise the

A . . . .
length-v sequence ¢¥ = (z,--- ,z) is sent; if the receiver successfully determines that w” (and not
c”) was sent, the process is repeated from the beginning. In other words, e}, is the solution to the
following equation:

eem (0, y%) = (e, (6°%), p(y™)) (2.34)
c’ if dif(yMin) = BN
p(y>) = w” if di(y™) # b*N and d°¥(y 1Y) = 0,
(wu, e:s;]":y(bﬂN 3 y,ﬁ.“,_“ )) otherwise,
(2.35)
where
ei?]v (bNN) = (a'NN [bl]’ Tty a”N [bKN]) (236)

'“The Kullback-Leibler distance, also called the information divergence, between iwo pmfs p and q is given by [14]

= p(z)
D(p|lq) = ;p(z) log =7y
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and di, : X*¥" — {0,1}"~ is the corresponding decoder for €if , and d” decides whether w”
or ¢ was sent, returning 0 to indicate that ¢” was sent. Note that d°¥ is not a maximum-likelihood
detector, because it does not treat errors equally. It tries to minimize the probability of mistaking

w" for ¢” subject to making the probability of the reverse error o, (1); see [65] for details.

2.3.2 Decoding

Let us now outline the processing that takes place in the associated decoder for the encoder (2.17).
This high-level description implicitly defines the stopping functions {x;}, and decoder A.

The receiver has two operating modes, “normal mode,” in which it starts, and “termination-
decoding mode.” In normal mode, the receiver saves the data from the incoming bitstream directly to
memory without processing it while watching for the occurrence of the sequence @'~ [N]. When this
sequence is detected, it enters termination-decoding mode and begins decoding incoming data using
the decoder corresponding to the termination code. It concatenates the decoded messages into a long
decoded string, appending each newly decoded message to the end of the string. After decoding each
block of sy bits and appending it to the string, the receiver searches for the termination sequence
(0,1,0, 1) anywhere in the full string and stops data acquisition when it detects this sequence.

The receiver then proceeds to decode enough of G* to recover £, F, Lp, 1, and L‘{;N_l.
Starting with this information, it decodes the data set acquired in normal mode according to the
following recursive procedure:

1. Subtract F' from the location at which §*~ [N] was detected to determine Ap,,. Leti = By.

2. Let A;—y = A; — L;_1. Use the received data Yfﬁ‘_l 4+1 and L;_, to construct the (a poste-
riori) source coding pmf that was used to generate ¥;, and invert the source coded block %;
according to this pmf to obtain ] _;.

3. Use L{_, to invert the precoded block €]_; to obtain ¥;_.

4. Decrement 7. If ¢ > 1, extract X;, L;_;, and LY, from ¥; using the seed 7 to invert the

effect of r, and go to Step 2; otherwise, stop because ¥y = W, and the message has been
determined.

2.4 Reliability

The reliability of a coding scheme, also known as its error exponent, gives the asymptotic rela-
tionship among the coding scheme's rate, probability of error, and blocklength. In this section, we
prove at a high level, leaving most of the details to Appendix A, the following theorem regarding
the reliability for the scheme:

Theorem 2.4.1 Let cpmc be a coding scheme mapping N and v to the corresponding code con-
sisting of the encoder described in Section 2.3.1 with its implied associated stopping functions and
decoder. Then, in the sense of Section 2.2, cpmc attains the error exponent function Ecgc defined
on the interval (0,1(X;Y’)) by

Ecec(r) = (1 = r/I(X;Y)) Ecw, (2.37)
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Figure 2-4: Plot of Ecgc.

where

Eew = zeralcl,?fsxp(qyw('lx) | ayx (|z)). (2.38)

Remarks: This theorem implies that the probability of error for the scheme decays exponentially
with IV or faster at any rate below capacity. Furthermore, Bummashev [11] has shown that Ecgc is
an upper bound to the error exponent of any variable-length feedback transmission scheme for a
DMC;. This scheme therefore attains the largest possible error exponent at all rates. It is also useful
to realize that the error exponent Ecgc, which is plotted in Figure 2-4, is the same as that of the
mSB scheme introduced in [65]. Finally, note that E,, may be infinite (e.g., if an output symbol has
positive probability under one channel input but zero probability under another as in a “Z-channel”)
in which case the error exponent becomes degenerate and somewhat meanizigless.

Proof: This theorem follows directly from three key properties of the coding scheme, which we
highlight to begin the proof. We call these properties “Subsystem Properties,” because each focuses
on a key aspect of one of the subsystems. The reader should be aware, though, that some of the
properties do depend on multiple subsystems and the way they interconnect. The main point is that
if we choose a different design for the precoder, source coder, termination coder or synchronization
subsystem, then as long as these properties hold, then Theorem 2.4.1 also holds.

Subsystem Property 1 If D" is uniformly distributed over {0, 1}", then there exists a constant
0 < Cr < oo that is independent of n such that
E[f(m,(D™)] < (n + Cr)/H(X). (2.39)
Subsystem Property 2 The precoders {7, }22; and the source coders {on, : X® xY™ — {0,1}1}

are such that there exists a a function A such that

E[L{,,] < E[L;] H(X|Y) + M E[L;]), fori =0,--- ,By — 1, (2.40)
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where A also has the properties that A(x)=o0,(z) and X is non-negative, monotonically in-
creasing, and concave (N) over [1, 00).

Subsystem Property 3 The termination coding scheme c*™ takes two parameters « and v and
returns a code. For any o > 0, there exists a sequence of parameters {(ky,vn(a))}32,;
such that ¢'*™(k,, v, {(c)), whose corresponding encoder is denoted ef?un(a), encodes k,, =
[nl/ 4] message bits into an average number of channel inputs 7, = an + o,(n) and has error
probability F; (erm,» bounded according to

P termn < exp2{-nn (Ecw — on(l)) }, (241

where exp,(z) £ 9z,

Subsystem Property 1 is proven in Appendix A.1, Subsystem Property 2 is proven in Appendix A.2,
and Subsystem Property 3 is proven in Appendix A.3.

Using these key properties, we can now prove the theorem as follows: Let 7 < I(X;Y) be
given, and let us construct a sequence of codes with corresponding sequence of rates and error
probabilities satisfying (2.7) and (2.8).

Intuition from the third illustration in Section 2.1 suggests that the expected transmission length
E[L*] of a code sending N message bits and using a termination coder that puts out a sequence of
average length 7, satisfies

E[L*] ~ +1. (2.42)

N
I(X;Y)
This equation in turn suggests that a sequence of codes with rate converging to r is {cpmc(n, vn) o2,
where vy, is a termination code parameter giving the termination code a corresponding expected
length of n,,(r) + on(n), where

m(r) = ;(1 - FXT_Y)) (2.43)

That an appropriate sequence of parameters {1, } exists is guaranteed by Subsystem Property 3.
Let us examine this sequence of codes {cpmc(n, ) }32; more closely to verify that it behaves as
desired.

To prove that the sequence of rates corresponding to this sequence of codes satisfies (2.7), we
first develop a bound on the the expected transmission length E[L*] of the code cpmc(V, vn) as
follows: Using the notation of Section 2.3, first consider the termination-coded transmission of
the sequence G defined in (2.16). If the receiver fails to detect the sequence (0,1,0,1) when it
first appears in the transmission G, then it is detected in a subsequent block because this coded
sequence is repeated indefinitely thereafter [cf. (2.16)]. Moreover, for each of these blocks the
probability of a missed detection is also less than P, irm, v, the probability of error associated with
the termination coder used by cpmc(V, vn). Thus, the expected length of the transmission starting
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with the length-t transmission of @'~ [N] until termination is less than
A / })e,term,N
p =N+ (E[BG] + a5 ) (n(r) +on(N)). (2.44)
(1 - Pc,term,N)
Furthermore, the expected length of the transmission before #*¥ [N] in (2.17) is

By -1

um 2 Y E[L). (2.45)

=0
Hence, the total expected length of the transmission is bounded according to

E[L*] < p1 + pur. (2.46)

The following lemma, which is proven in Appendix A.4, uses Subsystem Properties 1 and 2 to
upper bound pyy:

Lemma 2.4.1

< ( N
FI=\HX)-HX]Y)

) +on(N) (2.47)

And the next lemma, which is proven in Appendix A.S5, uses Subsystem Property 3 to upper bound
Hr:

Lemma 2.4.2
p <ty + (1+on(1))(nn(r) + on(N)) (2.48)

Since tnx /N=o0n(1), by substituting (2.48) and (2.47) into (2.46), we get that

E[L*}/N < +(1+on(1) ”NT(’") +on(1). (2.49)

I(X;Y)
This inequality with (2.43) implies that the rate Ry of cpmc (N, vn) satisfies Ry > r + on(1).
The last step in showing that Ecgc is attainable is to find the probability of error Py corre-
sponding to cpmc (N, vn). With the decoder described above, the invertibility of the source coder
and precoder—together with the perfect detectability of ¥ [ N]—mean that decoding errors in the
overall scheme occur only if one of the B¢ blocks that is termination coded is decoded incorrectly.
Since Py equals the probability of such an event, it can be union bounded above according to

Py < E[Bg) Pe term,N - (2.50)

Inequality (2.41) with (2.32) gives an upper bound on right-hand side of (2.50). Substituting (2.43)
into this upper bound, taking the log and multiplying by —Ry /N yields

Rylog Py _ Ry B T _
N 2 7(1 T(X;Y) +oN(1>) (E“” °”(1))’ @30
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> Ecec(r) —on(1), (2.52)

where (2.52) follows from the fact that Ry > 7 + on(1). Since these results hold for come(N, vn)
for arbitrary IV, the theorem is proved. o

2.5 Removing the Perfect-Detection Assumption

In the previous section, we assume that a perfectly detectable sequence (!~ [N ] exists. Since, in
general, no such sequence exists when the forward channel is a DMC, we must modify the coding
scheme before it can work with a forward channel that is a DMC. In this section, we outiine modi-
fications to our basic iterative coding scheme that allow us to remove the assumption that Bt~ [V]is
perfectly detectable.

To develop the modified scheme, we first construct §*~ [N] out of legitimate channel inputs from
X. Let a be an element of X defined by

a = arg max D(gyx(-|z) || py) (2.53)
z€X

and then let 0*¥ [N] = (a,- - - , a). The encoder uses the sequence in the same way, communicating
the time index Ap,, defined in (2.12) to the decoder by sending 0~ [N] at time Ag, + F + 1 and
later sending bits describing F'. The decoder tests for the presence of this sequence in each new
incoming block of ¢y samples, using a minimum-probability-of-error detector 8;,, of the form
JtN (ytN) — {1 if Hfﬁ1 qY[X(yi'a) > H:ﬁl pY(yi) ) (2.54)
0 otherwise

There is now the possibility that d;, returns a O when @~ [N] is sent over the channel (missed
detection) or that s, returns a 1 when @*~[N] is not sent over the channel (false alarm). As ¢y
increases, the probability of either sort of error can be shown to be less than exp,{—Btx } for some
B> 0.

We now encounter a dilemma in choosing ¢x: If we accept that WV # W whenever a
false alarm or missed detection occurs, then we need to choose ¢, proportional to N to maintain
probability of error decaying exponentially in N. But choosing ¢y proportional to N causes the
rate to decrease by an asymptotically non-negligible amount. On the other hand, if we choose
tn=on (), then the probability of error does not decrease exponentially in V.

The solution is to choose ¢y=ox (V) but to use feedback to detect missed detections and false
alarms, allowing the encoder to take corrective action. We therefore choose ¢ according to

ty = [\/N] , (2.55)

which ensures that the probability of a false alarm or missed detection occurring at any time during
the transmission decays to 0 as N — oo. The scheme is then modified as follows.

As in the idealized case, the receiver has two modes of operation: normal mode and termination-
decoding mode. In normal mode, at every time k that is an integer multiple of ¢y, the receiver
tests the most recent ¢ channel outputs to see whether d;, (Yk’“_tN +1) = 1. If this condition
holds true, then the receiver enters termination-decoding mode; this is the only way the receiver
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can go from normal mode into termination-decoding mode. Once in termination-decoding mode,
the receiver decodes each incoming block to find the message coeded in that block. Concatenating
these messages, the receiver stops receiving when it is in termination-decoding mode and finds the
sequence (0, 1,0, 1) somewhere in the concatenated message.

The transmitter knows exactly what the receiver is doing via the feedback. Hence, it can ex-
ploit the fact that the receiver always enters termination-decoding mode on detection of #*~ [N] by
sending the receiver a message regarding its detection of @#*¥ [N]. In particular, if a false alarm oc-
curs, then the sequence (1,0, Wy, W), Wy, Wy, --- Wy, Wy,0,1,0,1,0,1,---) is transmitted in
blocks of k y bits using the termination coder. The first two elements of the sequence, (1, 0), inform
the receiver that a false alarm has occurred and that the remainder of the sequence is io be regarded
as the original message. Note that even if some of these « n-bits blocks are decoded incorrectly, the
receiver eventually sees the sequence (0, 1,0, 1) and stops data acquisition.

In the case of a missed detection—that is, when ('~ [N] is transmitted but not detected by the
receiver—the transmitter resends @'~ [N] until it is detected by the receiver. After detection, the
transmitter sends (¢(Cmp ), G*°) coded in x y-bit blocks using the termination coder. The sequence
¢(Cwmp) encodes the number Cyp of missed detections that occurred. From this information, the
receiver can correctly ascertain the value of A, + 1.

In Figure 2-5, a flow chart giving an outline of how the scheme makes use of the synchronization
subsystem is shown.

2.5.0.1 Reliability of the Modified Scheme

It is proven in Appendix A.7 that Theorem 2.4.1 continues to hold for the modified scheme when a
synchronization subsystem can be designed with the following property:

Subsystem Property 4 With {¢x}%°_, asequence satisfying ty = on(1), the sequence of detector-
sequence pairs {(d;,, 0 [N])}%_; is such that the false-alarm and missed-detection prob-
abilities Pra ¢, and Pup,, . respectively, associated with each use of d;, by the receiver,
satisfies

Pray < on(N72) (2.56)
Pup,ty < Mwup + on(1) (2.57)

for some constant Myp < 1.

In Appendix A.6, Subsystem Property 4 is shown to hold for the synchronization subsystem
design given by (2.53)—(2.55).

2.6 Complexity
To this point, we have claimed that the compressed-error-cancellation framework leads to low-
complexity coding schemes. In what follows, we analyze the complexity of the coding scheme we

designed for DMCy's and argue that it has time and space complexity that is linear in the length of
the number of channel inputs used.
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Figure 2-5: Encoding modified for imperfect detection of @#*~¥ [N']. The notation “Y}, < Feedback”
indicates that one sample of feedback is retrieved and stored in Yj. Similarly, “Y'® < Feedback”
indicates that a samples are retrieved and stored in Y2,
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2.6.1 Time and Space Complexity for the Transmitter and Receiver

To assess the time and space complexities of the encoder and decoder, we first assess the time and
space complexities of each of the four constituent subsystems: precoding, source coding, synchro-
nization, and termination coding.

Precoding and postcoding (precoding inversion) operate nearly identically to arithmetic source
coding decoders and encoders, respectively, for i.i.d. sources. The dominant computation required
for arithmetic source coding and decoding is the computation of the relevant cdf. Because the cdf
can be computed using a recursive algorithm [14], it can easily be seen that arithmetic coding can be
performed with time cost that is proportional to the sum of the number of inputs and outputs under
the uniform-cost criterion. Space cost, excluding buffering of input and output, can be easily seen
to be a constant, so the total space cost including buffering requirements is proportional to the sum
of the number of inputs and outputs. Thus, the total time cost and total space cost associated with
precoding in the transmitter and postcoding in the receiver are linear in L*.

When carrying out precoding and postcoding on a digital computer with finite-length registers,
that the cdf must be computed to arbitrary precision is a concern. In [63], a k-bit integer arithmetic
implementation of an arithmetic source coding encoder and decoder for an i.i.d. source is given. The
implementation requires appropriate quantization of the marginal pmf for the source. The quanti-
zation error in the characterization of the marginal pmf decreases exponentially with the number
of bits allowed in the registers and presents no practical difficulties. The implementations of the
encoder and decoder both require a number of k-bit integer operations that grows linearly with the
suin of the number of inputs to and outputs from each. We have adapted this implementation to
precoding and postcoding and achieved the same behavior on a digital computer with finite-length
registers. Thus, the linear time complexity and linear space complexity seems to accurately reflect
the computation required when implementing the procedures on a digital computer.

The source encoding and decoding subsystems are based on Shannon-Fano source coding,
which can also be carried out using the arithmetic source coding algorithm. Use of arithmetic
coding again results in the time costs of the source encoder and decoder both being linear in the
length of their inputs plus outputs. Space cost is again constant. Therefore, the time complexities
and space complexities associated with source encoding and decoding are also Op-(L*). As for
implementation on a digital computer with finite-length registers, the same comments apply as for
precoding and postcoding.

The synchronization subsystem requires that the transmitter send the synchronization sequence
and that the decoder test for the sequence every ¢y samples using d;,, . Sending the sequence clearly
takes a number of operations linear in ¢y and requires ¢y buffer registers to store the sequence.
Each use of d;, clearly costs time linear in ¢y under the uniform-cost criterion. Space cost is
clearly On(tn). Since d;, is used fewer than L* /£ times, the total time complexity attributable to
the synchronization subsystem in the receiver is linear in L*. Each time d;,, is used, it can reuse its
registers, so the total space cost is only Oy (tn). The transmitter must also perform each of these
hypothesis tests to determine the state of the receiver, so it shares the same complexity.

On a digital computer with finite-length registers, we must worry about “underflow”, i.e., we
must worry about the probabilities becoming so small that they are rounded to zero. To avoid
underflow, we compute the negative log-likelihoods, which increase linearly in ¢, instead of the
likelihoods, which decrease exponentially in £. The only new problem seems to be the possibility
of “overflow”, i.e., that the negative-log-likelihood becomes so large that it is called infinity by the
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computer. But, clearly, extremely large values of ¢y are required before this can happen, and it is
a simple matter to allocate a sufficiently large register to hold this log probability. For example, a
1024-bit register is large enough to prevent overflow for any reasonable size of ¢5. We should also
note that rounding of the intermediate sums to a certain number of significant digits is allowable,
because the negative-iog-likelihood for the correct hypothesis should be smaller than the incorrect
hypothesis by an amount proportional to ¢x. Hence, the characterization of d;, as costing Oy (¢x)
in time under the uniform-cost criterion is a reasonable estimate of the time required to perform
the computation cn a digital computer with finite-length registers for reasonable values of ¢,. For
extraordinarily large values of ¢y, even if Oy (logty) registers are allocated to hold the running
negative-log-likelihood sum, most of the time, an addition only affects the least significant regis-
ter, so it appears that Oy (ty) is still an accurate characterization of the time cost even for such
enormous values of .

The number of computations required for mSB decoding depends on the specific inner code
used, but is at most

On(kn?) + 0, (V) (2.58)

under the uniform-cost criterion for each time the inner codeword and corresponding length-v ver-
ification message are sent. The first term accounts for decoding of the inner code at the receiver
(which must also be replicated at the transmitter). The second term accounts for the computation
required for the transmitter to send ¢ or w" and for the receiver to distinguish the two sequences.
For the important case in which v &< N, we can write ky = O, (v1/4), and the two terms in (2.58)
can be combined into O, (v), i.e., the time and space cost of a single use of the mSB coder is nearly
proportional to the number of channel inputs used by the coder. Since the total number of chan-
nel uses due to mSB coding is less than L*, the total computation due to mSB decoding must also
be Op-(L*). The time complexity of mSB encoding is less than for decoding, so it can also be
shown to be Or-(L*). Space complexity for the mSB encoder and decoder is O, (v) under both
cost criteria, since ¢” and w" and the inner codebook, all of which are composed of discrete-valued
sequences, must be stored.

For implementation of the mSB decoder on a digital computer with finite-length registers, the
same comments made regarding the synchronization detector hold for maximum-likelihood deccd-
ing of the inner codebook and verification sequences. That is, the complexity characterization under
the uniform-cost criterion appears to be valid.

Summarizing, each subsystem has time and space complexity that is Or - (L*) under the uniform-
cost criterion, and therefore so does the overall scheme. It follows that at a fixed rate, the expected
number of computations and amount of storage required by the transmitter and receiver is O (V).
Furthermore, this characterization of the complexity seems to reflect the behavior in practice were
these algorithms to be implemented on standard digital computers.

2.6.2 Uniform Versus Non-Uniform Complexity

In comparing this scheme to other low-complexity coding schemes, we see that concatenated
codes [21] with linear complexity can also be designed. Concatenated codes encode data first with
an outer code and then with an inner code. The inner code is usually a relatively short block code
that is used to obtain relatively small error probabilities on the channel. The outer code is then
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used to correct errors that escape the inner code, driving the error probability even lower. Fomey
showed that this structure allows error probabilities that decay exponentially with total blocklength
with polynomial computational complexity. It has recently become possible to obtain linear com-
putational complexity with exponentially decaying error probability by using Spielman's linear-
complexity codes [56]. Specifically, this performance is obtained by using Spielman's codes as
outer codes and using a randomly selected inner code. It may be tempting then to conclude that
feedback offers no advantages in terms of complexity.

But there is a very important distinction between the linear complexity of the feedback scheme
we have just introduced and the linear complexity of such a concatenated code. A concatenated
coding scheme whose inner code is decoded via exhaustive-search maximum-likelihood decoding
requires more computation per message bit as its operating rate increases. That is, at a particular
value of the rate R, the computation per message bit is independent of the number of message bits.
But the computation per message bit depends heavily on the rate and increases rapidly and without
bound as the rate approaches capacity. While the problem can be mitigated by using special ‘nner
codes that can be decoded with more computationally efficient decoders, no such capacity-achieving
codes and corresponding decoders appear to be known.

On the other hand, it is straightforward to verify that the feedback scheme we have introduced
does not behave in this way. The rate of wne feedback scheme can be made to increase to capacity
by letting v/N — 0 and N — oo. Computations per input sample need not grow without bound as
these two limits are approached. There must therefore exist a positive number U independent of the
rate R and the number of message bits /V such that the average number of computations per channel
input required for encoding and decoding is less than U for any R below the channel capacity.

We say that our feedback scheme has uniform linear complexity, while the above concatenated
scheme is an example of a scheme with non-uniform linear complexity. The difference has important
consequences in terms of what rates are actually achievable in practice.

2.7 Variations

The coding scheme we have developed thus far in this chapter is only one of many possible schemes
based on the compressed-error-cancellation framework. A number of minor variations on the coding
scheme are possible. For example, a synchronization sequence could be transmitted after every
iteration, so that block boundaries are known sooner. We could use a different feedback or feedback-
free code as the termination code. Or we could let the number of iterations be random, using the
termination coder when the length of the message drops below a certain threshold. Such variations
could lead to different performance characteristics and might be appropriate for certain situations.

One variation that is particularly important for certain analytical purposes that we encounter in
the remainder of this chapter and in Chapter 5, is a scheme that uses lossy (but effectively lossless)
precoders and source coders with fixed-length inputs and outputs. We describe this scheme in the
following section.

2.7.1 Scheme Using a Fixed-Length Precoder and Source Coder

We construct a scheme that uses the fixed-length precoder 75, : {0,1}* — X/5(®) where f5(n) =
[n/(H(X) — 6)] and the fixed-length source coder o5, : X; — {0,1}9(™) where gs(n) =
[n(H(X|Y) + 6)]. The constant § is a design parameter. These two subsystems are described
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in Appendix A.9. The encoder e(';LN then works essentially as the single-user coder described in
Section 2.2 but has fixed length:

Initialization:
I§=N,lo=[I§/(H(X)=6)],4 =0 (2.59)
To = w, €9 = g5 (r(o, 0)) (2.60)

fore =1,--- ,Bn:
17 = [(H(X|Y) + 8)li—1] (2.61)
Li=[I7/(H(X) - )] (2.62)
Ai=A; 1+l (2.63)
Si = 054, (i1, U4 41) (2.64)
& = w540 (r(Zi 1)) (2.65)

Number of channel inputs:
| = Ap, + #(Sp,)N'/* (2.66)
Encoding function:

ebn (W™,y') = (eo,+ s eny—1,€[ /41 () (2.67)

where r : {0,1}f — {0,1}! is the same binary randomization function used in Section 2.3, and
By is chosen as

3log N

BN = {log(B(X) = 9) = log(# (X|Y) 7 3)) (2.68)

so that I~ N'/4. Then er[e131 /a7 €ncodes its data by using a two-codeword codebook of length

[N1/4] to encode each of the 1% » bits. It can easily be shown that the rate of this coding scheme

is I(X;Y) — 26 + on(1), and the error decreases exponentially with N1/4. These performance
characteristics hold for any § > 0.

This fixed-length code has relatively slow decay of the probability of error with N. To construct
a variable-length code with better error properties, we simply use it as an inner code with an mSB
scheme, which would then attain the error exponent (1 — r/(I(X;Y) — 26))E.y, where E.,, is as
given in (2.38).

This scheme has a number of advantages: it is easier to describe because it requires no synchro-
nization subsystem, it has essentially the same performance as the scheme given in Section 2.3, and
the lengths of the transmissions on each iteration are fixed. These make it advantageous for certain
techniques that are more easily analyzed with fixed-length iterations.

The scheme also has a number of disadvantages: As will become apparent in Chapter 4, univer-
sal communication is not possible because of the fixed-length nature of the scheme; the scheme is
not robust to channel modeling errors; and, for finite-state channels, it is not clear how to generalize
the techniques used to prove that the fixed-length precoders and source coders work. Nevertheless,
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we see in later parts of this thesis that this version of the scheme is useful in some circumstances.

2.8 Discussion

Thus far, we have concerned ourselves with certain fundamental theoretical aspects of the feedback
coding scheme. A host of other interesting issues remains. We discuss some of these issues in this
section.

2.8.1 Structuring Computation

We have assumed in the foregoing analyses that computation takes no time. This assumption is
fairly common in the channel coding literature. For example, when computing error exponents,
which can be viewed as relating decoding delay and probability of error, delay due to computation
is generally ignored.

It may seem almost contradictory to assume that computation takes no time but to concern
ourselves with computational complexity. However, there are cases in which complexity may be a
concern even though we can effectively ignore the time delays associated with computation within
the coding scheme. Such cases include, for example, the case in which a processor is so powerful
that all needed computations require negligible time, but incur a financial or energy cost; another
case is that in which coding is performed for a recording channel, in which the goal is simply to fit
the most data onto the medium.

But often we have a computer that does a fixed number of computations per unit of time, and
low-complexity encoding and decoding algorithms are required to ensure that the computer keeps
pace with the encoding and decoding of a long stream of messages. Note that in this situation, any
code with a total number of encoding or decoding operations growing faster than Oy (V) would
require the blocklength N to be limited to some finite number which would in turn require the
probability of error to be above some positive constant. Only a scheme using Oy (V) computations
is capable of truly providing arbitrarily low error rates.

Such a setup with a computer providing constant computations per unit time may cause delays
during which computation is performed. Prior research generally has ignored such delays, perhaps
because such delays do not create serious problems as long as the computer does not fall behind
in servicing the computational demands. For example, for FEC codes in which there is an infinite
stream of data to be sent, one can easily structure the transmission so that computation for encoding
or decoding of one message takes place during transmission of another message.

But complications may arise in feedback schemes. In particular, in the framework we have de-
scribed in this chapter, if we assume that the precoders and source coders require the full block of
input before they can compute their outputs'!, a computational delay arises between iterations that
is proportional to the length of the transmission on the previous iteration. If we send information-
free filler during the delay, then the rate is reduced, because we waste a number of channel inputs
proportional to N. Even with such a delay, our scheme is computationally more desirable than any
scheme whose complexity grows faster than NV in the following sense: For any particular transmis-
sion rate, we can at least find a computer providing a sufficiently large number of computations per

""This is not actually the case for the subsystems described in this chapter, but it is the case for those described in
Chapters 3 and 4.
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second to allow arbitrarily small probability of error and arbitrarily large blocklengths. However,
the computer must become more powerful as the rate increases, suggesting that the scheme behaves
with a sort of non-uniform linear complexity.

Fortunately, we can structure the computation so that computation is performed while useful,
information-bearing data rather than information-free filler, is being sent. This allows us to find a
particular sufficiently powerful computer with which any rate below capacity can be achieved with
arbitrarily small probability of error.

To demonstrate the technique, which we call interleaving, we use the variation in Section 2.7
that uses a fixed-length precoder and source coder, sending a 2/N-bit message as follows:

e Precode the first V bits into N/H(X) inputs.
e Precode the second N bits into N/H(X) inputs.
o Send the first length-N/H (X') block of precoded data.

o Send the second length-N/H (X') block of precoded data. While these data are being sent, use
the feedback about the first block of precoded data to source code the first N/H(X) trans-
missions into NH(X|Y)/H(X) bits and also precode these bits into NH(X|Y)/H?(X)
inputs.

e Send these NH(X|Y)/H?(X) inputs. While they are being transmitted, source code the
second N/H (X) transmissions into NH(X|Y')/H(X) bits and also precode these bits into
NH(X|Y)/H?(X) inputs.

o Send these NH(X|Y)/H?(X) inputs. While they are being transmitted, ...

After approximately 2/N/I(X;Y") samples have been sent, we send the final coded block of data
and the verification message. This technique allows us to use the computer and channel efficiently.
We can see that the computer must be fast enough to process n channel inputs in the time required
to send nH(X|Y')/H(X) channel inputs.

Empirical evidence indicates that the technique works even when using the variable-length pre-
coding and source coding subsystems. For very long blocklengths, we would expect this behavior
because the lengths of the outputs from these variable-length subsystems cluster sharply around
the expected value of the length. But even for relatively short message lengths, such as 100 bits,
the technique seems to work. However, analysis seems to be difficult, although some preliminary
arguments for why the technique should work are given in Appendix A.10.

2.8.2 Variability of Transmissior Length

Because our scheme produces variable-length transmissions, buffer overflows are possible. How-
ever, for large blocklengths, preliminary experiments suggest that variations in transmission length
due to the varying lengths of the precoder and source coder outputs are modest; for example, in an
experiment in which E[Ag, + F] ~ 204500, the maximum value of Ap, + F in 100 trials was
about 206336, and the sample standard deviation of L* was about 794. Again, this behavior is not
surprising — for long blocks, most of the relevant sequences are “typical” and are compressed to
“typical” lengths, which are close to the corresponding expected length.
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2.8.3 Number of Iterations

The number of iterations By need not be chosen strictly according to (2.9). A variety of choices
of By allow the asymptotic theoretical results to follow. In practice, we find that for a particular
channel and value of NV, the length of the transmission on the ith iteration tends toward some positive
constant as ¢ increases. A good choice of By is the value of ¢ at which this positive constant is first
reached. As a general guideline, By should increase as IV increases and decrease as the quality of
the channel increases.

2.8.4 Feedback Delay

When communicating over large distances, a significant delay in feedback may be present. That is,
the transmitter at time k may only know Y*—¢, where d is some fixed delay. The primary effect of
this delay is that at the beginning of an iteration, the transmitter may not yet have enough feedback
to start the iteration. In this case, the transmitter may send information-free filler data. This wastes
at most Byd samples, which is negligible as N — oo. If feedback delays are large compared to
the desired blocklength, however, one could use a multiplexing strategy whereby one sends another
message during the periods that would otherwise be idle.

2.8.5 Inaccurate Channel Modeling

The variable-length version of the scheme we have described has some attractive robustness prop-
erties that make it well suited for use on channels that are modeled inaccurately. As an example,
reliable communication over the BSCy is possible even when the parameter ¢ is a noisy estimate
of the true crossover probability. The price paid for this mismatch is in terms of rate: the smaller
the mismatch, the closer the achievable rate is to capacity. When the iterative coding scheme is
appropriately designed, the resulting degradation can be quite graceful. Note that this robustness
contrasts sharply with the behavior of more traditional FEC codes. In particular, with pure FEC
coding the probability of error can go sharply to 1 when the channel signal-to-noise ratio exceeds a
code-dependent threshold.

To understand how the graceful degradation property can be obtained with iterative coding, it
is important to understand the factors contributing to the rate gap. One component is due to the
fact that the source coder is unable to operate at the appropriate entropy rate, if the source coder is
not accurately tuned to the pmf of the true channel. In fact, the source coding rate that is achieved
increases compared to the true source entropy by an amount given by the Kullback-Leibler distance
between the true channel and the assumed channel model [14]. A second component to the rate gap
in the iterative coding scheme under mismatch conditions occurs because the capacity-achieving
input distribution of the channel model may not be the capacity-achieving distribution of the true
channel.

Achieving this graceful degradation property requires that the final block of data be mSB coded
in such a way that it can be decoded correctly with high probability even when there is channel
model mismatch. When we know the channel has some minimum quality (e.g., in the case of the
BSCy, if we know that the crossover probability € is always less than ¢y < .5), we can termination
code for this worst-quality case without sacrificing overall rate.

We show in Chapter 4 that with appropriate modification of the subsystems, a system that incurs
no rate loss due to channel mismatch can be designed — in fact, the system needs no channel model
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at all.

2.8.6 Simulation

To verify that our scheme behaves as predicted by our analysis and that the asymptotic performance
is approachable in practice, we implemented the scheme and simulated its performance on a digital
computer with finite-length registers.

To simultaneously demonstrate that the coding scheme is viable on continuous-valued channels,
we applied it to the Gaussian channel. To use the scheme on a continuous-valued channel, the chan-
nel inputs and outputs must be quantized and the corresponding channel transition probabilities de-
termined. In a preliminary experiment, we used the fifteen input symbols {—7, -6, —5,--- , 5,6, 7}
and chose an approximately Gaussian input distribution with variance 4.0 as an input to a discrete-
time channel with zero-mean additive white Gaussian noise of variance 4.0. We then quantized
the output to the twenty-one symbols {—10,—9,—8,---,8,9,10}. We simulated the Gaussian
channel to empirically calculate the channel transition probabilities for this quantized channel, and
used this channel model in our coder. With N = 10°, and v = 1000, our coder achieved a rate'?
of 0.483. The probability of error can be determined to be less than 1 — F(,/v), where F is
the cdf for a unit-variance, zero-mean Gaussian random variable, which is upper bounded [41] by
exp{—v/2}/v/2nv. Comparing this performance with the capacity of the discrete-time Gaussian
channel with a 0 dB signal-to-noise ratio, which is 0.50 bits per channel input, our scheme appears
very promising for use with continuous-valued channels and has certain advantages over the scheme
of Schalkwijk et al. [49]. Namely, our scheme can be easily adapted to achieve rates near capacity
on non-Gaussian channels such as fading channels and aiso allows quantized feedback.

We note that the characterization of the overall time complexity as linear in NV seems to accu-
rately reflect the time taken to run the algorithm on the digital computer. Indeed, the fact that a
108-bit message could be encoded and decoded is evidence that the computation per bit is reason-
ably low even though the message length is large.

2.8.7 Summary and Future Directions

We developed a linear-complexity coding scheme giving exponentially decaying error probabilities
at any rate below the capacity of any DMCy. The error exponent achieved by the scheme is the
highest possible. We explored variations of the scheme and also implemented the scheme on a
computer to show it is practically viable.

A particularly interesting direction for future research includes the development of a “sequen-
tial” scheme based on the compressed-error-cancellation framework. A sequential scheme is one in
which each of an infinite sequence of bits is transmitted and decoded individually rather than as a
block. Horstein's scheme [30] is an example of such a scheme. A sequential scheme is useful in
practice when the delay caused by long blocklengths is undesirable. For example, when transmitting
speech in a two-way conversation, only very short delays are tolerable.

2The theoretical capacity of this DMC approximation to the Gaussian channel is 0.493 bits/input. In our simulation,
this rate was not approached more closely in part because our implementation of the source coder and precoder used 32-
rather than 64-bit integers, which did not allow for sufficiently accurate characterization of the channel transition pmf.
This shortcoming can easily be remedied with a more sophisticated implementation.
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While we have not been able to develop a sequential scheme based on the compressed-error-
cancellation framework, we believe that Horstein's scheme may be related to the scheme developed
in this chapter. The relationship between these two schemes may be worth further exploration and
may reveal a corresponding sequential version of the compressed-error-cancellation framework.

Additional interesting directions for future research that are not addressed in the remainder of
this thesis include finding the pmfs or higher moments of L;, and L{ for all 2. Also, one could
attempt to analyze the scheme without the randomizing function r. Extensions to channels with
countable and uncountable input and output alphabets may also be of interest.
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Chapter 3

Channels with Memory

3.1 Introduction

While DMC's provide accurate models for some channels used in practice, they are not accurate
models of channels with memory. A channel has memory if the output of the channel at a particular
time k depends statistically on the input or output of the channel at a time other than k.

An important example of a chanrel with memory is a wireless electromagnetic channel rely-
ing on non-line-of-sight propagation. In practice, such channels may arise, for example, in high-
frequency-band communication and cellular telephony. The memory in such channels arises be-
cause the transmitted signal arrives to the receiver via multiple paths, each of a different length,
at several different times [44]. Such “multipath propagation™ gives rise to a phenomenon referred
to as fading, in which the transmitted signal is attenuated or boosted because of the destructive or
constructive interference of the multiple signals. The amount of the fading may depend on certain
elements of the physical environment such as location of clouds, or temperature, which may vary
randomly but also smoothly with time so that the amount of attenuation is a random process with
memory.

Many researchers have studied fading channels and other channels with memory (see, for ex-
ample, [44] and the references therein). A number of techniques have been proposed for fading
channels without feedback, and some have been used with success to communicate over such chan-
nels. An example of such a technique is interleaving, in which the symbols of the channel are
scrambled to make it appear memoryless. In contrast, the use of feedback on channels with memory
has been comparatively less explored.

In this chapter, we apply the compressed-error cancellation framework to coding for channels
with memory. In particular, we restrict our attention to channels whose statistical parameters are
known a priori (o both transmitter and receiver. In Chapter 4, we extend our results to the important
case in which neither transmitter nor receiver has prior knowledge of the channel parameters.

A useful and rather general model of channels with memory, and the one we use, is the discrete
finite-state channel (DFSC) [23]. A DFSC is described by the 4-tuple (B, X, gy, ,x,,3,, ¥), Where
B is a finite set of possible states of the channel, X is a finite set of possible channel inputs, Y is a
finite set of possible channel outputs, and gy, g,|x, g, is the conditional probability mass function
(pmf) describing the statistical relationship between channel inputs and outputs as well as the state
evolution. Given the state of the channel, the channel acts as a memoryless channel, and the next
state of the channel depends on the previous state as well as the most recent input and output. To be

53



more precise, we make the following definition:

Definition 3.1.1 Let {X;}22,, {Yz}22, and {8}, random processes. The processes {Ye}2,
and {8, } 32 are the output process and state process, respectively, resulting from passing { Xk},
through a DFSC (B, X, qy; g,x, .40, 9) (or just dy;,8:|X1,80) Without feedback if for all n > 0,

n
Py~ gn|x~ 8o (Y™, B™Z", Bo) = H av1,611X1,80 (Yk> BTk, Be—1) 3.1
k=1

forall z" € X", all y* € Y*, and all G2 € B"+1.

(Note that only the distribution of the output process is necessary to describe the channel; the state
process is defined to facilitate analysis.) A DFSC with feedback (DFSCy) consists of a DFSC as the
forward channel (or just “channel”) and a feedback channel, which is assumed noiseless and free of
delay—i.e., at time k, the transmitter knows with certainty the value of Y*~1. A DFSC;y is defined
analogously to the DMCy:

Definition 3.1.2 Let M be a random variable taking values in M. For all m € M, let {fm i},
be a sequence of functions, where f,; : Y"~! — X maps a sequence of i — 1 channel outputs to
a single channel input, and f,  takes a constant value in X. The processes {Y;}2; and {Be}20
are the output process and state process, respectively, resulting from passing M through a DFSCy
(3, X, a4y, ,51|X1,801 E) (orjust gy, ,ﬂllxhﬁo) via {{fm,i}zl}m ifforallm > 0,

Py= grint,50 (Y™ B7m, Bo) = [ [ avi,o011,80 Wi Bl Frmpe (9% 1), Br—1) (3.2)
k=1

forallm € M, all y* € Y", and all 53 € B"+1.

We further restrict our attention to indecomposable DFSCy's, which have the property that the
effect of the channel's initial state 3y dies out over time (see, for example, [23] for further details).
As a result, the coding scheme we develop and the analysis of its asymptotic properties requires no
knowledge of the the initial state 3.

An expression for the capacity Cy¢ of indecomposable DFSC's without feedback was given by
Gallager in [23] as

Cpf = lim max lI(X"; Y™, 3.3)
n—o0o pxn N

where {Y} } is the output process resulting from passing { X} through the DFSC, starting from any
channel state. In most cases, it is unknown how to even compute (3.3), although Mushkin and Bar-
David [40] derived algorithms for computing the capacity of a simple subclass of DFSC's with two
states known as Gilbert-Elliott channels. Goldsmith and Varaiya [26] studied a somewhat broader
subclass of DFSC's and developed a capacity formula for this subclass that is easier to compute than
(3.3); they also identified a subclass of DFSC's for which capacity is achieved with an i.i.d. input
distribution and gave a relatively simple capacity formula for this subclass.
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While feedback can be used to increase the capacity of a DFSC in at least some —but not
all' —cases, little appears to be known about the availability and extent of such an increase.

We focus here on using feedback to reduce computational complexity rather than to increase
capacity. We describe a variable-length coding scheme that achieves error probabilities that decay
exponentially with the number of bits IV in a block, at any fixed rate below the mutual information
induced by an input distribution in a class of finite-memory ergodic Markov processes. When the
feedback-free capacity Cys is achieved by a stationary and ergodic input distribution, then this im-
plies that the scheme can approach rates near Cys. By exploiting a computationally efficient method
for Shannon-Fano source coding, the scheme's encoding and decoding computational complexity is
made linear in the number of channel inputs used.

We now embark on a detailed development of the coding scheme. This coding scheme is most
easily described by building on the results of Chapter 2. For this reason, we begin in Section 3.2 by
discussing how those results can be generalized, showing that to achieve certain performance char-
acteristics, it is sufficient that the subsystems have certain properties. We then follow in Section 3.3
by describing subsystems having these properties. We argue in Section 3.4 that the computational
complexity for the scheme is linear (and in some cases uniformly linear) and end in Section 3.5 with
a discussion of certain remaining issues and future directions.

3.2 Generalization of the Coding Scheme

In this section, we generalize the results we obtained for DMCy's in Chapter 2 to DFSCy¢'s. In
particular, for coding schemes that use precoding, source coding, termination coding, and synchro-
nization subsystems in the same way they are used in Sections 2.3 and 2.5, we develop an analog of
Theorem 2.4.1 that gives the reliability of such schemes in terms of certain key properties of these
subsystems. As a result, the problem of developing a coding scheme for DFSCs's that attains this
reliability function is reduced to the problem of developing subsystems with certain properties.

We begin by appropriately modifying the formulation of variable-length coding. For DFSCy's,
a variable-length code is just as described in Section 2.2, containing the same four elements. To
describe the code's rate and probability of error, let 3y be a known starting state of the channel, let
W be defined as in Section 2.2, and let {Y;} and {8}, be the output and state processes, re-
spectively, resulting from passing W through the DFSCr qy, g, |x, 5, Via {{€i(m, )}, Ymefonyv
with starting state Gy = Bo. With L*(By) and W (3;) defined analogously to (2.5) and (2.6), re-
spectively, the code's rate is defined to be N/(supj .3 E[L*(Bo)]), and the code's probability of

error is defined to be supg .5 Pr{W" £ W¥(3;). A coding scheme and its properties are then
defined in the same way as in Section 2.2. This formulation is appropriate for the case in which the
transmitter and receiver do not know the starting state of the channel.

Proceeding with the development of the analog to Theorem 2.4.1, we first observe that the proof
of Theorem 2.4.1 follows entirely from Subsystem Properties 1-4. That is, if we use another set
of subsystems {7}, {on}, ™, and {(8,, 0" [n])}, within the framework of Section 2.3, then
Theorem 2.4.1 still holds as long as Subsystem Properties 1-4 are satisfied.

Suppose that cgs is a coding scheme mapping N and v to a code that is the same as the code

'For example, Alajaji [4] showed that if the channel adds (modulo-q) an independent noise process with memory, then
feedback does not increase channel capacity.
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described in Section 2.3 with the modifications from Section 2.5 except for the fact that it substitutes
different subsystems for the corresponding ones in Sections 2.3 and 2.5. Suppose that these different
subsystems are such that Subsystem Properties 1-4 hold, from all starting states of the DFSCy of
interest, with some constant H: taking the place of H(X) in Subsystem Property 1, some constant
H, taking the place of H(X|Y) in Subsystem Property 2, and some constant Ej taking the place
of Fic,, in Subsystem Property 3.

Then the following theorem regarding the error exponent associated with cps holds instead of
Theorem 2.4.1:

Theorem 3.2.1 The coding scheme cgg attains the error exponent function Fgsg : (0,H—H;) > R
defined by

Brs(r) = (1 - H_{T) Eo, (3:4)
Proof: Follows in the same way as the proof of Theorem 2.4.1. O
Note that Subsystem Property 3 may be satisfied with multiple values of the constant Ey. The

largest value leads to the strongest statement of the theorem. As discussed in Section 2.4, the

constant Ey may be chosen arbitrarily large in some cases, causing (3.4) to degenerate and and
become somewhat meaningless.

From the theorem above, we see that the achievable rate and reliability of the overall scheme
hinge on what values of H,, H., and Ey emerge from a particular precoder, source coder and
termination coding scheme design. In Chapter 2, capacity-achieving precoder and source coder
designs are given for DMCy's, in which H, = H(X) and H, = H(X|Y), where X is distributed
according to the capacity-achieving inpnt distribution, and Y is the random variable resulting from
passing X through the DMC. Subsystems appropriate for DFSCy's are given in what follows.

3.3 A Coding Scheme for DFSC¢'s

Before giving a precise description of the various subsystems of which the coding scheme is com-
posed, we must consider what sort of channel input process we should use.

In the development of our coding scheme for the DMC in Chapter 2, the achievable rate of the
scheme is highly dependent on the choice of the channel input process. For DMCy's, the optimal
input process is within the class of i.i.d. processes, so a natural choice for the input process is the
optimal one. Fortunately, such a process can be generated (approximately) with low complexity by
the precoder described in Section 2.3.1.1.

For DFSCt's, the choice of input process is not as clear, because (3.3) does not suggest an easily
described ideal input process. On one hand, we would like the class of allowable input processes to
be as large as possible. On the other hand, the input process must be sufficiently structured that the
required precoder, which must generate the input process, has low complexity.

We can satisfy both of these desires by constraining the output process feeding the channel to
be a Kth-order Markov process, where K is finite but can be arbitrarily large. We adopt the usual
definition of such processes [14]:

Definition 3.3.1 A process {Xy}}_, is a Kth-order Markov process with transition pmf q X11XO_
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and initial state distribution qq, if

n
pxn(z") = D dao(#}-x) [T axypxo_ (@lzfk)- (3.5)
k=1

0
Ti-k

Clearly, Px,| Xy = 9x,|X9_, for all j > K + 1. The state of the process at time & is defined

as X,’f_ K41 With o = X ,’c‘_ K4+1» We note that {ax} can be considered as a first-order Markov
process or Markov chain.

The finite-order Markov distributions constitute a rich and flexible class of channel input dis-
tributions into which data can be precoded with low computational complexity. Furthermore, we
conjecture that these processes are sufficient to make the mutual information between channel in-
put and output arbitrarily close to the feedback-free capacity of the channel, but are aware of no
existing proofs of this conjecture. As seen in the previous chapter, analysis of a scheme using the
compressed-error-cancellation framework often requires that we work with the joint distribution for
the channel output and input after passing the input through the channel without feedback. From
Definition 3.1.1, we see that specifying the joint distribution for (X", §p) determines the joint dis-
tribution of the channel input and channel output (X™,Y™). In this chapter, the input processes of
interest take the following form: X™ is Markov according to g, |xo_  with an initial state distribu-

tion gq,, and the joint distribution for (X, 3y) has the form

Px50(z™ B0) = Y Ppojao(Bolzl- k) a0 (z3—x) [ [ axyixo_, (@513 k)- (3.6)
J

0
Ti-K

This form of the joint distribution models the case in which the starting state of the channel is
dependent on the input to the channel only by being dependent on the initial state of the Markov
process. Actually, in all of the analyses in this chapter, 3y and ¢y are independent, but this definition
allows some extra flexibility. It is convenient to make the following special definition:

Definition 3.3.2 Let { X} };_, be a Kth-order Markov process with transition pmf gy | x9_,.- Then

the processes {Yx}7_, and {8k }}_, are the output process and state process, respectively, resulting
from passing the Markov process { X}y, through a DFSC gy, B11X1,80 Without feedback with
initial states jointly distributed according to qq, g, if

pX"vyny,B",ao,ﬁo(xnv yn, ﬂnv &Oa IBO)

n n
= dao,o (80, B0) [ [ ax, xo_, (231&5-1) T avi muix1,80 (9ks Bl Be-1),

j=1 k=1
vz € X", Yy € Y, VBE € B, Vag € XK, (3.7)
where &; =x§_K+1,forj =1,---,n.

One of the benefits of using a Kth-order Markov input distribution is that it allows the joint
channel input and output processes to be viewed as resulting from a Markov chain. Suppose that
{Xk}32, is a Kth-order Markov process with some initial state distribution, that {Y3}22, and
{Br}72. are the output and state processes resulting from passing the Markov process { X } through

57



a DFSC without feedback with some joint initial state distribution. We can first view a K'th-order
Markov process in terms of appropriately defined deterministic functions f and f as

Q= f(ak—-h ‘/k) (38)
Xk = flex—1, Vi), (3.9)

where {V} } is a sequence of random variables that are i.i.d. uniformly over [0, 1) and independent of
ag and (3. Next, we can view the finite-state channel in terms of appropriately defined deterministic
functions g and § as

Br = 9(Br—1, Xk, Zk) (3.10)
Yk :g(ﬁk—lan,Zk)a (3-11)

where {Z} are i.i.d. uniformly over [0, 1) and independent of {V;} and ag and 3. We now see
that if {Xy} is passed through a DFSC, then we can view the joint state (o, 3;) as a stationary
Markov process that evolves according to

(aks Br) = h(ak—1, Bk-1, Vi, Zg), (3.12)
(Ye, X&) = h(ak—1, Be_1, Vi, Zk) (3.13)

where h and h are deterministic functions. It can be shown that & and % can be defined so that
X™ Y™, B, ag, B have the distribution given in (3.7). Therefore, (ay, Br) is the state of a Markov
chain, which we refer to as the joint input/channel state. This new description allows us to see cer-
tain facts more easily. For example, it is now clear that (X2, Y;?) is independent of (X*~1, yk-1)
conditioned on knowledge of (ax_1, Bx—1)-

As a final restriction on the channel input processes, we require that the Markov process corre-
sponding to {(a, B¢)} contain only transient states and a single ergodic class2. In Appendix B.1, it
is shown that all input processes for which the state process {ay } is an ergodic plus transient Markov
chain are admissible under this restriction. We restrict our attention to such input processes, the set
of which we denote by £. One convenient feature of Markov chains with transient states and a
single ergodic class is the existence of a stationary distribution over the states of the chain [25]. If
the distribution of (ay, Bp) is equal to this stationary distribution, then the process {(X, Yx)}2,
is said to be stationary.

When we choose an input distribution ¢ xi|x¢_, from € for use with the DFSCy

(B, X, gy, 8, X1,80> 9)- the coding scheme we develop is able to achieve the rate
: Y.y _ vy _ YIRY,
Tim I(X™Y™) /n = Heo(®) — Hoo £19), (3.14)

where X = {X;}2° is a Kth-order Markov process with the stationary initial state distribution
and transition pmf QX1 |X0_,e0 and Y = {Yk}ggl is the output process resulting from passing the
Markov process X through the channel 91,611 X1,8, Without feedback with the stationary initial joint
input/channel state distribution for (g, B). In addition, in (3.14), (X,Y) = {(Xk, Vi) }k s a
stationary process; also, Hoo(X), Hoo (), and Huo(X, ) denote the entropy rates for X, ), and

2We refer to such processes as ergodic plus transient Markov processes or Markov chains.
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the joint process (X, ), respectively.? As additional notation, Hoo(X|)) 2 Hoo(X,Y)—Ho(Y).

To construct our coding scheme, we design subsystems that satisfy Subsystem Properties 14
with H, = Hy(X) and H, = H(X|Y), for all starting states of the channel. When we do,
Theorem 3.2.1 establishes that the scheme using these subsystems achieves a rate equal to the right-
hand side of (3.14).

3.3.1 Precoder

We now define a precoder gs », : {0,1}" — X' to be used in place of the function 7, in Chapter 2.
This precoder also relies on the principles described in Section 2.3.1.1, but has a different target
output distribution. Because the output of the precoder 7gs, : {0,1}" — Xt should be a process
distributed (approximately) according to gy | X9_, » We must define a different cdf Fig 3 whose

inverse is used to transform the uniformly distributed variable 0,.D™ + 27" Z, where Z is as in
Section 2.3.1.1. To define Fig 5, assume without loss of generality that X = {0,1,--- , M — 1},
and let the base of all expansions in this section taken to be M. Choose & to be any ergodic state,
and let X = {X;}32, be a Kth-order Markov process with transition pmf gy | x9_, that starts
in the state &. Mapping these sequences bijectively to the unit interval [0,1) (i.e., discarding the
sequences that end in an infinite sequence of (M — 1)'s), we let X be a random variable defined by
X =0p-X1 X2+, and we let Fg 3 be the cdf for X.
The precoder 7gs , is then defined by

Trsn(u) = ulls=(@)] (3.16)
s n(d") = Tn (Fig' 4 (02.d" + 27" 2)), (3.17)

where the expansion in (3.16) is M-ary, and lgs, : [0,1) — N is defined as follows to ensure that
the output of the precoder stops in state & after enough digits of the M -ary expansion of FF_Sl _(s)

have been put out to uniquely determine the first n bits of s:

lesn(u) = min{k : Fg((0aru, 000l + 47%)) C li2™, (i + )27 and fy) | =a)
(3.18)
foru € FZ'([i2™, (i +1)27")) fori = 0,--- ,2" — 1. (3.19)
This definition of s , gives rise to the analogs of the key precoder properties held by 7, from
Section 2.3.1.1:
Losslessness For any d"{0,1}", d" can be recovered from n and ngs ,, (d").
Approximation If D" is uniformly distributed over {0, 1}", then the elements of 7gs ,(D") form

arandom process that can be generated by taking a Kth-order Markov process with transition
pmf gy | X0, and truncating it according to a stopping rule.

*The entropy rate Hoo ({P,}32,) of a process { P, }32, is defined as [14]

Ho((P)2)) = lim HE) (3.15)
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Efficiency If D" is uniformly distributed over {0, 1}", then
Efl(mrsn(S))] < (n + Cx)/Huo(X),

where C; is a constant that is independent of n.

The losslessness and approximation properties are evident from the precoder definition, and a proof
of the efficiency property is provided in Appendix B.2. The efficiency property implies that Sub-
system Property 1 is satisfied, while the approximation property is needed to show that the precoder
with the source coder in the following section together satisfy Subsystem Property 2.

3.3.2 Source Coder

We define a source coder ogs, : X™ x Y* — {0,1} to be used in place of the function o, in
Chapter 2.
Like the source coder o, from Chapter 2, ogs , uses a Shannon-Fano strategy but must now
use a different statistical model for the dependence between the channel input and output. Let
= {X } denote a Markov process with transition pmf 91 |x9_, and uniform initial state pmf,

andlet ) = {Y} >, and {,B, = o denote the output and state processes respectively, resulting from
passing the Markov process X through the channel 91,811 X160 without feedback with uniform

initial joint channel/input state distribution. Then, with X = 0ps.X™, and with FX|Y" denoting the
cdf for X conditioned on yn, OFs,n is defined by

orsn(z™,y") = ull, (3.20)

where the expansion in (3.20) is binary, and

u = FXW" (Oar.z™|y™) + wxny=(z"[y")/2 3.21)
l=[~logwyny(z"y"™)] + 1, (3.22)

where
wxnjyn(z"y") = Pgnjyn (z™|y™), forall " € X",y € Y. (3.23)

While the statistical model used in the source coder is again somewhat inaccurate as it was
in Chapter 2, it is sufficiently accurate to produce the following key bound, which is shown in
Appendix B.3:

E[L},|] < E[L;) Hoo(X|Y) + 5log E[L;] + C,, (3.24)

where C, is a constant. Comparing to (2.40), we see that this source coder design satisfies Subsys-
tem Property 2, with H, = Huo(X|)).

While it seems initially that evaluating F'3 ;.. (Oar.z™|y™) is computationally expensive without
the convenient properties of DMC's and i.i.d. channel inputs, we can use actually use principles from
the Bahl algorithm [5] to perform this evaluation using a number of computations that is linear in n.
An algorithm for performing the evaluation is presented in Appendix B.4. This algorithm leads, in
turn, to a linear complexity algorithm for source coding and decoding.
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3.3.3 Synchronization Sequence and Detector

Similar to the development of the replacement precoders and source coders, a replacement synchro-
nization subsystem for the code with parameter IV, consists of the detector

1 if pyey gen (U [0V [N]) > 290N)pg, (')

. (3.25)
0 otherwise,

Srs,en (¥, 0V [N]) = {

where {X;} and {¥;} are defined as in Section 3.3.2, and w(t ) is any function that is o (fx) but
bounded below by 3logtx + o, (1). For concreteness, let us set w(ty) = /In. As the form of
(3.25) suggests, Ofs 1, (y*V) = 1 signals that @'~ [N] has been detected.

With ¢y set, as in Section 2.5, to V/N, we show in Appendix B.5 that there is a choice of
@'~ [N] such that the p-bability of both false alarm and missed detection satisfy (2.56) and (2.57)
in Subsystem Property 4. The purpose of the term 2¢(t¥) in (3.25) is to make this proof easier than
it might otherwise be.

3.3.4 Termination Coder—Modified Schalkwijk-Barron Coder

The termination coding scheme remains an mSB coding scheme, with the two parameters « and
v taking the same meaning as in Section 2.3.1.3. The difference is that the inner codebook and
verification sequences ¢” and w" are chosen appropriately for the DFSCs. The coding theorem
for DFSC's [23] guarantees the existence of an inner codebook with probability of error decaying
exponentially in k. The same theorem also implies that the verification sequences can be chosen
so that the probability P, of confusing w” for ¢” and the probability P, of confusing ¢” for
w” decay exponentially in v, although, unlike the mSB coder for the DMCy, it is unclear what
choices of ¢ and w” give the minimum value of F,,,. Random coding arguments at least guarantee
the possibility of choosing the inner codebook and verification sequences so that the error decays
exponentially with v with exponent Ej ., the zero-rate random coding exponent.

To show that Subsystem Property 3 holds, consider the sequence of mSB codes corresponding
to the sequence of parameters ky = N'/4 with vy = [aN]. Then, using the same arguments as in
Section A.3, the expected output length is easily seen to be aN + on (V). Subsystem Property 3 is
therefore met with Ep equal to Ej .

3.4 Complexity

Because these subsystems satisfy the Subsystem Properties 1-4, Theorem 3.2.1 holds for the overall
compressed-error cancellation scheme that employs these subsystems. To complete the performance
characterization, we show that the scheme has linear time and space complexity under the uniform
cost criterion.

Because linear-complexity arithmetic coding algorithms exist for Markov sources [14], the pre-
and postcoder, which operate in a similar way, also have time complexity that is linear in the number
of precoder outputs under the uniform-cost criterion. This in turn, implies that the total arithmetic
operations required by these subsystems are linear in L*. Space cost is linear in L* when space for
buffering inputs and outputs is counted. Using a variation of the arithmetic coding algorithm in [63],
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we can also develop an implementation on a digital computer with fixed-length registers that runs
in linear time and space.

Using the linear-complexity method of Appendix B.4 for computing the relevant source cod-
ing cdf, the source coders and decoders also require a total number of computations that is linear
in L* under the uniform-cost criterion. When analyzing the running time of the algorithms on a
digital computer, however, we have to be careful. Certain quantities that must be computed in the
source coding algorithm need not be done with arbitrary precision, but the final answers that are
computed should be close to the true answers. But under floating-point arithmetic with p digits
allowed after the decimal point, with no limit on the size of the exponent, empirical studies indicate
that only O,(2P) computations can be performed with negligible ioss in accuracy. A source coder
based on the equations in Appendix B.4 requires that O, (n) computations be performed. To obtain
acceptable accuracy, then, it seems that we must allow O, (logn) digits after the decimal point for
a length-n input. Since additions or multiplications of n-bit numbers takes time proportional to n,
it appears that the actual time used on a computer may grow as O, (n logn).

The synchronization subsystem and mSB coding subsystem can both be shown to have total time
and space costs that are Oy~ (L*) under the uniform-cost criterion, because a recursion can easily be
developed so that the hypothesis tests required for decoding take a number of computations that is
linear in the length of the sequences being tested. On a digital computer, Oy (¢x) computations are
required for computing the relevant likelihoods each time égs ¢, is used. Because these likelihoods
may be in error by a multiplicative factor growing exponentially in ¢, On(ty) time seems to be
sufficient for each use of ds ¢, .

By combining these facts with the reasoning given in Section 2.6, we may conclude that the
coding scheme described herein has Or-(L*) time and space complexity.

While the time and space complexities are linear in the number of channel inputs for a fixed Kth-
order Markov input distribution, the number of computations needed per channel input increases
with K. Consequently, in the case in which arbitrarily large values of K are required to approach the
feedback-free channel capacity arbitrarily closely, the scheme cannot be said to have uniform linear
complexity in the sense described in Section 2.6.2. Note, however, that there do exist channels for
which the feedback-free capacity is achieved with a finite-order Markov input distribution; examples
include the Gilbert-Elliott channels and the class of channels Goldsmith and Varaiya [26] identified
as having i.i.d. capacity-achieving input distributions, which includes additive white noise channels
with symmetric PSK inputs and time-varying noise statistics or amplitude fading [26)].

3.5 Discussion

3.5.1 Choosing the Synchronization and mSB Sequences

In contrast to the coding scheme we developed for DMCy's, we have not given an explicit con-
struction for the synchronization sequences {0*¥ [N]}x or for the various sequences used by the
mSB coder. The reason is that it is not evident how to construct such sequences. It is well known,
however, that random selection of sequences is adequate with high probability. That is, Markov's
inequality dictates that a sequence yields an error probability less than K times the average with
probability at least 1 — 1/K. Our view is that practically, random selection should suffice. While
random selection of codewords is traditionally objectionable because the resulting codebook has so
little structure that decoding and encoding complexity is exponential in the codeword length, this
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Figure 3-1: Diagram of a finite-state channel with feedback capacity of 1 — H (e) bits per channel
input but with feedback-free capacity zero. The label ({0,1}, 1/3) on the arc from state 3 to state 2
means that if O or 1 is put in to the channel in state 3, then with probability 1/3, a transition to state

2 occurs. The other labels have analogous meanings.

objection is not relevant in this case. An alternative to random selection of a single sequence is
pseudorandom generation of a new sequence each time the synchronization sequence is sent or each
time the mSB encoder is used. The performance of, say, the synchronization subsystem, would
then be equal to the performance, averaged over all sequences, and the bounds on average error

probability would apply directly.

3.5.2 Beyond Feedback-Free Capacity

Unlike a DMC, a DFSC may sometimes have a feedback capacity that is greater than its
feedback-free capacity. An example of a DFSC with such a property, which we note is not in-
decomposable, is given in Figure 3-1. The channel in this figure has input alphabet X = {0, 1,2},
state space B = {1, 2,3,4}, and output alphabet Y = X x B. The probability law associated with

the channel is defined as follows:

for all (s, zo, z1,2*) € {(1,1,2,0),

(2,0,2,1),

(3,0,1,2)},
qy,s11x,50((z1,7), 3|z0,8) = €/3, j=1,2,3, (3.26a)
qy,s,1x,5, (0, 7), §|T1,8) = €/3, 7 =1,2,3, (3.26b)
y,5,1X,50 (%0, 5), 3lT0,1) = (1 — €)/3, j =1,2,3, (3.26¢)
qy,s11x,50((z1,3), 3|71,1) = (1 — €)/3, 7 =1,2,3, (3.26d)
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qy,511x,5,((z",4),4]z*,1) =1 (3.26e)

The meaning of this probability law is as follows: State 4 is an absorbing state that has zero capacity
when viewed as a DMC; the transmitter must avoid using the symbols 0, 1, and 2 from states 1, 2,
and 3, respectively to avoid entering state 4. In state 1, an input of 1 yields output (1,-) with
probability 1 — € and (2,-) with probability €; an input of 2 yields output (2, -) with probability
1 — e and (1,-) with probability €. In other words, in state 1, if only inputs 1 and 2 are used, then
the channel is like a BSC with crossover probability € and moves to states 1, 2, or 3 with equal
probability. In state 2, the inputs O and 2 behave similarly, and in state 3, the inputs 0 and 1 also
behave similarly.

The channel output symbol contains information about the next state. With feedback, the trans-
mitter can know the current state of the channel and therefore which symbols it may use and which
symbol it must avoid, allowing 1 — H(e) bits per channel input to be transmitted. Without feed-
back, the transmitter has no way of knowing which symbols it may use and must avoid all the input
symbols, resulting in zero capacity.

For this channel, we can still use the principles of the compressed-error-cancellation framework
but must modify the precoder so that its input distribution adjusts according to the feedback. Assume
that the initial state is known to be state 1. The source symbols input to the precoder are a sequence
of 0's and 1's. Then the precoder performs the following mapping, which depends on the current
state of the channel: in state 1, the source symbol 0 is mapped to channel input symbol 1 and the
source symbol 1 to the channel input symbol 2; in state 2, 0 is mapped to channel input symbol 0
and 1 to channel input symbol 2; and in state 3, O is mapped to channel input symbol 0 and 1 to
channel input symbol 1.

The subsequent source coding step is straightforward. The locations of all “crossovers” (e.g.
an input of O becoming an output (2, -) in state 2) could be coded using about N H () hits, and the
same process could be used to precode this second message. Continuing in this fashion, it appears
that rates approaching 1 - H (), far greater than the feedback-free capacity, might be achievable.

It is unclear to what extent this example can be generalized. One obstacle toward complete
generalization seems to be that in the general case, the precoder does not necessarily seem to be
able to generate even its first channel input without knowledge of the input distribution of second
channel input. But the proper input distribution for the second channel input may depend on the first
channel input. We were able to circumvent this problem in the above example only because it was so
contrived. This difficulty may lend some insight into why so little progress has been made on finding
feedback capacity of DFSC's and feedback-capacity-achieving coding strategies. Furthermore, we
do not believe the difficulty is unique to our framework. Any feedback-capacity-achieving coding
scheme would seem to involve adaptive adjustment of the input distribution. Yet even mapping the
message bits to an appropriately distributed channel input sequence seems to present a significant
challenge.

3.5.3 Computational Delays

We first observe that the issue of computational delays discussed in Section 2.8.1 is important for
this coding scheme because the feedback sequence y™ is needed in its entirety before the source
coder can perform its function. Because of this requirement, the interleaving technique outlined in
Section 2.8.1 is especially relevant for this coding scheme.
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But for the same reasons that proofs for fixed-length source coders and fixed-length precoders
are difficult, it appears difficult to argue rigorously that interleaving would not affect the total rate
asymptotically. Because the central limit theorem holds for sums of random variables from a wide
variety of processes [10], we conjecture that interleaving does not reduce the rate of the scheme
asymptotically.

3.5.4 Fixed-Length Precoding and Scurce Coding

We observe that the techniques used in Appendix A.9 to prove that the fixed-length precoders and
source coders have exponentially decaying probability of decoding error would not carry over for
the analogously defined fixed-length precoders and source coders for DFSCy's.

If the precoder were made fixed-length, we believe that it would be possible to use results like
the central limit theorem for a-mixing processes [10] to prove similar results for the precoder.
Whether we could prove the analogous results for an appropriate fixed-length source coder is less
clear.

3.5.5 Summary and Future Directions

We have developed a linear-complexity coding scheme giving exponentially decaying error prob-
abilities at any rate below what is essentially the mutual information induced by passing a given
finite-order Markov input distribution through an indecomposable DFSC.

Aside from some of the research problems discussed above, we would like to determine higher
moments or exact pmfs of L; and L?. We would also like to prove that finite-order Markov input
distributions are sufficient to achieve feedback-free capacity. Since the amount of memory in the
Markov input process does affect complexity, it is of interest to determine the relationship between
memory and achievable rate.
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Chapter 4

Unknown Channels

4.1 Introduction

The statistical characterization of a channel is often not given. Rather, it must measured. In many
cases, the measurement process results in an accurate model of the channel for all time. The results
of the previous two chapters are useful for these cases. But if the channel's statistical characteri-
zation varies with time in an unknown way, then a measurement at a given point in time may not
describe the channel at other times. As an example of a channel that varies with time in an unknown
way, suppose that one has a wireless link from portable computer to a network node fixed in the ceil-
ing. One might send a message from the computer to the node, move the computer, send another
message, move it again, etc. Because each position of the computer results in a new set of physical
paths over which the signal travels, the channel varies with time. Because each message is only
affected by one position of the computer, each message is effectively transmitted over a different
channel. The transmitter has to send data reliably over a number of possible channels. We say in
this case that the channel is unknown, because it is one of a set of possible channels. The channel
that actually prevails is called the realized channel.

When feedback is not available on an unknown channel, a predetermined, fixed-rate codebook
must be used independent of the realized channel, and information learned by the receiver about
the channel (either implicitly or explicitly) can only be used to optimize the decoding portion of
the system. In such scenarios, in addition to the task of designing the single codebook that must be
usable on every realizable channel, one must construct universal decoders that can reliably decode
the transmitted message without explicit knowledge of the channel no matter what channel is real-
ized. Examples of powerful universal decoders that work with unknown DMC's and with a subclass
of unknown DFSC's are described in [15] and [66], respectively; these decoders yield the same
error exponent as maximum-likelihood decoders, which must know the channel. More recently, the
results of [66] were extended to arbitrary unknown DFSC's [38].

For unknown channels with feedback, it is possible to develop communication schemes that im-
plicitly or explicitly learn the channel parameters and use this information to adapt the transmission
rate to the channel quality, jointly optimizing both the encoding and decoding processes; these can
be viewed as universal communication schemes.

Simple forms of universal communication are increasingly used in practice. Examples include
current voiceband modems, which use a two-way protocol for determining an acceptable rate based
on the quality of the channel. More generally, a variety of simple universal communication schemes
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involve the use of training data. In particular, channel measurements obtained during a prelimi-
nary training phase are subsequently used to specify the transmitter and receiver parameters for the
system. However, on time-varying channels, the system must be continually retrained, which can
substantially reduce throughput. More efficient universal communication schemes avoid the use of
training data and effectively learn what they need about the channel from the received data symbols,
i.e., in a blind manner.

In this chapter, we develop universal communication counterparts to universal decoding schemes
of this type for unknown channels with feedback. For unknown DFSCy's (UFSCy's) (i.e, the real-
ized channe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>