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Abstract

Techniques for reducing power consumption in digital circuits have become increasingly
important because of the growing demand for portable multimedia devices. Digital filters,
being ubiquitous in such devices, are a prime candidate for low power design. We present a
new algorithmic approach to low power frequency-selective digital filtering which is based
on the concepts of adaptive approximate processing. This approach is formalized by intro-
ducing the class of approximate filtering algorithms in which the order of a digital filter is
dynamically varied to provide time-varying stopband attenuation in proportion to the time-
varying signal-to-noise ratio (SNR) of the input signal, while maintaining a fixed SNR at
the filter output. Since power consumption in digital filter implementations is proportional
to the order of the filter, dynamically varying the filter order is a strategy which may be
used to conserve power. We construct a framework to explore the statistical properties of
approximate filtering algorithms and show that under certain assumptions, the performance
of approximate filtering algorithms is asymptotically optimal. We investigate the transient
effects of dynamically varying the order of a digital filter by developing deterministic and
probabilistic frameworks for state transition error analysis. Approximate filter structures
using FIR and IIR digital filter constituent elements are explored and shown to be an im-
portant element in the characterization of approximate filtering algorithms. Experiments
involving the filtering of FDM speech signals are used to demonstrate the practical viability
of approximate filtering algorithms in the context of low power signal processing.
Thesis Supervisor: S. Hamid Nawab

Title: Associate Professor of Electrical and Computer Engineering



Acknowledgments

I would like to express my sincere gratitude to Professor S. Hamid Nawab for his aca-
demic guidance, limitless support, and friendship during my four years in the Digital Signal
Processing Group. It was a great honor and pleasure to have the opportunity to explore
teaching, research, and the slippery surfaces of life together.

I am especially grateful to Professor Alan Oppenheim for his inspirational leadership,
financial commitment, and faith in me. For his encouragement and rewarding collaboration,
I thank Professor Anantha Chandrakasan. I also wish to acknowledge Professor Gregory
Wornell for his valuable participation as a reader of this thesis. I thank Dr. Andrew Singer

whom I have looked up to as a mentor and friend for 10 years. Andy's energy, endurance,
and quest for excellence have served as inspiration to me for as long as I have known him. I

thank Barry Blesser for being Barry Blesser. And I thank my parents for their uncommon
love and support.

I would like to thank wholeheartedly James Ooi and Shawn Verbout, partners and best

friends, for unforgettable hours of brainstorming and enthusiastic whiteboard sessions in a

small room with no windows. Thank you for being strong enough to openly share with me

your ideas and dreams and for honestly listening to mine. And finally, I thank you Christina

for picking me up and carrying me on your back during some very confusing months of my

life.



Contents

1 Introduction

1.1 Approximate Signal Processing ..............

1.2 Low Power Design Methodologies .............

1.2.1 M otivation .....................

1.2.2 Sources of Power Consumption . .........

1.2.3 Summary of Previous Research . .........

1.3 Outline of Thesis ......................

2 Approximate Filtering Algorithms

2.1 Introduction .........................

2.1.1 Overview ......................

2.1.2 Approximate Filter Structures . . . . . . . . . .

2.2 Problem Statement .....................

2.2.1 Summary of Low Power Approach . .......

2.2.2 Summary of Maximum Likelihood Approach . .
2.3 Derivation of Low Power Solution . ............

2.3.1 Low Power Estimation . ..............

2.3.2 Convergence Analysis ...............

2.3.3 Numerical Example ................

2.4 Derivation of Maximum Likelihood Solution .......
2.4.1 Maximum Likelihood Estimation . ........

2.4.2 Numerical Example ................

2.5 Adaptation for Non-Stationary Inputs . .........

2.6 Sum m ary ..........................

15

. .. .. .. .. . . 16

. .. .. . .. .. . 17

. .. .. . .. .. . 18

. .. .. . .. .. . 19

. . . . . . . . . . . 21

. .. .. . .. .. . 23

27

.. .. .. .. .. . 27

.. .. .. .. .. . 28

. . . . . . . . . . . 29

.. .. .. .. .. . 31

. . . . . . . . . . . 34

. . . . . . . . . . . 36

. . . . . . . . . . . 38

. . . . . . . . . . . 44

.. .. .. .. .. . 50

.. .. .. .. .. . 55

. . . . . . . . . . . 57

. . . . . . . . . . . 58

.. .. .. .. .. . 61

. . . . . . . . . . . 63

.. .. .. . ... . 65



3 State Transition Error Analysis

3.1 Deterministic Analysis . .............

3.1.1 Derivation of Deterministic Bound . . .
3.1.2 Simulations ................

3.2 Probabilistic Analysis . . . . . . . . . . . . . .
3.2.1 Preliminaries . . . . . . . . . . . . . . .

3.2.2 Derivation of Probabilistic Bounds . . .
3.3 Considerations for Truncation Filter Structures

3.3.1 Deterministic Analysis . .........

3.3.2 Probabilistic Analysis . .........

3.4 Summary .....................

4 Approximate Filter Structures

4.1 Replacement Filter Structures ...
4.1.1 Type FR Filter Structures .
4.1.2 Type IR Filter Structures .

4.2 Truncation Filter Structures ....

4.2.1 Type FT Filter Structures .
4.2.2 Type IT Filter Structures

4.3 Summary and Future Directions

5 Experiments and Applications

5.1 Speech Signal Processing ......

5.2 Interpolation and Decimation . . .
5.3 Future Directions . .........

6 Conclusion

A All-Pole Filter Matrix

B Bound on Vector Norm

C Autoregressive Parameter Values

121
. . . . . . . . . . . . . . . . . 128

. . . . . . . . . . . . . . . . . 128

.. .. .. .. .. ... .. .. 135

.. .. .. ... . ... .. .. 138

. . . . . . . . . . . . . . . . . 140

. . . . . . . . . . . . . . . . . 141

. . . . . . . . . . . . . . . . . 147

151
151
155
156

159

161

163

165

67
70

72

85

89

91

96

103
103

112

120



List of Figures

2-1 An overview of approximate filtering. The adaptation strategy for updating

the filter order after each new set of L output samples is defined by the

decision module D.................................. 29

2-2 Magnitude-squared frequency responses for truncations of a 20th-order But-

terworth filter with 3, 5, 7, 9, and 10 second-order sections. The half-power

frequency of the Butterworth filters is 7r/2 . .................. 31

2-3 Performance profile for the Parks-McLellan FIR replacement filter structure.

The stopband is defined as w E [57r/8, 7r]. . .................. . 47

2-4 Performance profile for the Butterworth IIR truncation filter structure. The

stopband is defined as w E [57r/8, r]. ...................... 48

2-5 Solid curves represent input SNR estimates as a function of L and No. The

actual SNR for the input signal is 0.07. The straight dotted lines indicate

the partitioning of the input SNR space by optimal values for the number of

filter sections to use in order to obtain an output SNR of at least 1000. . . 52

2-6 Power spectral density of the 30th-order AR process which is used as the

input signal in the numerical example. . .................. .. 55

2-7 Histograms of the LP input SNR estimates for L = 5000, 1000, 100, and 50.
Each histogram represents the results of 100 Monte Carlo simulations. . .. . 57

2-8 An overview of the concept of approximate filtering. The adaptation strategy
for updating the filter order after each new set of L output samples is defined
by the decision module D.............................. 63



3-1 Comparison of the approximate filter output YN 1N2 [n] and the fixed filter

output yN2N2 [n]. The bottom plot depicts the absolute value of the state
transition error Iytr[n] I = IYN, N2 [n] - YN2N2 [n] . The filter order switch (state

transition) occurred at time n = 0 in this case. In this illustrative example

we used N1 = 2 and N2 = 4. The output signals were generated using the

replacement IIR Butterworth filter structure. . ................. 70

3-2 A plot of the deterministic bound BN1 N 2 vs. N1 and N 2 for the replacement

Butterworth filter structure. Refer to Eq. (3.12) for the definition of BN1 N2 . 74

3-3 A plot of the deterministic bound BN1 N 2 vs. N1 and N 2 for the truncated

Butterworth filter structure. Refer to Eq. (3.12) for the definition of BN1 N2 . 75

3-4 A plot of the maximum value of the state transition error vs. N1 and N 2

for n > 0 using the replacement Butterworth filter structure with half-power

frequency 7r/2. In this example Bx = 1, or, equivalently, Ix[n]l < 1 for all n. 86

3-5 A plot of the maximum value of the state transition error vs. N1 and N 2

for n > 0 using the truncated Butterworth filter structure with half-power

frequency 7r/2. In this example Bx = 1, or, equivalently, Ix[nl <_ 1 for all n. 87

3-6 A plot of the maximum value of the state transition error vs. N1 and N 2

for n > 0 using the replacement Butterworth filter structure with half-power

frequency 7r/2 and zero initial conditions. In this example Bx = 1, or,
equivalently, Ix[n]l < 1 for all n........................... 88

3-7 A plot of the maximum value of the state transition error vs. Ni and N 2

for n > 0 using the truncated Butterworth filter structure with half-power

frequency 7r/2 and zero initial conditions. In this example Bx = 1, or,
equivalently, Ix[n]l < 1 for all n........................... 89

3-8 Logarithmic plot of the normalized squared STE bound B2r vs. post-transition

filter order N 2. The curves were generated using the replacement Butter-

worth filter structure with N1 = 12. The half-power frequency is 7r/2. . .. 90

3-9 Logarithmic plot of the normalized squared STE vs. post transition sam-

ple number for N 2 = 2, 4, 6, 8, and 10. The curves were generated using

the replacement Butterworth filter structure with N1 = 12. The half-power

frequency is 7r/2 . ............................ .. ... 91



3-10 A plot of the normalized squared STE bound (plotted with '+'), along with
the average (plotted with 'x'), maximum (plotted with '-'), and minimum
(plotted with '-') values of the normalized squared STE computed by gener-
ating 1000 Monte Carlo simulations. The experiment used the replacement

Butterworth filter structure, and parameter values N1 = 2, N2 = 4, and
Bx = 1. The half-power frequency is ir/2. ............. ...... 92

3-11 A plot of the output power noise-to-signal ratio (OPNSR) for various values
of the power window length L. Actual values of the OPNSR (denoted in the
plot by 'x') based on 2000 Monte Carlo simulations are plotted along with

the predicted theoretical values (denoted in the plot by '-'). The predicted
theoretical values of the OPNSR are given by Eq. (3.89). ....... . . . . 99

3-12 A plot of the function ONSR[n] given by Eq. (3.90). Actual experimental

values of the time series ONSR[n] (denoted in the figure by 'x') based on
2000 Monte Carlo simulations are plotted along with the predicted theoretical
values (denoted in the figure by 'o') ................ ..... .. 101

3-13 Truncation approximate filter structure for an IIR digital filter. The anno-
tated variables are used in the STE analysis. ...... . . ......... 105

4-1 Frequency response magnitudes for rectangularly-windowed ideal FIR filters
of orders N = 20,80 and 140. .......................... 124

4-2 An overview of the FIR approximate filter structure. . ............. 125

4-3 Conceptual diagram of the IIR replacement filter structure. ....... . . . . 126

4-4 Conceptual diagrams of the IIR truncation filter structure: (a) the signal
flow graph, and (b) the clocked shift register block diagram. . ....... . 127

4-5 Performance profile for the eigenfilter FIR replacement filter structure. . ... 132

4-6 Performance profile for the Parks-McLellan FIR replacement filter structure. 133

4-7 Frequency response magnitude-squared plots for the Butterworth IIR replace-
ment filter structure .................... ............ 136

4-8 Frequency response magnitude-squared plots for the Chebyshev IIR replace-
ment filter structure ................................ 137

4-9 Frequency response magnitude-squared plots for the inverse Chebyshev IIR
replacement filter structure........................... 138



4-10 Frequency response magnitude-squared plots for the IIR elliptic replacement

filter structure. .................................. 139

4-11 Comparison of the performance profiles for the Butterworth, Chebyshev, in-

verse Chebyshev, and elliptic IIR replacement filter structures. ....... . 140

4-12 Comparison of the OPNSR for the Butterworth, Chebyshev, inverse Cheby-

shev, and elliptic IIR replacement filter structures. . .............. 141

4-13 A comparison of the performance profiles for the Parks-McLellan FIR trun-

cation and replacement filter structures. The truncated filters of orders

3 < N < 63 were obtained by symmetrically truncating the coefficients of

the order-64 Parks-McLellan filter. ....................... 142

4-14 A comparison of the performance profiles for the FIR truncation and re-

placement filter structures. The truncated filters of orders 3 < N < 63

were obtained by symmetrically truncating the coefficients of the order-64

rectangularly-windowed ideal filter. . .................. .... 143

4-15 A comparison of the performance profiles for the eigenfilter FIR truncation

and replacement filter structures. The truncated filters of orders 3 < N < 63

were obtained by symmetrically truncating the coefficients of the order-64

eigenfilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4-16 Performance profile for truncations of a 20th-order Butterworth filter with

half-power frequency 7r/2. ............................ ......... 145

4-17 Magnitude-squared frequency responses for truncations of a 6th-order But-

terworth filter with 1, 2, and 3 second-order sections, for each of the possible

distinct truncation filter structures defined in Eqs. (4.35)-(4.47). The opti-

mal truncation filter structure is 74 = 7-.2 ......... . . ........... 148

5-1 Demultiplexing of FDM speech using low power frequency selective filtering.

(a) Passband speech, (b) stopband speech, and (c) number of filter sections

as a function of sample number .......................... ...... 152

5-2 Evolution of filter order for the FDM speech signal processing example. Over-

lays of the approximate filter order and the stopband power in the input signal

over time are shown. The approximate filter order clearly traces the envelope

of the stopband power in the input signal. . ................ . . 154

5-3 Filter performance vs. percentage silence in stopband signal. . ........ 155



5-4 A conventional fixed-order FIR filter bank and associated spectral decompo-

sition of the filter bank output signals. . .................. .. 157
5-5 An FIR filter bank which has incorporated approximate filters, resulting in

an approximate filter bank. The filter order evolution for the first lowpass
filter has been enclosed in the dashed box. The filter order can be seen to
follow the energy in the input's stopband component x,[n], which is shown
in the bottom plot ................................. 158





List of Tables

2.1 Summary of the results of the numerical example using the LP estimator in

which the true value of N* = 10 and the true input SNR is 0.4831. The

results are tabulated for power window lengths of L = 50, 100, 500, 1000, and

5000......................................... 56

2.2 Summary of the results of the numerical example using the ML estimator

in which the true value of N* = 10 and the true input SNR is 0.4831. The

results are tabulated for power window lengths of L = 50, 100,500, 1000, and

5000......................................... 62

3.1 Numerical values for the deterministic bound BNvN2 for the replacement

Butterworth filter structure. Refer to Eq. (3.12) for the definition of BN1 N2 . 76

3.2 Numerical values for the deterministic bound BN1 N2 for the truncated But-

terworth filter structure. Refer to Eq. (3.12) for the definition of BN1N2 . . . 77

4.1 Summary of the four types of approximate filter structures. . ......... 123

4.2 Numerical values for J(4jI) ... JT(Wn) for the Butterworth optimal trunca-

tion filter structure. Note that J(-l j() JT(). . . . . .............. 147

5.1 Summary of the approximate filtering performance for demodulating FDM
speech .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . 153

C.1 The pole locations of the 30th-order autoregressive random process used in
the numerical example of Chapter 2. . .................. ... 166





Chapter 1

Introduction

Living in the information age, we are all accustomed to having the luxury of sophisticated

communications and computation systems at our fingertips. It is a rarity to go through the

day and not witness evidence of the explosive popularity of portable electronic devices such

as cellular telephones, camcorders, laptop computers, and even wristwatch pagers which are

now capable of remotely delivering real-time stock quotes with the touch of a button. The

signal processing demands of such devices have increased dramatically in the last decade
as products continue to shrink in size and require increasing computational speed. Due to
the nature of portability, these increased processing demands are accompanied by definite
constraints on power consumption since rechargeable batteries must be used. Consequently,
the important task of designing low power, computationally powerful processors has emerged
and spurred great interest and activity in signal processing research.

Digital filters represent a fundamental signal processing element which is found in all
of the portable systems already mentioned and many others. Motivated by the growing
demand for low power digital signal processing techniques for use in portable multimedia
devices, in this thesis we formulate a new algorithmic approach to low power frequency-
selective digital filtering. We demonstrate that significant power savings may be achieved in
digital filtering applications when the order of a digital filter is dynamically varied to provide
time-varying stopband attenuation in proportion to the time-varying signal-to-noise ratio
(SNR) of the input signal, while maintaining a fixed SNR at the filter output. In addition
to providing the capability to dynamically conserve a limited resource such as battery
power, the class of algorithms we develop provides the foundation for the development of
other algorithms which have the ability to intelligently respond to dynamic changes in the



availability of other resources such as processor cycles in a shared environment.

The problem considered in this thesis originated by observing overlap in the research
domains of approximate signal processing and low power digital circuit design. While there
exist a whole host of methods for reducing power consumption in digital electronic circuits
[9, 50], one strategy is to abstract and incorporate low power constraints into the algorithm

design. This strategy is called algorithmic-based low power design. The concepts of ap-

proximate processing, which have been formalized in [1, 40, 42], are inherently well-suited

for algorithmic-based low power design [15, 31]. Thus, the motivation for investigating low

power digital filtering using adaptive approximate processing spawned naturally from inter-

disciplinary collaboration in the areas of low power digital circuit design and approximate

signal processing. In the remainder of this chapter we highlight the fundamental concepts

in approximate signal processing and low power digital circuit design methodologies, and

then present a brief outline of the thesis.

1.1 Approximate Signal Processing

Computational efficiency is of paramount importance for a broad class of signal processing

algorithms designed to operate in an environment with resource limitations or other real-

time constraints. A traditional approach to reducing computational complexity has been

to find approximations to the signals involved in the processing prior to the application of

a particular algorithm. Reducing the number of parameters or bits required to adequately

represent a signal usually will reduce the amount of computation required to process the

signal. For example, certain applications involving highly-correlated signals such as speech,
sound, or images use various source coding methods to strip away redundancy from the

signals before further processing or transmission. Examples of well-established methods for

signal approximation include: linear transform coding methods such as the discrete cosine,
wavelet, wavelet packet, or Karhunen-Loeve transforms, subband coding methods, linear

predictive coding methods, and vector quantization methods [24]. Given the amount of

successful research and development that has been accomplished in approximating signals

to enhance processing, it is sensible to consider the parallel problem of approximating the

algorithms which are used to process these signals. Indeed, it is logical that the same cost



vs. quality tradeoffs' that are used when determining a signal approximation could be
incorporated into the design of signal processing algorithms, in the spirit of maximizing the
computational efficiency of complete systems with real-time resource constraints.

In this thesis we pursue the goal of dynamically reducing computational cost while main-
taining a desired level of output quality in the context of frequency-selective digital filtering.
More specifically, our optimization criterion is to minimize average power consumption sub-
ject to the constraint that a desired SNR at the output of a frequency-selective digital filter
is maintained. This type of objective has been formally studied in the field of approximate

processing in computer science [31]. Approximate processing is needed for applications in
which it is desirable to dynamically adjust the quality of signal processing results to the
availability of resources, such as time, bandwidth, memory, and power [41, 75]. An early
example of an approximate signal processing algorithm is the approximate discrete short-
time Fourier transform [15]. More recently, excellent research has been accomplished in

the area of incremental refinement structures for approximate signal processing in the con-

text of sinusoidal detection using the fast Fourier transform and in the context of image

decoding using the discrete cosine transform [75]. While approximate processing concepts

may be used to describe a variety of existing techniques in digital signal processing (DSP),
communications, and other areas, there has recently been progress in formally using these

concepts to develop new DSP techniques [1, 40, 42]. This thesis introduces and explores low

power digital filtering using adaptive approximate processing, or more concisely approximate

filtering.

1.2 Low Power Design Methodologies

Techniques for reducing power consumption in digital circuits have become increasingly
important due to the growing demand for portable multimedia devices. Low power, low
throughput products such as wristwatches and pocket calculators have historically been the
focus of research for portable digital electronics. Recently more complex systems which
merge computation with efficient signal transmission across complex communication net-
works call for low power, high throughput devices [8, 9, 16]. Examples of low power, high
throughput portable devices include camcorders, cellular telephones, laptop computers,

isuch as the rate vs. distortion criterion which is popular in the source coding domain



pagers, and portable Global Positioning System receivers. Proposals for state-of-the-art

personal communication service applications describe systems which are to provide multi-

media access with full-motion digital video and speech recognition capabilities [9]. These

systems pose perhaps the greatest challenge for digital circuit designers. Eventually these

systems will require computational capabilities in excess of those demanded by the fixed

workstations of today with the additional constraint of having to be powered by batteries

[9].
A significant number of low power digital systems involve frequency-selective digital

filtering, in which the goal is to reject signal components in one or more frequency bands

while keeping the remaining portions of the input signal spectrum largely unaltered. Digital

filtering is necessary to perform functions such as lowpass filtering for signal upsampling and

downsampling, bandpass filtering for subband coding, and bandstop filtering for frequency-

division multiplexing and demultiplexing [44]. Because of the demand for portability in

computation and communication devices, the exploration of low power digital filtering is of

significant interest, and a tremendous amount of related research is being pursued [28, 29].

1.2.1 Motivation

The designers of microprocessors have traditionally centered their efforts on increasing the

processor clock rate, treating power dissipation as a design issue of secondary importance.

This trend has resulted in single chip power levels in excess of 30 Watts [9]. More recently

an enormous demand for low power design in complementary metal-oxide silicon (CMOS)

devices has emerged for the following reasons:

* the demand for portable multimedia devices with high throughput and limited recharge-

able battery weight and volume has sky-rocketed with the widespread use of cellular

phones, laptop computers, and video conferencing systems

* as the density and size of the chips and systems continues to increase, the design of

adequate cooling systems is ever more challenging and important

* given that personal computers presently account for 5% of commercial electricity

consumption and are estimated to account for 10% by the year 2000 [9], the demand

for fixed workstations with with low power consumption for the purpose of reducing

electricity costs will thrive.



In summary, the issues of portability, heat dissipation, and the economics of commer-
cial electricity consumption all serve as practical motivation for the design of low power

computation and communication systems.

1.2.2 Sources of Power Consumption

Reducing both peak power and average power are important priorities in low power digital
circuit design. Reducing the peak power levels is important mainly for reliability and
proper circuit operation. The required battery weight and size in a portable system is
proportional to the time-averaged power consumption. Methods which reduce the average
power consumption offer the added benefit of reducing peak power consumption and thus
improve reliability [9].

There are four components to the time-averaged power consumption in digital circuits
using CMOS technology: switching power, short-circuit power, leakage power, and static

power [9]. The total time-averaged power consumption is the sum of these four individual

components

Paverage = Pswitching + Pshort-circuit + Pleakage + Pstatic. (1.1)

The switching power component dominates and typically accounts for more than 90% of the
total average power consumption. This makes the switching power component the primary
target for power reduction. In addition, the switching power is the most signal-dependent
and algorithm-dependent component, making the switching power the primary focus for
algorithmic-based approaches to low power design. We now give a brief summary of the
four components of power consumption.

1. Short-circuit power. When there is a direct conducting path from the voltage
supply to ground, the short-circuit power component is present. This component of
power consumption is defined to be

Pshort-circuit = Ishort-circuit Vdd, (1.2)

where Ishort-circuit is the short-circuit current and Vdd is the supply voltage. Through



proper choice of transistor sizes, the short-circuit power can be kept below 10% of the
total power consumption [9].

2. Static power. Circuits that have a constant source of current between their power

supplies are subject to power dissipation due to the resulting static currents. The

static component of power consumption is defined to be

Pstatic = IstaticVdd, (1.3)

where Istatic is the static current and Vdd is the supply voltage. In SRAM amplifiers,

pulsed circuits may be used to minimize static currents. However, algorithmic-based

methods for reducing power consumption can have little or no effect on the static

power component.

3. Leakage power. The two types of leakage currents are reverse-bias diode leakage

at the transistor drains and sub-threshold leakage through the channel of an "off"

device. The leakage component of power consumption is defined to be

0Ieakage = IleakageVdd, (1.4)

where 1leakage is the total leakage current and Vdd is the supply voltage. The magnitude

of both components of the leakage current is set predominantly by the processing

technology; thus, algorithmic-based methods for reducing power consumption will

have little or no effect on the leakage power component.

4. Switching power. The switching component of power for a CMOS gate with load

capacitor CL is given by

Pswitching = vOCL V2df, (1.5)

where a is the node transition activity factor, CL is the physical load capacitance, Vdd
is the supply voltage, and f is the operating frequency. The two components of the



node transition activity are transitions due to the static behavior of the circuit and
transitions that occur due to the dynamic nature of the circuit. The node transition
activity factor a is a function of the logic function being implemented, the logic style,
the circuit topology, the input signal statistics, and the sequencing of operations.

A system level approach which involves optimizing algorithms, architectures, logic

design, circuit design, and physical design can be used to minimize the switched

capacitance and thus, in turn, minimize the switching component of power.

1.2.3 Summary of Previous Research

In this section we give a brief overview of existing methods for reducing power consumption

in CMOS devices, and highlight the context in which the contributions of this thesis fit in

with respect to other methods. To first order, the average switching power consumption

Pswitching in Eq. (1.5) may be expanded as

Pswitching = vNiCiV2dfs, (1.6)

where Ci is the average capacitance switched per operation of type i corresponding to

addition, multiplication, storage, or bus access, Ni is the number of operations of type i

performed per output sample, Vdd is the operating supply voltage, and f, is the sampling

frequency.

Since the dominating switching component power consumption in CMOS devices is

proportional to the square of the supply voltage Vdd, it is clear that supply voltage reduction

will have a significant impact on the average switching power consumption. Indeed, reducing

the supply voltage is the key to low power operation, even after taking into account the
modifications to the system architecture which are required to maintain the computational

throughput.

When the supply voltage is reduced by a factor k, the power consumption is reduced by a

quadratic factor k2 . Unfortunately this power reduction comes at a price. When we reduce

Vdd, we encounter a corresponding decrease in throughput. An empirical model for the
relationship between Vdd and circuit delay is Td = K, where Kd is a constant determinedVdd'

experimentally and Td is the circuit processing delay [9]. Thus, while reducing the supply
voltage is an excellent way to reduce power consumption, there is an associated penalty



to pay in decreased throughput. Typically this decrease in throughput is compensated for

by introducing parallelism in the circuitry, which increases the required chip area. In this

context we may trade a decrease in power consumption for an increase in chip area.

The supply voltage scaling approach to low power design achieves a reduction in average

power consumption by scaling down the supply voltage at the expense of reducing through-

put or increasing the required chip area. An alternative approach to low power design is to

reduce the switching activity to the minimal level required to perform a given computation,
since CMOS circuits do not dissipate power if they are not switching. For this purpose

we may formulate optimization problems for signal processing algorithms to minimize the

circuit switching activity. Minimizing the number of multiplications and additions required

to perform a given function is one critical element in reducing the overall circuit switching

activity. The framework we have developed for analyzing approximate filtering algorithms

was developed for the purpose of reducing the average circuit switching activity via reducing

the average number of operations required per output sample in a frequency-selective digital

filter. Thus, our attention in this thesis is focused on minimizing the switched capacitance

in a CMOS circuit by dynamically minimizing the number of operations required to perform

frequency-selective digital filtering, subject to output quality constraints.

Real-time digital filtering is an example of a class of applications in which there is no

advantage in exceeding a bounded computation rate. For such applications, an architecture-

driven voltage scaling approach has previously been developed in which parallel and pipelined

architectures can be used to compensate for increased delays at reduced voltages [9]. This

strategy can result in supply voltages in the 1 to 1.5 V range by using conventional CMOS

technology. Power supply voltages can be further scaled using reduced threshold devices.

Circuits operating at power supply voltages as low as 70mV (at a temperature of 300K)

and 27mV (at a temperature of 77K) have been demonstrated [6, 19].

Once the power supply voltage is scaled to the lowest possible level, the design goal is

to minimize the switched capacitance at all levels of the design abstraction. At the logic

level, for example, modules can be simply shut down at a very low level based on signal

values [2]. Arithmetic structures such as ripple carry or carry select can also be optimized

to reduce transition activity [7]. Architectural techniques include optimizing the sequencing

of operations to minimize transition activity, avoiding time-multiplexed architectures which

destroy signal correlations, and using balanced paths to minimize glitching transitions.

At the algorithmic level, the computational complexity or the data representation can be



optimized for low power [9].

Another approach to reducing the switched capacitance and thus saving power is to lower

Ni in Eq. (1.6). Efforts have been made to minimize Ni by intelligent choice of algorithm,
given a particular signal processing task [19]. In digital filtering applications, the parameter

Ni is approximately linearly proportional to the filter order. In the case of conventional
filter design, the filter order in a particular application is typically fixed based on worst case
signal statistics. This is inefficient if the worst case seldom occurs. More flexibility may be
incorporated by using adaptive filtering algorithms, which are characterized by their ability

to dynamically adjust the processing to the data by employing feedback mechanisms. In
this thesis, we illustrate how adaptive filtering concepts may be exploited to develop low
power implementations for digital filtering by lowering Ni and thus reducing the switched
capacitance and saving power.

Adaptive filtering algorithms have traditionally been used to dynamically change the
values of the filter coefficients based on an adaptation law, while maintaining a fixed filter
order [20]. In contrast, in our adaptive approach to low power filtering we show how to
dynamically adjust the filter order. This approach leads to filtering solutions in which the
SNR of the filter output may be kept above a specified threshold while using as small a filter
order as possible. Since power consumption, according to Eq. (1.6), is linearly proportional
to Ni, which in turn is linearly proportional to the filter order, our approach achieves power
reduction with respect to a fixed-order filter whose output is similarly guaranteed to have
the output SNR above the specified threshold. Maximum power reduction is achieved by
dynamically minimizing the order of the digital filter.

1.3 Outline of Thesis

We begin in Chapter 2 by considering the problem of conserving power by dynamically
reducing the order of a frequency-selective digital filter while maintaining a desired level of
output quality. The key is to vary the filter order over time to provide time-varying stopband
attenuation in proportion to the time-varying SNR of the input signal, while maintaining
a fixed SNR at the filter output. The order of the filter is varied by defining a control
strategy in tandem with an approximate filter structure, thus producing an approximate
filtering algorithm. An approximate filter structure is defined by a set of related filters
with different orders. The control strategy produces a dynamic estimate of the best filter



order to use from those available in the approximate filter structure, based on real-time

measurements of the input signal statistics.

From the practical concept of dynamically varying the order of a digital filter, we ab-

stract an intimately related theoretical problem. This theoretical problem involves the

determination of an optimal filter order based on observations of the input data and a set

of concrete statistical assumptions. Two solutions to this theoretical problem are presented

in Chapter 2. One solution is guided by a low power approach and achieves suboptimal

performance with an extremely low computational cost. A second solution is guided by

a maximum likelihood objective and provides superior performance while requiring much

more computation. While computationally impractical, the maximum likelihood approach

provides valuable insight as well as a performance benchmark for comparison with the low

power solution. The key theoretical results are used to interpret the entire class of approx-

imate filtering algorithms.

In an approximate filtering algorithm we begin filtering a given input signal with a

frequency-selective digital filter of some nominal order, taken from an approximate filter

structure. This filter has well-defined passband and stopband regions in frequency. After

a number L of output samples have been produced, we use the most recent block of L

input and output samples to form an easily computable estimate of the current input SNR,

defined as the ratio of the input signal power in the passband of the filter to the input

signal power in the stopband of the filter. This estimate of the input SNR is then used

to update the filter order to the minimum value for which the output SNR will be greater

than or equal to a pre-specified minimum tolerable value. The updated filter is then used to

produce a second block of L output values, and the filter order update process is repeated.

In Chapter 2 we develop an underlying theory to describe approximate filtering algorithms,

based on the concepts of approximate signal processing. We construct a framework to

explore the statistical properties of this theory, and show that under certain assumptions

the performance of approximate filtering algorithms is asymptotically optimal.

In Chapter 3 we consider the transient effects of dynamically changing the filter order

in approximate filtering. For this purpose, the output of an approximate filter is related to

the output of a fixed digital filter by introducing the concept of state transition error. We

statistically analyze the corruptive effects of the state transition error on: 1) the approxi-

mate filter output sequence, 2) the L-point approximate filter output power measurement,

and 3) the optimal filter order estimate determined by the approximate filtering algorithm.



We have mentioned that the order of the approximate filter is varied over time by using
an approximate filter structure, defined by a set of filters with similar spectral properties

with different orders. In Chapter 4, a framework for analyzing approximate filter structures

is presented. An approximate filter structure is a collection of frequency-selective digital

filters, one for each filter order N in a given range Nmin < N < Nmax. We demonstrate

that approximate filter structures represent a critical element in the characterization of
approximate filtering algorithms. Two classes of approximate filter structures, truncation

and replacement filter structures, are introduced and used as a basis for classifying all

approximate filter structures into one of four types.

A replacement filter structure is characterized by the relationship between the coeffi-

cients of filters of different orders being completely unconstrained; the coefficients of each

individual filter may be selected or replaced independently. In a truncation filter structure

this is not allowed. For a truncation filter structure with FIR constituent filter elements, the

coefficients defining the lower order filters are constrained to be subsets of the coefficients

defining the filter with maximum order Nmax. Similarly, in a truncation filter structure with

IIR constituent elements, the pole/zero pairs defining the lower order filters are constrained

to be subsets of the pole/zero pairs defining the filter with maximum order Nmax. Thus,
the lower order constituent elements in a truncation filter structure are truncated versions

of the higher order constituent elements. It is clear that truncation filter structures may

be described with fewer independent filter coefficients than replacement filter structures.

Associated with this property is the fact that approximate filtering using a truncation filter

structure requires less memory, chip area, and bus accesses than approximate filtering using

a replacement filter structure.

A metric for evaluating the performance of approximate filter structures is presented in
Chapter 4 based on the results of the analyses in Chapter 2 and Chapter 3. We show that
generally the class of truncation filter structures offers better potential for power reduction
in approximate filtering than the class of replacement filter structures. While this power
efficiency of truncation filter structures is highlighted, we also show that replacement filter
structures lead to approximate filtering algorithms with superior performance. Thus, the
decision to use a truncation or replacement filter structure depends on the application as
well as the associated power and performance specifications.

In Chapter 5 the results of computer simulation experiments involving speech signals are
used to demonstrate the practical viability of approximate filtering for low power signal pro-



cessing. We demonstrate that an order of magnitude reduction in power consumption over

fixed-order filters is possible using approximate filtering algorithms. Applications involving

DSP functions found in portable multimedia devices are highlighted.

Finally, in Chapter 6 we provide a recapitulation of the main contributions of this thesis.

We summarize the main contribution of this thesis as the development of a framework for the

design and implementation of approximate filters using signal-dependent algorithms which

meet fixed performance specifications while dynamically minimizing power consumption.



Chapter 2

Approximate Filtering Algorithms

2.1 Introduction

In this chapter we consider the practical problem of dynamically reducing the order of a

frequency-selective digital filter to conserve power. We will demonstrate that it is possible

to dynamically vary the stopband attenuation provided by a digital filter to obtain the

minimum amount of attenuation needed to continuously maintain a given output signal-to-

noise ratio (SNR), and show that approximate filtering algorithms significantly reduce the

required average power consumption relative to that of conventional fixed-order filtering

algorithms. From this practical problem we abstract a theoretical problem which involves

the determination of an optimal filter order based on observations of the input data and

a set of concrete assumptions on the statistics of the input signal. Two solutions to this

theoretical problem will be presented, and the key results will be used to interpret the

solution to the practical low power filtering problem.

An underlying theory for approximate filtering is developed. We construct a framework
to explore the statistical properties of approximate filtering algorithms, and show that under

certain assumptions the performance of approximate filtering algorithms is asymptotically
optimal. The focus of the algorithm development is on applications involving frequency-
selective digital filtering in which the goal is to reject one or more frequency bands while
keeping the remaining portions of the input spectrum largely unaltered. Examples of such
applications include lowpass filtering for signal upsampling and downsampling, bandpass
filtering for subband coding, and lowpass filtering for frequency-division multiplexing and
demultiplexing. In addition, approximate filtering algorithms appear to be useful in other



domains in which digital filters are used such as prediction, smoothing, echo cancellation,
or equalization.

2.1.1 Overview

A brief summary of approximate filtering is now given. The basic idea is to begin filtering a
given input signal with a frequency-selective digital filter of some nominal order, as shown
in Fig. 2-1. This filter has well-defined passband and stopband regions in frequency. After

L output samples have been produced, we use the most recent block of L input and output

samples to form an easily computable low power estimate of the current input SNR, defined

as the ratio of the input signal power in the passband of the filter to the input signal power in

the stopband of the filter. In Fig. 2-1 the decision module D uses the signal power estimates

Px and P!y to form an estimate of the temporally local input SNR. This estimate of the input

SNR is then used to update the filter order to be the minimum value which guarantees that

the output SNR, defined as the ratio of the output signal power in the passband of the filter

to the output signal power in the stopband of the filter, will be greater than or equal to

a pre-specified minimum tolerable output SNR. This filter order is then used to produce

another block of L output samples, and the filter order update process is repeated.

A key issue addressed in this chapter is how well the low power estimate of the filter

order converges to the theoretical minimum order for situations satisfying certain statistical

assumptions which are made in the derivation of the underlying theoretical framework for

approximate filtering. Computer simulations are used to verify analytical results which

we obtain in this chapter that show that convergence to the correct filter order depends

upon: 1) the number L of input and output samples used in estimating the input SNR, 2)

the nominal order of the filter applied in generating the output samples that are used in

estimating the input SNR, and 3) the proximity of the true input SNR to the boundaries

in the input SNR space corresponding to changes in the optimal choice of filter order [35].

The adaptation mechanism used with an approximate filtering structure is designed to

determine and use the filter with the smallest order while ensuring that the approximate

filter output meets a pre-specified quality constraint. Minimization of the filter order used

at any given time is desirable because of the resulting savings in power consumption by the
underlying hardware [36]. The output quality criterion we use is designed to keep the output

SNR (the ratio of the passband power to the stopband power in the filter output) above a



x[n]

I K

y[n]

Figure 2-1: An overview of approximate filtering. The adaptation strategy for updating the
filter order after each new set of L output samples is defined by the decision module D.

specified level. Other output quality constraints could easily be incorporated with minor

modifications. One possible alternative output quality constraint is to keep the output

signal power in the stopband of the filter below some pre-specified level. This strategy has
been successfully investigated in [36].

2.1.2 Approximate Filter Structures

In approximate filtering algorithms the order of a frequency-selective digital filter is var-
ied in a way defined by a control strategy and an approximate filter structure. A col-
lection of frequency-selective digital filters, one for each filter order N in a given range
Nmin < N < Nmax, constitutes an approximate filter structure 'R. Each filter structure Ri
must possess the property that its progressively higher order filters have progressively in-
creased average attenuation in the stopband region(s) while maintaining close to unity gain
in the passband region(s).

Approximate filter structures represent an important element in the characterization
of approximate filtering algorithms. Two classes of approximate filter structures, trunca-
tion and replacement filter structures, are important and used as a basis for classifying all

Approximate filtering structure
with N[iL] sections for

(iL -1) < n < (i+1)L+1

At time iL,
L-1 2

Px =  [iL - k]
k= 0

At time iL,
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approximate filter structures into one of four types in Chapter 4. A replacement filter struc-

ture is characterized by the relationship between the coefficients of filters of different orders

being completely unconstrained; the coefficients of each individual filter may be selected or

replaced independently. In a truncation filter structure this is not allowed. For a truncation

filter structure with FIR constituent filter elements, the coefficients defining the lower order

filters are constrained to be subsets of the coefficients defining the filter with maximum

order Nmax. Similarly, in a truncation filter structure with IIR constituent elements, the

pole/zero pairs defining the lower order filters are constrained to be subsets of the pole/zero

pairs defining the filter with maximum order. Thus the lower order constituent elements

in a truncation filter structure are truncated versions of the higher order constituent ele-

ments. It is clear that truncation filter structures may be described with fewer independent

filter coefficients than replacement filter structures. Associated with this property is the

fact that truncation filter structures require less memory, chip area, and bus accesses than

replacement filter structures.

The frequency response magnitudes of the filters drawn from an exemplary approximate

filter structure based on truncations of an IIR Butterworth filter are shown in Fig. 2-2. The

half-power frequency of the Butterworth filters is ir/2. In this figure we show the magnitude-

squared frequency responses for truncations of a 20th-order Butterworth filter with 3, 5, 7,

9, and 10 second-order sections. The key feature of an approximate filter structure is that

the higher-order filters provide higher average stopband attenuation and thus have lower

stopband power than the lower-order filters. This feature is clearly illustrated in Fig. 2-2,

and allows us incorporate a tradeoff between filter quality and filter cost into approximate

filtering algorithms. The filter quality is measured by the average stopband attenuation,

while the filter cost is measured by the required power consumption or equivalently the

required filter order.

The passband PB, stopband SB, and transition band TB regions for all filters in the

approximate filter structure W are identical. The passband and stopband regions must be

explicitly specified in the definition of an approximate filter structure, and by default the

transition band is defined to span the remaining portions of the spectrum w E [-r, 7r] which

are not included in the passband or stopband regions.

Each of the individual filters which make up the constituent elements of the approximate

filter structure W must be properly normalized. Possible normalizations include a unit

energy normalization or a unity DC (zero frequency) gain normalization. Other important
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Figure 2-2: Magnitude-squared frequency responses for truncations of a 20th-order Butter-
worth filter with 3, 5, 7, 9, and 10 second-order sections. The half-power frequency of the
Butterworth filters is 7r/2

characteristics of approximate filter structures will be studied in Chapter 4.

We have stated our intention to study the problem of dynamically reducing the order

of a frequency-selective digital filter to conserve power while maintaining a desired level

of output quality. We have stressed that the key is use vary the filter order over time to
provide time-varying stopband attenuation in proportion to the time-varying SNR of the
input signal, while maintaining a fixed SNR at the filter output. From the practical problem
of dynamically reducing the order of a frequency-selective digital filter to conserve power,
in the next section we abstract and explore an intimately related theoretical problem. The
solutions to this theoretical problem will provide a basis for understanding and analyzing
approximate filtering algorithms.

2.2 Problem Statement

In this section we introduce a theoretical problem, termed the approximate filtering problem,
which involves the determination of an optimal filter order based on observations of input
data and a set of concrete assumptions on the statistics of the input signal. Two solutions



to this theoretical problem are presented. One solution is guided by a low power approach

and achieves suboptimal performance with an extremely low computational cost. A second

solution is guided by a maximum likelihood objective and provides superior performance

while requiring much more computation. While computationally impractical, the maximum

likelihood approach provides valuable insight as well as a performance benchmark for com-

parison with the low power solution. The key theoretical results are used to interpret the

entire class of approximate filtering algorithms.

The fundamental theoretical problem we address in this thesis is

Given

* a set of L input samples x[0] ... x [L- 1] from a wide sense stationary (WSS) Gaussian

random process x[n] with power spectral density Sx(w)

* a filter order set AN = {Nmin ... Nmax} containing M elements

* a filter structure 7 = {hmmin [n] ... hNmax[n]}, containing M frequency-selective filter

elements, all having passband w E PB and stopband w E SB,

* a passband region defined as w E PB for each filter in the filter structure R7

* a stopband region defined as w E SB for each filter in the filter structure R7

* a minimum tolerable output signal-to-noise ratio OSNRtol,

Determine

the optimal filter order N*, defined as the minimum order N E KN of the frequency-selective

filter hN[n] E 1R which provides sufficient stopband attenuation to assure

OSNR[N] Ž OSNRtol, (2.1)

where the output signal-to-noise ratio (SNR) is defined as

OSNR[N] P NPB[N]  (2.2)pRSB[N ] •



The output power spectral density is

Sy(w) = IHN(w)12SM(w), (2.3)

the output power in the passband is

P1[N] = /p Sy(w)dw

1 2r SX(w)lHN(w) 2dw, (2.4)

and the output power in the stopband is

PSB[N] = ()d

=1 f2 S() ISHN (w)12dw. (2.5)

We refer to the problem in Eqs. (2.1)-(2.5), as the approximate filtering problem. Any

particular solution to the problem involves defining a method for reliably estimating the

optimal filter order N* based on observations of the input sequence x[0] ... x[L - 1]. We
measure the performance of a particular solution in terms of how accurately, on average, the
solution determines the correct value for N*. In this chapter we will present two distinct
solutions to the approximate filtering problem. The first is guided by a low power consump-

tion constraint and thus produces estimates of N* which require very low computational
overhead. We call this the low power (LP) solution to the approximate filtering problem.
The second solution we present is motivated by a maximum likelihood formulation and is
therefore termed the maximum likelihood (ML) solution to the approximate filtering prob-
lem. We will show that the ML solution requires much more computation and offers slightly
better performance than the LP solution in certain circumstances. While computationally
prohibitive for practical use, the ML solution is conceptually insightful as its performance
may be used as a meaningful benchmark for comparison with the performance of the low
power solution.



2.2.1 Summary of Low Power Approach

The low power (LP) approach to finding N* is computationally simple and will be shown

to perform almost equally as well as the computationally prohibitive ML-based approach,
even for signals statistically tailored to favor the ML-based approach. In Chapter 5 we

will see that for practical processing of speech signals, the LP solution to the approximate

filtering problem provides an effective, reliable method for reducing power consumption by

an order of magnitude or more over conventional filtering methods.

The LP approach computes an estimate of the output SNR based on an estimate of the

total power difference between the input and output of a digital frequency-selective filter.

Conceptually, if the frequency-selective filter were an ideal piecewise-constant filter

Hideal (W) wE B (2.6)
H 0 w ESB

then the total power difference between the input and output signals would be equal to

the exact input signal power in the stopband of the ideal filter. This is true since an ideal

filter perfectly eliminates all the components of the input signal in its stopband, and passes

with unity gain all the components of the input signal in its passband. Thus, ideally the

output signal contains the exact passband components of the input signal, and nothing else.

The input signal obviously contains both its passband and stopband signal components.

Therefore the difference in input and output signals powers ideally gives the exact power in

the stopband of the input signal. From this we may form a LP estimate OSNRLP [N, No]

of the output SNR, and proceed to estimate N* via Eq. (2.1) with OSNR[N] replaced by

OSNRLp [N, No].

Ideal filters are not practically realizable. However, if we use a non-ideal filter which

approximates an ideal filter, our LP estimate of the output SNR based on the difference in

input and output signal powers will approximate the true output SNR. To the extent that

this is a good approximation, the LP approach to computing N* using Eq. (2.1) will be

effective. The detailed derivation of the LP solution to the approximate filtering problem

will be given in Section 2.3. A summary of the final result is presented now.

The LP estimate NL*p of the optimal filter order N* is determined by searching for the

minimum value of N E K satisfying



OSNRLp [N, No] > OSNRtol,

where the LP estimate of the output SNR is defined as

OSNRLp [N, No] =

TY
xx -y y-y

C 1yB IHNo(w)Id wJ IH'sW)I2dW (2.8)
SB |H(W)12 d

The expression in Eq. (2.8) may be rearranged with simple algebraic manipulations and

substitutions to simplify the decision rule for selecting 9Np to be the minimum filter order

N E A satisfying

R > Rtol[N; No, OSNRtol], (2.9)

where R is the ratio

R = T- (2.10)
R xTx - yTy '

and Rtol[N; No, OSNRtol] is a function of N parameterized by No and OSNRtol

Rtol[N; No, OSNRtol] =

+ s IHWW (2.11)
SB ISHN (W)12d) I SB- [IHNo(W)121

The signal vectors are x = [ x[0] x[1] ... x[L - 1] ]T and y = [ y[O] y[1] ... y[L - 1] ]T,

where the power window length L is the number of output samples which are produce by

the filter hNo [n] E 7t before NLp is computed. The nominal filter order No may be chosen
to be equal to any filter order N E KV; however, as we shall see later in this chapter, the

choice No = Nmax produces the best results.

(2.7)



The LP solution to the approximate filtering problem takes advantage of the fact that

during filtering L samples of the output y[n] of the filter hNo [n] are available, without

additional computational cost. These samples are used to form the vector y and the ratio R.

The function Rtol[N; No, OSNRtol] is a function of N assuming No and OSNRtol have been

fixed, and its values may be easily computed and stored in advance. The rule for computing

NNLp is to search among the stored values of Rtol[N; No, OSNRtol] to find amongst all those

which satisfy Rtol[N; No, OSNRtol] < R the unique one which corresponds to the minimum

value of N. This value of N is defined to be NLp.

We now consider a second solution to the approximate filtering problem, using an ML-

based approach. This solution does not use the available output signal y[n] to compute its

estimate of N*. In certain situations the ML solution will achieve better estimates of N*

than the LP solution, but this performance advantage comes at the expense of requiring

more computation.

2.2.2 Summary of Maximum Likelihood Approach

An alternative strategy for determining the optimal filter order N* defined in Eq. (2.1)

involves computing an estimate Sx(w) of the input power spectral density (PSD) Sx(w)

from observations x[0] ... x[L - 1] of the WSS input random process x[n], and using

this PSD estimate to compute an estimate of the optimal filter order N*. Because the

PSD estimate Sx(w) is based on ML estimates of the all-pole parameters of the underlying

random process which is assumed to be autoregressive (AR), we call this the ML approach.

A summary of the final result of the ML approach to the approximate filtering problem is

now presented, with the details of the derivation presented in to Section 2.4.

Assuming that Sx(w) corresponds to a pth-order AR random process, the ML-based

estimate Sx (w) is defined as

p -2
(w)- = &2 1 + &me- ij m  , (2.12)

m=1

where the ML-based estimates a = [ &1 i2 "" p ]T and U& for the parameters a =

[ al a2 ... ap ]T and a2 are computed via the well-known Yule-Walker equations. This

method for AR parameter estimation is well known as the autocorrelation method. The



final result is that an ML estimate NML of N* may be computed via selecting the minimum

value of N E K satisfying

OSNRML[N] j' OSNRtol, (2.13)

where the ML estimate of the output SNR is defined as

A [PY' [N]]MLOSNRML[N] = (2.14)
[PSB[N]]ML '

the ML estimate of the output power in the passband is defined as

[PPB[N]ML = [y (W ) M Ld

21 A(W)AMLIHN(W ) 12dW) (2.15)Sr PB (2.15)
and the ML estimate of the output power in the stopband is defined as

[^SB[N]]ML 1= SB [,y(W)MLdW

1 f [(rW)LMLJHN(W)B2dW) (2.16)27 SB

Once the ML estimate AS(w) of Sx(w) has been computed, the quantities [PyPB[N]]ML,
[PýSB[N]]ML, and OSTNRML[N] may be evaluated for each value of N E KN and frequency-

selective filter hN[n] E 7-, and NIL may be determined via Eq. (2.13). This approach

will be shown to experimentally produce excellent estimates of N*, especially when the

input signal is synthetically generated to be a true AR WSS random process. This is an
intuitively natural result. Unfortunately the ML approach is not practically viable due to
its excessive computational requirements. However it will serve as a meaningful benchmark
for performance comparison with the LP approach which is the focal point of this thesis.

Having now formally presented the statement of the approximate filtering problem as
well as overviews of the two solutions which are developed in this chapter, we move on



to the detailed derivations of each solution. First we formulate the LP estimate N•T p in
Section 2.3, and then we formulate the ML estimate NML in Section 2.4. The results
of the LP solution will be directly used in our presentation of the approximate filtering
algorithms in Section 2.5. The remarkable capabilities of this algorithm for reducing power
consumption in digital filtering applications will be demonstrated in Chapter 5.

2.3 Derivation of Low Power Solution

In this section we develop the low power (LP) solution to the approximate filtering problem
summarized in Eq. (2.1). The LP solution provides a method for computing the estimate

N•Ip of the optimal filter order N* based on low power operations. The LP method is

necessarily computationally simple, and thus it has the advantage of requiring significantly

less average power than the ML-based solution which will be given in Section 2.4. After

presenting some underlying assumptions, our approach to deriving an expression for Njp
begins with determining a LP estimate ISNRLp [No] of the input SNR based on the difference

between the input power and the output power of a frequency-selective filter hNo [n] E W7-
with nominal order No e A. We use our estimate ISNRLp[N0] to produce an expression for

a LP estimate OSNRLp[N, No] of the output SNR, which can be substituted into Eq. (2.1)

for OSNR[N] to determine the LP solution NI5p to the approximate filtering problem.

To begin we suppose that a discrete-time WSS random process' x[n] with power spec-

trum Sx (w) is filtered using a digital frequency-selective filter with impulse response hNo [n] E

W and order No E A to obtain an output signal y[n]. We assume that the filter hNo[n] is

taken from an approximate filter structure 7 and thus has a well-defined spectral passband

1we assume that all random processes discussed in this thesis are ergodic



PB, stopband SB, and transition band TB. We make the following key assumptions:

We note that no assumption is made about the shape of the function Sx(w) within the
passband. Sx(w) in the passband is finite but otherwise arbitrary. Assumption 2 states
that Sx(w) is negligible in the transition band. This is reasonable for situations in which
the input stopband and passband components are separated by a guard band, as is the case
in a whole host of communications applications [30].

As mentioned earlier, our first step is to determine a LP estimate of the input SNR

Assumption 1

S.(w) is equal to an unknown constant OaB in the stopband region of 7

Sx(w) = aB w E SB (2.17)

Assumption 2

For frequencies in the passband of W7, IHN(w)12 is approximately equal to
unity

IHN(w)12 0 1 w E PB. (2.18)

This is assumed to be true for all N E N, and thus for all HN(W) E W7.

Assumption 3

S,(w) is negligible in the transition band of W7

SX(w) 0 w E TB. (2.19)

Furthermore, this implies that

TB S(w) f (w)dw . 0 (2.20)

for any finite, continuous, differentiable function f(w).



under the stated assumptions. We define the signal-to-noise ratio (SNR) as the ratio of the
signal power in the passband of W to the signal power in the stopband of W7. The input
SNR may be expressed as

a pPBISNR = PBpSB'
2;

where

pP = 1 B Sx ()dw,27r 'B

(2.21)

(2.22)

and

By invoking the Assumption 1
2aB in the stopband, it follows

pSB= 21 Sx(w)dw.

which states that Sx (w) is

that

1
_ PSx(w)dw

ISNR = 2r pB

1 J 21 01 S (w)du=27r B
1

(2.23)

equal to an unknown constant

(2.24)
§aSBASB

where ASB is the spectral width of the stopband. For example, if the stopband is defined

as 7r/2 < Iwl <5 r, then ASB = 7r. Assumption 2 states that JHN(w)12 z 1 for w E PB.

Since S (w) = Sx(w)IHN(w)12 , Assumption 2 implies that Sy(w) , Sx(w) for w E PB, and

Eq. (2.24) becomes

ISNR f ISNR[No]

1p Sy(w)d
=-- 1

27 CB SB2L
PB [No]

= 1 Y 2
2r~-'S2BnsB

(2.25)



where PPB[No] is the output power in the passband which was previously defined in
Eq. (2.4). We note that the approximate expression in Eq. (2.25) for the input SNR is
a function of No due to its dependence on PPB [No]. We now proceed to find an expression
for PRPB[No]. First note that the total output power

Py,[No] = S (w)dw

= Sx(w)IHNO(W)12dw. (2.26)

may be written as the sum of three spectrally-disjoint components

P,[No] = PPB[No] + PySB[No] + P'TB[N 0], (2.27)

where PPB[No] is given in Eq. (2.4), PSB[No] is given in Eq. (2.5), and

P [No] = 21 fT Sy(w)dw

21 f Sx(w)IHN(w)12dw. (2.28)

If we now invoke the Assumption 3 which states that Sz(w) is negligible in the transition
band, then PTB[No] , 0, and rearranging Eq. (2.27) produces

PPB[No] Py[No] - PpSB[No]. (2.29)

We now examine the term PYSB[No]. Combining the definition of PSB[No] in Eq. (2.5) with
Assumption 1 which states that Sx(w) = a2 for w E SB, we obtain

PSB[N°] = 2I LB
12 dw

2= SB SB IHN(w) 2 dw (2.30)27 SB



In order to obtain a more elementary expression for PSB[No], it is apparent from Eq. (2.30)
that an expression for the unknown parameter asB is needed. For this purpose we consider
the difference in input and output signal power

Px - Py[No] = [S(w) - S (w)] d, (2.31)

where the total input signal power P, is defined as

S=- f S(w)dw. (2.32)

As was shown for the total output power Py[No] in Eq. (2.27), the difference in input

and output signal power may similarly be broken up into its spectrally disjoint passband,
stopband, and transition band components

Px - Py[No] = [S() - S()]d

SB[Sx(w) - ST(w)] dw + - [Sx(w) - Sy(w)] dw. (2.33)

We expand this and incorporate Assumption 1 to produce

Px - Py[No] = SX(w) - IHN(w)12 dw +

2a 1 B [1i - (HN(w)12] + 2) J[1 - IHNO(W12] dw. (2.34)

We now recall Assumption 2 which states that IHNO(W)1 2 - 1 for w E PB. Under this

assumption the first addend in the right-hand side of Eq. (2.34) is approximately zero.

Furthermore, Assumption 3 which states that Sx (w) is negligible in the transition band, we

may argue that the third addend in the right-hand side of Eq. (2.34) is approximately zero.

We therefore obtain



P - P,[No] P 21 I- IHrI(w)I dw,
USrj JSB L .1

which may be rearranged to yield

o2B N (Ps - Py[No]) (1 B I- IHNO(W)12] dw) 1

Substituting this approximate expression for uaB into (2.30) we obtain

PySB[No] = 1ZjSLB B HNO(w)I 2dw

(Ps - Py[No]) PSB[NO],

(2.35)

(2.36)

(2.37)

(2.38)

( /sB [1 - HNo(W)L 2] &w)2 -1 1 IBHNo(w)12&W)
(2.39)

is a particularly relevant measure of the spectral quality of the filter HNo (W). Note that

Ph [No] = 0 in the case of an ideal filter which was defined in Eq. (2.6). We now incorporate
Eq. (2.29) into Eq. (2.25) and obtain

pPB [No]ISNR[No] = 1
,r •SBASB

PP,[No] - pSB[No]
1 A

(2.40)

(2.41)

Substituting in the approximate expression in Eq. (2.38) for PSB[No] produces

where

PSB[N] =



ISNR[N0o] P,[No] - (PX - P [No]) PhSB[No] (2.42)ISNR[No] 1 2h ](2.42)

Plugging in our approximate expression in Eq. (2.36) for ac2B produces

ISNR[No] ;

Py [No] 1 dw) 1 12 )
PX - P [No] as B asa sa (2.43)

Armed with this expression for ISNR[No] which is valid under the stated assumptions, we

now turn to the problem of computing low power estimates of the signal-related quantities

in Eq. (2.43): the total input power P. and the total output power Py[No].

2.3.1 Low Power Estimation

To obtain the LP estimate ISNRLP [No] of the input SNR based on Eq. (2.43), suppose that

we have applied a filter of order No to the input x[n] and have obtained L output samples

prior to and including time n. We may then obtain the following estimates

PX = x2 2[nI - k]
k=O

= xTx, (2.44)

and

1L-
Py[No] ~ 1  y2[n- k]

k=0

= YTy, (2.45)

where the L x 1 signal vectors are defined as x = [ [n - L + 1] ... x[n - 1] x[n] ]T,
y = [ y[n - L + 1] ... y[n - 1] y[n] ]T. We note that the explicit dependence of Py[No] and



Px on n and L is omitted for notational simplicity. By incorporating the estimates P,[No]
and Ps into Eq. (2.43) in place of Py,[No] and Ps, respectively, we obtain the LP estimate
ISNRLp[No] for the input SNR

ISNRLP [No] =
yTy 1 HNO(w)12] dw) - IH (w)2d),

(2.46)

This is our final expression for ISNRLp[No]. We observe that ISNRLp[No] is easily com-
putable from the signal-dependent quantities yTy and xTx and the integrals of the filter
hNg [n] that appear in Eq. (2.46).

In order to compute NI5p an estimate OSNRLP [N, No] of the output SNR is required.
To proceed, we define SNRI[N], the signal-to-noise ratio improvement factor, as the multi-
plicative factor by which the input SNR is multiplied by to obtain the output SNR. This
will enable us to easily obtain our estimate OSNRLp[N, No] of the output SNR from our
estimate ISNRLp[No] of the input SNR via a simple multiplication by SNRI[N]. The SNR
improvement factor is clearly a function of the filter order N E AN. The signal-to-noise ratio
improvement factor satisfies the relationship

ISNR -SNRI[N] = OSNR[N], (2.47)

which we may rearrange with substitution of the definitions for ISNR and OSNR[N] from
Eq. (2.21) and Eq. (2.2), respectively, to produce

SNRI[N] OSNR[N]ISNR
pPB[N] pSB

P [N] P (2.48)

If we substitute in the definitions of PPB[N], PSB[N], P s B , and pPB, we arrive at



SNRI[N] = /p SX(w)HN(w) 2du BSx(w)dw (2.49)
N= (w s . (2.49)

SBL)I) JPB))

If we now invoke the Assumption 1 and Assumption 2 which were stated at the beginning
of Section 2.3, our expression for SNRI[N] reduces to

SNRI[N] 0 ASB (2.50)
S B IHN(W ) 2dw

Thus, the SNR improvement factor is inversely proportional to the power in the stopband of

the filter HN(w). We noted earlier in Section 2.1.2 that the frequency selective filters in W-
possess the property that as the filter order N increases, the average stopband attenuation

also increases, and consequently the total stopband power decreases. Thus it is clear from

Eq. (2.50) that the SNR improvement factor increases as the filter order N increases. The

function SNRI[N] is plotted vs. the filter order N for the Parks-McLellan FIR replacement

filter structure in Fig. 2-3 and for the Butterworth IIR truncation filter structure in Fig. 2-

4. In each case the stopband is defined as w E [5ir/8, ir]. These two filter structures are

discussed extensively in Chapter 4. As is clear from Fig. 2-3 and Fig. 2-4, the function

SNRI[N] monotonically increases with N. We refer to plots of the function SNRI[N] as the

performance profile for a given approximate filter structure W.

If the input SNR is relatively low we must select a relatively high filter order to obtain

a sufficiently large SNR improvement factor to assure that the output SNR is maintained

above the minimum tolerable level OSNRtol. Conversely, when the input SNR is relatively

high we will be able to select a relatively low filter order which will provide an SNR im-

provement factor that will assure OSNR[N] > OSNRtol.

To determine the LP solution to estimating N*, we replace the exact ISNR in Eq. (2.47)
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Figure 2-3: Performance profile for the Parks-McLellan FIR replacement filter structure.
The stopband is defined as w E [57r/8, 7r].

with the LP estimate ISNRLP[No] given in Eq. (2.46), to obtain

OSNRLP [N, No] = ISNRLp [No] - SNRI[N]

[1 - IHNo(w)12]

IHN(w) 12dW
/sB IHN(w) 12dw

which we may compare to OSNIRt. to determine the low power estimate N•p for the optimal
filter order N* as the minimum filter order N E AV satisfying

OSNRLP[N, NO] -> OSNRtol. (2.52)

The expression in Eq. (2.51) may be rearranged with simple algebraic manipulations and
substitutions to produce
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ON B IHNo()1 2dw ) L B IHNo(w)12dU

SSB BH (W)i2d 1 - IHNO(L)12 dI (2.53)

By defining the ratio of quadratic forms in the above expression as

xTx - yTy T
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and the function Rtol[N; No, OSNRtol] as

Rtol [N; No, OSNRtol =

+/ (LB )IN L2dBU 2IIHN (w)I2d&B LB B , d(2.55)

fs IHN(W)12du fB1- JHNo(W)121dW

the decision rule for selecting NIp simplifies to choosing the minimum filter order N E KN
satisfying

R > Rtol[N; No, OSNRtol]. (2.56)

The notation Rtol[N; No, OSNRtol] has been used to emphasize that Rtol[N; No, OSN1Rtol] is

a function of the filter order N and is parameterized by the nominal filter order No and the

minimum tolerable output SNR OSNRtol. This enforces the fact that OSNRtol and No are

application-specific parameters which are to be fixed in advance, leaving Rtol[N; No, OSNRtol]

a monotonic function of the single variable N. Note that the only signal-dependent quantity

in Eq. (2.56) is the ratio of quadratic forms R, which was defined in Eq. (2.54).

As a final note, if we desire to avoid the power hungry division involved in computing

R, we may use an alternative form for the decision rule for selecting NLp. The resulting

simplified decision rule for selecting NL*p is to to choose the minimum filter order N E NK
satisfying

TY y (xTx - yTy) Rtol[N; No, OSNRtol]. (2.57)

I



The low power decision rule is now summarized.

In summary, the LP solution to the approximate filtering problem invokes three explicit

assumptions and relies on the signal-dependent estimates P. and Py[No] given in Eq. (2.44)

and Eq. (2.45), respectively. For situations in which the three assumptions are valid and

in which PX and Py,[No] are good estimates of Px and Py[No], respectively, we expect ex-

cellent estimator performance using the LP estimate NjIp for N*. This issue is explored

in Section 2.3.2. The function SNRI[N] and the nature of its dependence on N and 7- are

explored in Chapter 4 in which we study approximate filter structures.

2.3.2 Convergence Analysis

It is of interest to determine the degree to which the low power filter order estimate NLp

converges to the theoretically optimal filter order N* for input signals that satisfy the

assumptions underlying the derivation of fNIp. In this section, we illustrate empirically that

better convergence is obtained as the duration L over which Px and P,[No] are computed

is made longer, and also as the nominal filter order No is made larger. We also observe and

discuss the fact that since optimal filter order selections partition the range of possible input

SNR values, the relation of the actual input SNR to the boundaries in this partitioning is an

Summary of Method for Determining N*p

1. Fix the values of the application-specific parameters No, L, and OSNRtol

2. Compute R using Eq. (2.54) and the signal vectors x and y defined in

Eq. (2.44) and Eq. (2.45), respectively

3. Determine NLTp as the minimum value of N for which

R > Rtol[N; No, OSNRtol],

as described in Eq. (2.56) or Eq. (2.57).



important factor in determining whether or not the truly optimal filter order N* is exactly
determined by the LP estimation method.

For our convergence analysis, we assume that the input signal satisfies the same condi-
tions that were stipulated in the derivation of our expression for NN( p in Section 2.3. This
means that we assume the input signal x[n] is a WSS random process. When L consecutive
samples of the output y[n] are produced using an filter of order No, it follows that these
output samples also belong to a WSS random process. We conclude that P, and Py [No] as
defined in Eq. (2.44) and Eq. (2.45), respectively, represent estimates of the zero-lag auto-
correlation values of x[n] and y[n], respectively. These well-known estimators converge to
the true values of the zero-lag autocorrelations as L is made larger. Since P, and Py[No] are
the only signal-related quantities used in obtaining the input SNR estimate in accordance

with Eq. (2.46), we expect the input SNR estimate ISNRLp[No] to converge to the true

input SNR as L and No are made larger.

To verify the influence of the estimation interval L on the input SNR estimate, we

applied the LP estimation method of Eq. (2.56) to a synthetically generated random signal

x[n]. This signal was designed to have a flat spectrum in the passband I(w E [0,37r/8],
a flat spectrum in the stopband IwI E [5r/8, 7r], negligible energy in the transition band

Iwl E [37r/8, 57r/8], and a fixed SNR throughout its 10,000 point duration. The signal was

filtered using an order-No digital Butterworth filter. The L consecutive input and output

samples (starting from the 1000th sample to avoid filter startup transient effects) were used

to obtain the LP estimate ISNRLp [No] of the input SNR. For a case where the true SNR
of the input signal x[n] was set to 0.07, in Fig. 2-5 we show the LP estimates of the input

SNR obtained for different values of L in the range 1 < L < 4000 and No in the range

4 < No < 10. It is clear from Fig. 2-5 that as L and No increase, the LP estimate of
the input SNR visually converges to the true input SNR of 0.07. It should be noted that
lower values of No correspond to frequency response shapes which violate the underlying
assumptions to a greater degree. We must keep in mind that unless the filter hNo [n] is ideal
as in Eq. (2.6), the estimate ISNRLp[No] will never truly converge to the true input SNR,
no matter how large L is made.

In Fig. 2-5, we have also indicated the partitioning of the input SNR space in accordance
with the corresponding optimal filter order N* which should be used to ensure a minimum
tolerable output SNR of 1000. Except for very small values of L, it is seen that the LP
estimate of the input SNR leads to N9p = N*. This result is dependent on the fact that
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Figure 2-5: Solid curves represent input SNR estimates as a function of L and No. The
actual SNR for the input signal is 0.07. The straight dotted lines indicate the partitioning
of the input SNR space by optimal values for the number of filter sections to use in order
to obtain an output SNR of at least 1000.

an input SNR of .07 happens to fall near the middle of the input SNR space corresponding

to N* = 4. For example, if the actual input SNR had been made equal to 0.04, the LP

estimates of the input SNR may have crossed into the incorrect N* = 5 region for a larger

set of values of L.

To close this section, we offer two remarks regarding the convergence properties of the

LP optimal filter order estimate NLp. First, we note that

lim lim ISNRLp[NO] = ISNR. (2.58)
No-+oo L-*oo

This statement simply elucidates the fact that as No -+ , the filter hNo [n] becomes ideal

with no transition band. In the limiting case of Eq. (2.58) the power difference Px - Py[No]



converges to the true value of pPB, and consequently the ratio R = yTy/(xTx - yTy)
converges to the true input SNR. While in practice we will never be able to realize the
conditions of this limiting case, the result is nevertheless insightful. Secondly, we observe
that under Assumption 1

lim SNRI[N] = ASB
N-"oo BIHNw)12d (2.59)

which is the same expression we get for SNRI[N] when we invoke the assumptions presented

in the derivation of the LP estimation method. Remarkably, then, we may conclude that

lim lim lim NL*P = N*
N-+oo No-+oo L-+oo

(2.60)

which implies that if we use sufficiently large values of L and No to compute ISNRLP [No],

then we can expect asymptotically optimal performance as the filter orders N E A that we

search over to compute Nýp increase without bound.

A second note we make in closing is that by introducing the L x L convolution matrix

H[No] =

hNo [0]

hNo[1]

0

hNo [O]

hNo[L- 1] hNo[L- 2] hNo[L- 3]

0

0

.. h[0]

(2.61)

we may express the vector y as

y = H[No]x,

and thus the expression for R in Eq. (2.54) simplifies to

(2.62)



R = XTA[No]x (2.63)xTB[No]x

where the L x L matrices A and B satisfy

A = HT[No]H[No] (2.64)

B = (I - H[No])T(I - H[No]). (2.65)

In this formulation R has the form of a ratio of two quadratic forms in the random vector

x. It is interesting to note that if the vector x is a multivariate Gaussian random vector, an

extremely complicated nevertheless computable expression may be obtained for the variance

of R as a function of the filter coefficients in H and the power window length L. Various

forms of the variance of the random variable R may be found in [18, 32, 61, 62]. A future

direction of this research is to analytically evaluate this variance and compare it to the

sample variance computed in computer simulations. Furthermore, the problem of designing

the filter hN[n] which appears in the matrix H[N] to produce filter structures W which

minimize the variance of R provides an exciting and challenging future avenue to pursue in

the area of approximate filtering algorithms.

In addition, expressions for the mean and variance of xTA[No]x and xTB[No]x for a

multivariate Gaussian random vector x with zero mean and covariance matrix E may be

obtained in closed form [54]. Specifically, they are given by

E (xTA[No]x) = trace (EA[No]) (2.66)

VAR (xTA [No]x) = 2 trace (EA[No])2 , (2.67)

and

E (xTB[No]x) = trace (EB[No]) (2.68)

VAR (xTB[No]x) = 2 trace (EB[No]) 2 . (2.69)



While these expressions do not give the true mean and variance of the random variable R or
NLp, they do offer insight into the statistical properties of two signal-dependent quantities

yTy = xTA[No]x and (yTy - xTx) = xTB[No]x involved in the simplified division-free
decision rule for determining NIýp given in Eq. (2.57), and thus are worth mentioning here.

2.3.3 Numerical Example

In this section we present a simple numerical example to demonstrate the efficacy of the LP

solution to the approximate filtering problem. We first synthetically generated a random

driving noise signal which consisted of independent and identically distributed samples

distributed according to a unit variance, zero mean Gaussian probability density function

(PDF). This driving noise sequence was then filtered with an 30th-order all-pole filter to

create a WSS Gaussian random process. A plot of the PSD of this random process is shown

in Fig. 2-6.
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Figure 2-6: Power spectral density of the 30th-order AR process which is used as the input
signal in the numerical example.

The all-pole filter parameters were selected to assure the power spectral density S (w)
was negligible in the transition band, defined in this example to be 37r/8 < Iwl < 57r/8.
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The exact all-pole parameters that were used in this example are given in Appendix C. The

passband was defined to be 0 < Iwl • 31r/8 and the stopband was defined as 57r/8 < Iwl _ r.

As can be seen from the spectral shape of S,(w), the input power spectral density is neg-

ligible in the transition band and relatively flat in the stopband in accordance with the

assumptions underlying the development of the LP solution to the approximate filtering

problem.

Table 2.1: Summary of the results of the numerical example using the LP estimator in which
the true value of N* = 10 and the true input SNR is 0.4831. The results are tabulated for
power window lengths of L = 50, 100, 500, 1000, and 5000.

NL*p ISNRLp
L

Sample Mean Sample STD Sample Mean Sample STD

50 7.5700 2.0013 0.6243 0.6540
100 7.7100 1.5718 0.5009 0.2320
500 7.2300 1.4829 0.5046 0.0987
1000 7.2000 1.4771 0.4998 0.0678
5000 7.6800 1.4967 0.4809 0.0260

In Table 2.1 we summarize the LP estimation results after 100 Monte Carlo trials were

performed for each of the values of L = 50, 100, 500, 1000, and 5000. The sample mean

and sample standard deviation (STD) are listed in Table 2.1. Clearly as L increases, the

quality of our LP estimates NLp and ISNRLP improve. This is evident from the fact that

the sample standard deviations decrease as L increases. In addition, the low power estimate

ISNRLp of the input SNR converges towards the true value of 0.4831 as L increases. In this

example the Parks-McLellan FIR replacement approximate filter structure was used with

No = Nmax = 64 and Nmin = 3.
In Fig. 2-7 we have plotted four histograms of the actual LP estimates of the input

SNR for the same 100 Monte Carlo trials. Each histogram corresponds the estimates of the

input SNR for different values of L. As L increases the estimates "tighten up" around their

means. From the entries in Table 2.1 it is clear that while ISNRLp converges towards the

true input SNR as L increases, the estimate NCp does not coverage to N* in this example.

This is a consequence of the fact that theoretically ISNRLp converges to ISNR as L and No



increase without bound, while the convergence of N9*p to N* requires L, No, and Nmax to
increase without bound, as was discussed in Section 2.3.2.
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Figure 2-7: Histograms of the LP input SNR estimates for L = 5000, 1000, 100, and 50.
Each histogram represents the results of 100 Monte Carlo simulations.

We shall revisit this same numerical example in Section 2.4.2 and evaluate the perfor-
mance of the ML solution for comparison to the results given here.

2.4 Derivation of Maximum Likelihood Solution

In this section we assume S,(w) is the PSD of an autoregressive (AR) Gaussian random pro-
cess, and we use a maximum likelihood (ML) objective to find estimates for the parameters
defining this process. As we shall see the PSD Sx(w) is a function of these parameters, and
this function is one-to-one (invertible). Therefore we may easily obtain the ML estimate

[Sx(w)]ML by invoking the well-known invariance property of the ML estimator [26].
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By inspecting Eq. (2.1) we observe that the optimal filter order N* is not in one-to-one

correspondence with S.(w). This is true since many different functions S2,(w) could result in

the same ratio of integrals which define OSNR[N], and thus many different functions Sm(w)

could result in the same N*. Nevertheless, we shall still be able to find a maximum modified
likelihood estimate, which we shall denote NiL, for the optimal filter order N* which is

based on the maximum likelihood estimate [IX(w))]ML. We will show that the estimate

NML, although not the estimate which truly maximizes the associated likelihood function,
instead maximizes a modified likelihood function. Thus the performance of NML will serve

as a meaningful benchmark for comparison with the LP estimate NLp of the optimal filter

order which was presented in Section 2.3.

2.4.1 Maximum Likelihood Estimation

In this section we first present an expression for the asymptotic ML estimates of the AR

parameters of a Gaussian random process. Directly following the insightful presentation

in [26], we consider the random process generated as the output x[n] of a stable, causal

all-pole filter

1
H(z) = (2.70)

A(z)

excited at the input by a zero-mean white Gaussian noise sequence u[n]. The pth-order

polynomial function A(z) is defined by the AR filter parameters [ al a2 ... ap ] as

A(z) = 1 + ak - k.  (2.71)
k=1

If the all-pole filter H(z) is stable, the excitation noise sequence u[n] assures that the output

x[n] is a WSS random process. The effect of the filter is to color the white noise sequence

u[n]. The AR model is capable of producing a wide variety of PSD functions, depending

on the choice of the AR filter parameters [al a2 ... ap] and excitation noise variance ao.

The problem is to estimate the parameters [al a2 ... ap] and ao based on the observed
data sequence x[0] ... x[L - 1]. Once the parameter estimates [ &q1 2 ... tp ] and 6& are

computed, the PSD is estimated as



p -2
S"(W)= &2 1+ Z me-WM (2.72)

m=1

We now given expressions for the asymptotic ML estimates for the parameters [ a a2 ... ap ]
and a2. First, the estimated autocorrelation function is

1 L-1-lkI

xx[k)] = L E x[n]x[n +kl] IkL<L-1(2.73)n=O (2.73)
0 kI > L

The set of equations to be solved for the asymptotic ML estimate of the AR filter parameters
a is

fxx[k -l] = -xx[k] k=1,2,... ,p (2.74)
1=1

which can be rewritten in matrix form as

i;,, [0] ýxx[11 ... i,,[p -1
fxx [1] fxx[ l ... fxx,[p-2]

S [4p -1] xx (p - 2]. iýxx[O0

al
a2

Lap

r,,[1]

rxx[2]

L "· [P]

(2.75)

These are the well-known estimated Yule- Walker equations, which may be recursively solved
using the Levinson recursion algorithm [25]. What is left is to solve for the asymptotic ML
estimate au2 . The asymptotic ML estimate is given by

p
S= ,L[O] + ak (k]. (2.76)

k=1

Thus, the asymptotic ML estimates i and &2 for the parameters a and a2 are given in



Eq. (2.75) and Eq. (2.76), respectively. These estimates converge to the true ML estimates
as L -+ oo, and yield reasonable estimates for sufficiently large finite values L.

We recall that our ML estimate of the PSD is

p -2

[Sx(w)]ML= a^ 1 + ~ E-me j  . (2.77)
m=1

This estimate may be used to determine an ML estimate N]L of the optimal filter order N*.

This ML-based estimate is produced by choosing NML to be the minimum order N E .V of

the frequency-selective filter hN[n] E 7L which provides sufficient stopband attenuation to
assure

OSNRML[N] > OSNRtol, (2.78)

where the ML-based estimate of the output SNR is defined as

OSNRML[N] [P N L (2.79)
[PSB[N]]ML

the ML-based estimate of the output power in the passband is defined as

[ PB[N]]ML - PB ( )]M L d

2 J1 fp ( )ML HN(W)12I IH(2.80)

and the ML-based estimate of the output power in the stopband is defined as

[PSB[NI]ML = L[,y(w )]MLdU

2ir/ [Sx( ( )I]MLIH N(w)2dw. (2.81)

Consequently, the estimate NML maximizes the modified likelihood function which is related



to the true likelihood function as explained in [26].

2.4.2 Numerical Example

In this section we present the results of using the ML estimation method for determining N*
on the same numerical example that was presented in Section 2.3.3. Numerical results are

given to demonstrate the performance of the ML method. Recall from Section 2.3.3 that this
example involves a random driving noise signal consisting of independent and identically
distributed samples distributed according to a unit variance, zero mean Gaussian PDF. This
driving noise signal was filtered with an 30th-order all-pole filter to create a WSS Gaussian
random process with a PSD which was shown previously in Fig. 2-6.

In Table 2.2 we summarize the ML estimation results after 100 Monte Carlo trials were
performed for each of the values of L = 50, 100, 500, 1000, and 5000. The sample mean and
sample standard deviation (STD) are listed Table 2.2. Clearly as L increases, the quality of
the ML optimal filter order estimate NMVL improves since its standard deviation decreases
as L increases. In addition, the ML estimate of the optimal filter order converges towards
the true value of N* = 10 as L becomes larger.

In the simulations we used the Yule-Walker equations and the Levinson recursion to
solve for the ML AR coefficients which give the ML power spectrum estimate and thus the
ML estimate of the optimal filter order N]L. While the Yule-Walker equations give the
asymptotic ML estimates of the AR parameters which converge to the true ML estimates
as L -- oo, it is well known that another method produces better estimates for finite data

Summary of Method for Determining NML

1. Given observations x[0] ... x[L - 1], compute the ML estimates of a and &r
using Eq. (2.75) and Eq. (2.76), respectively

2. Compute [ý(w)]ML via Eq. (2.77)

3. Determine INL according to Eq. (2.78).



Table 2.2: Summary of the results of the numerical example using the ML estimator in which
the true value of N* = 10 and the true input SNR is 0.4831. The results are tabulated for
power window lengths of L = 50, 100,500, 1000, and 5000.

50 11.0300 1.5983
100 11.2000 1.5176
500 10.6000 1.2060
1000 10.7200 1.2877
5000 10.2400 0.8180

records [49]. This method of AR parameter estimation is known as the forward-backward

least-squares method. Using the forward-backward least-squares method to compute the AR

parameter estimates would probably improve the performance of the estimator NML. In our

simulations here we used the Yule-Walker AR parameter estimates since we were guided

by the mathematical optimality of the ML approach. Small errors in the AR parameter

estimates should not have a significant effect on the estimator NML. This is true since NIiL
is based on a ratio of integrals of the power spectrum. Small errors in the AR parameter

estimates will be integrated out when computing NML.

As a final note, we observe that in determining the ML estimates for the numerical

example we assumed the order of the AR process was known to be equal to 30. This

introduces an element of unfairness when comparing the performance of the ML and LP
approaches. In practice the AR order would not be known exactly, and would thus have

to be estimated. Furthermore, this example was specifically tailored for the ML approach,

since the input signal was synthetically generated to represent a true AR random process.

This provides a second reason why we would expect the ML estimates to outperform the

LP estimates. In Chapter 5 we will see that when processing real speech signals, the LP
estimation method is reliably effective at producing good estimates for N*.
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Figure 2-8: An overview of the concept of approximate filtering. The adaptation strategy
for updating the filter order after each new set of L output samples is defined by the decision
module D.

2.5 Adaptation for Non-Stationary Inputs

In this section we return our focus to the LP solution to the approximate filtering problem.
We consider how we may use the previous results which assumed the input was a WSS
random process to develop a method for accommodating non-stationary input signals. This
situation arises in a whole host of filtering contexts in which the input signal is not modeled
well by a WSS random process.

If the input is non-stationary, the output SNR variable OSNR[N] in Eq. (2.1) will be
time varying, and consequently the optimal filter order will change over time. The LP
estimate NT•p of the optimal filter order N* must therefore change over time to dynamically
minimize power consumption. Of course, this requires an adaptation framework whose
overhead is low relative to the expected savings in power consumption.

One adaptation strategy is illustrated in Fig. 2-8. The order of the filter is updated for
every new set of L output samples. The update procedure involves the calculation of input
and output signal power estimates followed by the application of the decision module D
shown in Fig. 2-8.

Approximate filtering structure
with N[iL] sections for
(iL -1) < n < (i+l)L+l

At time iL,
L-1A 1L 1  2Px= x 2[iL-k]0
k=O0

At time iL,
L- l1

y = y2 [iL-k]
k=O

I

1



This module uses the signal power estimates PS and Py [No] to form an estimate of the
temporally local input SNR. This input SNR estimate is then used as the basis for selecting

the filter order to be applied in computing the next set of L output samples.

Assuming that M values of the function Rtol[N; No, OSNRtol] in Eq. (2.54) are pre-

stored, the search for Np•p in Eq. (2.78) requires O(M) operations-at most M table look-up

operations, two subtractions, at most Mo +1 multiplications and at most M comparisons-

where M is the number of filter elements in W7. Specifically, M = (Nmax - Nmin + 1). The

estimated filter order NIP becomes the new order of the filter used in the approximate

filtering structure to produce the next L output samples. The process continues in this

way, updating the filter every L samples. Thus, for every new set of L output samples, the

adaptation overhead involves O(M) operations for the decision module D, and on the order

of 2L multiplications and 2L additions for calculating the estimates P. and Py[No]. Assum-

ing that L is much greater than Nma, the overhead is approximately two multiplications

and two additions per output sample.

As discussed throughout this chapter, the goal of approximate filtering algorithms is to

dynamically adjust the order of a digital filter such that the minimum possible filter order

is used while assuring that the output SNR is maintained above a given threshold. For

this purpose we may choose to estimate the optimal filter order, given a block of L output

samples, and use our estimate of the optimal filter order to filter the next block of input

samples. This is the method we have presented thus far and is termed the optimal control

strategy. Alternatively, we may instead decide to use a simpler filter order update method.

This simpler update method involves estimating, from a given block of L output samples,

in which direction the filter order should be incremented (up or down) by a fixed amount.

The newly incremented filter order is then used to filter the next block of input samples.

We call this simpler method the incremental control strategy. These are two possible con-

trol strategies that may be used in conjunction with an approximate filter structure 7 to

incorporate flexibility in meeting required processing specifications.

In closing, we summarize what is needed to define an approximate filtering algorithm.

The three definitive elements of an approximate filtering algorithm are

* the power window length L and nominal filter order No

* the filter structure W7

* the control strategy for dynamically updating the filter order based on NLp



In this chapter we have discussed the issues involved in choosing the power window length
L and nominal filter order No, which both have an important influence on the convergence
properties of the LP estimators ISNRLp[No] and NIp. We have deferred the important
considerations that must be made with respect to the choice of the filter structure R7 to
Chapter 4. Two possibilities for the control strategy were presented in this chapter, namely
the optimal control strategy and the incremental control strategy. Other control strategies
are certainly possible. It should be clear at this point that approximate filtering algorithms
are flexible; we may fine tune them via the choice of the three elements listed above to meet
the requirements of a particular application.

2.6 Summary

We have considered the practical problem of dynamically reducing the order of a frequency-
selective digital filter to reduce average power consumption, and presented the class of
approximate filtering algorithms for which this is accomplished. Approximate filtering al-
gorithms were developed by abstracting a theory from the practical low power filtering
problem. The theory centered on the problem of determining an optimal filter order based
on observations of the input data and a set of concrete assumptions on the statistics of the
input signal. We explored the statistical properties of this theory, and showed that under
certain assumptions the class of approximate filtering algorithms is asymptotically optimal.
The theory served the purpose of aiding us in understanding interpreting the performance
of approximate filtering algorithms.





Chapter 3

State Transition Error Analysis

The crux of the approximate filtering algorithms presented in Chapter 2 is that the order
of a frequency selective digital filter may be dynamically varied based on the input signal
statistics to reduce the time-averaged power consumption of the filtering operation while
maintaining a fixed level of output quality. This possibility offers attractive potential for
low power signal processing applications. A formula for how to cheaply compute the low
power (LP) estimate NIýp of the optimal filter order N* was presented in Chapter 2 for
applications involving wide sense stationary input signals, and an adaptation mechanism
for computing the time-varying estimate NLp of the short-time optimal filter order N*
was established to accommodate nonstationary input signals. In approximate filtering the
instantaneous change in the order of the digital frequency-selective filter has a corruptive
effect on the output of the filter. This is due to the effective state transition. In this chapter
we develop a model for this corruption as an additive noise term in the approximate filter
output signal. We refer to this additive noise term as the state transition error.

Minimization of the state transition error (STE) in the approximate filter output is
important for two reasons. First, in some applications we would like to produce the exact
time series corresponding to the output of a fixed-order filter. For example, this may be
the case if the temporal features of the output of a fixed filter are relevant, as is the case,
for example, in heart rate monitoring and seismic signal processing applications. Instanta-
neously switching the filter order corrupts the fixed-order filter output and may partially or
completely destroy the desired temporal features, rendering the approximate filter output
ineffectual. Quantifying the corruption due to the STE as an additive noise term is the first
step in trying to preserve some or all of the desired temporal features of the approximate



filter output. Secondly, for optimal low power performance in approximate filtering, it is
important that the low power estimate N(p of the optimal filter order N* is not vitiated
by the STE component of the filter output. We will directly address both of these issues

in this chapter via the development of deterministic and probabilistic frameworks for STE

analysis. Further, in Chapter 4 we will use the results from this chapter for investigating

how to choose approximate filter structures in order to minimize the effect of the STE.

Although we are generally interested in exploring the properties of the STE due to

periodic switching of the filter order, for the purpose of theoretical simplicity in this chapter

we consider the output of an approximate filter with a single state transition (filter order

switch) from filter order N1 to filter order N2 at time n = 0. This is a simplification of the

periodic switching which occurs in the approximate filtering algorithm for non-stationary

inputs. This simplification will adequately serve our purposes in this chapter, since the

STE will be shown to decay exponentially and become negligible a few samples after the

filter order is switched. In order to analyze and understand the STE, we view the output

YN,N 2 [n] of an approximate filter with a single state transition as the sum of the output

yg 2N2 [n] of a filter with fixed order N2 and the STE denoted by ytr[n]. This relationship
may be expressed as

yN1N2[n] = YN2N2[n] + ytr[n]. (3.1)

The notation for the approximate filter output yNvN 2 [n] is used to emphasize that the filter

order switches once from order N1 to order N2 at time n = 0. In this chapter the notation

for the fixed filter output YN2N2 ,n] is used to emphasize that in this case the filter order does

not switch at time n = 0. We now develop deterministic and probabilistic frameworks for

analyzing the STE. In the deterministic framework we determine a bound on the magnitude
of the STE at any post-transition sample number. In the probabilistic framework we explore

the impact of the STE on: 1) the approximate filter output yNN 2 [n], 2) the approximate

filter output power estimate

L-1

i = YN1N2 [k], (3.2)
k=O

mmmwm



and 3) the low power filter order estimate NWp which is based on the approximate filter

output YNIN 2 •n].
By considering the impact of the STE on these quantities, we demonstrate in the prob-

abilistic framework that the STE is essentially negligible. Formally, we accomplish this by
evaluating the following statistical metrics:

1. E{(y2r[n]}, the expected value of the squared STE,

2. E(Ptr[n]}, the expected value of the total additive corruption induced into the output
power estimate P,[No] due to the STE, and

3. Prob(N2k Ž> N~ p I YN 2[n] = yN2N2[n] + ytr[n]), the probability that the STE-
corrupted filter order estimate Nk is greater than or equal to the ideal STE-free
filter order estimate Njp. This is a statistical measure of the effect of the STE on the
LP estimate of the optimal filter order. We use this probabilistic excedance measure
since the nature of our problem is that it is much better to have Nk _ Np, in which
case we are assured that the output SNR is greater than or equal to the minimum
tolerable level, than it is to have Nk < N5Ip, in which case the output SNR can be
less than the minimum tolerable level.

It is important to point out immediately that the STE is always zero when we use
an FIR approximate filter structure. This is true since in FIR filtering each output sample
does not depend directly on previous output samples. Therefore we may change filter orders
transparently with FIR filters and the STE is always zero. This issue will be revisited in
Chapter 4 in our study of approximate filter structures. Thus, it is only when we use an
IIR approximate filter structure that we need to be concerned with the STE.

We now make a final note before proceeding to establish the deterministic and probabilis-
tic frameworks for STE analysis. Our present purpose is to motivate our investigation of the
STE by considering Fig. 3-1 in which we show a comparison of the approximate filter output,
denoted by YN 1,N2 [n], and the output of a fixed filter of order N2, denoted by YN 2N2 [n]. The
bottom plot in Fig. 3-1 depicts the absolute value of the STE lYtr[n]I = IYN1N2 [n]-yN2 N2 [n]i,

which is visually small compared to jyN1N2[n]I or yN2zN2[n]l. In addition, the STE signal
appears to decay rapidly. In light of this observation, we are motivated to establish a bound
on the magnitude of the STE as well as an expression for the expected value of the squared



STE. Our goal is to establish that we may view the output of the approximate filter YN1 N2 [n]

as being approximately equal to the fixed filter output yN2N2[n].

0.5

-0.5
0 1 2 3 4 5 6 7 8 9

discrete time index, n

Figure 3-1: Comparison of the approximate filter output YN N2 [n] and the fixed filter output
YN2 N2 [n]. The bottom plot depicts the absolute value of the state transition error IYtr[n]l =
lyNIN 2 [n] - YN 2N2 [n]. The filter order switch (state transition) occurred at time n = 0 in
this case. In this illustrative example we used N1 = 2 and N2 = 4. The output signals were
generated using the replacement IIR Butterworth filter structure.

3.1 Deterministic Analysis

We now address the problem of deriving a deterministic upper bound Btr on the absolute

value of the STE ytr,[n] such that lytr[n]j < Btr for n > 0. To review, the output YNiN 2[n]

of the approximate filter is produced by a filter which instantaneously switches its order

from N1 to N2 at time n = 0. The STE, denoted ytr[n], is defined to be the difference

between the approximate filter output YNN 2 [n] and the output yN2N2 [n] which is obtained

by filtering the same input sequence with a filter of fixed order N2 for all time. That is,

ytr[n] = -yNN2[] - YN2N2[n),

1 I

(3.3)n>2 0,



00

where YNg2 2 [n] = E x[n - k]hNý2[k] and YN1N2,[n] is the approximate filter output. We
k=-oo

will demonstrate in this section that the STE decays exponentially after the filter switch.
Before proceeding with the details of the derivation of the bound Btr on the STE, we present

a brief summary of the final result.

Deterministic Bound on the STE: Btr

The deterministic bound on the magnitude of the STE is Btr, and the STE satisfies

lutr[n]l = IYN2N2[n] - YN 1N2 [n]l (3.4)

<_ Btr - zmaxin, (3.5)

where

Btr = N 2 Btr 'min 2 (ZTZ), (3.6)

N2 is the post-transition order of the approximate filter, Bytr is a bound on

the norm of the L x 1 vector of the first L post-transition samples of the STE,
Amin(ZTZ) is the minimum eigenvalue of the matrix ZTZ, and Z is the Van-

dermonde matrix corresponding to the filter h 2 [n]. Note that the parameters

N2,Btr,, and Amin(ZTZ) in Eq. (3.6) depend only on our choice of the impulse

responses hN, [n] and hN2 [n] and the input signal bound Bx, which is defined such

that jx[n]l <_ Bx for all n.



3.1.1 Derivation of Deterministic Bound

We begin our deterministic analysis of the STE by deriving a bound Bx - BN1N2 on the

outputs of two distinct filters of orders N1 and N2 with the same bounded input signal

satisfying Ix[n l < Bx. This result will be used to find an expression for Btr. Consider the

outputs of two distinct filters with impulse responses hN, [n] and hN2 [n] and orders N1 and

N2, respectively. Suppose the two filters hNN [n] and hN2[n] belong to the same approximate

filter structure W7, and have outputs YN1N1 [n] and yN2N 2 [n], respectively. If the signal x[n]

is the input to both of the filters, the output signals may be written in terms of their

convolution sums as

00

YNN[n] = Z x[n-k]hN,[k], i = 1,2. (3.7)
kc=-oo

The difference YN lN 2 [n] between the output signals YN1N1 [n] and yN2N2 [n] is

00

y, y [n] = yN 1N, ,[n] - y N2N2 [n] = E x[n - k] [hNj[k] - hN2[k]]. (3.8)
k=-oo

Applying the Cauchy-Schwartz inequality, we bound the magnitude of 7N N2 [n] as

00

YNIN2[n]I = 1 x[n - k] [hN,[k] - hN2[k]]
k=-oo

S IJ[n - k]l IhN,[k] -hvN,[k]j. (3.9)
k=-oo

If we assume that each of the values in the input signal x[n] is bounded such that for all n

jx[n]l 5 Bx, (3.10)

for some finite, positive number Bx, then a bound on the magnitude of yN, N2 [n] is given

by



00

IyNiN2 [n]I • Bx IhN,[k]- hN2[k]I
Ic=-oo

< Bx -BN1N 2 , (3.11)

where

BN1N2 = Z IhNl[k] - hvN2 [k] . (3.12)
k=-oo

Thus, for input signals satisfying Ix[n]I 5 Bx, the two fixed filter outputs yNINy [n] and

YNN,2 [n] differ in absolute value by at most Bx - BN1 N2 . Note that this bound is not a
function of n. It is worthy to note that (M2 - M)/2 distinct values of BN1 N2 may be

computed for an approximate filter structure W having M distinct filter elements. These

values constitute one measure the STE performance of the approximate filter structure -W,
and may be taken into consideration in the design of approximate filter structures.

In Fig. 3-2 and Fig. 3-3 we show plots of the bound BN1 N2 as a function of N 1 and
N2 for the replacement Butterworth filter structure and the truncated Butterworth filter
structure, respectively. Some important properties of these filter structures were discussed
in Chapter 1, and they will be further investigated in Chapter 4. We note that along the line
N1 = N2 the bound BN1N 2 is zero since the STE is zero when N1 = N2 which is equivalent
to having no filter order switch occur. We also note that as IN1 - N2 1 increases, so does
BN 1N 2 symmetrically about the line N1 = N2. This is what we expect since as IN1 - N21
increases the spectral differences in hN,[n] and hN 2 [n] become more profound. The shape
of the curve for the replacement Butterworth filter structure in Fig. 3-2 is smoother than
that of the truncation Butterworth filter structure in Fig. 3-3 due to the especially abrupt
changes in spectral magnitude shape between filters of different orders in the truncation
Butterworth filter structure which are not as prominent in the replacement Butterworth
filter structure.

In addition, in Table 3.1 and Table 3.2 we have provided the numerical values of the
bound BNIN 2 as a function of Nx and N2 for the replacement Butterworth filter structure
and the truncated Butterworth approximate filter structure, respectively. The half-power
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Figure 3-2: A plot of the deterministic bound BN1N2 vs. N1 and N2 for the replacement
Butterworth filter structure. Refer to Eq. (3.12) for the definition of BN N2.

frequency in each case is 7r/2.

We now return our attention to deriving the deterministic bound Btr on the STE, which

we recall is defined such that

jYtr[n] = YNN 2, [n]] - YN2N2I[n]] <• Btr, n > 0. (3.13)

We will show that such a bound exists, and that the STE decays exponentially in time.

The STE induced by switching from filter hN [n] to hN2 [n] at time n = 0 may be written

in the form

lYtr[n]j = Btr 7 -a, n > 0 (3.14)

for some ca such that Ial < 1 and for some positive real number Btr. We will find an

expression for Btr and a in terms of the filter coefficients hN1 [n] and hN2 [n] and the input

signal bound Bx which is chosen such that the input signal satisfies x[n] < Bx. To begin,

consider the order-N 2 difference equation

__
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Figure 3-3: A plot of the deterministic bound BN1,N 2 VS. N 1 and N2 for the truncated
Butterworth filter structure. Refer to Eq. (3.12) for the definition of BN 1N 2.

N2  N2
YN2N2 [n] = akN2 N2N2[n - k] + bkN 2x[n - k], (3.15)

k=1 k=O

where akN, and bkN2 are the kth coefficients in the order-N 2 polynomials (ordered in as-

cending powers of z-1 ) whose roots define the poles and zeros of the order-N2 filter hN2 [n],

respectively. Fundamental linear system theory dictates that the solution to the difference

equation in Eq. (3.15) may be expressed as the sum of a zero-input response (ZIR) y RN [n]

and a zero-state response (ZSR) yz, 2 [n] which satisfy

yN2N2[g] = YZSR2 [n] + YR 2N[n], (3.16)

where

N2
ZSRN,[n] = , bkN,x[n - k], (3.17)

k=O

and



Table 3.1: Numerical values for the deterministic bound BN 1N2 for the replacement But-
terworth filter structure. Refer to Eq. (3.12) for the definition of BN1N2.

Filter Filter Order N2
Order NI 3 5 7 9 11 13 15 17 19 21

3 0 1.41 2.30 2.69 3.23 3.58 3.84 3.99 4.16 4.34
5 1.41 0 1.54 2.68 3.13 3.32 3.66 4.01 4.25 4.47
7 2.30 1.54 0 1.66 2.95 3.48 3.49 3.66 4.06 4.47
9 2.69 2.68 1.66 0 1.86 3.13 3.71 3.71 3.85 4.22
11 3.23 3.13 2.95 1.86 0 2.03 3.47 3.82 3.81 3.90
13 3.58 3.32 3.48 3.13 2.03 0 2.14 3.74 4.05 3.84
15 3.84 3.66 3.49 3.71 3.47 2.14 0 2.23 3.94 4.36
17 3.99 4.01 3.66 3.71 3.82 3.74 2.23 0 2.41 4.10
19 4.16 4.25 4.06 3.85 3.81 4.05 3.94 2.41 0 2.52
21 4.34 4.47 4.47 4.22 3.90 3.84 4.36 4.10 2.52 0

N2

YN2 N2 [n ] = akN2 YN 2 N2 [n - k], (3.18)
k=1

with initial conditions

YN 2N2 -N2] • YN2N2  N2 [-N2] N2 .' N2 [N2 -]. (3.19)

The initial condition values YN2N 2 [-N2] ...' N2N2[-1] in Eq. (3.19) are produced by filter-

ing the input signal x[n] with the filter hN [n] on the interval -oo < n < -1.

The approximate filter output signal YNxN2[n] satisfies a set of equations similar to Eqs.

(3.16)-(3.18) given by

YN N2 [z ] 2= y", [n] + yN, N2[], (3.20)

where



Table 3.2: Numerical values for the deterministic bound BN1N2 for the
worth filter structure. Refer to Eq. (3.12) for the definition of BN1N 2.

truncated Butter-

Filter Filter Order N2
Order N1  3 5 7 9 11 1 13 15 17 19 {21

3 0 1.00 1.42 2.80 2.56 3.75 3.39 4.11 4.38 4.21
5 1.00 0 0.80 2.21 2.01 3.32 3.13 3.92 4.24 4.10
7 1.42 0.80 0 1.41 1.43 2.74 2.64 3.56 3.99 3.93
9 2.80 2.21 1.41 0 1.92 3.67 3.35 3.17 4.15 4.52

11 2.56 2.01 1.43 1.92 0 2.04 2.54 3.19 3.42 3.69
13 3.75 3.32 2.74 3.67 2.04 0 2.55 4.37 4.25 3.00
15 3.39 3.13 2.64 3.35 2.54 2.55 0 2.41 3.89 3.74
17 4.11 3.92 3.56 3.17 3.19 4.37 2.41 0 2.89 4.42
19 4.38 4.24 3.99 4.15 3.42 4.25 3.89 2.89 0 2.83
21 4.21 4.10 3.93 4.52 3.69 3.00 3.74 4.42 2.83 0

N2y~N[n] = bkN 2x[n - k],
k=O

N2

yN RN[] = akN2YN1N2[n - k],
k=l

(3.21)

(3.22)

with different initial conditions

YN 1N 2[-N2] ... YN1N 2[- 1] = VN 1N 1[-N21 ] ... N1 NN[- 1] (3.23)

The initial condition values lYN1N,[-N 2] ... VNN [-1] in Eq. (3.23) are produced by filter-

ing the input x[n] with the filter hN, [n] on the interval -oo < n < -1.

The STE ytr[n] is defined on the interval -N 2 < n < oo as

Ytr [n] = YN 1N 2 n] - YN 2 N 2 ],

and

n> -N2, (3.24)



which may be expanded to produce

,r[n] = ys,[n] + yzRn] - yzsR, [n] - yz [n].

This may be expanded yet again to obtain

N2  N2

Ytr[n] = bkN2X[n - k]+ akN2YN 1 N 2 [n - k
k= O Ic=1

- bkNE[n - k] - akN2 N2N2[n - k],
k=O k=1

which simplifies to

N2

ytr[n] = Z akN YN1 N 2[n-k]
k=l

ZN1N [n]

- NE akN2 YN 2 N 2 [TL -k]

k=l

Z R2 [n]

Ytr[n] = YN1N,[n] - y N [n].2

This implies that the STE satisfies the recursion relation

N2
Ytr[n] = EakN 2 [ 1yNN2 [n - k] - yN 2N2 [n - k],

k=1

or equivalently satisfies

N2

Ytr[n] = Z akN2Ytr[n - k],
k=1

(3.25)

(3.26)

and thus

(3.27)

(3.28)

(3.29)

(3.30)



with initial conditions

ytr[-N2] ... " tr[-] =

[P9N 1N1i[-N21 - YN2N2[-N2] ]'" [NNi[--1] -NN 2N 2 [-1]] . (3.31)

We note that each of the N2 initial conditions Ytr[-N2] ..." tr[-1] is of the form of /NgN 2 [n]
given in Eq. (3.8). Therefore each initial condition in this set has a magnitude satisfying

IYtr[n] 1 Bx -BN1N2 -N 2 n -1

This result will be invoked later to establish the bound Btr.

For now we consider the expression in Eq. (3.28) for the STE for n > 0. This expression
identifies the STE as a pure ZIR for n > 0. We note that the STE does not have the form
of a pure ZIR on the interval -N 2 < n < -1. Nevertheless, for n > 0 the STE may be
expressed as a weighted sum of exponential signals [54],

(3.33)Ytr[n] = Ckk),
k=1

where the zk are the N2 pole locations of the filter hN 2 [n] and the ck are scalar coefficients.
Note that if the filter hN 2, [n] is stable, then IzkI < 1 for 1 < k < N2 . We may write Eq. (3.33)
in matrix form as

Ytr[0]

ytr[1]

ytr[L - 1]

Ytr

z? z z N2

Cl
Z1  Z2  N2

LLCN2 JZ.. N

z

(3.34)

which can be more compactly written as

(3.32)



Ytr = Zc,

for the L x 1 vector ytr, the L x N2 Vandermonde matrix Z, and the N2 x 1 vector c. Each

of the N2 columns of Z is made up of the one of the N2 poles of h 2, [n] raised to successively

higher powers from zero to L - 1 in rows 1 to L, as shown in Eq. (3.34). Recall that by

definition of the induced matrix 2-norm [67]

(3.36)IIzO llI zI = max -.

This implies that

IIZCII5 •lizil - IlCI. (3.37)

To determine an expression for [IZ I, following Strang [67] we observe

S1Zc112  Z T ZzcIIZ1 2 = max 2= maxco 1c\ 2 c# cTc

ZTZc = Ac

(3.38)

(3.39)

if A is an eigenvalue of the matrix ZTZ, so

raCT (Z7ZC) cT (Ac) _ CTC AA zmax CTZZ)= max CTAC = maxA XT = MELX A = Amax (zT Z.C:Ao CTC C:Ao CTC CO JTC C,4
(3.40)

Therefore, combining Eq. (3.38) and Eq. (3.40) produces

But

(3.35)



and

(3.41)III12 = Amax(ZTZ),

IIZc112 < \max(ZTZ)IlCrI 2, (3.42)

where Amax.(Z T Z) is the largest eigenvalue of the matrix ZTZ. A similar argument can be

made [67] to show that

IIZc112 > Amin(ZTZ) l11C2, (3.43)

where Amin(Z T Z) is the smallest eigenvalue of the matrix ZTZ. We now proceed to bound

Ilcll using Eq. (3.43). Since Ytr = Zc, we know from Eq. (3.43) that

IIYtrI12 -> Amin(ZTZ)IIC112. (3.44)

Rearranging, the inequality in Eq. (3.44) becomes

Ilc • IlYtr II
Amin(ZTZ)

< BYt

S min (ZTZ)
(3.45)

where Bytr is defined such that lIYtrlI •< Bytr To determine Bytr, we determine bounds
on the first two individual elements ytr[O] and ytr[1] of the vector Ytr, and then recursively
compute bounds on the remaining elements ytr[2] ... ytr[L - 1]. For the first element of Ytr
we have



N2

Ytr[O] = E akN2Ytr[-k]
Ik=l

< BxBN1N•
k=l

IakN2I = Ytr[0] (3.46)

and for the second element of Ytr we have

N2

Ytr[l] = akN2 ytr[1l -k]
k=l
N2

= akN2ytr[1 - k] + alN2ytr([O]
k=2

N2
< BXBakN2y1 [1 - k] + lalN2ytr tr[0 ]

k=2

N2  N2
< BxBN, N 2 ZakN 2  X + BxBN1 N2 a1N2 Z

k=1 k=1
N2

< BxBNiN 2 [1 + ajN2I ZE akN2I = Ytr[1-
k=1

lakN 2I

(3.47)

Building on the form of Eq. (3.46) and Eq. (3.47), we now present a recursive expression

for the bounds on each of the elements of the vector Ytr

1 >0, (3.48)

Ytr[l] = BxBN1N2

N21

k=l

1-1

IakN2 + 1• Ial-k,N2IYtr[k],
k=O

with initial condition

where

1 > 0, (3.49)

ytr[l] :5 YtrP]



N2
Ytr[0] = BxBN1N2  ljakN 2 1. (3.50)

k=1

Using Eq. (3.49) and Eq. (3.50) we may generate each of the bounds Ytr[l] for 0 < 1 < L - 1,
and then determine Bytr using

L-1

IlYtrIl 2 = F IYtr[k][ 2
k=O
L-1

S Ytr[ k] = Bt". (3.51)
k=O

We shall use this result in the forthcoming derivation of Btr. We start by recalling that the
post-transition STE is a pure ZIR and thus may be expressed as

N2
Ytr[n] = CkZk', n > 0, (3.52)

kc=1

so that

N2IYtr[n]j = I ckzl
k=1
N2

k=1
N2

• IzmaxIn IckI
k=l

5 N2 . IICII Zmaxln, (3.53)

where Zmax is defined to be the pole location of the filter hN 2 [n] with the largest magnitude.
We have used the fact that



• Icklc7, (3.54)
k=l

where Ilcl is the conventional 2-norm of the vector c

N2

IlCIl = Zc. (3.55)
k=1

A proof of Eq. (3.55) is given in Appendix B. Substituting in the bound for Ilclj from

Eq. (3.45) into Eq. (3.53) produces for n > 0

lYtr[[n] < N2  IlYtrl . izmaxln
'Amin(ZTZ)

BYtr l maxIn< N2  B IZmaxln
Vmin (ZTZ)

< Btr - jzmaxln , (3.56)

where

Btr = N 2 • Byt- A 2 (Zin Z). (3.57)

To obtain the bound Btr above we have used the result given in Eq. (3.51) that IlYtril 5 Bytr.
In Eq. (3.56) we have given a bound for the STE in terms of the bound Byte,r the filter order

N2, the pole location zmax, and the eigenvalue Amin(ZTZ) of the matrix ZTZ defined in

Eq. (3.34). Thus, our expression for the bound Btr is now complete. A summary of the

steps which are needed to obtain a numerical value for Btr, given Bx, hN, [n], and hN2 [n],

is now given.



Summary of How to Compute Btr

3.1.2 Simulations

The expression for the deterministic bound Btr on the STE given in Eq. (3.57) is compli-

cated; its evaluation requires the recursive computation of the bound Bytr using Eq. (3.48)

through Eq. (3.51) as well as the computation of the minimum singular value of the matrix

Z in Eq. (3.34). In order to gain more insight into the nature of the bound Btr and its

dependence on Bx, hN, [n], and hN2 [n], in this section we provide a numerical evaluation

of the STE and its bound Btr. We compare the relative magnitudes of the STE and its

deterministic bound Btr using computer simulations.

To begin, we generated a random input sequence bounded by Bx = 1 whose samples

were independent and identically distributed according to a uniform probability distribution.
We filtered this input sequence with a filter taken from an IIR Butterworth approximate
filter structure with half-power frequency 7r/2 and order N1 . At time n = 0 the filter order
was switched to N2 and the maximum value of the STE was measured and recorded. This
experiment was repeated for all pairs of N 1, N2 in the range 2 < N1, N2 < 20. The results

are presented in Fig. 3-4 for the replacement Butterworth filter structure and in Fig. 3-5
for the truncation Butterworth filter structure.

It is clear from Fig. 3-4 and Fig. 3-5 that the maximum value of the STE is directly
proportional to: 1) the absolute difference IN2 - N1I between the filter orders, and 2) the
value of N2. For large values of IN2 - N11, the spectral magnitude responses of the two
filters in the approximate filter structure differ significantly so the spectral components of
the input signal which pass through the filter and the spectral components of the input

1. Given Bx, hNl[n], and hN2,[n], compute BN1N2 using Eq. (3.12)

2. Compute Amin(ZT Z) as the minimum singular value of the matrix
Z defined in Eq. (3.34)

3. Compute Bytr using Eqs. (3.48)-(3.51)

4. Compute Btr using Eq. (3.57)

I
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Figure 3-4: A plot of the maximum value of the state transition error vs. N1 and N2 for
n > 0 using the replacement Butterworth filter structure with half-power frequency ir/2. In
this example Bx = 1, or, equivalently, Ix[n]I < 1 for all n.

signal which are rejected by each filter differ significantly. This large spectral difference in

filters hNl [n] and hN 2[n] translates into a large maximum STE. In addition, the number

of initial conditions which are weighted and summed to produce the STE at each post-

transition time is equal to N2. Since in the case of an independent, identically distributed

WSS random input signal the expected value of each of the N2 initial conditions is the

same, the more initial conditions there are (that is, the higher the value of N2), the larger

maximum value of the STE we would expect. These two dependencies are clearly visible

in the mesh plots of the maximum value of the STE given in Fig. 3-4 and Fig. 3-5. We

note that no matter how large the maximum STE is, over time the STE always decays

exponentially according to Eq. (3.56). The speed of the STE exponential decay depends

on how close the pole location Zmax is to the unit circle. For example, with IZmaxl << 1, the

decay will be very fast, whereas for IZmaxl z 1, the decay of the STE will be much slower.

For the purpose of gaining further insight into the dependence of the STE on N1 and N2 ,

we consider the effect at time n = 0 of replacing the initial conditions leftover from using

the filter hN, [n] with zero initial conditions to produce the post-transition output samples.

The results are presented in Fig. 3-6 for the replacement Butterworth filter structure and

in Fig. 3-7 for the truncation Butterworth filter structure. In this case we can see clearly

that the maximum value of the STE no longer depends on IN2 - N1I. Using the zero

__
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Figure 3-5: A plot of the maximum value of the state transition error vs. NI and N2 for
n -0 using the truncated Butterworth filter structure with half-power frequency 7r/2. In
this example B- 1, or, equivalently, Ix[n]I < 1 for all n.

initial conditions is equivalent to using a filter order of N, = 0 to generate the STE initial
conditions, regardless of the actual value of N, used to produce the approximate filter
output. This explains why the STE bound using zero initial conditions does not depend on
the filter order N1. The direct dependence of the maximum value of the STE on the filter2 [n]

order N2 itill trongly evident.fiorder

Proceeding with our deterministic analysis, we now define the normalized STE as

2tr yr[] (3.58)YntrIn] = BX - YN - YN2  (3.58)

where

00

YNk = hNk[m] k= 1,2. (3.59)
m= -- oo

These normalization factors are defined such that Bx - YNk is the maximum value that the
output of a fixed filter of order Nk could attain for k = 1, 2.

Fig. 3-8 depicts a logarithmic plot of the normalized squared STE bound B r/(Bx - YN - YN2 )L Lb V ~LYLUV , VbLUIIVI~I I~ /~VUV1·UIL IIL~~IIIIU~U OYU~~~ I UVUI~lUtt r
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Figure 3-6: A plot of the maximum value of the state transition error vs. N1 and N2 for
n > 0 using the replacement Butterworth filter structure with half-power frequency 7r/2
and zero initial conditions. In this example Bx = 1, or, equivalently, Ix[n]i _ 1 for all n.

vs. post-transition filter order N2 for N2 = 2, 4, 6, 8, and 10. The points plotted in Fig. 3-8

were generated using the replacement Butterworth filter structure with N1 = 12, using the

expression for Btr in Eq. (3.57). We see that as the post-transition filter order N2 increases,

so does the normalized squared STE bound B2r/(Bx - YN1 -YN 2 ).

Fig. 3-9 shows a logarithmic plot of the normalized squared STE vs. post transition

sample number for N2 = 2, 4, 6, 8, and 10. The curves were generated for the replacement

Butterworth filter structure with N1 = 12, using the bounded time series from Eq. (3.56).

The values for the bounded time series at n = 0 are equal to the normalized squared STE

bound B2r shown in Fig. 3-8, and then exponentially decay with IZmax n .

Finally we plot the normalized squared STE in Fig. 3-10 found by averaging over 1000
Monte Carlo simulations. The plot includes the normalized squared STE bound B2r for

N1 = 2, N2 = 4, and Bx = 1, using again the replacement Butterworth filter structure. It is

evident from the plot that the average STE is approximately 5 orders of magnitude less than

the deterministic bound. This suggests that the bound Bt2r is valid but very conservative.

We are thus motivated to pursue the development of a probabilistic framework for STE

analysis in which a more useful characterization of the STE may be obtained.

We now offer a closing comment before proceeding to the development of a probabilistic

framework for STE analysis in the next section. First we notice that the normalized squared
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Figure 3-7: A plot of the maximum value of the state transition error vs. N1 and N2 for
n > 0 using the truncated Butterworth filter structure with half-power frequency ir/2 and
zero initial conditions. In this example Bx = 1, or, equivalently, jx[n]l < 1 for all n.

STE in Fig. 3-10 appears to have a periodic ripple component. This is due to the fact that

since N2 = 4, the STE for N > 0 is a pure sum of four complex exponentials, with the
weight of one of the complex exponentials much larger than the other three. Thus one
mode of the pure ZIR response is dominant. We hypothesize that when N2 is large, the
STE looks more like an exponential decay since on average the STE is a sum of a number
sinusoidal modes. The smaller the value of N2, the more purely sinusoidal the ripple on the
STE appears.

3.2 Probabilistic Analysis

Our deterministic analysis of the STE resulted in the derivation of a deterministic bound on
the magnitude of the STE which depended on the approximate filter structure being used,
the pre-transition filter order N1 , the post-transition filter order N2, and the input signal
bound Bx. The deterministic bound serves the purpose of proving that the STE is bounded
by an exponential decay. Although interesting and insightful, this deterministic bound is
too conservative to demonstrate that on average the STE is negligible. Indeed, in our
probabilistic analysis we will find that the expected STE is much less than its deterministic
bound, and is for practical purposes essentially negligible. This is not at all obvious from
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Figure 3-8: Logarithmic plot of the normalized squared STE bound Bt2r vs. post-transition
filter order N2. The curves were generated using the replacement Butterworth filter struc-
ture with N1 = 12. The half-power frequency is 7r/2.

the deterministic analysis, which motivates us to adapt a probabilistic framework for STE

analysis. Formally, we consider the following statistical metrics

1. E{y2r[n]}, the expected value of the squared STE,

2. E{Ptr[n]}, the expected value of the total additive corruption induced into the output

power estimate Py[No] due to the STE, and

3. Prob(Nk, ŽRi P I YlvlNN[n] = YN2N2 [n] + ytr[n]), the probability that the STE-

corrupted filter order estimate Nk is greater than or equal to the ideal STE-free

filter order estimate N5p. This is a statistical measure of the effect of the STE on the

LP estimate of the optimal filter order. We use this probabilistic excedance measure
since the nature of our problem is that it is much better to have Nk >: N*p, in which

case we are assured that the output SNR is greater than or equal to the minimum
tolerable level, than it is to have Nk < *p, in which case the output SNR can be
less than the minimum tolerable level.

I 1 I 1 I
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Figure 3-9: Logarithmic plot of the normalized squared STE vs. post transition sample
number for N2 = 2, 4, 6, 8, and 10. The curves were generated using the replacement
Butterworth filter structure with N1 = 12. The half-power frequency is 7r/2.

3.2.1 Preliminaries

In this section we adopt a vector-based formulation. We begin by assuming that x[n] is

a random input signal whose samples are independent and identically distributed. The

infinite input vector is

x = [x[L - 1] x[L - 2] x[L - 3] -... ]T . (3.60)

The random vector x has mean mx = E{x} which we hereafter assume to be zero, and

autocovariance matrix Ax = E{xxT}. We define

Yo = [ Ytr[-1] Ytr[-2] ... ytr[-N2] ]T, (3.61)

which is an N2 x 1 vector of initial conditions for the STE. Since for n < 0 the STE is
simply the difference between two fixed filter outputs, we may alternatively define yo as
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Figure 3-10: A plot of the normalized squared STE bound (plotted with '+'), along with
the average (plotted with 'x'), maximum (plotted with '-'), and minimum (plotted with
'-') values of the normalized squared STE computed by generating 1000 Monte Carlo simu-
lations. The experiment used the replacement Butterworth filter structure, and parameter
values N1 = 2, N2 = 4, and Bx = 1. The half-power frequency is 7r/2.

Yo = [(YN 1N,[-1] - YN2N2[- ]) ... (YN1 1 NJ[-N2] - YN2N2[-N2]) ]T*

(3.62)

The expected values of the fixed filtered outputs are

so that

00

E J{yNNj[n]} = E{ E x[n - k]hNi[k]}
Ic=-oo

E {yNjN[n]}=E{x[n]J} hZ [k]
k=-oo

i= 1, 2,

i= 1,2.

(3.63)

(3.64)

We have assumed that E{x} = 0, where the 0 is the vector of all zeros with appropriate

dimension. This implies that the random vector yo also has zero mean

92

+
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E{yo} = 0. (3.65)

The autocovariance matrix of the vector yo is Ayo = E{yoyoT}. Proceeding, we now define

the fixed order-N2 filter output vector

YN2 N2 = [ YN 2N2 [0] yN2N2[1] ... YN2 N2 [L - 1] ]T (3.66)

with mean E{yN2 N2 ,} = 0 and autocovariance matrix AYN2N 2 = E{YN2 •N2Y2 N2 }, the ap-
proximate filter output vector

YN 1N2 = [YN N 2 [0[] YNN 2[1] ... YN1N2[L - 1] ]T (3.67)

with mean E{YNN2 } = 0 and autocovariance matrix AYN 1N2 = E{yN N2TN1N 2 }, and the

STE vector

Ytr = [Y tr[0] Ytr[1] ... ytr[L - 1] ]T (3.68)

with autocovariance matrix Ayt = E{ytryT}. With this formulation the STE vector has

been defined for n > 0 such that

YN1N2 = YN2 N2 + Ytr- (3.69)

We now take a moment to mention a few key points. The STE has been modeled as an
additive noise term in the output of the approximate filter. Ideally we desire the fixed-
order filter output vector YN N2 , but due to the filter order switching (state transition)
our approximate filter produces YN,N 2 = YN 2 N, + Ytr. Our purpose in this section is to
statistically evaluate the consequences of the noise term Ytr on the desired filter output

YN 2 N2 , the desired L-point output power measurement PYN 2 N 2, and the low power filter
order estimate N9Ip. It should be noted that we have defined the desired output to be



YN 2 N2, a natural but not unique choice. Alternatively, we could have defined YN1N1 or

YNkNk to be the desired output, for some application-specific value of k. In any case our

statistical analysis would follow a similar development.

Continuing with our probabilistic analysis, if Hd is the convolution matrix for the IIR

impulse response hd[n] = hN, [n] - hN 2 [n] with N2 rows and an infinite number of columns,

Hd =

o ... 0 hd[O] hd[1] hd[2] hd[3]

0 ... 0 0 hd[O] hd[1] hd[2]

0 0 hd[0] hd[1]
(3.70)

in which the first L columns are

vector x = [ x[L - 1] x[L - 2] x[L

all zeros. The matrix Hd operates on the infinite input

- 3] .-. ]T to produce

Yo = HdX. (3.71)

With this construction, the autocovariance matrix for the random vector yo may be ex-

pressed as

Ay o = E{Hdx(HdX) T }

= E{HdXX T H)}

= HdE{xxTl}H

= HdAxHd, (3.72)

Now if HN2 is the convolution matrix for the IIR impulse response hN2 [n] with

and an infinite number of columns,

L rows



HN 2 =

0 hgr2[0] hN2[l] hN 2[2]

0 hN2[0] hN2 [1] hN2[2] hN2 [3]

hN2 [0] hN2[1] hN2 [2] hN2[3] ...

(3.73)

in which the first L - 1 columns of the first row are all zeros. The matrix HN2 operates on

the infinite input vector x = [ x[L - 1] x[L - 2] x[L - 2] ... ]T to produce

YN 2 N2 = HN2 x. (3.74)

With this construction, the autocovariance matrix for the random vector YN2N2 may be

expressed as

AyN2N 2 = E{HN2x(HN2 x) T }

= E{HN 2XXT HNT}

= HN 2E{xx T }HT2

= HN2AxH 2, (3.75)

From our deterministic analysis in Section 3.1, we know that the STE satisfies the
difference equation

N2
Ytr[n] = GakN2ytr[n -k]. (3.76)

k=1

By inspection of the summation in Eq. (3.76) we see that the first element ytr[O] of the
vector Ytr defined in Eq. (3.68) is a weighted sum of the elements ytr[-1] ... ytr[-N2] in
the vector yo defined in Eq. (3.61). The second element ytr[1] of the vector Ytr is also a
weighted sum of all but one of the elements in the vector yo, plus the first element ytr[0] of
the vector Ytr multiplied by alN2 . This is equivalent to a weighted sum of the elements in



the vector yo. In fact all of the elements of the vector ytr depend on a linear combination
of the elements of the vector yo, so that the vector ytr may be computed via the matrix
product

Ytr = QN2Yo

= QN2HdX, (3.77)

where QN 2 is a L x N2 matrix whose elements are defined in terms of the polynomial

coefficients akN2 whose roots are the pole locations of the filter hN2 [n]. Although its elements

are easily computed, the analytical form of the matrix QN2 is exceedingly complicated. For

this reason the formula for the elements of the matrix QN2 in terms of the coefficients akN2

has been relegated to Appendix A.

3.2.2 Derivation of Probabilistic Bounds

Proceeding, we now consider the total output power estimate PYN2N2 based on L samples

of the output signal yNN 2, [n], defined to be

L-1

EYN2 N2 = - Y 2 N 2 [k]. (3.78)
k=O

The expected value of PYN 2N2 may be written as

E PyN2 N 2 } = E YNyT2 YN 2 N2 } (3.79)

or alternatively as

E N 2 N 2 = trace (E {yN2NYTN 2 }). (3.80)

Using the simple substitution YN2N2 = HN2X, we arrive at

___.__ 1__1



E ,{ 2N = trace (E Hx(HNx)T)

= trace (HN2 AH 2) (3.81)

As discussed previously, when using an approximate filter, the output signal YN2N2 [n] is

not available. Consequently we must use the approximate filter output YN N2 [n] to compute

the total output power estimate PYNjN2 based on L samples of the approximate filter output

signal YNN 2 [n], instead of output signal yN 2N2 [n]. This estimate is defined to be

L-1

yN1N = ZYNN2[k] (3.82)
k=O

which can be expanded to produce

L-1

PyN1N2 " = (YN 2N2 [k] + Ytr[k]) 2

k=O
L-1

P= y 2N 2 + Z 2yN2N2 [k]Ytr[k] + y2r[k], (3.83)
k=O

Ptr

where Ptr is defined as noted in Eq. (3.83). The term Ptr clearly represents the total additive

corruption induced into PYN 2N2 due to the STE. Using our vector notation we observe that

the expected value of Ptr may be written as

E {Ptr} =- E 2yN2N2[k]Ytr[k) + yt2r[k] (3.84)

or alternatively as

E {Ptr } = trace (E {yNN,2YT ) + trace (E {YtrYr} . (3.85)

Using the simple substitutions YN 2N2 = HN2 x and Ytr = QN2 Hdx, we arrive at



E {Ptr} = trace (E IHNx(QN 2Hdx)T}) + trace (E {QN2Hdx(QN 2Hdx)T})

= trace (2HN,AxHTQT 2+) trace (QN2HdAxHTQT) (3.86)

We have stated that one goal of our probabilistic analysis is to quantify the average error

induced into our output power estimate PYN 2N 2 due to the STE. For this purpose we now

define the output power noise-to-signal ratio (OPNSR) as

E {Ptr}OPNSR =
E PYN 2N2 }
E 12ytr[k]yN2N2 [k] + ytr[k]

k=0 (3.87)

E E YN2N2[k)
Lk=0 O

Equivalently, the expected output power noise-to-signal ratio (OPNSR) may be written as

trace (2HN2AxHTQTN ) + trace (QN2HdAxHTQTN)
OPNSR = (3.88)

trace (HN2AxHT2)

Denoting y2N2 N as the variance of the output signal yN2N2 [n], the above equation may

be simplified to

trace (2HN2AxHTQT2) + trace (QN 2HdAHTQT)
OPNSR = (3.89)

YN 2 N 2

For the purpose of experimentally confirming the analytical result we have just obtained,

consider the plot of the function OPNSR for various values of the power window length L

given in Fig. 3-11. We recall that the power window length was introduced in Chapter 2
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as the number of output samples generated before an output power estimate was formed.

Note that as the power window length L increases, the ratio OPNSR decreases. In the

computer simulations used to generated the results shown in Fig. 3-11 we used the truncated

Butterworth filter structure with half-power frequency ir/2 and N1 = 2, N2 = 4, and

Bx = 1. Two thousand Monte Carlo simulations were used to generate the average OPNSR

for each value of L, shown in the plot with 'x'. The theoretical OPNSR is also shown in

the plot which was calculated using the ratio of matrix products in Eq. (3.89).
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Figure 3-11: A plot of the output power noise-to-signal ratio (OPNSR) for various values
of the power window length L. Actual values of the OPNSR (denoted in the plot by 'x')
based on 2000 Monte Carlo simulations are plotted along with the predicted theoretical
values (denoted in the plot by '-'). The predicted theoretical values of the OPNSR are
given by Eq. (3.89).

Another goal of our probabilistic analysis is to quantify the mean-squared STE, E{y2, [n]}.

This quantity is conveniently represented by the diagonal elements of a matrix we have al-

ready formulated. We are not particularly interested in the absolute value of the time series

yt2[n] but rather its relative magnitude compared to the desired output y 2 N2 [n]. For this

purpose we define the output noise-to-signal ratio vector, ONSR, whose nth element is
defined by

ONSR[n]- E{y2[n]} 0<n L -1. (3.90)
E y2NN2 [n])
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The vector ONSR has dimensions L x 1, and may be more compactly written as

diag (Q2H,,AxH TQ2)
ONSR - d 2 (3.91)

diag (HNAxH 2)

For the purpose of experimentally validating the expression for ONSR[n] in Eq. (3.90),

consider the plot of the ONSR[n] given in Fig. 3-12. The plot shows the actual experimental

averages based on 2000 Monte Carlo simulations and the theoretical prediction given by
Eq. (3.90). Note that as the post-transition sample number increases, the ratio ONSR[n]

exponentially decays. In the computer simulations used to generated the results shown in

Fig. 3-11 we used the replacement Butterworth filter structure with N1 = 2, N2 = 4, and

Bx = 1.
The final goal of the probabilistic analysis is to examine the effect of the STE on our low

power optimal filter order estimate ANp, based on the approximate filter output YN1N2 [n].

For this purpose we assume the input random vector elements are statistically independent

and identically distributed according to a uniform distribution on the interval [-Bx, Bx],

as before, and consider the conditional probability distribution

PYN 2N 2 I YN 1N2=YN 2 N2 +Ytr(YN2N 2 YN 1N2 = YN 2 N 2 + Ytr). (3.92)

This probability density summarizes the probability that the random vector yN2 N2 = YN2 N2

given that the random vector YN 1N2 = YN 1N2 . Because the filter outputs yN2N2 and YN1 N2

are filtered versions of the uniformly-distributed random input vector, we may assume by
the central limit theorem that the random vectors YN2N2 and YN 1N2 are approximately

jointly Gaussian. Under this assumption the conditional density in Eq. (3.92) is multi-

variate Gaussian in the random vector YN 2N2 , and thus completely characterized by its
autocovariance matrix
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Figure 3-12: A plot of the function ONSR[n] given by Eq. (3.90). Actual experimental
values of the time series ONSR[n] (denoted in the figure by 'x') based on 2000 Monte Carlo
simulations are plotted along with the predicted theoretical values (denoted in the figure
by 'o').

Ac = AN 2 N2 - AN 2N 2 N 1 N2 YNN 2  N2 N2  2YN2N2 YN2N2YNlN2 IYN 1N 2 YN 2 N2 YNIN 2
(3.93)

and its mean

c =Ay 2  A-1 AYN2N2YNIN 2 YNIN2 YNIN21 (3.94)

where

AYN 2N2 YN 1N 2 AYN 2N 2 + HNd2AxHQ T , (3.95)
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and

AYN 2  Ay 2 N 2 2+ HN2 AxHTQT + QHdAxHNT + QHdAxH QT.

(3.96)

These matrices are easily found by observing the fact that the vectors YN2N2 and YN1 N2 are
jointly Gaussian. Note that Ac does not depend on the actual value of the vector YN1 N2

while tic depends linearly on the observed approximate filter output vector YN1,N 2.

If we integrate the conditional density in Eq. (3.92) over an annulus defined by

Pk-1 : YT 2N2YN 2N22 P: , (3.97)

where the region [Pk-1, Pk] defines the partition the output power space corresponding to
NjTp = Nk, then the probability density

Prob(Nk = IP I YN 1N2 = YN 2N2 + Ytr) (3.98)

is equal to the integral

Cpy 2N2 YN2 N2 +YtrN2N2 I YN2 2 +Ytr)dyN2N2, (3.99)

where C = Pk-1 Y 2 N2 yN2N22N2 Pk, is the kth annulus region. An expression for this

integral may be obtained as an infinite series and thus computed with arbitrary precision [45,

56]. Graphically this integral corresponds to the integral of an L-dimensional multivariate

Gaussian density with nonzero mean over an annulus centered at the origin. If Nk is
the our low power estimate of the optimal filter order based the STE-corrupted output

YN1 N 2 , then the probability that Nk is equal to the true value of N•rp that we would
have obtained using the desired fixed filter output vector yN2,N 2 is given by the integral

in Eq. (3.99). From this we may easily deduce the cumulative distribution, or excedance

function Prob(Nk > ! Np5 I YN2N2 + Ytr).

In summary, we first recall that the STE has been modeled as an additive noise term

in the desired fixed filter output YN2N2 , such that the approximate filter output YN1N2 =
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YN 2N 2 + Ytr. The effect of the STE from this viewpoint is summarized in the output noise-

to-signal ratio ONSR[n].

Secondly, the STE also corrupts our output power estimate PYN 2 N2 with an additive

noise term Ptr such that PYN 2 N = PYN 1N2 + Ptr. The effect of the STE from this viewpoint

is summarized in the output power noise-to-signal ratio OPNSR.

Finally, the additive corruption Ptr in our output power measurement induces an error

into our low power optimal filter order estimate NLp. This effect is encapsulated in the

probability density Prob(Nk = N•ip I YNIN2 = YN 2 N 2 + Ytr). This probability density

function summarizes the effect of the STE on our low power filter order estimate N*p.l

3.3 Considerations for Truncation Filter Structures

So far in this chapter we have developed deterministic and probabilistic frameworks for STE

analysis assuming that a replacement approximate filter structure is used. The final section

in this chapter is dedicated to exploring the adjustements to these frameworks which are
required to analyze the effect of the STE in truncation approximate filter structures.

For the purposes of STE analysis, we restrict the truncation filter structure to increase
the number of second-order sections used by at most one at each stage. The truncation filter

structure may decrease the number of second-order sections used at each stage arbitrarily

as long as at least one second-order section is used at all times. When a state transition

from using filter order N1 (or, equivalently, S1 = 2N1 second-order sections) to filter order
N2 (or, equivalently, S2 = 2N 2 second-order sections) occurs such that N2 < N 1, then the

STE is identical to that derived previously in Section 3.1 for replacement approximate filter

structures. When a state transition from filter order N 1 to N2 occurs such that N2 > N 1,

then the new analysis presented in this section applies. As in Section 3.1, we develop
deterministic and probabilistic frameworks to analyze the STE in truncation approximate
filter structures.

3.3.1 Deterministic Analysis

We first address the problem of deriving a deterministic upper bound Btr on the absolute
value of the STE Ytr[n] such that Iytr[n]j < Btr for n > 0. The results in this section are
obtained assuming that a truncation approximate filter structure with a cascade of second-
order sections is used. The truncation approximate filter structure is shown in Fig. 3-13.
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The output of the Skth second-order section is labeled yskSk[n], with yoo[n] = x[n]. The
intermediate signals esksk [n] are labeled in Fig. 3-13 and will be used in the STE analysis.
Before proceeding with the details of the derivation of the deterministic bound on the STE
, we present a brief summary of the final result.
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Deterministic Bound on the STE: Btr
Using a Truncation Filter Structure with N2 > N1

Assume a truncation approximate filter structure is used with N2 > N1 .

The deterministic bound on the magnitude of the STE is Btr, and the

STE satisfies

Iytr[n] = yN2N2[n] - YN N2 [n] 1 (3.100)

_ Btr - zmaxln, (3.101)

where

2
Btr = 2 -Bet, - TZ) bkS2 , (3.102)

k=1

S2 is the current number of second-order sections of the approximate

filter, Be,,tr is a bound on the norm of the L x 1 vector of the first L

post-transition samples of the the signal etr[n], Amin(ZTZ) is the mini-

mum eigenvalue of the matrix ZTZ, and Z is the Vandermonde matrix

corresponding to the S2 th second-order section pole pair in the trunca-

tion filter structure. Note that the parameters N2, Betr, and Amin (ZTZ)

in Eq. (3.102) depend only on our choice of the truncation filter struc-

ture, S1, S2, and the input signal bound Bx, which is defined such that

jx[n]l < Bx for all n.



Figure 3-13: Truncation approximate filter structure for an IIR digital filter. The annotated
variables are used in the STE analysis.

We now proceed with a detailed derivation of the result which is summarized above.

The deterministic bound Btr on the STE is defined such that

IYtr[n]I = Iys s [n] - ys2 s2 [n]l _ Btr, n > 0, (3.103)

where ys s 2 [n] is the output of the approximate filter which switches from using S1 second-

order sections to S2 second-order sections at time n = 0 and ys2S2 [n] is the fixed filter

output produced by using S2 second-order sections for all time. As noted before, we assume

S2 > S1. For cases in which S2 < S1, the STE analysis presented earlier in Section 3.1 for

replacement approximate filter structures applies. We further assume that S2 = S1 + 1, so

that at most one second-order section is added to the truncation filter structure at each

stage of the approximate filtering algorithm. The output ys 2s2 [n] of the fixed filter with S2

second-order sections may be expressed as

2

ys2S2[n] = bkS 2es2S2[n - ], (3.104)
k=1

where bkS2 is the kth coefficient in the second-order polynomial (ordered in ascending powers
of z - 1 ) whose roots define the zeros of the S2th second-order section in the cascade filter
structure. The signal es 2s2[n], satisfies
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2
es2s2[n] = yss [n] + ak2 2es,[n - k]. (3.105)

k=l
eZSR [n]S2S2 [n]

S2S 2

In Eq. 3.105 we have labeled the ZIR and ZSR components of the signal es 2 s2 [n]. The two
initial conditions for es, 2 2[n] are es 2s 2[-1] = z[-1] and es 2s2 [-1] = z[-2], where z[n] is the

output of an all-pole filter with a causal, stable impulse response with the system function

1
Hz(z) = 2 1 (3.106)

1 - akS2 
- k

kc=1

and input yss, [n]. Although not immediately apparent, these intial conditions naturally

arise in the cascade filter structure in Fig. 3-13 if the number of second-order sections is

fixed to be S2 for all time.

The output yss 2 [n] of the approximate filter using the truncation approximate filter

structure that switches from using S1 second-order sections to using using S2 = S1 + 1

second-order sections at time n = 0 is defined as

2

ys 1 S 2 [n] = bkS 2esIS2[n - k], (3.107)
k=1

where bkS 2 is the kth coefficient in the second-order polynomial (ordered in ascending powers

of z - 1) whose roots define the zeros of the S2th second-order section in the cascade filter

structure. The signal ess 2 [n], satisfies

2
esl 2 [n] = S1 [ + akS2eSS 2 [n - k]. (3.108)

k=1ezsR [n ,eSlS2 R [n]

In Eq. 3.108 we have labeled the ZIR and ZSR components of the signal ess 2 [n]. The two

initial conditions for eslS 2[n] are ess 2 [-1] = ys1 1[-1] and es2 s2 [-1] = ySlsl[-2], where

106



YsIs 1 [n] is the output of the cascade filter structure using a fixed number S 1 second-order
sections for all time. These intial conditions naturally arise in the S2-section cascade filter
structure when the number of second-order sections is increased from S1 to S2 at time
n = 0. We now consider the intermediate state transition error etr[n] in the truncation

filter structure, defined as

etr[n] = es 1s2 [n] - es2 S2[n]
_,ZSR rZIR ZSR ZIR= eSS [n] + eS1S2 [n] - eS2S2[n] - eS2S2[n]

= es2[n] - es 2 [n], (3.109)

which can be expanded with substitutions and rearrangement to yield

2
etr[n] = akS2etr[n - k]. (3.110)

k=1

with initial conditions etr[-1] = Ys1s, [-1] - z[-1] and etr[-2] = Ysjs, [-2] - z[-2]. We note

that each of the two initial conditions etr[-2] and etr[-1] is of the form of 6NN,[n] from

Eq. (3.8). Thus, from our earlier results, each initial condition in this set has a magnitude

satisfying

letr[n] 1 5Bsi. Bz -2 <n<-1, (3.111)

where

00oo
Bs, = Bx hs,[k] (3.112)

k=O

is the bound on the fixed filter output signal ys s1 [n], Bx is the input signal bound,
hs1 [k] is the impulse response of the fixed filter obtained by using the first S1 sections of the
truncation filter structure, and Bz is the bound on the absolute difference between ys1s, [n]
and z[n], given by
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00

Bz = E(5[k) - hap[k]), (3.113)
k=O

where hap [n] is the causal, stable impulse response corresponding to the all-pole system
function

1
Hap(Z) = 2 (3.114)

1 - akS2z
- k

k=1

This result will be invoked later to establish the bound Btr.

The expression for etr[n] in Eq. (3.110) identifies the signal etr[n] to be a pure ZIR

for n > 0. We note that etr[n] does not have the form of a pure ZIR on the interval

-2 < n < -1. Nevertheless, for n > 0 the signal etr[n] may be expressed as a weighted sum

of exponential signals [54],

N2
etr[n]-E = ckz, (3.115)

k=1

where the zk are the two pole locations of the second-order filter which includes the pole/zero

pair of the S2th second-order section in the truncation filter structure. Note that if this

section of the truncation filter structure is stable, then IzkI < 1 for 1 < k < N2. We may

write Eq. (3.115) in matrix form as

z0 0z

zl z2L c
= , 4(3.116)

etr

which can be more compactly expressed as
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etr = Zc, (3.117)

for the L x 1 vector ytr, the L x 2 Vandermonde matrix Z, and the 2 x 1 vector c. Each

of the 2 columns of Z is made up of the one of the two poles of the S2th second-order

section raised to successively higher powers from zero to L - 1 in rows 1 to L, as shown in

Eq. (3.116).

Following the development of our presentation in Section 3.1 of the STE analysis using
a replacement approximate filter structure, we now proceed to bound Ilcll in Eq. (3.117)

using Eq. (3.43). Since etr = Zc, we know from Eq. (3.43) that

I etr112 > _min(ZTz) . 1C11 2 . (3.118)

Rearranging, the inequality in Eq. (3.118) becomes

I< Iletril
•Amin (ZTZ)

< Betr (3.119)
Amin (ZTZ)

where Bet, is defined such that IletrIl Bet,,. To determine Betr, we use the results from
our previous analysis Section 3.1 to produce

etr[l] Etr[l] 1 > 0, (3.120)

where

2 1-1

Etr[l] = Bs,Bz ljakSI + Z lal-k,S2 letr[k], (3.121)
k=1 k=O

with initial condition
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2

Etr[0] = Bs,Bz E IakS2I. (3.122)
k=1

Using Eq. (3.120) and Eq. (3.122) we may generate each of the bounds Etr[l] for 0 < 1 < L-1,
and then determine Betr using

L-1
Iletrll2 = j letr[k]12

k=O
L-1

• Et2r[k] =B2 (3.123)
k=O

We shall use this result in the forthcoming derivation of Btr. We are now prepared to derive
Btr. We start by recalling that etr is a pure ZIR and thus may be expressed as

2
etr[n] = C CkZ4, n l 0, (3.124)

k=1

so that

2

letr[n] = I ckZ
Ic=1
2

•ZIckl "IzL

2k=5 IZmaxI" kCk•
k=1

S2. cll . I•zmax•ln, (3.125)

where Zmax is defined to be the pole location with the largest magnitude of the second-order
filter in the section S2 of the truncation filter structure.

Substituting in the previously derived bound for Ilcll from Eq. (3.119) into Eq. (3.125),
produces for n > 0
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etr[n]l < 2 - jjetr I -_ZmaxI"
Amin (ZTZ)

< 2 Betr zmax n

SB•• ImaxIzn,

Be = 2 -Be•, .A m 2(ZTZ).

where

(3.126)

(3.127)

To obtain the bound Be above we have used the result given in Eq. (3.123) that Iletril 5 Be•t,
In Eq. (3.126) we have given a bound for the signal etr[n] in terms of the bound Be,,, the

pole location zmax, and the eigenvalue Amin(ZTZ) of the matrix ZTZ defined in Eq. (3.116).

By inspection of Fig. 3-13, it is clear that

(3.128)ys2s, [n] = 0bkS2es2S2[n - k],
k=O

and that

2

Ys 1s2 [n] = bkS2eSS 2[n - k],
k=O

(3.129)

so that the STE for truncation approximate filter structures is related to the signal etr as

2
ytr[n] = E bks 2etr[(n- k]. (3.130)

k=0

Substituting in the bound we have derived for etr[n] produces for n > 0,
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2

Ktr[In] = bkS,2etr[n - k]
k=O

2
<•Be bibkS2

k=O

• Btr, (3.131)

2
where Btr = Be bkS2 . Thus, our explicit derivation of the bound Btr is now complete.

k=O
A summary of the steps which are needed to obtain a numerical value for Btr, given Bx,
S1, S2, and a truncation approximate filter structure is now given.

3.3.2 Probabilistic Analysis

In this section we focus on exploring the STE in truncation filter structures with a probabilis-
tic framework similar to that developed for probabilistic analysis of the STE for replacement

filter structures in Section 3.2. We consider the following statistical metrics:

1. E{yt2r[n]}, the expected value of the squared STE,
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Summary of How to Compute Btr
Using a Truncation Filter Structure with N2 > N1

1. Given Bx, S1, S2, and a truncation approximate filter struc-

ture, compute the bounds Bs, using Eq. (3.112) and Bz using

Eq. (3.113).
2. Compute Amin(ZTZ) as the minimum singular value of the matrix

Z defined in Eq. (3.116).

3. Compute Betr using Eqs. (3.120)-(3.123)

4. Compute Be using Eq. (3.127)

5. Compute Btr using Eq. (3.131)



2. E{Ptr[n]}, the expected value of the total additive corruption induced into Py[No] due
to the STE, and

We again adopt a vector-based formulation for notational simplicity. We begin by
assuming that x[n] is a random input signal whose samples are independent and identically
distributed. The infinite input vector is

x = [x[L- 1] x[L- 2] x[L- 3] . ]T (3.132)

The random vector x has mean mx = E{x} which we hereafter assume to be zero, and

autocovariance matrix Ax = E{xxT}. We define

eo = [ etr[-1] etr[-2] ]T, (3.133)

which is a 2 x 1 vector of initial conditions for the intermediate STE. Recall that the

intermediate STE was defined in Eq. (3.109). The vector eo has autocovariance matrix

Aeo = E {eoeT}. Since for n < 0 the STE is simply the difference between two fixed filter

outputs, we may alternatively define eo as

eo = [ (yss 1[-l] - z[-1]) (ys, s,[-2] - z[-2]) ]T (3.134)

We define the following intermediate output vector

ess2 = [ es S2[0] ess 2[1] ... esls 2 [L - 1] ]T (3.135)

with autocovariance matrix AeS1S 2 = E{esls2eTs, }, and the intermediate state transition
error vector

(3.136)
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with autocovariance matrix Aet, = E{etreT}.

We also define the following output vectors

YS 2S2 = [ 2s2s[0] ys2s 2,[1] ... ys2S2[L - 1] ]T (3.137)

with autocovariance matrix AYs=s2 = E{ys2s2 Ys s}

Yss 2 = [ YS1s2[O] ys1s2 [lI] ... YS2 [L - 1] ]T (3.138)

with autocovariance matrix Aysls = E{Yyss 2YS 1S 2 }, and the STE vector

Ytr = [ Ytr[O] ytr[l] ..' ytr[L - 1] ]T (3.139)

with autocovariance matrix Atr = E{YtryT}. The approximate filter output vector satisfies

YS1S2 = YS2S2 + Ytr. (3.140)

We now take a moment to mention a few key points. The STE vector ytr has been modeled

as an additive noise term in the output of the approximate filter output vector Ysjs2-

Ideally we would like to produce vector Ys 2S2, but due to the filter order switching (state

transition) our approximate filter produces Yss 2 = Ys 2S2 +Ytr. Our purpose in this section
is to statistically evaluate the consequences of the noise term Ytr on the desired output

vector Ys 2 s2 . We also want to examine the effect of Ytr on the desired L-point output
power measurement PYS2S 2, as well as the low power filter order estimate NLp.

We define the matrix He, with 2 rows and an infinite number of columns, as the convo-

lution matrix for the IIR impulse response with system function
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H,(z) = H2S(z) 1 - 2 -
1 - akS2 z- k

k=1

(3.141)

where H2S, (z) is the system function of the order-2S 1 fixed filter of the first S1 sections of
the truncation filter structure. The matrix He has the form

He =

0 ... 0 he[0] he[l] he[2] he[3]

0 ... 0 0 he[0] he[1l] he[2]

0 0 he[0] he[l]
(3.142)

in which the first L columns

vector x = [ x[L - 1] x[L - 2]

are
x[L

all zeros. The matrix He operates on the infinite input

- 3] ... ]T to produce

eo = Hex. (3.143)

With this construction, the autocovariance matrix for the random vector eo may be ex-
pressed as

Aeo = E{Hex(Hex)T }

= E{Hexx T H T }

= HeE{xxT }H
= HeAxH T, (3.144)

Now if H 2S2 is the convolution matrix for the fixed order-2S2 filter with S2 second-order
sections, having L rows and an infinite number of columns,
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S0 h2S2 [0] h2S2 [1] h2s2[2]

0 h2S2 [0] h2S2 [1] h2S2 [2] h2S2[3] ..

h2s 2 [0] h2S2 [1] hS2 [2] h2s2[3] ...

(3.145)

in which the first L - 1 columns of the first row are all zeros. The matrix H2S 2 operates on

the infinite input vector x = [ x[L - 1] x[L - 2] x[L - 3] ... ]T to produce

Ys2S2 = H2S2 x. (3.146)

With this construction, the autocovariance matrix for the random vector Yss,2 may be

expressed as

AYS2S2 = E{H 2S2 x(H 2s 2x)T }

= E{H 2 s2xxT Hs2}
= H2S2E{xx }H2s 2

= H2S2 AxH2Ts2 , (3.147)

From our deterministic analysis in Section 3.3.1, we know that the intermediate STE

satisfies the difference equation

2
etr[n] = aks2 etr[n - k]. (3.148)

k=1

By inspection of the summation in Eq. (3.148) we see that the first element etr[0] of the

vector etr defined is a weighted sum of the elements etr[-1] and etr[-2] in the vector eo.

The second element etr[1] of the vector etr is also a weighted sum of all but one of the

elements in the vector eo, plus the first element etr[0] of the vector etr multiplied by als2.

This is equivalent to a weighted sum of the elements in the vector eo. In fact all of the
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elements of the vector etr depend on a linear combination of the elements of the vector eo,
so that the vector etr may be computed via the matrix product

etr = Q2eo

= Q2Hex, (3.149)

where Q2 is a L x 2 matrix whose elements are defined in terms of the polynomial coefficients

akS2 . The formula for the elements of the matrix Q2 in terms of the coefficients akS2 may

be found in Appendix A.

Lastly, we note that the STE vector may be expressed as

eo
Ytr = Bs

etr

I
= Bs, Hex,

Q2

(3.150)

(3.151)

where the L x (L + 2) matrix Bs2 is given by

B2 S2 =

b2s, bis, bos, 0 0

0 b2S2 blS2 bOS 2

0 0 b2S2 blS2 bos2

(3.152)

We now consider the total output power estimate Pyss, based on L samples of the
output signal ys 2s 2[n], defined to be

L-1

PYS2S2 Sy2S2 [k].
k=O

(3.153)
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The expected value of PyS2s 2 may be written as

E{P =S2 S2 } =E yT2 2s 2S2  (3.154)

or alternatively as

E PS2S2 } = trace (E {Ys 2 S2  }). (3.155)

Using the simple substitution Ys 2s , = H2S2x, we arrive at

E {PYS2S2 } = trace (E {H 2SH2x(H2 )T})

= trace (H 2S2 AxHs 2 ) (3.156)

As discussed previously, when using an approximate filter, the output signal Ys 2s2 [n] is
not available. Consequently we must instead use the approximate filter output Ysls 2 [n] to

compute the total output power estimate PYS1S2 from L samples of the approximate filter

output signal ysls 2 [n]. This estimate is defined to be

L-1

Pysls 2 = sis 2 [k] (3.157)
k=O

which can be expanded to produce

L-1

Pysis, = (YS2s,2 [k] + ytr[k])2

k=O
L-1

= Ps2s2 + 2ys2s 2[k]ytr[k] + y2r[k], (3.158)
k=O

Ptr

where Ptr is defined as noted in Eq. (3.158). The term Ptr clearly represents the total

additive corruption induced into PYS2S2 due to the STE. Using our vector notation we
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observe that the expected value of Ptr may be written as

L-1E Ptr} = E 2ys2S 2 [k]Ytr[k] + yt2r[k]

E (Ptr) = trace (E (ys 2 s2•yt)) + trace (E {YtryT}) .

Using the substitutions Ys 2s2 = H2 S2x and Ytr = Bs 2

I
Hex, we arrive at

Q2

E {Ptr} = trace (E {H 2s2x (Bs 2 Q2Hex)T)) + trace (E {Bs 2Q 2Hex (BS2 Q 2 Hex)T})

= trace (H2S2 BxH QB 2) + trace (Bs 2Q2HeAHH QB 2) , (3.161)

where the matrix Q2 = . We define the output power noise-to-signal ratio (OPNSR)
Q2

E {Ptr}OPNSR =
E 3szsj

(3.162)

In the case of a truncation approximate filter structure with S2 > S1, the output power
noise-to-signal ratio (OPNSR) is given by

trace H 2S2AxHQB) + trace BS2Q2HeAxHQTBT2 )
OPNSR =trace (Htrae 2 2s,)

trace H 2S2 AxHS 2 (3.163)

The second goal of our probabilistic analysis for truncation approximate filter structures
is to quantify the mean-squared STE, E{yt2r[n]}. This quantity is conveniently represented
by the diagonal elements of a matrix we have already derived. We are not particularly
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interested in the absolute value of the time series y2r[n], but rather its relative magnitude
compared to the desired output y) 2 S2[n]. For this purpose we define the output noise-to-

signal ratio vector, ONSR, whose nth element is defined by

E {vt [n]}ONSR[n] = E{ynn] 0 < n L-1. (3.164)

The vector ONSR has dimensions L x 1, and may be more compactly written as

diag (Bs2 2HeAxH Q ) (3.165)B
ONSR = (3.165)

diag (H2s 2AxHTs)

We note that the effect of the STE on the low power optimal filter order estimate

NLp, based on the approximate filter output ysIs 2[n], follows directly from our previous

formulation for the STE in replacement approximate filter structures.

This concludes our analysis of the STE in truncation approximate filter structures. As

a final note, we mention that while the STE for replacement filter structures was shown

to decay exponentially with the largest magnitude pole out of the N2 poles of the post-

transition filter hN2 [n], the STE for truncation filter structures with N2 > N1 was shown to

decay exponentially with the pole of largest magnitude out of the 2 poles of the new second-

order section. Since the pole of largest magnitude out of the 2 poles of the new second-order

section will in all but one case be smaller than the pole of largest magnitude out of the N2

poles of the entire cascade of S2 = N2/2 second-order sections, we may conclude that most

of the time the STE will decay more rapidly using a truncation filter structure than when

using a replacement filter structure.

3.4 Summary

In this chapter we defined and analyzed the state transition error (STE). We developed

a model for this corruption as an additive noise term in the approximate filter output

signal. By formulating deterministic and probabilistic frameworks, we analytically and

empirically investigated the effects of the STE on the approximate filter output YN1N2 [n],
the approximate filter output power estimate, and the low power filter order estimate NLp

based on the approximate filter output YN1N2 [n].
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Chapter 4

Approximate Filter Structures

In Chapter 2 we showed that approximate filtering algorithms dynamically reduce the order

of a frequency-selective digital filter while maintaining a desired level of output quality and

thus conserve power. The order of the filter is varied by defining a control strategy which

works in conjunction with an approximate filter structure. The approximate filter structure

is defined by a set of filters of different orders. The control strategy produces an estimate

of the best filter order to use from those available in the approximate filter structure based

on real-time measurements of the input signal statistics.

In this chapter we study approximate filter structures and investigate their important

role in defining good approximate filtering algorithms. We introduce replacement and trun-

cation filter structures, which represent two important classes of approximate filter struc-

tures, and analyze their respective advantages and shortcomings. These two classes are
further broken down by the type of constituent filter elements they may use, either finite
impulse response (FIR) or infinite impulse response (IIR). This decomposition results in
four types of distinct approximate filter structures, for which we adopt the names Type FR,
Type IR, Type FT, and Type IT. We will see that each of these four approximate filter
types has its own design subtleties, and determining the best approximate filter depends
heavily on the nature of the application and performance specifications. To assess the rel-
ative performance of approximate filter structures, we use the signal-to-noise ratio (SNR)
improvement factor defined in Chapter 2 as well as the output power noise-to-signal ratio
due to the state transition error (STE), defined in in Chapter 3.

A collection of frequency-selective digital filters, one for each filter order N in a given
range Nmin < N < Nmax,, constitutes an approximate filter structure 7W. Each filter struc-
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ture l possesses the property that its progressively higher order filters have progressively
increased average attenuation in the stopband region(s) while maintaining close to unity

gain in the passband region(s). The passband and stopband regions for all the filters in the

filter structure W are identical. In addition, each of the individual filters which make up

the constituent elements of the filter structure W must be properly normalized. Possible

normalizations include a unit energy normalization or a unity DC (zero frequency) gain

normalization. In the analysis and simulations of this chapter, a unity DC (zero frequency)

gain normalization is used.

We stated earlier that an approximate filtering algorithm may be used in conjunction

with a filter structure whose constituent elements are IIR or FIR digital filters. The choice

of whether to use an IIR or FIR structure involves a tradeoff between filtering performance

characteristics such as sharpness of the transition band, desired spectral magnitude, lin-

earity of the phase response, processing delay, stability in the presence of filter coefficient

quantization, and efficiency of implementation (for example, FFT, convolution, or direct

forms).

The primary advantage of an IIR filter structure is that it can provide significantly better

stopband attenuation and less delay than an FIR filter structure having the same number of

coefficients. This is a consequence of the output feedback which generates an infinite impulse

response with only a finite number of parameters [60]. FIR filter structures are desirable

for their guaranteed stability even in the presence of coefficient quantization and for the

possibility of an exact linear phase characteristic. However, it should be noted that some

commercially available DSP chips can implement certain FIR filters more computationally

efficiently than standard IIR filters because the chip architecture has been optimized for a

particular FIR filter. In addition, there exist nonlinear phase FIR filters which can provide

significantly better stopband attenuation than the linear phase FIR filters. Therefore, the

statement that IIR filters are always more computationally efficient than FIR filters should

not be made without careful consideration of the variables at hand.

In addition to the flexibility to choose IIR or FIR filter elements in an approximate

filter structure, we are free to use either a replacement filter structure or a truncation filter

structure. In a truncation filter structure with FIR constituent elements, the coefficients

defining the lower order filters are constrained to be subsets of the coefficients defining

the filter with maximum order Nmax. In a truncation filter structure with IIR constituent

elements, the set of pole/zero pairs defining each lower order filter is similarly constrained
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to subset of the pole/zero pairs defining the filter with maximum order Nmax. Thus the
lower order constituent elements in a truncation filter structure are truncated versions of
the higher order constituent elements.

In a replacement filter structure the relationship between the coefficients defining filters
of different orders are not necessarily related in any way; the coefficients of each individual

filter may be replaced independently. Given this, we expect the replacement filter structures
with unconstrained filter coefficients to perform better than the truncation filter structures
with constrained coefficients. This expectation will be confirmed in our analysis and simu-
lations.

Truncation filter structures offer more power savings opportunities in a CMOS technol-

ogy implementation than replacement filter structures. This is true since truncation filter

structures may be described with fewer independent filter coefficients than replacement fil-

ter structures and thus require less memory, chip area, and bus accesses. In summary, while

replacement filter structures have the advantage of offering better filtering performance,

truncation filter structures are more power efficient.

We classify approximate filter structures as belonging to one of four possible approximate

filter structure types. The definitions of the four approximate filter structure types are
summarized in Table 4.1.

Table 4.1: Summary of the four types of approximate filter structures.

Constituent Filter Pruning Method
Impulse Responses Replacement Truncation

FIR Type FR Type FT
IIR Type IR Type IT

The implementation of approximate filter structures with FIR constituent elements
(Type FR and Type FT) is conceptually simpler than that of approximate filter structures
with IIR constituent elements (Type IR and Type IT), so we focus on FIR approximate
filter structures first. In Fig. 4-1 we have plotted the frequency response magnitudes for
rectangularly-windowed ideal FIR filters of orders N = 20, 80 and 140. From these plot we
observe that as the filter order increases, the average attenuation in the stopband of the
filter also increases.

Now consider the conceptual diagram in Fig. 4-2. In order to instantaneously change
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Figure 4-1: Frequency response magnitudes for rectangularly-windowed ideal FIR filters of
orders N = 20, 80 and 140.

the filter order using a Type FR or Type FT structure at a particular time, we select

the desired filter order N, use the appropriate (N + 1) FIR filter coefficients to weight

the (N + 1) past input samples, and then sum these weighted input values to produce

the current output sample value. For a replacement FIR (Type FR) filter structure with

M = (Nmax - Nmin + 1) distinct orders, we must store M(M + 1)/2 distinct FIR filter

coefficients. This is true since all the filter coefficients for the filters of distinct orders are

unrelated, so each one must occupy a memory location. However for a truncation FIR (Type

III) filter structure with M = (Nmax - Nmin + 1) distinct orders, we must store only Nmax

distinct FIR filter coefficients. This is true since all of the coefficients of each of the lower

order filters are subsets of the order-Nma filter coefficients, so only the Nm, coefficients

of the order-Nma filter need to be stored. As a final comment we note that in either Type

FR or Type FT approximate filter structures, the STE is zero since the filters are all FIR.

We measure the performance of an FIR approximate filter structure by the signal-to-

noise ratio (SNR) improvement factor given in Chapter 2. Recall that the SNR improvement
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Figure 4-2: An overview of the FIR approximate filter structure.

factor for the kth-order filter in an approximate filter structure is

SNRI[k] = AS (4.1)

SB IHN(w)I 2d

For each fixed filter order in the range Nmin , N < Nma, we would like to maximize the

SNR improvement factor in Eq. (4.1) for optimal approximate filtering performance. From

Eq. (4.1) we see that for filter order k this is equivalent to determining the kth-order FIR

filter with minimum stopband power.

The exact solution to this optimization problem when the FIR filter coefficients are

symmetric may be found and is easily computable. The resulting class of FIR filters are

known as eigenfilters [71]. Because eigenfilters are the optimal constituent elements for

Type FR or Type FT approximate filter structures, we will focus our attention on their

derivation and properties in part of Section 4.1.1.

We now consider approximate filter structures with IIR constituent filter elements. A

conceptual diagram of an IIR replacement (Type IR) filter structure is given in Fig. 4-3. As
an example, consider that at time n = no, the order of the filter structure may be decreased

by one from Nmna to (Nma,,x- 1) by simply setting the coefficient pair (aNmax, bNmax) in Fig. 4-
3 to zero. More generally at time n = no, the order of the approximate filter may be set to
any order No < Nmx by simply setting the coefficient pairs (aNmax, bNmax) ... (aNo+1, bNo+l)

to zero. It is important to note that the data stream in the middle of the replacement fil-
ter structure shown in Fig. 4-3 continues to shift through all of the Nmax vertical delay
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Figure 4-3: Conceptual diagram of the IIR replacement filter structure.

elements, regardless of which coefficients have been set to zero. In addition, we note that

all coefficients are allowed to change their values at each instant in time, according to the

elements in the filter structure Wi.

Conceptual diagrams of the IIR truncation (Type IT) filter structure filter structure are

given in Fig. 4-4. In Fig. 4-4(a) is a conceptual diagram of the signal flow graph, while

in Fig. 4-4(b) we show a clocked shift register hardware block diagram. As an example,

consider that at time n = no, the order of the filter structure may be decreased by two from

2Mo to (2Mo - 2) by simply truncating the last second-order section and taking the output

to be yMo-1[n]. In general, at time n = no, the order of the truncation filter structure may

be set to any even order 2M < 2Mo by truncating the last (Mo - M) second-order sections

from the cascade structure shown in Fig. 4-4 and taking the output to be yM[n]. If we

desire to increase the order of the Type IT filter structure, second-order sections may be

added to the truncation filter structure at any time.

One measure of the performance of an IIR approximate filter structure is the signal-to-

noise ratio (SNR) improvement factor, originally given in Chapter 2, which was presented

again in Eq. (4.1). This measure is used for FIR approximate filter structures as well. For

approximate filter structures with IIR filter elements we also use the output power noise-

to-signal ratio, defined in Eq. (3.89) in Chapter 3, as an additional performance metric

to encapsulate the STE. By intelligently choosing an appropriate Type IR or Type IT

approximate filter structure, it is possible to reduce the effect of the STE in approximate
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Figure 4-4: Conceptual diagrams of the IIR truncation filter structure: (a) the signal flow
graph, and (b) the clocked shift register block diagram.

filtering.

Since finding optimal IIR filter structures designed according to these two performance

metrics (SNRI and OPNSR) involves an unsolvable constrained nonlinear optimization

problem, we do not pursue direct IIR filter structure design. Instead we evaluate the

performance of IIR approximate filter structures using four classical IIR digital filter con-
stituent elements, namely Butterworth, Chebyshev, inverse Chebyshev, and elliptic digital
filters.

We have introduced the four approximate filter structure types, and presented one per-
formance metric (SNRI) for FIR approximate filter structures and two performance metrics
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(SNRI and OPNSR) for IIR approximate filter structures. In the next two sections of this

chapter we will evaluate specific replacement and truncation filter structures, according to

the appropriate performance metric(s), and discuss the advantages and shortcomings of

each type of approximate filter structure.

4.1 Replacement Filter Structures

A replacement filter structure W-& is defined by a set of (Nmax - Nmin + 1) digital filters,

one for each filter order N in a given range Nmin < N < Nmax. We denote this set by

R " { HNmax(,, ), HNmax-1(W), --- , HNmi. (W)) . (4.2)

We define the filter structure IR by defining its constituent filter elements. These fil-

ters must be either all FIR (Type FR approximate filter structure) or all IIR (Type IR

approximate filter structure), and should possess similar spectral characteristics for obvi-

ous practical reasons. Some examples of Type FR approximate filter structures are those

defined by individual FIR constituent elements which are Parks-McLellan equiripple filters

[44], eigenfilters [71], prolate spheroidal windowed filters [70], or other windowed ideal filters

[44]. Some examples of Type IR approximate filter structures are those defined by individ-

ual IIR constituent elements which are digital Butterworth, Chebyshev, inverse Chebyshev,

or elliptic filters [44].

Since we are free to choose the constituent filters in a replacement filter structure arbi-

trarily, provided that all filters are uniformly IIR or FIR, there is opportunity for substantial

filter structure design flexibility. In all our analyses and simulations we normalize each con-

stituent filter element to have a unity DC gain.

4.1.1 Type FR Filter Structures

Type FR filter structures are characterized as replacement filter structures having FIR

constituent filter elements. Because Type FR filter structures have the replacement quality,

the coefficients of the filter of a particular order are unrelated to the coefficients of any

other filter with a different order within the structure. The performance of a Type FR

approximate filter structure is measured by the SNR improvement factor. By inspection
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of Eq. (4.1), we see that minimizing the power in the stopband of each filter maximizes
the SNR improvement factor, which motivates us to investigate the use of eigenfilters for

approximate filtering with a Type FR filter structure.

An important family of symmetric FIR filters corresponds to the symmetric windowing

of the impulse responses of corresponding ideal filters. For example, a lowpass filter of this

type has an impulse response given by [44]:

h[n] = w[n] si nw- n ,  (4.3)7rn

where w[n] is a symmetric N-point window. In order to motivate the use of eigenfilters, we

follow the reasoning presented in [70]. Consider the rectangularly-windowed FIR filter h[n]

with frequency response H(w). This filter minimizes the squared-error between the ideal

IIR filter hi[n] with frequency response Hi(w) and the FIR filter h[n]. Equivalently, the

rectangularly-windowed FIR filter coefficients minimize the integral

I HiH(w) - H(w)j2 dw (4.4)
7r

Unfortunately, the rectangularly-windowed FIR filters suffer from the well-known Gibbs

phenomenon. They also minimize the squared error across the transition band, which by

definition is a "don't care" region and should be ignored. A class of FIR filters called eigen-

filters [71] resolve these two issues. First, eigenfilters minimize the sum of the stopband and

passband errors only, ignoring the transition band error. Second, the magnitude response
of an eigenfilter does not demonstrate the Gibbs phenomenon. The eigenfilter coefficients

may be easily computed as an eigenvector of an appropriate positive definite matrix which
we shall now describe.

We provide a brief summary of the derivation of eigenfilters, and then proceed to demon-
strate their utility in approximate filtering. Consider linear phase FIR filters [44] which are
real-valued and have symmetric impulse responses which satisfy h[n] = h[N - n], with odd
length N + 1. The amplitude of the frequency response is
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M
HA(W) = 1 bn cos(wn) = bTc(w),

n=O

where M = N/2,

b=[ h[0] 2h[1] 2h[2] ... 2h[N - 2] 2h[N - 1] ]T,

(4.5)

(4.6)

c(w) = [ 1 cos(w) cos(2w) ... cos(Mw) ]T (4.7)

and bn is the nth element of the vector b. The eigenfilter problem is to find the coefficients

in the vector b which minimize the sum of the passband and stopband squared errors. Since

H(w) = e-JWMHA(w), we have

IH(w)l = HA(w) = bT c(w)cT(w)b. (4.8)

The stopband power of the filter is

where

Ps = IH(w) l2  = bTSb,

s = c(W)cT() dw
Ls 1"

The (m, n) element of S is

sm,n = cos(mw) cos(nw) ,d
jw 71"i
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which can be evaluated in terms of ws, m, and n [71]. In order to incorporate the passband

error into the eigenfilter design, we observe that the amplitude response at zero frequency
HA(O) may be expressed as HA(O) = bT1, where 1 is the N x 1 vector of all l's. Taking

HA(O) as a reference, the passband deviation at any frequency may be written as

(4.12)

so that the total passband error is

PB - Pb

f=~[1cwPllc~T dw~
J LLp

(4.13)

(4.14)

We now define the objective function ( that is to be minimized by the appropriate choice

of filter coefficients as

=P B + (1a-)PjB7 (4.15)

where 0 < a < 1. Here a is a parameter which dictates the tradeoff between passband and

stopband error. We may simplify our expression for 4 to:

D = bTRb, (4.16)

R = aS + (1 - a)P (4.17)

It can easily be shown that R is a real, symmetric, and positive definite matrix. The unit-
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norm vector b which minimizes the objective function, b, is the eigenvector corresponding
to the minimum eigenvalue, Ao, of R, and can be easily calculated using the well-known

power method [70]. The elements of the vector b then define the eigenfilter coefficients h[n]

according to the relationship in Eq. (4.6).
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Figure 4-5: Performance profile for the eigenfilter FIR replacement filter structure.

By construction, eigenfilters are naturally the optimal Type FR approximate filter struc-

ture constituent filter elements in terms of providing the highest SNR improvement factor

for a fixed filter order and fixed power in the passband ripple. In Fig. 4-5 the performance

profile for the Type FR approximate filter structure using eigenfilters is shown. The eigen-

filters were designed using a passband Iwj E [0, 3x/8], a stopband Iwj E [5r/8, r], and a
weighting parameter ac = 0.1. The filter structure performance profile is a plot of the SNR

improvement factor vs. filter order. In Fig. 4-6 we show the performance profile for the

Type FR approximate filter structure using Parks-McLellan filters For comparison pur-

poses, the Parks-McLellan filters were designed to have approximately the same power in

the passband ripple as the eigenfilters. By inspecting the performance profiles we observe

that the eigenfilters are the best, as expected.

To end this section on Type FR approximate filter structures, we note that an analytical
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Figure 4-6: Performance profile for the Parks-McLellan FIR replacement filter structure.

expression may be found for the integral of the frequency response magnitude-squared of
an FIR filter. This integral is needed to calculate the SNR improvement factors shown
in Fig. 4-5 and Fig. 4-6. A derivation of this expression is provided here for the sake of
completeness. The derivation presented here directly follows that presented in [70].

In order to determine the SNR improvement factor for a given FIR filter, we need to
compute the total filter stopband power. The stopband power of a filter is defined as integral
of the frequency response magnitude-squared. Assuming that the real-valued FIR filter h[n]
is causal with length N + 1, we know that

N
HN(w) = h[n]e- jwn. (4.18)

n=O

The filter stopband power is defined as
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P9B[N] = +1 I HN (W) 2dW.

Defining the vectors

h=[ h[0] h[1] h[2] ... h[N] ]T

e(e•j ) = [ 1 e-w ... e-jwN ]T,

(4.20)

(4.21)

we have H(w) = hTe(eJW), so that

IH(w) 12 = H(w)H*(w) = hTe(eJw)eT(ejL)h. (4.22)

Now we may rewrite the stopband power as

where

PhB [N] = hT [ L SBR(w)dw] h

R(w) = e(ejw)e T (ej).

(4.23)

(4.24)

The element with index (m, n) in the (N + 1) x (N + 1) matrix R(w) is:

e -j(m - n)w = cos w(m - n) - j sinw(m - n), (4.25)

so that R(w) = I(w) + jQ(w) is a Hermitian matrix. Therefore Q(w) is antisymmetric, and
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hTQ(w)h = 0. Thus, PhB[N ] can be simplified to

PB [N] = hTPh, (4.26)

where P has (m, n)th entry

Pmn - cosw(m-n)d, O<cos(m-n) 0 m, n <N. (4.27)

In the case of a lowpass filter with cutoff frequency wc, the stopband region is defined as

weC < w < 7r, and we have

1 f• sinwe(m - n)
Pmn - cosw(m - n)dw sin - (m-n) 0 m,n N, (4.28)

fWf = ir(m - n)

and P4hB[N] may be computed directly using Eq. (4.26). The computation of the SNR

improvement factor then follows directly using Eq. (4.1).

4.1.2 Type IR Filter Structures

Type IR approximate filter structures have IIR constituent filter elements and the replace-
ment quality. Because Type IR approximate filter structures have the replacement quality,

the coefficients of the filter of a particular order are unrelated to the coefficients of filters of

different orders within the structure.

In Fig. 4-7 we have plotted the frequency responses magnitudes for the Butterworth IIR

replacement filter structure for Nmin = 2 and Nmax = 10. In Fig. 4-8, Fig. 4-9, and Fig. 4-

10 we show similar plots for the Chebyshev, inverse Chebyshev, and elliptic replacement

filter structures. All the filters have been normalized such that the maximum ripple in the

passband is equal to 0.01.

The performance of a Type IR approximate filter structure is measured by the SNR

improvement factor, as was the case with Type FR filter structures. From inspection of
the frequency response magnitude-squared plots, we observe that the elliptic replacement
filter responses have visually the lowest stopband power, and thus we would expect the
elliptic replacement filter structure to have the best performance profile. Indeed, this is
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Butterworth Filter Structure with PB Ripple Normalized to 0.01
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frequency normalized to pi

Figure 4-7: Frequency response magnitude-squared plots for the Butterworth IIR replace-
ment filter structure.

confirmed in Fig. 4-11, where we show a comparison of the performance profiles for the four

IIR replacement filter structures considered thus far.

To assess performance we also consider the STE performance metric which measures the

corruptive effect of instantaneously switching from the maximum filter order to each of the

other lower order filters in the approximate filter structure. The STE performance metric

for a filter of order N is defined as the output power noise-to-signal ratio, OPNSR[N],

which was given in Chapter 3. An expression for OPNSR[N] was given in Eq. (3.89).

The output power noise-to-signal ratio OPNSR[Nk] here is defined as that arising from

instantaneously switching from the Nmax-order filter to the Nk-order filter. In Fig. 4-12 we

show a comparison of the STE performance metric for the same set of four IIR replacement

filter structures. In this case the Chebyshev IIR replacement filter structure is the best in

terms of STE performance.

In closing, we make a few notes on the relative number of operations required to imple-

ment different IIR filter types. In general an order-N IIR filter requires 2N additions and
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Figure 4-8: Frequency response magnitude-squared plots for the Chebyshev IIR replacement
filter structure.

2N multiplies per output sample to implement in direct form. However only 2N additions

and (N + 1) multiplies are needed to implement an Nth-order Butterworth filter in direct

form, due to the fact that all its zeros are at z = -1. This is true for Chebyshev and inverse

Chebyshev IIR filters as well, which are both all-pole filters in the analog domain and thus

transform to having all their zeros at z = -1 in the discrete-time domain via the bilinear
transformation.

In [70] it is shown that an elliptic filter can be implemented as the sum of two allpass
filters. With this special decomposition only N multiplies per output sample are required.
Even without this allpass decomposition, an elliptic filter can be implemented with 1.5N
multiplies due to the symmetry of its numerator polynomial coefficients. Thus, there is
no great advantage to the Butterworth Chebyshev, and inverse Chebyshev filters having
all their zeros at z = -1. Elliptic filters can be implemented equally as efficiently with a
better SNR improvement factor performance profile. Because of the equiripple nature of
both the passband ang the stopband, the elliptic filter requires a much smaller order than
that of a Butterworth or Chebyshev filter meeting the same specifications. Thus, the elliptic
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Figure 4-9: Frequency response magnitude-squared plots for
replacement filter structure.
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the inverse Chebyshev IIR

replacement filter structure is in general a good choice for IIR approximate filtering.

4.2 Truncation Filter Structures

A truncation filter structure ?-T is defined by a set of (Nmax - Nmin + 1) digital filters, one

for each filter order N in a given range Nmin < N < Nmax. We denote this set by

WiT = {HNmax(W), HNma.-1(W), - -,HN7 i.(W)} (4.29)

Again we define the filter structure fWT by defining its constituent filter elements. These

filters must be either all FIR (Type FT approximate filter structure) or all IIR (Type IT

approximate filter structure), and should possess similar spectral characteristics for obvi-

ous practical reasons. We impose an additional constraint on truncation filter structures.

In the FIR truncation filter structure, the coefficients defining the lower order filters are

constrained to be subsets of the coefficients defining the filter with maximum order Nmax
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Elliptic Filter Structure with PB Ripple Normalized to 0.01

E
CDca
0cr(0a)

0
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frequency normalized to pi

Figure 4-10: Frequency response magnitude-squared plots for the IIR elliptic replacement
filter structure.

in the truncation filter structure. This constraint reduces the number of filter coefficients

that must be stored and accessed and thus offers potential for reducing chip area and chip

power consumption over approximate filtering using replacement filter structures. In an

FIR truncation approximate filter structure the filter of maximum order HNmx (w) may be

chosen to be a Parks-McLellan filter, an eigenfilter, a prolate spheroidal windowed filter, or

another windowed ideal filter.

To define an IIR truncation filter structure, we must first define the IIR constituent

filter with maximum order, HNmax. Then the rest of the filters of lower orders are defined

by a pruning sequence pole/zero pairs. In a Type IT approximate filter structure the filter

of maximum order HNma,,(w) may be a digital Butterworth filter, a Chebyshev filter, an
inverse Chebyshev filter, or an elliptic filter. In defining an IIR truncation filter structure
there is freedom to choose the pruning sequence to meet desired performance specifications.
This issue will be explored in Chapter 5. As a final note before proceeding to discuss Type
FT filter structures, we mention that in all our analyses and simulations we normalize each

139



1010

0 nO
2 3 4 5 6 7 8 9 10

filter order N

Figure 4-11: Comparison of the performance profiles for the Butterworth, Chebyshev, in-
verse Chebyshev, and elliptic IIR replacement filter structures.

constituent filter element to have a unity DC gain.

4.2.1 Type FT Filter Structures

In order to describe the FIR truncation (FT) type of approximate filter structures, we first

recall that in a truncation filter structure the coefficients defining the lower order filters are

constrained to be subsets of the coefficients defining the filter with maximum order in the

truncation filter structure.

In Fig. 4-13 we compare the SNR improvement factor performance profiles of the re-

placement and truncation FIR filter structures using Parks-McLellan filters with Nmax = 64.

In Fig. 4-14 we compare the SNR improvement factor performance profiles of the replace-

ment and truncation FIR filter structures using rectangularly-windowed ideal filters again

with Nmax = 64. Finally in Fig. 4-15 we compare the SNR improvement factor perfor-

mance profiles of the replacement and truncation FIR filter structures using eigenfilters with

Nmax = 64. As expected, in all three cases the unconstrained replacement filter structure

outperforms the truncation filter structure in terms of having a higher SNR improvement
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Figure 4-12: Comparison of the OPNSR for the Butterworth, Chebyshev, inverse Cheby-
shev, and elliptic IIR replacement filter structures.

factor for each filter order. We note that this is true at all but the lowest filter orders. The
lowest order truncation filters may provide better SNR improvement than the correspond-
ing replacement filters. Upon examination of the frequency response magnitudes of these
low order truncated filters, however, we observe an especially poor passband characteristic
which has not been taken into account in this analysis.

4.2.2 Type IT Filter Structures

The SNR improvement factor represents the factor by which the first set of N sections of
a truncation filtering structure improves upon the input SNR. Fig. 4-16 shows the SNR
improvement factor as a function of N for the case of truncations of a Butterworth filter
with a half-power frequency of 7r/2 implemented as a cascade of ten second-order sections.
The stopband in this case was defined to be w E [57r/8, 7r].

Truncation filter structures with IIR filter elements are called Type IT filter structures.
To specify a Type IT filter structure, we begin by selecting the IIR filter of maximum order
Nmax. The poles and zeros for the lower order filters are then defined, and the problem is
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Figure 4-13: A comparison of the performance profiles for the Parks-McLellan FIR trun-
cation and replacement filter structures. The truncated filters of orders 3 < N < 63 were
obtained by symmetrically truncating the coefficients of the order-64 Parks-McLellan filter.

to choose the best ordered sequence of poles and zeros to prune away from the given IIR

filter with order Nmax in order to obtain each of the lower order filters. The combination of

the filter of order Nmax with the order pole/zero pruning sequence defines a Type IT filter

structure W7T. To give some insight into the nature of Type IT filter structure specification,

we present the following example.

Let us consider the case of a Butterworth filter of order 2Mo. A cascade structure for

this filter consists of a serial connection of Mo second-order Direct-Form II sections, as was

previously shown in Fig. 4-4. Each section corresponds to a pair of conjugate poles of the

Butterworth filter and two zeros (both located at z = -1). Denoting the frequency response

of the order-2Mo Butterworth filter by HMo (w), we may write

HM (w) = Gl(w)G2 (w)G3(w) ... GMo(w) (4.30)
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Figure 4-14: A comparison of the performance profiles for the FIR truncation and re-
placement filter structures. The truncated filters of orders 3 < N < 63 were obtained
by symmetrically truncating the coefficients of the order-64 rectangularly-windowed ideal
filter.

where Gi(w) denotes the frequency response of the ith second-order section in the cascade

structure of Fig. 4-4. It can be furthermore assured that Gi(O) = 1. If only the first N

sections (N < Mo) of the cascade structure in Fig. 4-4 are used, the resulting order-2N

truncated Butterworth filter has the frequency response HN(w), given by

(4.31)HN(w) = IIGk(w).
k=l

We are free to assign the Butterworth pole pairs to each of the second-order sections Gk (w).

It is desirable to make this assignment assure that as the number of second-order sections
is increased, the average attenuation in the stopband of the filter also increases, while
keeping the passband gain of each of the filters in WT close to unity. One strategy for
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Figure 4-15: A comparison of the performance profiles for the eigenfilter FIR truncation
and replacement filter structures. The truncated filters of orders 3 < N < 63 were obtained
by symmetrically truncating the coefficients of the order-64 eigenfilter.

making such a pole-pair assignment is as follows: the ordered set of second-order sections

Gi(w)G 2 (w)G 3 (w) ... GMo(W) is chosen from the Mo! possible ordered sets to be the one

which minimizes the objective function

wE PB, (4.32)

where PB denotes the spectral region of support of the passband of Hk(w). In other words,

given the order-2Mo filter HMo(w), the problem is to determine the sequence of filters

G1(w)G 2(w) ... GMo(W) such that JT(Gi(w) ... GMo (w)) is minimized. The second-order

sections Gk(w) define the pole/zero truncation (pruning) sequence since G1 (w) is truncated

first to obtain the (Mo - 1)-section filter, G2(w) is truncated second to obtain the (Mo - 2)-
section filter, and so on. Thus each ordered truncation sequence G1(w)G 2(w) ... GM()
defines a corresponding truncation filter structure
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Figure 4-16: Performance
half-power frequency 7r/2.

profile for truncations of a 20th-order Butterworth filter with

iT = {HN(w), HN-1(W), • . HI1(w) }, (4.33)

which can be used in the approximate filtering algorithm. We define the globally opti-

mal truncation filter structure W7- to be the particular truncation filter structure which

minimizes JT(GI(w)'... GMo(w)). That is,

3• = arg min J T(W•).
1<k<(Mo!) 2 (4.34)

As indicated in Eq. (4.34), in order to find VI- we must exhaustively search over (Mo!)2

distinct filter structures nkT and evaluate JT(Itk) for each one. As defined earlier, Wi~ is
the truncation filter structure which results in the minimum value of JT(I k4) over the range
1 < k < (Mo!)2. Since digital Butterworth filters have all their zeros at z = -1, the ordering
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of the zeros in this truncation filter structure does not matter. All second-order section pole
pairs are accompanied by two zeros at z = -1. For general IIR filters in which the zero

locations are not all the same, the optimization must be done over all possible pole/zero

pair combinations, resulting in (Mo!)2 distinct filter structures to search over. There are
(Mo!)2 possibilities since for each of the Mo! distinct pole pair orderings there exist Mo!

distinct possible zero pair orderings. In the case of the Butterworth filter structure, since

the ordering of the zero pairs does not matter (all of the zeros are at z = -1), only Mo!

distinct filter structures exist.

To illustrate, consider the application of this strategy to a Butterworth filter with Mo = 3
and a half-power frequency of 7r/2. As explained earlier, there are Mo! = 3.2. 1 = 6 distinct

filter structures l ... 7- to consider in determining the optimal truncation filter structure,

7-H, for which JT(-lN) is minimum. For this case we have

3
HN(W) = ii Gk() (4.35)

k=1

with

W1 = {H(w),H1(w),H1(w)} (4.36)

= {Gl(w)G2(w)Gs(w), G (w)G2 (w), Gi(w)}, (4.37)

2 = {H(w), H2(w), H2(w) (4.38)

= {G 1(w)G 3(w)G 2(w), G1(w)G 3(w), G1(w)} , (4.39)

7l4 = {H(w w) , H(w)} (4.40)

= {G2 )(w)G)G(w), G2(w)G1(w), G2 (w)}, (4.41)

n4 = {H (w), I4(w), HS(w)} (4.42)

- {G 2 (w)G 3 (w)G1(w), G2 (w)Ga(w), G2(w)}, (4.43)
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7 = H6 (w), H4(w), H2(w) (4.44)

= {G 3(w)Gi(w)G2(w), G3(w)G1 (w), G3 (w)} , (4.45)

and

74 = {H"(w), H• cw), H (w)} (4.46)

= {Ga(w)G 2(w)G1(w), G3(w)G 2(w), G (w)}, (4.47)

Overlays of the frequency responses of the three filters in each of the above truncation

filter structures 7-k above are shown in Fig. 4-17. It should be observed that as the number

of sections (N) is increased, the average attenuation the stopband also increases. On the

other hand, as can be seen in Fig. 4-17, the filter gain remains close to unity in most of the

passband.

Table 4.2: Numerical values for J(W7-4) ... JT(7-l 6 ) for the Butterworth optimal truncation
filter structure. Note that Jý(W7) = JT(7"2).

Filter Structure Value of JT (T)
W7. 0.5767

__H2 = V_ _ 0.4926
7H3 0.5767
7H4 0.9553
V7 1.3438
M7 1.3438

After evaluating JT (i) over the range 1 < k < 6, we determined empirically that

JT(7 2 ) is the minimum, and thus for this example V7 = ?7-. All six of the values of

JT(ikT) for 1 < k < 6, are tabulated in Table 2 for reference.

4.3 Summary and Future Directions

In this chapter we have defined four types of approximate filter structures and investigated

their relative performance. The replacement structures were shown to perform the best in

terms of maximizing the SNR improvement factor, while truncation filter structures were
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shown to have the advantage of less storage requirements which is equivalent to less power

consumption in CMOS devices. FIR eigenfilters and IIR elliptic filters were shown to be

excellent choices for constituent filter elements in approximate filter structures.

A future direction of research would be to explore how an additional performance metric

could be incorporated into the choice of approximate filter structures. This performance

metric is formulated to represent the variance of our estimate P, [No] of the output power

P,[No]. An expression for the variance of the estimate P,[No] was discussed in Chapter 2.

Minimization of this variance is important since it is desirable to have our estimate of

the output power as close to the actual output power as possible with high probability.

Perhaps a composite objective function could be formed which encapsulates the STE, SNR

improvement factor, and the variance of the estimate Py[No]. Designing filter structures to

optimize such an objective function would provide a promising method for enhancing the

performance of approximate filtering algorithms.

149



150



Chapter 5

Experiments and Applications

In the first four chapters of this thesis we have developed a theoretical basis for approximate

filtering algorithms and explored the interplay between approximate filtering algorithms,
approximate filter structures, and the state transition error. In this chapter we present

computer simulations which show that significant power savings may be achieved when the

order of a digital filter is dynamically varied to provide time-varying stopband attenuation

in proportion to the time-varying signal-to-noise ratio (SNR) of the input signal, while

maintaining a fixed level of output quality. We highlight experiments involving speech

signals to demonstrate the practical viability of approximate filtering algorithms. An order

of magnitude or more reduction in power consumption over fixed-order filters is achieved

in the context of demultiplexing frequency-division multiplexed (FDM) speech signals. We

also survey an actual DSP chip implementation of an approximate filtering algorithm which

was developed at Stanford University. The results of this chip implementation solidify
the effectiveness of approximate filtering algorithms in the context of interpolation and
decimation for use in low power analog-to-digital and digital-to-analog data converters.

5.1 Speech Signal Processing

In this section we illustrate the potential of approximate filtering algorithms to reduce power
consumption in speech processing. We use a Butterworth truncation filter structure with 10
second-order sections. This approximate filter structure and the adaptation control strategy
described in Section 2.5 was applied to two speech signals which had been frequency-division
multiplexed. The power window length was chosen to be L = 100 and the minimum
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tolerable output SNR was set to OSNRtol = 1000. The IIR filters in the Butterworth
truncation filter structure each had a half-power frequency of 7r/2. The stopband was
defined to be between 57r/8 and 7r, while the passband was defined to be between 0 and
37r/8. One speech signal was spectrally centered in the passband region of the lowpass
filter and the other was modulated into the stopband region of the lowpass filter. The
sampling rate for each of the speech signal was 16000 Hz. Fig. 5-1 shows the speech signal
in the passband, the speech signal in the stopband, and the evolution of the number of filter

sections used by the approximate filtering technique. Examination of the figure shows that

as would be expected, the number of filter sections is large when the input SNR is small.

Furthermore, the number of filter sections is small when the input SNR is high.

0 2000 4000 6000 8000 10000
sample number (n)

(a)
( I

(I

0 00 400 60 00 00
0 2000 4000 6000 8000 10000

sample number (n)

(b)
10

8-

Z 6-

0 2000 4000 6000 8000 10000
sample number (n)

(c)

Figure 5-1: Demultiplexing of FDM speech using low power frequency selective filtering.
(a) Passband speech, (b) stopband speech, and (c) number of filter sections as a function
of sample number.
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Table 5.1: Summary of the approximate filtering performance for demodulating FDM
speech.

Sentence Minimum Maximum Power Consumption
Number Order Order (Pfixed/Padaptive)

1 3 99 4.4
2 3 117 6.3
3 3 87 5.6
4 3 93 5.9
5 3 61 4.2
6 3 119 5.9
7 3 125 7.1
8 3 111 7.1
9 3 127 7.1
10 3 107 8.3

Average 3 104.6 5.9

Similarly for FIR approximate filters, we have used simulations of approximate filter-

ing algorithms to show that reduction in power consumption by an order of magnitude

is achieved over fixed-order filter implementations. The context for these simulations is

frequency-division demultiplexing of pairs of speech waveforms. We now describe a speech

processing experiment. Each of the speech signals used in our simulations was sampled at

8000 Hz and normalized to have maximum amplitude of unity. Each speech signal corre-

sponds to a complete sentence with negligible silence at its beginning and end. To begin,
each digitized speech waveform was pre-filtered to have a maximum frequency of 1500 Hz.
A guard band of 1000 Hz was used in multiplexing a reference speech signal (corresponding
to the sentence, "that shirt seems much too long,") with each of the other speech signals.
The reference signal always occupied the 0 to 1500 Hz band, while the other signals always
occupied the 2500 Hz to 4000 Hz band.

Demultiplexing involves lowpass filtering (cutoff frequency 2 KHz) to isolate the ref-
erence speech signal. An approximate filtering algorithm was used to perform this low-
pass filtering for each of the 10 FDM signals. The parameter values were chosen to be
OSNRtol = 100 and L = 100. An FIR replacement filter structure with rectangularly-
windowed ideal filter constituent elements was used.

In Table 5.1 we have listed various measures obtained for the performance of the approx-
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imate filter as it was applied to each FDM signal. The first column contains the sentence
number for the stopband component of the input signal. The second and third columns
respectively list the minimum and maximum filter orders used by the approximate filter
in each case. The final column shows the relative power consumption of the approximate
filter with respect to a fixed-order filter which is guaranteed to satisfy the same output
quality constraint as the approximate filter. We observe that approximate filtering reduces
the average power consumption by a factor of 5.9.
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Figure 5-2: Evolution of filter order for the FDM speech signal processing example. Overlays
of the approximate filter order and the stopband power in the input signal over time are
shown. The approximate filter order clearly traces the envelope of the stopband power in
the input signal.

To gain further insight into the source for this power reduction, in Fig. 5-2 we illustrate
the nature of the adaptation performed by our technique in the case of one of the FDM
signals. One of the curves shows the evolution of the filter order while the other curve shows
the energy profile of the stopband power in the input signal. Note that since the passband
speech has approximately constant power, the approximate filter order approximately traces
the envelope of the stopband power in the input signal. The most power savings is achieved
during the silence regions of the stopband signal.

Longer periods of speech communication generally include significantly larger fractions
of silence periods than an individual sentence. To factor this into our analysis, we repeated
our simulations while inserting additional silence at the end of each speech signal. The
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Figure 5-3: Filter performance vs. percentage silence in stopband signal.

average over all 10 cases of the relative power consumption is displayed in Fig. 5-3 as a

function of the silence duration relative to the duration of the entire signal. As expected,
the power reduction improves as the relative amount of silence in the speech signals is

increased.

5.2 Interpolation and Decimation

A research group at Stanford University has designed and implemented an approximate fil-

tering algorithm for the application of low power interpolation and decimation [46]. This ap-

plication is important for analog-to-digital and digital-to-analog data converters. Included
in the experimental circuit are a pair of decimation filters and two pairs of interpolation

filters in a single-chip multimedia audio system. Excellent results have been obtained and
were reported at The International Solid-State Circuits Conference in February, 1997. A
conventional interpolation/decimation system was implemented and shown to consume an
average of approximately 86.4 mW with a 5V power supply. Using an approximate filtering
algorithm compiled onto a programmable processor, the power consumption was reduced
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by 36% for the decimation system and 17% for the interpolation system.

5.3 Future Directions

Beyond what was presented in this chapter, approximate filtering algorithms provide po-
tential for the incorporation of more general dynamic cost vs. quality tradeoffs for a host of
applications in which power savings is needed. For example, one such application is spatial
filtering or beamforming. In adaptive beamforming the number of sensors used in a linear
array could be dynamically varied based on the direction-of-arrival or spatial dispersion
characteristics of the received input signal. Varying the number of sensor array elements
which are used is conceptually equivalent to varying the order of the underlying FIR filter
which is accomplishing the spatial filtering. Thus, what results is the approximate spatial
filtering dual to the approximate frequency-selective filtering we have discussed thus far.
Significant power savings could be achieved when the order of a spatial filter or beamformer
is dynamically varied to provide time-varying spatial stopband attenuation in proportion
to the time-varying energy in the spatially-defined SNR the input signal, while maintaining
a fixed level of output quality.

Another natural extension of approximate filtering algorithms which provides a future

direction of potentially fruitful research is the incorporation of approximate filters into a

binary-tree structured filter bank, as depicted in Fig. 5-4. The binary split of a the signal

into its highpass and lowpass components is iterated using the same filters. Such filter

banks have been used, for example, to compute the discrete wavelet transform, and may be
also be modified to accommodate more general subband decompositions.

By replacing each one of the fixed-length FIR filters in Fig. 5-4 with an approximate

filter, an approximate filter bank is formed. The approximate filter bank is shown at the top

of Fig. 5-5. This provides a low-power implementation for the front end of source coding
algorithms. The output quality of the approximate filter bank may be measured in a mean-

square error sense compared to the outputs generated from a conventional filter bank with
fixed-order filters. The power consumption of the approximate filter bank may be computed

relative to the required power consumption of a conventional filter bank which is designed
to maintain the same level of output quality as the approximate filter bank.

As depicted at the top of Fig. 5-5, each of the highpass and lowpass filters in a filter bank

may be implemented using an approximate filtering algorithm. To illustrate the potential
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Figure 5-4: A conventional fixed-order FIR filter bank and associated spectral decomposi-
tion of the filter bank output signals.

for power savings in the first stage of the subband decomposition, an approximate FIR

lowpass filter was applied to a speech signal, x[n], corresponding to the sentence, "that

shirt seems much too long." The time-varying FIR filter order used by our technique is

shown in the top plot of Fig. 5-5. The bottom plot in Fig. 5-5 shows the input's stopband

component, x,[n], to demonstrate that the filter order roughly tracks the stopband energy

of the input signal.

In summary, this chapter has provided examples of how approximate filter algorithms

may be used to adaptively reduce power consumption in practical applications. In addition,
we discussed some domains in which the concepts of approximate filtering may be extended
to provide interesting and potentially fruitful avenues for future research.
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Figure 5-5: An FIR filter bank which has incorporated approximate filters, resulting in
an approximate filter bank. The filter order evolution for the first lowpass filter has been
enclosed in the dashed box. The filter order can be seen to follow the energy in the input's
stopband component x,[n], which is shown in the bottom plot.
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Chapter 6

Conclusion

The signal processing demands of portable multimedia devices have increased dramatically

in the last decade as products continue to shrink in size and require increasing compu-

tational speed. Due to the nature of portability, these increased processing demands are

accompanied by definite constraints on power consumption. The important task of design-

ing low power, computationally powerful processors has emerged and spurred great interest

and activity in signal processing research. In this thesis we have directly addressed this

task and formulated a new algorithmic approach to low power frequency-selective digital

filtering. We have demonstrated that significant power savings may be achieved in digital

filtering applications when the order of a digital filter is dynamically varied to provide time-

varying stopband attenuation in proportion to the time-varying signal-to-noise ratio (SNR)

of the input signal, while maintaining a fixed SNR at the filter output.

By considering the practical problem of conserving power via dynamically reducing the
order of a frequency-selective digital filter, we abstracted the theoretical problem of deter-
mining an optimal filter order based on observations of the input data and a set of concrete
statistical assumptions. Two approaches to solving this problem helped us interpret and
understand the practical low power filtering problem and improve the performance of ap-
proximate filtering algorithms. One solution was guided by a low power approach and
achieved suboptimal performance with an extremely low computational cost. A second so-
lution was guided by a maximum likelihood objective and provided superior performance
while requiring much more computation. While computationally impractical, the maxi-
mum likelihood approach provided valuable insight as well as a performance benchmark
for comparison with the low power solution. To study these problems we developed a
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theory for approximate filtering based on the concepts of approximate signal processing.

We constructed a framework to explore the statistical properties of approximate filtering

algorithms, and showed that under certain assumptions the performance of approximate

filtering algorithms is asymptotically optimal.

We considered the transient effects of dynamically changing the filter order in approx-

imate filtering. For this purpose, the output of an approximate filter was related to the

output of a fixed digital filter by introducing the concept of state transition error. We statis-

tically analyzed the corruptive effects of the state transition error on approximate filtering

algorithms, and demonstrated analytically and empirically that the state transition error is

essentially negligible.

We developed a framework for analyzing approximate filter structures. In so doing we

demonstrated that approximate filter structures represent a critical element in the charac-

terization of approximate filtering algorithms. Two classes of approximate filter structures,

truncation and replacement filter structures, were studied extensively. We found that trun-

cation filter structures may be described with fewer independent filter coefficients than

replacement filter structures. Associated with this property we found that approximate

filtering using a truncation filter structure requires less memory, chip area, and bus accesses

than approximate filtering using a replacement filter structure. This property of truncation

filter structures makes them especially attractive for low power applications. We also showed

that replacement filter structures lead to approximate filtering algorithms with performance

superior to that of approximate filtering algorithms using truncation filter structures. Thus,

the decision to use a truncation or replacement filter structure depends on the application

as well as the associated power constraints and performance specifications.

Finally, computer simulation experiments involving speech signals were used to demon-

strate the practical viability of approximate filtering for low power signal processing. We

demonstrated that an order of magnitude reduction in power consumption over fixed-order

filters is possible using approximate filtering algorithms.

Thus, the main contribution of this thesis is the development of a framework for the

design and implementation of approximate filters using signal-dependent algorithms which

meet fixed performance specifications while dynamically minimizing power consumption.
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Appendix A

All-Pole Filter Matrix

In this appendix we derive an expression for QN2 , the L x N 2 matrix whose elements are

defined in terms of the polynomial coefficients akN2 . The roots of the polynomial coefficients

akN2 are the pole locations of the filter h 2, [n]. We assume the reader is familiar with the

notation presented in Chapter 3 of the thesis.

We begin by writing out the relevant set of equations, beginning with

ytr[O] = a0yo (A.1)
= AoYo, (A.2)

where aJ -= [ -alN2 -a2N 2 ... -aN2 N2 ] and Ao = asT . For the sake of notational simplicity,
we define aT for 1 < k < (N2 - 1) to be equal to aT with k zeros inserted in the beginning
of the vector. The k zeros are inserted such that the rightmost k elements of a(T are pushed
out, such that the length of the vector aT is L for all k. For example,

aT = [O0 0 0 - alN, - a2N2 ... a(N,-3)N2 ],

and so on. Now we proceed to write out
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ytr[1] = (aToaN,2 + aT)yo

= A 1yo,

Ytr[2] = [(aT ajN2 + aT)alN2 + a2N2 aT + aT ]y

= A 2 Yo.

This leads to

Ytr = QN2YO,

where QkN2 is the kth row of the matrix QN2 defined recursively as

Q 2 ak-1,N2 + aT 1 < k < (N2 - 1),

N 2 k < L, (A.10)
= k-1N2 l=k-N2 N

with initial row QN2 = aT. Thus, we have defined the matrix QN2 by defining each of its

L rows.
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Appendix B

Bound on Vector Norm

In this appendix our goal is to prove that for an N2 x 1 vector c = 1 [ c2 -..

following inequality is true

N2

jCk= 1 N2I1cII,
k=1

where

N2
Itc| = ICk12

k=1

is the standard 2-norm of the vector c. The inequality in Eq. (B.1) may be rewritten as

1 N2
N2Z ICkI !5 Ic.ll  (B.3)

k=1

Expanding the left-hand side of Eq. (B.3), we obtain
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N2N

2

1- 2N2 N 2 max Ck)
1<k<N2

< max ck.
1<k<N 2

Cmax  max Ck,
1<k<N 2

we arrive at

I N 2

N2 ck < Cmax.
k=1

(B.8)

Clearly cmax < 1IC]j, except for the special case in which Ck = 0 for all k except for one value

of k = ko. In this case cmax = 11cI1 = Cko. Therefore

1 N 2

2 ZICkl - Cmax
k=1

<_ I l,

(B.9)

(B.10)

and the proof of Eq. (B.1) is complete.
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Appendix C

Autoregressive Parameter Values

In the numerical example of Chapter 2 we use an autoregressive random process with order

30, whose power spectral density was plotted in Fig. 2-6. The system function of this power

spectral density is

G
H(z) = (C.1)

D(z)

The numerator gain was chosen to be G = 65.3497. The denominator polynomial of the

autoregressive power spectral density used in the numerical example is given by

z- 30 + 0.4433z - 29 + -0.8229z - 28 + -0.9432z - 27 + 0.1484z - 26 + 0.4942z - 25 +

0.0588z - 24 + 0.1376z - 23 + 0.3110z - 22 + -0.0910z - 21 + -0.2907z - 20 +

- 0.0341z - 1'9 + -0.0397z -18 + -0.1610z - 17 + 0.0351z - 16 + 0.1436z - 15 +

0.0152z - 14 + 0.0456z - 13 + 0.1494z - 12 + -0.0092z - 11 + -0.1112z - 10 + -0.0282z - 9 +

- 0.0638z - 8 + -0.0951z - 7 + 0.0375z - 6 + 0.0866z - 5 + 0.0125z - 4 +

0.0472z- 3 + 0.0760z - 2 + -0.0265z - 1 + -0.0722 (C.2)

The pole locations are the roots of this polynomial, and have been tabulated in Table C.1.
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Table C.1: The pole locations of the 30th-order autoregressive random process used in the
numerical example of Chapter 2.

Pole Number Location
1,2 -0.4242 ± 0.8733i
3,4 -0.5454 ± 0.7673i
5,6 -0.6524 ± 0.6478i
7,8 -0.7695 : 0.5061i
9,10 -0.8365 ± 0.3485i

11,12 -0.8975 ± 0.1812i
13,14 -0.1137 ± 0.8891i
15,16 0.0833 ± 0.8900i
17,18 0.2746 ± 0.8488i
19,20 0.4330 ± 0.7703i
21,22 0.6143 ± 0.6689i
23,24 0.8548 ± 0.4606i
25,26 0.8864 ± 0.3059i
27,28 0.9034 ± 0.1236i

29 -0.9119
30 0.8473
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