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ABSTRACT

The problem of enhancement and bandwidth compression
of noisy speech is formulated as a parameter esimtation
problem, in which speech and its model parameters are
estimated from the noisy speech based on the MAP estimation
procedure. Such an approach leads to two algorithms
which require solving sets of linear equations in an itera-
tive manner. Some approximations of the two algorithms
lead to two systems which ars computationally simpler
than the two algorithms by taking advantage of a high
speed FFT algorithm. As a preliminary investigation into
the performance of the class of systems developed, two
systems are implemented and applied to both real and
synthetic speech data. An objective and informal subjec-
tive evaluation indicate that the systems implemented
perform well as enhancement and potential bandwidth com-
pression systems of noisy speech.
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CHAPTER I INTRODUCTION

I.1 Introduction

Degradation of speech by additive noise occurs in
a number of practical situations. For example, the speech
of a pilot in a plane communicating with the ground control
is degraded by the airplane noise. Another example is
the speech of a lecturer recorded in a noisy lecture hall.
The corrupting noise generally reduces [l1] both the
intelligibility and the quality of speech. Furthermore,
the performance of many narrow-band communcation systems
degrades quickly ([2,3] as the speech to noise ratio
decreases. Thus, techniques for enhancement and bandwidth
' compression of noisy speech have a variety of applications.

In developing systems for speech enhancement, an
important task is defining the goal of speech enhancement.
A clear definition of this goal can potentially provide
an objective criterion on the basis of which speech enhance-
ment systems can be developed. Such a goal also provides
a criterion for evaluating the performance of a system for
the particular application under consideration. In
general, speech enhancement implies a subjective improve-
ment of the speech such as increased intelligibility and
quality, reduced listener fatigue, etc. It is important
tonote that the subjective improvement, even though
related, is not necessarily the same as the speech to

noise ratio increase. For example, a speech processing
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system which eliminates unvoiced segments and low-pass
filters voiced segments of speech degraded by wide band
additive noise may increase the overall S/N ratio but
probably is not a speech enhancement system in most
practical applications.

Another important aspect of developing a speech
enhancement system is to accurately assess what information
can be assumed about the speech and the background
noise. Given a noisy speech signal with no assumptions
of the speech or noise, there is little that can be done
to enhance the speech signal. A general rule for any
problem requiring the separation of individual signal
components (combined by addition, convolution, etc.) is
that the more we know about each component, the better
we can solve the problem. Depending on the nature of the
corrupting noise, some information of the noise may be
obtained from the knowledge of the source, or from actual
measurements. About speech, a great deal is known from
the vast research efforts in the general area of the speech
communications. We know a great deal about the human
speech production mechanism and also have some understand-
ing of the human perception of speech. 1In principle,
we can attempt to incorporate everything we know about
speech in developing a speech enhancement system. How-
ever, some of our knowledge is qualitative or complicated

and its incorporation into such a system may be very
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difficult. For example, human speech has linguistic
constraints imposed by the rules of the language. But

to incorporate such knowledge in a system for speech
enhancement is probably a difficult task. Thus, the
extent of our knowledge of speech that can be incorporated
is limited by our capability to develop and implement
systems that can exploit such available knowledge.

In developing a speech enhancement system, two
different approaches can be taken. One is the "noise
removal" approach in which a system is developed to elimi-
nate as much background noise as possible with as little
speech degradation as possible. The other approach is
the "reconstruction" approach in which the speech parameters
sufficient for reconstruction are estimated and then
speech is reconstructed based on the estimated parameters.
Which approach is better for speech enhancement depends
on many factors such as how much we know about speech.
However, for relatively high S/N ratios, it is expected
that the noise reduction approach is better than the
reconstruction approach since the latter generally
changes the input speech.

Independent of which approach is taken, the essence
of a speech enhancement system is an algorithm that incor-
porates, in some optimum manner, as much as possible of
what we know about speech and the background noise. The

optimality condition, ideally, should be based on the
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specific goal of speech enhancement. In general, such

a condition is unknown or gquite complicated since a
subjective quantity such as speech intelligibility can not
easily be related to a measurable physical quantity that
may be used as a criterion for optimality. 1In the

absence of such a criterion or if the resulting system
becomes highly complex even in the presence of such a
criterion, we may consider a suboptimal procedure or
define the optimal condition to be optimum in a different
sense such as the maximum likelihood sense.

Suppose we have formulated an algorithm that
incorporates our knowledge about speech and the background
noise in some optimum manner, then the task remains to
evaluate the performance of the system and estimate the
implementation cost. In general, the performance improve-
ment of a speech enhancement system can only be shown by
an adequate evaluation. Many systems that have been
proposed for speech enhancement provide apparent improve-
ment in the S/N ratio, but on careful evaluation (4,5,6]
in fact reduce intelligibility. If the system proposed
is sufficiently complex such that the implementation cost
is too high relative to the system performance, then an
alternative procedure has to be considered. Under such a
circumstance, we may have to go back to the beginning
and redefine the goal of spesch enhancement or reconsider

the types of knowledge of speech and the background noise
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to be incorporated into a speech enhancement system.
Thus, developing a speech enhancement system under a
specific objective and cost constraints requires a
repetitive procedure that begins from a clear definition
of the goal of speech enhancement and ends with a decision
based on the evaluation of the system performance and
estimation of the implementation cost, but probably after
some iterations.

The problem of bandwidth compression of noisy speech
is closely related to the speech enhancement problem.
For example, a successful speech enhancement system with
the reconstruction approach has the potential to be used
as a bandwidth compression system for noisy speech.
Alternatively, the noise reduction approach can be used as
a pre-processor for a bandwidth compression system. Con-
sequently, the approach to developing a bandwidth compres-
sion system for noisy speech is essentially the same as
that for a speech enhancement system except for some
additional considerations such as coding the speech para-
meters, the degree of bandwidth compression desired,
etc. In fact, assuming the same knowledge of speech and
the background noise, and using the same optimal criterion
for both a speech enhancementvsystem and a bandwidth
compression system, we would expect that the speech
enhancement system would look very similar to the bandwidth

compression system. The only major difference would be
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that for the speech enhancement system, the speech

could be generated either by the noise removal or

reconstruction approach whereas for the bandwidth

compression system, speech must generally be reconstructed.
The problem of speech enhancement ha; received

a great deal of attention in recent years and numerous

systems have been proposed to enhance degraded speech.

Nevertheless, significant improvements in speech intelligi=-

bility or quality in practical situations have not yet been

demonstrated by any of the existing systems. Part of

the problem appears to be that the approaches taken in

developing various speech enhancement systems capitalize

very little on our knowledge of speech. The proposed

systems differ primarily in how the small amount of

knowledge about the speech incorporated into the system

is exploited and how the resulting speech is generated.

It will become clear in our discussions in Chapter II

that if we follow the same approach that has led to the

various existing systems, we can easily generate systems

at a faster rate than we can evaluate their performance

or even implement them. Regardless of their performances,

if we develop a speech enhancement system capitalizing

more fully on our knowledge of speech in an "optimal"

manner we would expect, in general, a better performance.

In this dissertation, we develop systems for enhancement

and bandwidth compression of noisy speech by attempting
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to "optimally" incorporate a specific underlying speech
model. The objective of this dissertation is, of course,
to develop speech enhancement and bandwidth compression
systems that are potentially applicable to practical situa-
tions. An equally important objective of this dissertation
is to suggest the direction of other future research
efforts by illustrating an example of a structured and
theoretical approach for incorporating more of what we

know about speech to develop enhancement and bandwidth

compression systems of noisy speech.

I.2 Scope of Thesis

In this dissertation, various speech enhancement
systems proposed in the literature are summarized and
related to each other in a more common framework. Some of
the speech enhancement systems which appeared to be
promising were studied more carefully and were evaluated
in terms of their performance in improving speech
intelligibility. As an attempt to optimally incorporate
more of what we know about speech in developing systems
for enhancement and bandwidth compression of noisy speech,
4 parameter estimation problem is formulated. The
parameter estimation problem is then considered for both
noise-free and noisy speech. For noise-free speech,
different points of view such as Maximum Likelihood

approach (7,8], Maximum A Posteriori estimation approach,
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and Kalman filtering approach [9] are reviewed carefully
and related to each other and to the conventional linear
prediction analysis. For noisy speech, the parameter
estimation problem is shown to be generally non-linear.
Therefore, two "suboptimal" procedures which have linear
implementations are developed. In addition, two systems
for bandwidth compression and enhancement of noisy speech
which are computationally simpler than the linear imple-
mentations are developed by approximating the linear imple-
mentations. As a preliminary investigation into the per-
formance nf systems developed in this dissertation, a

small subset of the systems are implemented and applied

to both synthetic and real speech data. An objective and
informal subjective evaluation indicate that the implemented
systems perform well as bandwidth compression and speech
enhancement systems at various S/N ratios. Finally, a
number of potential areas of study which are not performed
as a part of the thesis but are within the scope of the
theoretical results obtained in the thesis are summarized
and a possible direction of future research in this area

is suggested.

I.3 Summary of Chapters
In Chapter II, various existing speech enhancement
systems are summarized and related to each other in a common

framework. In Chapter III, we discuss a specific model of
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speech and the Maximum A Posteriori (MAP) estimation
approach taken in this thesis to estimate the speech model
parameters. In Chapter IV, the MAP estimation procedure
for noise-free speech is discussed. The MAP estimation
procedure under different assumptions leads to different
sets of equations to solve, two of which are equivalent
to the covariance and correlation method of the linear
prediction analysis. 1In Chapter V, we discuss the MAP
estimation problem for speech degraded by additive random
noise. The theoretical results in this chapter will lead
to two algorithms that require solving sets of linear
equations in an iterative manner to estimate the speech
model parameters from the noisy speech. In Chapter VI,
we develop two systems based on the algorithms developed
in Chapter V. The two systems developed are approxima-
tions of the two algorithms in Chapter V and are computa-
tionally simpler than the two algorithms. 1In addition
to the two systems, we develop an "ad-hoc" system primarily
for the comparison of the two systems developed in this
thesis with other speech enhancement systems previously
proposed. In Chapter VII, the performance of the three
systems developed in Chapter VI in estimating the speech
model parameters is qualitatively demonstrated by various
examples basep on both synthetic and real speech data. In
Chapter VIII, the performance of the three systems is

discussed in greater detail and quantitatively based on the
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results of both the objective and subjective tests. The
objective tests are based on the synthetic data and an
objective criterion which reflects the perceptually
important aspects of the speech parameters. The subjec-
tive tests are divided into two parts, one part correspond-
ing to the bandwidth compression of noisy speech and the
second part corresponding to speech anhancement. The
comparison of various systems in terms of bandwidth compres-
sion are based on the synthesized sentences from the speech
model parameters obtained by the developed systems. 1In

the case of speech enhancement, two cases are considered.
In the first case, speech is generated by the noise reduc-
tion approach. In the second case, speech is generated by
a complete analysis/synthesis systems. 1In all cases of

the subjective tests, the evaluation is informal and based
on a few sentences spoken by both male and female speakers
judged by listeners with no or some previous experience

in the subjective tests. In Chapter IX, we suggest a
direction and some potential areas of future research. In
Chapter X, we conclude the thesis by summarizing the main

results of this dissertation.
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CHAPTER II SURVEY OF SPEECH ENHANCEMENT TECHNIQUES
II.1 Introduction

A number of techniques have been previously proposed
for the enhancement of noisy speech. The purpose of this
chapter is to summarize various speech enhancement tech-
niques in a common framework and relate them to the band-
width compression systems of noisy speech. In Section
II.2, various speech enhahcement systems are summarized
and related to each other. 1In Section II.3, we summarize
the performance of some of the systems discussed in Section
II.2. Some of the results are based on an informal
listening or a formal speech intelligibility test conducted
in this research and some others are based on the studies
by other researchers. 1In Section II.4, we discuss various
bandwidth compression systems which are based on the
speech enhancement systems summarized in Section I1I.2. 1In
Section II.5, we discuss the motivation for a new approach
to the problem of speech enhancement and bandwidth

compression of noisy speech.

II.2 Speech Enhancement Techniques

II1.2.1 Adaptive Comb Filtering Method

Comb filtering for speech enhancement is based on the
notion that voiced sounds are periodic with a period that
corresponds to the fundamental frequency. Since the inter-

fering signals in general have energy in the frequency
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regions between the speech harmonics, a comb filtering
operation in principle can reduce noise while preserving
speech signals to the extent that information of the
fundamental frequency is available and periodicity of
speech is strictly preserved. Capitalizing on this knowl-
edge, a comb filtering operation that passes only the
harmonics of speech was first applied by Shields [10]
to enhance degraded speech. Frazier [l11] later observed
that even with accurate fundamental frequency.information
Shields' adaptive comb filtering method distorts speech
signals significantly due to the time varying nature of
speech sounds. To reduce some of this distortion, Frazier
suggested an adaptive comb filter [11l] which adjusts
itself to variations in the fundamental frequency. A
further improvement on Fruazier's algorithm on treating
the transition regions between voicing and unvoicing was
mady by Lim ([S5]. 1In Frazier's algorithm, when voiced
sounds near the transitions are processed, the adaptive
comb filter extends over the unvoiced sounds due to the
filter length which causes some distortion. By setting
the filter coefficients that extend over unvoiced sounds
to zero, Lim [5] found that a better performance can be
obtained.

' Comb filtering generally requires accurate pitch
information. Parsons (12] developed a system which is

similar to comb filtering but the pitch information is not
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obtained separately but built into the system. More
specifically, in an application to a competing speaker
environment, each of the local spectral peaks in a high
resolution short time Fourier transform of voiced sounds
is distinguished between the main speaker and a competing
speaker. Then speech is generated based on the spectral
contents that correspond to the peaks of the main speaker.
Systems based on comb filtering have been evaluated
in this research and by other researchers and the results

are summarized in Section II.3.1l.

II.2.2 Correlation Subtraction Method

The correlation subtraction method for speech enhance-
ment is based on the notion that if additive noise is
uncorrelated with the signal, then the correlation of the
signal equals the noise correlation subtracted from the
correlation of the observed signal. More specifically,
whén a signal is degraded by additive background noise,

a noisy signal y(n) can be represented L_

y (n) s(n) + d(n) (2-1)
in which s(n) and d(n) represent the signal and the back-
ground noise (or disturbance) respectively. Multiplying

both sides of equation (2-1) by y(n-k) and taking the
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expected value,
Ely(n)+ y(n-k)] = E[s(n)+*s(n-k)] + E[d(n)-d(n-k)]
+ E[{d(n)+s(n-k)] + E[d(n-k)+s(n)] (2-2)

If s(n) is assumed to be uncorrelated with d(n), the last

two terms in equation (2-2) disappear and thus
Ely(n)+y(n-k)] = E[(s(n)+s(n-k)] + E[d(n)+d(n-k)] (2-3)

If s(n) and d(n) are assumed to be stationary so that the
expectation of the two functions depends only on their
time differences, equation (2-3) with a change of variables

can be written as
Ry(n) = Rs(n) + Rd(n) (2-4)

in which Rx(n) represents E[x(2)x(2-n)], the correlation

of x(n). Fourier transforming equation (2-4) leads to

Py(w) = Ps(w) + Pgylw) (2-5)

0o

in which P_(w) represents F[R (n)] = y Rx(n)-e-

n=-

power spectrum of x(n). It is clear from equation (2-4)

J“n, the

that the subtraction of Rd(n) from Ry(n) leads to Rs(n) and
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expected value,
E(y(n)+.y(n-k)] = E{s(n)+*s(n-k)] + E[d(n)-d(n-k)]
+ E[d(n)+*s(n-k)] + E[d(n-k)*s(n)] (2-2)

If s(n) is assumed to be uncorrelated with d(n), the last

two terms in equation (2-2) disappear and thus
E(y(n)+y(n-k)] = El(s(n)+s(n-k)] + E[d(n)-d(n-k)] (2-3)

If s(n) and d(n) are assumed to be stationary so that the
expectation of the two functions depends only on their
time differences, equation (2-3) with a change of variables

can be written as
Ry(n) = Rs(n) + Rd(n) (2-4)

in which Rx(n) represents E[(x(2)x(2-n)], the correlation

of x(n). Fourier transforming equation (2-4) leads to

Py(m) = Ps(w) + Pd(w) (2-5)

o] .
in which Px(w) represents F[Rx(n)] = J Rx(n)'e-J“n, the

n=-oo

power spectrum of x(n). It is clear from equation (2-4)

that the subtraction of Rd(n) from Ry(n) leads to Rs(n) and
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thus the name "correlation subtraction" method.
In the case of speech, the correlation function can
not be expressed as Rs(n) since speech can not be considered
stationary. Thus we define the short time correlation of
speech ¢s(n) as

-]

o5 (n) = E_w 5, (%) s (2-n) (2-6)
in which sw(l) represents the windowed speech waveform.
One important difference between ¢S(n) and Rs(n) is ¢s(n)
can be defined for non-stationary signals as well as for
stationary signals. Since yw(n) = sw(n) + dw(n), multiply-

ing both sides with yw(n-k) and summing over all n leads to

= - - D4 2-7
¢s(n) = ¢y(n) ¢d(n) 2 @sd(n) ( )
where
¢y(n) = E-m Y, (%) ey (2-n),
¢4(n) = 9,5-@ 4 (%)+d (2-n),
and
dgq(m = ¥ s, (&) +d_(%-n)

==

Equation (2-7) is exact without any approximations.

We will find that a number of speech enhancement systems
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summarized in this chapter differ primarily in how ¢s(n)

is specifically estimated and how speech is generated

once ¢s(n) is estimated. We will also find that in various
speech enhancement systems, equation (2-7) is a starting
point for estimating ¢s(n) from y(n). Before we discuss
how ¢s(n) is specifically estimated in the correlation
subtraction method, it is worthwhile to note why it is
important to attempt to estimate ¢S(n) accurately. From
equation (2-6) ¢_(n) is related to lSw(m)l, the magnitude

of the discrete time Fourier transform of sw(n), by

He~ 8

s, | = Flo (m)] = 5, (n) o700 (2-8)

n

Thus the attempt to estimate ¢s(n) more accurately is
equivalent to attempting to preserve the short time
spectral information of speech ISw(w)l which is known [13]
to be important for both the intelligibility and gquality
of speech.

In the correlation subtraction method, ¢S(n) is
estimated based on equation (2-7). From the windowed
noisy speeclh yw(n), ¢y(n) can be directly computed. ¢d(n)
and ¢sd(n) can not be obtained exactly from y(n) unless
d(n) is exactly known and in the correlation subtraction
method, ¢d(n) and ¢sd(n) are approximated-by E[¢d(n)] and
E[¢Sd(n)). For a zero mean d(n) uncorrelated with s(n),

\

E[¢sd(n)] equals zero and therefore equation (i-?) can be
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approximately written as
¢s(n) = ¢y(n) - B[¢d(n)1 (2-9 )

E[¢d(n)] can be obtained either fr.. the assumed known
statistics of d(n) or by an actual measurement from the
background noise in the intervals when speech is not

present. Fourier transforming equation (2-9),
- 2 2 2
|5, € = |¥ )]° - EllD, () |7] (2-10)

Based on equations (2-9) and (2-10), ¢s(n) and |Sw(w)!2 are

estimated as
¢s(n) = ¢y(n) - E[¢d(n)] (2-11la)

and

|5 (w) | = v () ]? - E(ID,, () | ) (2-11b)

From equation (2-11lb), IS;(w)I2 is not guaranteed to be
non-negative. This is because there is no built-in
mechanism in the above estimation procedure to force ¢;(n)
to correspond to the short time correlation of some real
sequence. When such a sitnation does occur, a number of

different arbitrary steps may be taken. In some studies,

the negative values are made positive by changing the sign.
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In some other studies lSw(w)I2 is set to zero if le(w)I2
is less than E[IDw(w)Izl.

Given an estimate of ¢s(n) or lSw(w)l, there are a
number of different ways to generate speech. One method
which is popular in the class of systems related to some
form of spectral subtraction is to approximate iSw(w),
the phase of Sw(w), by 1Yw(w) and then generate sw(n)
or sw(w) by

345 (W)
w (2-12a)

S;(w) IS;(w)|°e

and
A

sw(n)

F-l[S;(w)] (2-12b)

A typical algorithm for speech enhancement by the correla-
tion subtraction method is shown in Figure 2.1. The
system in Figure 2.1 has been evaluated in this research
and the results are summarized in Section II.3.2.
Generating s;(n) by equation (2-12) corresponds to
taking the noise reduction approach for speech enhancement.

As we discussed in Chapter I, it is possible to take the

reconstruction approach as we'll see shortly.

II.2.3 Speech Enhancement by a Voice Excited Vocoder
Magill and Un (14] developed a speech enhancement

system by a voice excited LPC vocoder when the background
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windowed Noisy Speech  yw(n)

| |

|§m)|={m.<w)f—E[lD..m)r]f
for utw > E[IDutwl

O otherwise

L |
|

Estimated Windowed Speech swin)

Figure 2.1 A typical speech enhancement system by the

correlation subtraction method
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Windowed Noisy Speech  yw(n)

| |

ISwtwlt={ Yutw -E[lDw(w)I']f
LSwlw) =L Yuiw) for IYw(wil'> E[(Dw(wil |

O otherwise

|
|

Estimated Windowed Speech swin)

Figure 2.1 A typical speech enhancement system by the

correlation subtraction method
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noise is white. The system information, namely the
LPC coefficients, is obtained by the correlation method
of the linear prediction analysis in which the short time
correlation of speech is estimated by the correlation
subtraction method discussed in Section II.2.2. For
the source information, the noisy speech is low pass
filtered at 600 Hz and then non-linearly distorted to
broaden its bandwidth. This is based on the notion that
voiced speech generally decays at 6 db/octave rate and
therefore the low frequency components are least degraded
by additive white noise. Speech is then generated based
on the estimated source and system information.

The system by Magill and Un is identical to the

correlation subtraction method in estimating ¢s(n)
from y(n). The difference lies in how speech is generated
based on the estimated ¢;(n). The reconstruction approach
taken in this system has a disadvantage in that the
source information has to be obtained in some manner.
However, it has the advantage that the speech enhancement
system can be used not only as a pre-processor for various
bandwidth compression systems of noisy-free speech, but
also as a bandwidth compression system itself. The perfor-

mance of the system by Magill and Un is not known.

IT.2.4 INTEL System

Weiss, et al. [15] developed a speech enhancement
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system called INTEL or "Intelligibility Enhancement by
Liftering". The INTEL system has several versions. One
early versior is based on the notion that in the short
time correlation domain speech is in general more spread
from the origin than the background noise such as white
noise. Therefore some form of gating out (liftering)
the low time region of the short time correlation of
noisy speech may eliminate more noise components than
speech and thus may lead to some speech enhancement.
When a system based on this method was implemented by
Weiss, et al. [15) and also in this research, the perfor-
mance of the system was found to be rather poor.

Another version of the INTEL system which in a sense
is a generalization of the correlation subtraction method
has been studied in some detail in this research. The
INTEL system referred from this point on corresponds to
this version of the INTEL system. In Section IT.2.2,
it was shown that the correlation subtraction method
corresponds to estimating the short time correlation of
speech ¢_(n) by F'l[lyw(u) 12y - EF N ([D, (w) |?1]. Weiss,
et al. simply replaced the squaring operation with an
arbitrary positive real constant "a". 1In this method, then,
by defining ¢! (n) to be F-l[lsw(w) %1, 8.(n) is estimated by
F-l[le(w)la] - E[F-l[ti(w)Ia]], Based on this estimate
of ¢;(n) and the assumption that isw(w) equals 4Yw(w),

speech is generated. The speech enhancement system proposed
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by Weiss, et al. is shown in Figure 2.2.

The algorithm in Figure 2.2 can be simplified both
computationally and conceptually by recognizing that the
expectation and Fourier transform operations are linear
and hence can be inter-changed. Such a simplified system
is shown in Figure 2.3. The figure clearly shows that
the INTEL system is one way of estimating the short time
spectral magnitude of speech. 1In Figure 2.3 when Isw(w)l
obtained is not positive, it is set to zero for the
similar reason discussed in Section II.2.2. The perfor-

mance of the INTEL system is summarized in Section II.3.2.

II.2.5 SABER Method

Boll [16] developed a speech enhancement system
called SABER or "Spectral Averaging for Bias Estimation
and Removal"”. 1In this method, [S_(w)| is estimated by
subtracting E[|D_(w)|] from a local average of |, (w) .

More specifically, it is assumed that

1
|8, (w) ]| = % E le(w)Ii = E[|D_(w)[] (2-13a)
where IYw(w)Ii represents IYw(w)| obtained from the ith
segment of the noisy speech and M is the number of consecu-
tive windows used for local averaging.
To relate the SABER method to the INTEL system, we

rewrite equation (2-13a) as follows:
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s, (w) | =%4 E (Y (w |, - E([D, (w)[1) (2-13b)
The term |Yw(w)|i - E[IDw(w)Il in equation (2-13) is
how |Sw(m)li is estimated by the INTEL system with a=1.
Therefore the SABER method is equivalent to estimating
ISw(w)l by a local average of the sets of IS;(w)l obtained
by the INTEL system with a=1 if the same windows are uséd
in both cases. 1In fact, in the implementation of the INTEL
system, some form of local averaging is done by applying
the windows that are overlapped with each other to the
input noisy speech data. In this context, then, the
SABER method can be viewed as a variation of a special
case of the INTEL system shown in Figure 2.3. The
evaluation results of the SABER method reported by Boll
are summarized in Section II.3.3.

In a more recent study [17], Boll reported that the
local averaging discussed above is not important in his

system.

ITI.2.6 Other Generalizations of Correlation
Subtractiow Method
The INTEL system discussed in Section II.2.4 is in
a sense an arbitrary generalization of the correlation
subtraction method. An alternative arbitrary generalization
is to estimate lsw(m)l2 by IYw(w)l2 - k-E[IDw(w)IZ] for

some arbitrary constant k and based on this estimate of
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|Sw(w)|, speech can be generated in the same manner
as in the correlation subtraction method. Thi; system
was proposed (18] for possible speech enhancement and
studied in this research. The performance of this system
is summarized in Section II.3.4.

In a more recent study (19], Schwartz etal. considered
for speech enhancement the same system discussed above.
In their study, an additional feature is included in
that after the subtraction ls;(w)lz obtained is compared
to a threshold level B-E[IDw(w)IZ] for a small arbitrary
constant B and if |S;(w)|2 is smaller it is set to

B-E[|Dw(w)|2]. Thus in their system,
~ 2 2
5,0 % = ¥ (w]? - k+E[|D, (w)]?)
for |Y (w)l2 > (k+B)*E[|D (w)|2],
W w
B-E[lDw(w)IZ] otherwise

Clearly, there exist a number of other arbitrary gener-
alizations. For example, we could estimate |Sw(w)la by
IYw(m)Ia - k-E[IDw(w)Ia] for some arbitrary constants
a and k. Such a system includes both the INTEL system
(by setting k=1) and the system discussed in this section

(by setting a=2) as special cases.
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II.2.7 SPAC and SPOC

Suzuki developed [20] a speech enhancement system
called SPAC or "Splicing of Autocorrelation Function".
SPOC or "Splicing of Cross-correlation Function" is a
revised version (21] of SPAC. The two systems have been
used for corpression or expansion of the spectrum, or
lengthening or shortening the duration of speech, or
reducing the noise level in the speech signal. 1In the
discussions in this section only the noise reduction
aspect is considered.

SPAC is based on the notion that the short time
correlation of speech has common frequency components
with the shori time speech. Therefore, for voiced sounds
that are periodic with the fundamental frequency, the
short time correlation properly defined is also periodic
with the fundamental frequency. Furthermore, if one
replaces each pitch period of speech with the corresponding
pitch period of the short time correlation, then the
frequency components of speech would be unchanged except
that the spectral magnitucde at each frequency would be
approximately squared. Since the effect of the background
noise such as white noise generally degrades more the
points near the origin in the short time correlation
domain, speech may be enhanced by replacing each pitch
period of speech with one pitch period of the corresponding

short time correlation beginning some points away from the
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origin. Suzuki observed that SPAC causes some distortions
due to the squaring operation of the spectral magnitude

of speech caused by replacing speech with its short time
correlation. SPOC is a revision of SPAC to reduce

such distortions.

To appreciate how this method compares to other
methods in terms of its performance, we consider a very
simple example. Suppose the background noise is zero mean
and white Gaussian with the variance of cg and further
assume that s(n) is periodic with the period of T such
that s(n+?™) = s(n) for all n. Ve define the short time
correlation of speech ¢;(n) at ng by

n.+M-1

0
) Ss(2)°s(2-n)
£=no

A
ég(n) =

for some fixed M and ¢;(n) and ¢§(n) are similarly defined.
Note that ¢;(n) is slightly different from ¢s(n) in that
the summation is over M number of points independent of n.
Three cases are considered. 1In the first case, ¢;(n)

is cimply estimated as ¢;(n) and thus
;;(n) = ¢;(n) for 0 < n < T-1 (2-14)

In the second case, ag(n) is estimated by ¢;(n) - E[aé(n)]

and therefore
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N 2
vg(n) = ¢;(n) -Mw4+6(n) for 0 < n < T-1 (2-15)

This case corresponds to the correlation subtracticn method.
The third case corresponds to estimating ¢;(n) by SPAC

and therefore

* - » -
¢s(n) @Y(n+T) for n =0
¢;(n) for 1 <n < T-1 (2-16)
Comparing equations (2-14), (2-15) and (2-16), ¢;(n)
estimated is the same for 1 < n < T-1 in all three cases.
Defining e(0) = ¢;(0) - ¢;(0), it can be easily shown

for case 1,

E[e(0)] = M'oé
n,. +M-1
0 2 2 4
Var(e(0)] = 4 - § s(2) 10y + 2Me0; (2~17a)
2=n
0
for case 2,
Eie(0)] =0
n.+M+1
0 2 2 4
Var(e(0)] = 4 « § s (R)+0q + 2M-c, {2=17b)
L=n

0
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and for case 3,

E(e(0)] =0

n.+M~1

0 2 2 4
Var(e(0)] =2 « | s7(2)c04 + Mog + k

2=n0

no+M—l

in which k << 2 Y s 2(2) -0
=n d
0

n0+M-l

and therefore Var(e(0)] = 2 ) 52(1)°0§+M'dg (2-17c)

2.=n0

The above comparison shows that the correlation subtraction
method eliminates the bias but does not reduce the error
variance. SPAC eliminates the bias and reduces the error
variance by about 50%.

On the other hand, SPAC requires an estimation of the
fundamental frequency and speech is not strictly periodic
even for voiced sounds. Furthermore, SPAC can not be
applied to unvoiced sounds and even with the revision made
by SPOC, there are some spectral degradations due to
replacing speech with the short time correlation type of

function. The performance of SPAC or SPOC is not known.

II.2.8 Wiener Filtering Method
If y(n) = s(n) + d(n) in which s(n) and d(n) are
samples obtained from uncorrelated stationary random

processes and if y(n) is available for all time, it is
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well known [22] that the optimum linear estimator that
minimizes E[(s(n) - §(n))2] in which 8(n) represents
the estimate of 's(n) is given by the non-causal Wiener

filter whose frequency response is given by

Ps(w)

Rlw) = 5y + 7 )

(2-18)

where Px(w) represencs the power spectrum of x(n).
Callahan (23] approximates the non-causal Wiener
filter in terms of the average short time energy spectrum

and thus

Ef¢ (w)]

H(w) “ETo_(@)] + El0,(a)]

(2-19)

in which ¢s(w) and @d(w) are given bv F[¢s(n)] and F[¢d(n)].
E[Qd(w)] can be obtained either from the assumed known
statistics of d(n) or by averaging many frames of ¢d(w)
during which noise can be assumed to be stationary.
E[¢s(w)] is estimated by subtracting E[@d(w)] from
locally averaged ¢y(w) over many consecutive windows.
Callahan notes that to estimate E[@y(w)] within an accept-
able variance, Qy(w) should be averaged over at least 100
msec which is a relatively long interval during which
speech may not be assumed to be stationary. If E[bs(w)]
estimated is negative, it is set to zero. The short time

Fourier transform Sw(w) is then estimated by multiplying
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Yw(w) with H(w) given in equation (2-19). Thus in this
system, |Sw(w)| is estimated by IYw(w){-H(w) where
H(w) is obtained from equation (2-19) and {S;kw) is
assumed to be }Yw(w). In the specific algorithm by
Callahan, only one point of s;kn) is obtained from the
estimated S;(w) and the window slides through y(n) by
one point at a time. The performance of this system
reported by Callahan is summarized in Section II.3.5.

It appears that there are a number of other ways to
obtain E[¢y(w)] used in estimating H(w) in equation
(2-19). Instead of averaging ¢y(w) over 100 msec, an
equally reasonable way appears to be to perform some kind
of smoothing on ¢y(m) and assume the smoothed ¢y(w) to
be E[¢y(w)]. Alsc, if we want to generalize the Wiener
filtering method arbitrarily as was done in the case of

the correlation subtraction method, there are, of course,

numerous possibilities.

IT1.2.9 Summary

In this section, various speech enhancement systems
discussed in Section II.2 are briefly summarized. The
comb filtering method is an attempt to increase the S/N
ratio based on the periodicity of voiced sounds. SPAC
or SPOC is based on the notion that in the correlation
domain the effect of the background noise is typically

more pronounced near the origin while speech repeats itself
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in each pitch period. 1In generating speech in SPAC or
SPOC, the notion that voiced sounds are periodic and the
spectral contents of one period of speech is closely
related to one period of its correlatiocn is exploited.

All other methods discussed in Section II.2 differ
primarily in how ¢s(n) or lsw(m)[ is estimated and how
speech is generated based on ¢;(n) or IS;(w)I. Their

differences are summarized in Table 2.1.

II.3 Summary of Performance Evaluation

II.3.1 Adaptive Comb Filtering Method

Sneech enhancement techniques related to comb filtering
have been evaluated more extensively relative to other
techniques. Using Frazier's system [11l], Perlmutter (4]
processed some speech material that consist of nonsense
sentences and performed intelligibility tests with inter-
ference consisting of the speech of a competing talker.
Her results indicate that even with accurate fundamental
frequency information, the adaptive comb filtering method
decreases intelligibility at the S/N ratios where the
intelligibility of unprocessed nonsense sentences range
between 20 to 70%.

As a part of this research, Frazier's adaptive comb
filtering method with the improvement made by Lim [5] has
been evaluated by using nonsense sentences as test materials

when the interference is wide band random noisz. In Figure
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