
1586 PROCEEDINGS OF THE  IEEE,  VOL. 67, NO. 12, DECEMBER 1979 

Enhancement and Bandwidth Compression 
of Noisy Speech 

Aktmct-Over the past  several  years  there has been considerable 
attention  focused  on  the problem of enhancement and bandwidth 
compression of speech degraded by additive background noise. This 
interest is motivated  by several factors including a broad set of impor- 
tant applications, the apparent lack of robustness in current speech- 
compression  systems and the  development  of several potentially 
promising and  practical solutions. One objective of this paper is to 
provide an overview of the variety of techniques that have been pro- 
posed for  enhancement and bandwidth  compression of speech degraded 
by additive background noise. A second  objective is to suggest a uni- 
fying framework in terms of which the relationships between these 
systems is more visible and  which hopefully provides a structure which 
wiU suggest fruitfhl  directions  for further research. 

I. INTRODUCTION 
HERE ARE a wide variety of contexts  in which it is 
desired to enhance  speech. The objective of enhance- 
ment may perhaps be to improve the overall quality, to 

increase  intelligibility, to reduce  listener  fatigue, etc. Depend- 
ing on  the specific application,  the enhancement  system  may 
be  directed at only  one of these objectives or several. For 
example,  a  speech  communication  system may introduce  a 
low-amplitude long-time  delay echo  or a  narrow-band  additive 
disturbance. While these  degradations may not by themselves 
reduce  intelligibility for  the purposes  for which the channel 
is used, they are generally objectionable  and  an  improvement 
in  quality  perhaps even at  the expense of some  intelligibility 
may  be desirable. Another  example is the  communication 
between  a  pilot  and  an air traffic  control  tower.  In  this 
environment, the speech is typically degraded by background 
noise. Of central  importance is the intelligibility of the speech 
and  it would  generally  be acceptable to sacrifice quality if the 
intelligibility could  be  improved. Even with  normal  unde- 
graded speech, it is sometimes useful or desirable to provide 
enhancement. As a  simple  example high-pass filtering of nor- 
mal speech is often used to introduce  a “crispness” which is 
generally  perceived as an improvement  in  quality. 

The  speechenhancement problem covers a  broad  spectrum 
of constraints,  applications  and issues. Environments in which 
an additive  background signal has  been  introduced  are  com- 
mon.  The background  may  be noise-like such as in  aircraft, 
street  noise, etc.  or may be  speech-like such  as an environment 
with  competing  speakers.  Other  examples  in  which  the  need 
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for speech  enhancement arises include  correcting  for  reverber- 
ation, correcting for  the  distortion of the  speech of underwater 
divers breathing  a  helium-oxygen  mixture,  and  correcting 
the  distortion of speech due to  pathological  difficulties of the 
speaker or  introduced  due to an attempt to speak too rapidly. 
Even for these  examples, the problem  and  techniques  vary, 
depending  on the availability of other signals or  information. 
For  example,  for  enhancement of speech  in an aircraft  a 
separate  microphone  can  be used to monitor  the background 
noise so that  the characteristics of the noise  can  be  used to 
adjust or  adapt  the  enhancement  system. At the  air-traffic 
control  tower, however, the  only signal available for enhance- 
ment is the degraded speech. 

Another very important application  for  speech  enhancement 
is in  conjunction  with  speech  bandwidth  compression sys- 
tems. Because of the increasing  role of digital communication 
channels  coupled  with the need for  encrypting of speech  and 
increased  emphasis on  integrated voice-data networks, speech- 
bandwidth-compression  systems  are  destined to play an  in- 
creasingly important  role in speechcommunication systems. 
The  conceptual basis for narrow-band  speechcompression 
systems  stems  from  a  model  for the speech signal  based on 
what is known  about  the physics and  physiology of speech 
production. Because  of this  reliance on a  model for  the signal 
it is not unreasonable to expect  that as the signal deviates from 
the model due to distortion  such as additive  noise, the per- 
formance of the speech  compression  system  with regard to 
factors  such as quality,  intelligibility,  etc., will degrade. It 
is generally  agreed that  the  performance of current  speech- 
compression  systems degrades rapidly  in the presence of 
additive noise and  other  distortions  and  there is currently 
considerable  interest  and attention being directed at  the 
development of more  robust  speech  compression  systems. 
There  are two basic approaches  which  are  typically  considered 
either of which may  be  preferable  in  a given situation. One 
approach is to base the  bandwidth compression on  the as- 
sumption of undistorted  speech  and develop a  preprocessor 
to enhance  the degraded speech in  preparation  for  further 
processing by the  bandwidth compression  system. It is impor- 
tant  to recognize that in  enhancing  speech  in  preparation 
for  bandwidth  compression  the effectiveness of the prepro- 
cessor is judged on  the basis of the  output of the  bandwidth- 
compression  system  in  comparison  with the  output if no 
preprocessor is used. Thus,  for  example, it is possible that 
the  output of the preprocessor would  be judged  by  a  listener 
to be  inferior  (by some  measure) to the  input  but  that  the 
output of the bandwidth-compression  system  with the pre- 
processor is preferred to the  output  without  it.  In  this case, 
the preprocessor  would clearly  be considered to be  effective 
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in enhancing the speech  in  preparation  for  bandwidth  com- 
pression. Another  approach to  bandwidth compression of 
degraded  speech is to  incorporate  into  the  model  for  the signal 
information  about  the degradation. A number of  systems 
based on such  an  approach have recently been proposed and 
will be discussed in detail  in this paper. 

As is evident  from the above  discussion, the general problem 
of enhancing  speech is broad and  the constraints, information, 
and  objectives  are heavily dependent on the specific context 
and  applications. In this  paper, we consider  only  a  small 
subset of possible topics, specifically the  enhancement  and 
bandwidth compression of speech  degraded by additive  noise. 
Furthermore, we assume that  the  only signal available is the 
degraded  speech and  that  the noise does not  depend on the 
original  speech. Many practical  problems,  some  of  which have 
already been discussed, fall into this framework and  some 
problems that  do  not can  be  transformed so that they do. 
For example,  multiplicative noise or convolutional  noise 
degradation can be converted to  an additive noise degradation 
by a  homomorphic  transformation [ l l ,  [21. As another 
example,  signal-dependent  quantization noise in  pulsecode 
modulation (PCM) signal coding can be converted to a signal 
independent  additive  noise by a  pseudo-noise  technique 

Even within the limited  framework  outlined  above, there is a 
diversity of approaches and systems.  One objectik of this 
paper is to provide an overview of the variety of techniques 
that have been  proposed for enhancement  of  speech  degraded 
by additive  background noise both for direct  listening and as 
a  preprocessor  for  subsequent bandwidth cornpression. Many 
of these  systems were developed  independently  of  each  other 
and on the surface  often  appear to be unrelated. Thus another 
objective of the paper is to  provide  a  unifying  framework in 
terms of which the relationship  between  these  systems is more 
visible, and which hopefully will provide  a structure which 
will suggest further  fruitful directions for research. 
In Section 11, we present  an overview of the general topic. 

In this overview we classify the various  enhancement  systems 
based on the  information assumed about  the speech  and the 
noise.  Some  systems based on timeinvariant Wiener filtering, 
for  example,  rely  only on an assumed noise power spectrum 
and on long-time average characteristics of speech,  such as the 
fact that  the average speech  spectrum  decays  with  frequency 
at  approximately 6 dB/octave.  Other  systems  rely on aspects 
of speech  perception or speech  production in general or on a 
detailed  model of speech. 

Sections 111-V present  a  more  detailed  discussion of several 
of these  categories of speechenhancement systems. In partie 
ular,  Section I11 is concerned  with the general  principle of 
speech  enhancement based on estimation of the short-time 
spectral  amplitude of the speech. This basic principle  encom- 
passes a  variety of techniques and systems  including the 
specific methods of spectral  subtraction,  parametric Wiener 
filtering,  etc. In Section IV, speech enhancement techniques 
which rely  principally on the  concept of the short-time  period- 
icity of voiced speech  are  reviewed,  including  comb-filtering 
and  related  systems.  Section V discusses a  variety of systems 
that rely on more  specific  modeling of the speech  waveform. 
As we will discuss in detail,  in some cases, parameters  of the 
model are obtained  from an analysis of the degraded  speech and 
used to synthesize the enhanced  speech. In other cases, the 
results of  an analysis based on a  model for speech  are used 
to control  an  enhancement filter, perhaps with the procedure 

[31-[51. 

being iterative so that  the  output of an enhancement  filter is 
then subjected to  further  analysis, etc. Many  of these  systems 
also incorporate a number of the techniques  introduced in 
Section 111, including Wiener filtering and spectral  subtraction. 
In Sections 111-V, the focus is entirely on systems  for  en- 

hancement with the evaluation of the  systems being based 
on listening  without further processing. In Section VI, we 
consider  the  related  but  separate  problem of bandwidth 
compression of speech  degraded by additive  noise. 
In Section VII, we discuss in  some  detail the evaluation of 

the performance of the various  systems  presented in the  earlier 
sections. In general, the performance  evaluation of a  speech- 
enhancement  system is extremely  difficult, in large measure 
because the  appropriate criteria  for  evaluation  are heavily 
dependent on the specific  application of the system. Relative 
importance of such  factors as quality,  intelligibility,  listener 
fatigue,  etc., may vary  considerably  with the application. In 
Section VII, we summarize the performance  evaluations that 
have been  reported  for  the  various  systems  presented  in  this 
paper. Since the evaluation of different  systems  has  generally 
been based on different  procedures,  environments,  etc., no 
attempt is made  in the section to compare individual  systems. 
In general,  however, we will see that while many of the en- 
hancement  systems  reduce the apparent  background noise 
and  thus perhaps  increase  quality,  many of them to varying 
degrees,  reduce  intelligibility. In the  context of bandwidth 
compression,  however,  various  systems  provide  an  increase 
in  intelligibility over that  obtained  without  the  incorporation 
of speech  enhancement. 

II. OVERVIEW OF SYSTEMS FOR ENHANCEMENT AND 

As indicated  in the previous section, our focus in this  paper 
is on degradation  due to  the  presence of additive  noise. Even 
within  this  limited context  there are  a wide variety of ap- 
proaches  which have been  proposed  and  explored.  Conceptu- 
ally any approach  should attempt  to capitalize on available 
information  about  the signal, i.e., the speech,  and the back- 
ground  noise.  Speech is a  special subclass of audio signals 
and  there  are  reasonable  models  in  terms of which the  speech 
waveform can be described  and  categorized.  The  more speci- 
fically we attempt  to model the speech signal, the more  poten- 
tial'for separating it  from  the background noise. On the  other 
hand,  the more we assume about  the speech the more  sensitive 
the enhancement  system will be to  inaccuracies or deviations 
from these  assumptions.  Thus  incorporating  assumptions  and 
information  about  the speech signal represents  tradeoffs  which 
are  reflected  in the various  systems. In a similar manner sys- 
tems can attempt  to  incorporate detailed  information  about 
the background  noise. For example, the  type of processing 
suggested if the background noise is a competing  speaker is 
different than if it is wide-band random  noise.  Thus  enhance- 
ment systems  also  tend to differ  in  terms of the assumptions 
made  regarding the background  noise. As with  assumptions 
related to  the signal, the  more  an  enhancement  system  at- 
tempts  to capitalize on assumed characteristics of the noise 
the more  susceptible it is likely to  be to  deviations  from  these 
assumptions. 

Another  important consideration in speech  enhancement 
stems  from  the  fact  that  the  criteria  for  enhancement  ulti- 
mately  relate to  an  evaluation by a  human  listener. In different 
contexts  the criteria for evaluation may differ  depending on 
whether  quality,  intelligibility,  or  some  other  attribute is the 
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Fig. 1. A speech  production  model. 

(a) (b) 
Fig. 2. An example of resonant frequencies of an acoustic cavity. 

(a) Vocal-tract transfer function. (b) Magnitude  spectrum of a speech 
sound with  the resonant  frequencies shown in (a). 

most  important.  Thus  speech  enhancement  must  inevitably 
take  into  account aspects of human  perception. As we  will 
indicate  shortly,  some  systems  are heavily motivated  by per- 
ceptual  considerations, others rely more on  mathematical 
criteria.  In  such cases, of course, the  mathematical  criteria 
must  in  some way  be consistent  with  human  perception, and, 
while an  optimum mathematical  criterion is not  known, some 
mathematical  error  criteria  are  understood to be  a better 
match  than  others to aspects of human  perception. 

In the following discussion we briefly describe some aspects 
of  speech production  and  speech  perception  that  in varying 
degrees  pray a  role  in speechenhancement systems. Following 
that we present  a brief  overview of a  representative  collection 
of speechenchancement systems,  with the  intent of cate- 
gorizing these  systems in  terms of the various aspects of 
speech  production  and  perception  on which they  attempt  to 
capitalize. 

Speech is generated by exciting an acoustic  cavity, the vocal 
tract, by pulses  of air released through  the vocal cords  for 
voiced sounds, or by turbulence  for unvoiced sounds. Thus 
a simple but  useful  model  for  speech  production  consists of 
a  linear  system,  representing the vocal tract, driven by  an 
excitation  function which is a  periodic pulse train for voiced 
sounds  and wide-band  noise for unvoiced sounds, as illustrated 
in Fig. 1. Furthermore, since the linear  system  represents an 
acoustic  cavity,  its  response is of a  resonant nature, so that 
its  transfer  function is characterized by a  set of resonant 
frequencies,  referred to as  formants, as illustrated  in Fig. 2(a). 
Thus, if the  excitation  and  vocal-tract  parameters are fixed, 
then as indicated in Fig. 2(b),  the  speech  spectrum has an 
envelope  representing the vocal-tract  transfer  function of 
Fig. 2(a)  and  a  fine structure representing the excitation. 

Many of the techniques for speech  enhancement,  particu- 
larly those  in  Sections 111 and V are  conceptually based on 
the  representation of the speech signal as a  stochastic process. 
This characterization of speech is clearly more  appropriate  in 
the case of unvoiced sounds  for which the vocal tract is driven 
by wide-band noise.  The vocal tract of course changes shape 
as different  sounds  are  generated  and  this is reflected  in  a 

time varying transfer  function  for the linear  system in Fig. 1. 
However,  because of the mechanical  and physiological con- 
straints on the  motion of the vocal tract and articulators 
such as the tongue  and  lips, it is reasonable to represent the 
linear  system  in Fig. 1 as a slowly  varying linear  system so that 
on a  short-time basis it is approximated as stationary.  Thus 
some specific attributes of the speech signal, which can be 
capitalized on in  an  enhancement  system  are  that it is the 
response of a slowly  varying linear  system,  that  on a short- 
time basis its  spectral  envelope is characterized by a  set of 
resonances,  and that  for voiced sounds, on a  short-time basis 
it has  a  harmonic  structure.  This  simplified  model  for  speech 
production  has generally  been  very  successful in  a  variety of 
engineering contexts including  speech  enchancement, synthe- 
sis, and  bandwidth  compression. A more  detailed discussion 
of models for speech  production can  be found in [ 61 -[ 81 . 

The  perceptual  aspects of speech  are  considerably  more 
complicated  and less well understood. However, there  are  a 
number of commonly  accepted  aspects of speech  perception 
which play an important  role in speechenchancement systems. 
For example,  consonants  are  known to be important  in  the 
intelligibility of speech even though  they  represent  a relatively 
small fraction of the signal energy. Furthermore, it is generally 
understood  that  the  short-time  spectrum is of central  impor- 
tance  in the perception of speech  and that, specifidy,  the 
formants  in  the  short-time  spectrum are  more  important  than 
other details of the spectral  envelope. It appears also, that  the 
first formant, typically  in the range of 250 to 800 Hz, is less 
important perceptually, than  the second  formant [9] ,  [ lo] .  
Thus it is possible to apply  a  certain degree of high pass filter- 
ing [ 1  1 ], [ 121 to speech  which  may  perhaps  affect the f i i t  
formant  without  introducing serious  degradation in intelligi- 
bility. Similarly  low-pass filtering  with  a  cutoff  frequency 
above 4 kHz, while perhaps  affecting crispness and  quality 
will in general not seriously  affect  intelligibility. A good  repre- 
sentation of the magnitude of the  short-time  spectrum is also 
generally considered to be important whereas the phase is 
relatively unimportant.  Another  perceptual aspect of the 
auditory  system  that plays a  role  in  speech  enhancement is the 
ability to mask one signal with  another.  Thus,  for example, 
narrow-band noise and  many  forms of artificial noise or deg- 
radation  such as might be  produced  by  a  vocoder  are  more 
unpleasant to listen to  than broad-band noise and  a  speech- 
enhancement  system  might  include  the  introduction of broad- 
band noise to mask the narrow-band  or  artificial noise. 
All speech-enhancement  systems  rely to varying  degrees on 

the aspects of speech  production  and  perception  outlined 
above. One of the simplest approaches to enhancement is the 
use  of  low-pass or  bandpass  filtering to attenuate  the noise 
outside  the band of perceptual  importance  for  speech. More 
generally, when the power  spectrum of the noise is known, 
one can consider the use of Wiener filtering, based on the long- 
time  power  spectrum of speech. While in some cases such as 
the presence of narrow-band  background  noise,  this is reason- 
ably  successful, Wiener filtering based on the long-time  power 
spectrum of the speech  and noise is limited because speech is 
not  stationary. Even if speech were truly  stationary, mean- 
square  error  which is the error  criterion on which Wiener 
filtering is based is not strongly  correlated  with  perception  and 
thus is not a  particularly  effective  error  criterion to apply to 
speech processing systems.  This is evidenced, for example, in 
the use of masking for  enhancement. By adding  broad-band 
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noise to mask other  degradation, we are, in effect,  increasing 
the  meansquare  error.  Another  example that suggests that 
meansquare  error is not well matched to the perceptually 
important  attributes  in  speech is the fact that distortion of the 
speech waveform by processing with an all-pass filter results 
in essentially  no  audible  difference if the impulse response of 
the all-pass filter is reasonably short but can result in a sub- 
stantial  mean-square  error  between the origiaal and  filtered 
speech.  In other words,  mean-square error is sensitive to phase 
of the spectrum whereas perception  tends  not to be. 

Masking and  bandpass  filtering  represent two simple  ways 
in which perceptual  aspects of the  auditory  system can be 
exploited  in  speech  enhancement.  Another  system  whose 
motivation  depends heavily on aspects of speech  perception 
was proposed by Thomas  and  Niederjohn [ 121 as a  preproces- 
sor  prior to the  introduction of noise in those applications 
where noise-free speech is available for processing. In essence, 
their  system  applies high-pass filtering to reduce or remove the 
first formant followed  by  infinite clipping. The motivation 
for  the system lies in the observation that at  a given signal- 
to-noise ratio  infinite clipping will increase, relative to the 
vowels, the amplitude of the perceptually important low- 
amplitude  events  such as consonants thus making them less 
susceptible to masking by noise. In addition,  for vowels 
the filtering will increase the  amplitude of higher formants 
relative to  . the  f i i t  formant, thus making the perceptually 
more  important higher formants less susceptible to degrada- 
tion.  In  the speech  enhancement  problem  considered in this 
paper, noise-free speech is not available for processing as re- 
quired in  the above  system.  Thomas and Ravindran [ 131, 
however,  applied high-pass fitering followed by  infinite 
clipping to noisy  speech as an  experiment. While quality  may 
be degraded by  the process of filtering and clipping, they claim 
a  noticeable  improvement in intelligibility  when  applied to 
enhance  speech degraded by wide-band random noise. One 
possible explanation  may  be  that  the high-pass filtering  opera- 
tion  reduces the masking  of perceptually important higher 
formants  by  the relatively unimportant 1owXrequency 
components. 

Another  system  which relies heavily on human  perception  of 
speech was proposed  by  Drucker [ 141. Based on some per- 
ceptual  tests,  Drucker  concluded that one primary cause for 
the intelligibility loss in speech  degraded by wide-band random 
noise is the confusion  among the fricative and plosive sounds 
which is partly  due to the loss of short pauses immediately 
before the plosive sounds. By  high-pass filtering one of the 
fricative  sounds, the /s/ sound,  and inserting short pauses 
before the plosive sounds (assuming that  their locations can 
be accurately  determined),  Drucker  claims  a significant im- 
provement in intelligibility. 

In  discussing perceptual  attributes we indicated that the 
short-time  spectral  magnitude is generally  considered to be 
important whereas the phase is relatively  unimportant. This 
forms the basis for a class of speech  enhancement  systems 
which attempt  in various ways to estimate the short-time 
spectral  magnitude of the speech  without  particular  regard to 
the phase and to use this to recover or reconstruct the speech. 
This class of systems  includes  spectral subtraction  techniques 
originally due to Weiss et al. I1 51, [ 161, and which have 
recently received a great. deal  of attention [ 171 -[22]  and 
optimum filtering  techniques  such as Wiener filtering and 
power  spectrum  fitering. These systems will be discussed in 

considerable  detail in Section 111. As we  will see, many of 
these  systems  which  appear on the surface to be different 
are in fact  identical  or very  closely related. 

In addition to directly or indirectly utilizing perceptual 
attributes  most  enhancement systems  rely to varying  degrees 
on aspects of speech  production.  For  example,  in  Section IV, 
we describe in detail  a  variety of systems that  attempt, in 
some way, to capitalize  on  short-time  periodicity of speech 
during voiced sounds. As a  consequence of this  periodicity, 
during voiced intervals the speech  spectrum  has  a  harmonic 
structure which suggests the possibility of applying comb 
filtering or as  proposed by Parsons [231 attempting to extract 
in other ways, the  components of the speech  spectrum  only 
at  the  harmonic frequencies. In  essence, knowledge of the 
harmonic  structure of  voiced sounds  allows us in principle to 
remove the noise in  the spectral  bands  between the harmonics. 
As discussed in Section IV, speech  enhancement  by  comb 

fitering can also be viewed in  terms of averaging  successive 
periods of the noisy speech to partially cancel the noise. 
Another  system, which attempts to take advantage of the 
quasi-periodic nature of the speech was proposed  by  Sambur 
[241. As  developed in more  detail in Section IV, his system 
is based on the principles of adaptive noise  cancelling.  Unlike 
the classical procedure Sambur’s method is designed to cancel 
out  the clean  speech signal, taking  advantage of the quasi- 
periodic nature of the speech to form  an  estimate of the 
speech at each time  instant  from  the value of the signal one 
period  earlier. 

In the model of speech production, we represented the 
speech signal as generated by exciting  a quasistationary linear 
system  with  a pulse train  for voiced speech  and noise for 
unvoiced speech. Based on  this model, an approach to speech 
enhancement is to attempt  to estimate  parameters of the 
model  rather  than  the speech itself and to then use this to 
synthesize the speech, i.e., to enhance  speech  through  the 
use of an  analysis-synthesis  system. A particularly novel 
application of this  concept was  used  by  Miller [251 to remove 
the orchestral  accompaniment  from  early  recordings of Enrico 
Caruso. In  this  system  homomorphic  deconvolution was  used 
to estimate the impulse  response of the model in Fig. 1. A 
similar approach to noise  reduction was proposed  by  Suzuki 
[261, [27] whereby the  short-time correlation function of 
the degraded  speech is used as an estimate of the impulse 
response of the linear  system.  This  system is referred to as 
splicing of .auto  correlation  function (SPAC). A modification 
of SPAC is referred to as  splicing  of cross-correlation  func- 
tion (SPOC). A number of systems also attempt  to model 
the vocal-tract impulse response in more  detail. As we dis- 
cussed  previously the vocal-tract transfer  function is charac- 
terized  by  a  set of resonances or  formants  that are  perceptually 
important. This suggests the possibility of representing the 
vocal-tract impulse  response  in  terms of a pole-zero model 
with the analysis procedure  directed  at  estimating  the associ- 
ated parameters. The poles in particular  would  provide  a 
reasonable  representation of the  formants. 

All-pole modeling of speech  has  had  notable success in 
analysis-synthesis  systems for clean speech. A number of 
recent  efforts have been  directed  toward  estimating the param- 
eters in an all-pole model  from noisy observations of the 
speech  such as the systems by  Magill and Un [281, Lim and 
Oppenheim 1291, Lim [ 18 I , and  Done  and  Rushforth [30]. 
Extensions to pole-zero  modeling have also been  proposed 
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by Musicus and Lim [31 I and Musicus [ 321. These various 
approaches  are  described  and  compared  in  detail  in  Section V. 

The  above discussion  was intended as a brief  overview of 
the general  approaches to speech  enhancement.  In the  next 
three  sections we explore in more  detail  many of the systems 
mentioned above. In  particular,  in  Section 111, we focus on 
speech-enhancement  techniques based on short-time  spectral 
amplitude  estimation.  In  Section  IV OUT focus is on speech 
enhancement  based  on  periodicity of voiced speech and  in 
Section V on  speech-enhancement  techniques using an analysis- 
synthesis  procedure. 

III. SPEECH ENHANCEMENT TECHNIQUES BASED ON 
SHORT-TIME SPECTRAL AMPLITUDE ESTIMATION 

In general, in  enhancement of a signal degraded by  additive 
noise, it is significantly easier to estimate  the  spectral ampli- 
tude associated with the original signal than it is to estimate 
both  amplitude  and phase. As we discussed in Section 11, 
it is principally the  short-time spectral  amplitude  rather  than 
phase that is important  for speech  intelligibility  and  quality. 
As we  discuss in this  section,  there  are  a  variety of speech- 
enhancement  techniques  that  capitalize on this  aspect of 
speech  perception  by  focusing  on  enhancing  only  the  short- 
time  spectral  amplitude.  The  techniques to be  discussed can 
be broadly classified into  two groups. In the  first,  presented 
in  Section 111-A, the  short-time spectral  amplitude is estimated 
in the  frequency  domain, using the  spectrum of the degraded 
speech. Each short-time segment  of the enhanced  speech 
waveform in the  time domain is then  obtained  by inverse 
transforming this spectral  amplitude  estimate  combined  with 
the phase of the degraded  speech. In the second class, dis- 
cussed in  Section 111-B the degraded  speech is first used to 
obtain  a  filter which is then applied to  the degraded speech. 
Since these  procedures lead to zero-phase filters, it is again 
only the  spectral  amplitude  that is enhanced,  with  the phase 
of the filtered speech  being identical to  that of the degraded 
speech. 

In both classes of systems discussed  below no  conceptual 
distinction is made  between voiced and unvoiced speech  and in 
particular  in  contrast to the techniques to be  discussed in 
Section IV the periodicity of voiced speech is not  exploited. 
Both classes of systems  in  this  section  are  most easily inter- 
preted in terms of a  stochastic  characterization of the speech 
signal. While this  characterization is more  justifiable for 
unvoiced speech it has  been  shown empirically to also lead 
to successful procedures  for voiced speech. 

A .  Speech  Enhancement Based on  Direct  Estimation 
of Short-Time  Spectral  Amplitude 

When a  stationary  random signal s(n) has  been  degraded by 
uncorrelated  additive noise d ( n )  with  a  known  power  density 
spectrum,  the power  density  spectrum or spectral  amplitude 
of the signal is easily estimated  through  a process of spectral 
subtraction. Specifically, if 

r(n) = s(n) + d(n)  (1) 

and P,,(o), P,(o), and Pd(o) represent the power  density 
spectra of y(n) ,   s (n) ,  and d(n) ,  respectively, then 

Consequently,  a  reasonable  estimate  for P,(w) is obtained  by 

subtracting  the  known  spectrum Pd(o) from  an  estimate of 
P,,(o) developed from  the observations of ~ ( n ) .  

Speech, of course, is not a  stationary signal. However, with 
s(n)  in  (1)  now representing  a  speech signal and  with the pro- 
cessing to be carried out  on a  short-time basis we consider s(n), 
d (n ) ,  and y ( n )  multiplied  by  a  time-limited  window w(n). 
With yw(n) ,  d,(n),  and sw(n)  denoting  the windowed signals 
y ( n ) ,   d ( n ) ,  and s(n)  and Y,(w), D,(w), and S,(o) as their 
respective  Fourier  transforms we  have 

and 

where D $ ( o )  and S:(o) represent  complex  conjugates of 
D,(w) and S,(W). The  function IS,(w)lz will be  referred 
to as the  short-time energy  spectrum of speech.  For  speech 
enhancement based on  the  short-2me spectral  amplitude,  the 
objective is to obtain  an  estimate IS,(o)l of IS,(w)l and  from 
this, an estimate ?,(n) of sw(n) .  

From  the  estimate ?,(n), speech can  be generated  in  a 
variety of different ways.  One approach is to use an analysis 
window function w(n) that generates s(n)  when all the frames 
of sw(n)  are  overlapped  and  added  with the  appropriate  time 
registration.  Such  a  window function satisfies the  equation 

wi(n)  = 1,  for n of interest (5) 
i 

where wi(n)  represents the  ith window  frame. Two such  ex- 
amples  are  overlapped  triangular  and  hamming windows. 
Using such  a  window  function,  speech is then generated  by 
adding up  the  estimates of the windowed segments. 
Various speechenhancement  techniques discussed in this 

section  differ  primarily in how IS,(w)( is specifically esti- 
mated  from  the  noisy  speech. In one  spectral  subtraction 
technique  referred to as power  spectrum  subtraction,’ IS,(w)l 
is estimated based on (4). From  the observed data y , (n ) ,  
IYw(w)lz can  be obtained  directly.  The  terms lD,(w)lz, 
S,(o) *D:(w) and S:(w) D,(w) cannot be obtained  ex- 
actly  and  in the power  spectrum  subtraction  technique  they 
are  approximated by EIID,(w)lZ I ,  E [ S , ( o )  * D $ ( o ) l  and 
E [ S : ( w )  D,(o)] where E [  - 1  denotes  the ensemble average. 
For d ( n )  -zero  meanZ  and  uncorrelated  with s(n) ,  E [ S , ( o )  
Ll:(o)] and E[S: (w)  a D,(w)] are  zero  and  an  estimate 
!S,(o)lz of IS,(w)lZ, is  suggested from (4) as 

Ishw(o)lz = I Y w ( ~ ) l z  - E [ l D w ( ~ ) l z l ,  ( 6 )  
where E [  D,(w)lz] is obtained  either  from  the assumed known 
properties of d(n)  or by an  actual  meisurement  from the back- 
ground noge in the intervals  where  speech is not present.  The 
estimate IS,(w)lz based on ( 6 )  is not guaranteed to be non- 
negative  since the right-hand side can  become negative, and  a 
number of somewhat  arbitrary choices  have been  made. In 
some  studies, the negative  values are Fade positive by changing 
the sign. In some  other  studies IS,(w)lz is set to zero if 

similarity between (2) and (6). 

only for notational convenience. 

’The name “power spectrum subtraction” comes from the  close 

‘The zero mean assumption for the additive random noise is made 
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Fig. 3. A typical speech enhancement system based on  the power spec- 

subtraction is set  to zero. 
trum (correlation) subtraction technique. The negative result after 

IYw(o)12 is less than E [  Dw(o)l21. The  latter  approach has 
been more extensively used in  the  literature, and as will be 
seen later  it can be related  directly to  the  optimum filtering 
technique discussed in Section 111-B. 

Given an  estimate of IS,(o)l, there are  a  variety of different 
ways to estimate sw(n) .  One method which has been used 
extensively in  the class of systems discussed in this section  and 
is also consistent  with the  notion  that  short-time phase is rela- 
tively unimportant is to approximate 4S,(w), the phase of 
S,(o), by  4Yw(w), so that 

and 

A  typical  algorithm for speech enhancement by the power 
spectrum  subtraction technique is shown  in Fig. 3. 

Except  for some details and interpretations,  the power 
spectrum  subtraction technique discussed above is a special 
case of a  more general system  originated by Weiss et  uZ. [ 15 I , 
[ 161 . Specifically, the power spectrum  subtraction  technique 
can also be interpreted  in  terms of estimating the short-time 
correlation &(n) as 

@An) = @ y b )  - E[@Cf(n)l (9) 

where 

OD 

@&I) = s , (k)   *s , (k  - n) =F-'[IS,(w)lZl  (10) 
k=-m 

and @,,(n) and @&) are similarly defined. For this  reason, the 
power spectrum  subtraction technique is also referred to as 
the correlation subrruction technique. Weiss et ul. focused on 
estimating the  short-time correlation function and in place 
of a  squaring operation used an arbitrary positiv? real con- 
stant "u". In the_ir technique,  then,  by d e f i i g  &(n) to be 
F - ' [  IS,(o)l"], &(n) is estimated as 

Based on this  estimate and  the assumption that &S,(w) equals 
&Y,(w), the windowed speech s,(n) is estimated.  The speech 
enhancement system  proposed by Weiss et ul. is shown in 
Fig. 4. 

The system in Fig. 4  can be simplified both  computationally 
and  conceptually [ 18 1 , [ 19 I by recognizing that  the expecta- 
tion  and  Fourier transform operations in (1  1)  are interchange- 
able  and therefore  (1  1) is equivalent t o  

NOISY SPEECH 
y , ( n )  

1 
1 

PHASE  INFORMATION 
SUBTRACTION OF 1 

E I F ~ l [ I D w ( ~ ) l n ] ]  1 
PROCESSED 

Fig. 4. A speechenhancement system proposed by 
(151, [161. 

Weiss et d. 

NOISY SPEECH 

I 

E [ID,(wlln] 
PROCESSED 

Fig. 5. A simplification of  the  system in Fig. 4. The negative result 
after subtraction is set  to zero. 

Such  a simplified system based on  (12) is shown in Fig. 5. As 
is evident in Fig. 5 the system  proposed by Weiss et aZ. is a 
technique to estimate the short-time  spectral amplitude of 
speech by a  particular form of spectral subtraction.  The per- 
formance of the system in Fig. 5 as  a speech enhancement 
system was evaluated by Lim (19) and the results will be 
discussed in Section VII. When the  constant "u" is set to 
unity,  the system in Fig. 5  reduces to  the speech  enhancement 
system developed by Boll [ 201 . 

The parameter "u" in [ 121 obviously affords a degree of 
flexibility over the system based on (6). A further generaliza- 
tion is to introduce  an  additional degree of flexibility by esti- 
mating P,(w)( through  the relation 

I~,(w)I" = I YW(U)l" - kE[ID,(w)l"l (1 3) 

where now there  are  the  two parameters a and k. This general- 
ization with a and k as parameters was considered for speech 
enhancement by Lim [ 181 and Berouti et  aZ. [ 21 1 .  Just as 
with the specific form of spectral subtraction in (6), each 
short-time  speech segment is in effect  estimated by utilizing 
the phase associated with the noisy  speech,  and negative values 
on  the right-hand side of (13) can be dealt with through  the 
use of full-wave or half-wave rectification. The additional 
possibility of also utilizing a  frequency dependent threshold 
on  the right-hand side of (13) was considered by Berouti 
etul .   [21] .  

Another  approach, which leads to  a further modification of 
spectral subtraction was proposed by McAulay and Malpass 
[33].  In  this approach,  the problem was formulated by as- 
suming that  at each  frequency the noise is Gaussian and devel- 
oping the maximum  likelihood  estimate of IS,(w)l. The 
resulting estimate has the  form 

A 

ISw(w) l=  3 1 Y w ( ~ ) l  + 3[1Yw(~)l2 - E[Dw(~)1211"2. (14) 

A further variation,  proposed by McAulay and Malpass [331 
modifies (14)  by a factor which is chosen to represent as a 
function of  IYw(w)l the probability that speech is in fact 
present in the signal y ( n ) .  Modification of (14)  by this factor 
is based on  the  notion  that as the probability that only noise 
is present increases, it might perhaps be preferable to further 
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reduce the estimate of lSw(w)l. Other techniques for speech 
enhancement similar or very closely related to  the various 
spectral subtraction techniques discussed above include the 
work of Curtis and Niederjohn [ 171 and Preuss [ 22 1. 

In this section, we have discussed a  variety of different  tech- 
niques to estimate the  short  time spectral amplitude of speech. 
Many of them can be viewed as attempting  to enhance the 
speech-to-noise (SIN)  ratio by not affecting the spectral  com- 
ponents corresponding to  relatively high S/N ratio  but  attenu- 
ating those corresponding to relatively low SIN ratio.  To illus- 
trate  this  point, consider the spectral subtraction  method 
corresponding to  (13) with the assumption that a = 2 an: that 
the right-hand side is positive. Expressing the estimate S,(w) 
in the  form of a zero-phase frequency response H(o)  applied 
to Y,(w), 

Equation (1 5 )  can be rewritten as 

where 

From  (1 7), X(w) can be interpreted as a speech-plus-noise-to- 
noise ratio  at each  frequency w. In Fig. 6 is plotted 20 log 
H(w)  for different values of the  constant “k” as a function 
of 20 log X(o). It is clear from  the figure that  the  frequency 
components of Yw(o) corresponding to low S/N ratio are 
severely attenuated. As another example,  a similar plot repre- 
senting the speech  enhancement  system  corresponding to (1 4) 
derived from maximum  likelihood  considerations (33) is also 
shown in Fig. 6.  The results in Fig. 6 are generally applicable 
to various short-time  spectral amplitude estimation  techniques 
discussed in this section  and will be useful in understanding 
the results of the performance  evaluation discussed in Section 
VI1 . 

B.  Speech  Enhancement  Techniques Based on Wiener 
Filtering 

In the previous section,  the basis for  enhancement was 
the explicit estimation of the short-time  spectral  magnitude 
through a process of spectral subtraction. In this section, 
we discuss techniques in which a  frequency weighting for an 
“optimum” filter is fust estimated from  the noisy speech. 
This fi ter  is then applied either in the  time domain or fre- 
quency  domain to obtain  an estimate of the undegraded 
speech. Thus with Yw(o) ,   D, (w) ,  and S,(w) again denoting 
the short-time  spectra associated with  theAwindowed  time 
functions y ( n ) ,   d ( n ) ,  and s(n),  the estimate S,(o) of S,(w) 
takes the  form 

$,(a) = H(w)Y,(o). (1 8) 

As  we saw in (1 5 ) ,  the techniques in Section 111-A can also be 
put  into this form and  consequently the essential difference 
between the techniques  presented in  that section and  those to  
be discussed here rests in  the basis on which the frequency 
weighting H(o)  is obtained. In  this  section we focus on pro- 
cedures for obtaining H(w) based on  the principles of  Wiener 
filtering. However, as we will see toward the end of this 

I r i  
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MAXIMUM LIKELIHOOD 

_ _ - -  
. _ _ -  

. . . . . . . . . 
. _ _  

-401 I I I :  I I 
0 5 10 15 M 

20 log X ( w ) ,  dB 

Fig. 6. Attenuation curves for two spectral subtraction techniques 
(equations (13) and (14)). See text for details. 

section, an implicit form of this procedure leads, in  fact to 
frequency weightings identical to several discussed in Section 

As is well known,  for y ( n )  = s(n) + d ( n )  in which s ( n )  and 
d ( n )  represent  uncorrelated stationary random processes with 
power  density  spectra P,(o)  and P d ( w ) ,  respectively, the 
linear estimator of s ( n )  which minimizes the mean-square error 
is obtained by filtering y ( n )  with the noncausal Wiener filter 
for which the frequency response is 

111-A. 

The noncausal Wiener filter of (19)  cannot be applied  directly 
to estimate s ( n )  since speech cannot be assumed to be station- 
ary and the spectrum P,(w) cannot be assumed known. An 
approach  often used is to approximate  the noncausal Wiener 
filter  with  an  adaptive Wiener filter  with frequency response 

As in Section 111-A, the  function EIID,(o)lZ] may be ob- 
tained either  from  the assumed known  statistics of d(n)  or by 
averaging many  frames of lD,(w)12 during silence intervals in 
which the statistics of the background noise can be assumed 
to be stationary. In estimatingE[ IS,(o)12] ,there are avariety 
of possibilities. Callahan [34] f i t  estimates EIIYw(w)lZ] 
by locally averaging IYw(o)lz over many frames of noisy 
speech.  Then  E[lD,(w)lz] is subtracted  from  the estimated 
EIIYw(w)lzl  to  form an estimate of E[IS,(w)l‘] .  An 
equally reasonable method is to f i t  estimate E [  IYw(o)lz ] by 
smoothing IYw(w)lz rather  than averaging IYw(o)lz over many 
frames of noisy speech and then subtracting E [  Dw(w)lz] from 
the estimated EIIYw(o)lzl. As other possibilitiesE[IS,(o)12] 
may be approximated as I$,(w)lz or by smoothing I$,(w)lz 
where IS ,̂(w)/’ is obtained  from  the short-time  spectral  am- 
plitude estimation  techniques discussed in Section 111-A. 

Given H(w),  the short-time  speech segment is then  obtained 
as specified by (1 8) applied either  in  the time.  domain or in the 
frequency domain. It should be noted  that  in all of the above 
procedures. the frequency weighting H(o)  has zero  ph%e and 
thus from (18)  the phase associated with the estimate S,(w) 
is that of Y w ( o ) .  Thus just as  with the procedures in  Section 
111-A, it is only the spectral  magnitude of S,(o) which is 
estimated. 

Generalizations of  Wiener filtering  may also be considered. 
One such generalization which has been studied extensively 
[35 ] , [ 361 in the  context of image restoration has the fre- 
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quency  response given by 

for  some  constants “a” and “P” and  has  been  referred to as 
parametric Wiener filters. By varying the  constants “a” and 
“p’, filters  with  different  characteristics can be obtained. 
For example if a and 0 are unity,  then  (21) corresponds to 
Wiener filtering  as  specified  in (1 9). If a is unity  and is 1/2, 
then  (21)  corresponds to power  spectrum  filtering  (37) which 
has the characteristics that  the  enhanced signal has  the same 
power  spectrum P,(w) used in  (21). Again, due to the  non- 
stationarity of speech,  equation  (21)  has to be modified. The 
approximation of P , ( o )  and P d ( o )  by the corresponding 
short-time energy spectra  and  generation of speech based on 
the  estimated H ( o )  have already  been discussed.  With this 
approximation,  the  frequency response  associated  with  short- 
time  parametric Wiener filtering  would then be  expressed  as 

In the Wiener filter of (20)  or  its generalized form of (22) 
it is assumed that  the  term  representingP,(w)  or E [  IS,(w)12] 
is first  obtained  and  the  frequency weighting is then applied 
to Y w ( w ) .  An alternative is to  treat  (20)  and  (22) as implicit 
relationships. For  example,  let us estimate E [  IS,(w)(’ ]  as 

&lS,(w)I2 1 = Iŝ ,(w)12 (23) 

where $,(a) is the  estimate of the  short-time  spectrum of 
the speech. Then, 

ŝ,(w) = H ( o ) Y , ( w )  
or 

so that 

This, of course, is a? implicit  relationship,  from  which we 
would like to obtain IS,(o)J and  thus we refer to it as implicit 
Wiener  filtering. For  example,  two  solutions to (23)  for 0 = 112 
are 

Ishw(w)l = 0 (26a) 

Is^,(~)l = [ I Y W ( ~ ) l 2  - ~ E [ D w ( ~ ) 1 2 1 1 1 / 2 .  (26b) 

Thus,  a  solution  for Iŝ ,(o)l consistent  with  (25) is (26b)  for 
positive  values under  the radical  and  (26a), i.e., zero  otherwise. 
This, of course, is precisely the spectral  subtraction  method 
of (1 3) with a = 2. Similarly, for P = 1  a  solution to (25) is 

lŝ ,(w)l = ;lYw(w>l + +[IYW(W)l2 - 4aE[D,(w)lz11’~z 

(27) 
For a = 1/4 this is identical to  the maximum  likelihood  esti- 
mate of (14). 

Another  potential  generalization of Wiener filtering  stems 
from  considering  an  iterative  approach to estimating 

E [  IS,(w)12 1 
in  (22).  For  example,  let us consider  an  iterative  procedure 

whereby $,(w)iI denotes the estimate of IS,(o)l on  the 
ith  iteration  with 

S w ( a ) i + l  = H i ( w )  Yw(w).  (28) 

The  transfer  function H j ( w )  is in the  form of (22)  with 
E [ B , ( W ) ) ~ ]  estimated  from S,(w)i. In such  iterative  pro- 
cedures there  are, of course, issues of convergence  which  will 
in  general  depend on  the way in which the  iteration is started 
and on specifically how E [  IS,(w)121 is estimated from S w ( W ) i .  

Iv .  SPEECH-ENHANCEMENT TECHNIQUES BASED ON 
PERIODICITY OF VOICED SPEECH 

In  this  section, we discuss speech  enhancement  techniques 
which  capitalize on  the observation that waveforms  of voiced 
sounds  are  periodic  with  a  period  that  corresponds to the 
fundamental  frequency. Even with  this basic underlying  prin- 
ciple many  different  approaches  are possible.  In Section IV-A, 
we  discuss an  approach based on  comb filtering to pass the 
harmonics of speech but reject the  frequency  components 
between the harmonics.  In  Section IV-B,  we consider the 
extraction of speech  harmonics  from  a high resolution spec- 
trum of noisy  speech. In Section IVC, we discuss the use of 
adaptive  noise cancelling techniques to reduce the background 
noise by capitalizing on  the periodicity of voiced sounds to 
provide  a  reference input. 

A .  Speech  Enhancement Based on  Adaptive  Comb Filtering 
The periodicity of a time waveform manifests itself in the 

frequency  domain as harmonics  with the  fundamental  fre- 
quency  corresponding to  the period of the  time waveform as is 
shown  in Fig. 7. In Fig. 7(a) is shown  a segment of a  periodic 
time waveform and  in Fig. 7(b)  is  shown the associated magni- 
tude  spectrum. Since the energy of a  periodic signal is con- 
centrated  in  bands of frequencies as is evident  in Fig. 7(b)  and 
the  interfering signals in general  have energy over the  entire 
frequency  bands, to  the  extent  that  accurate  information of 
the  fundamental  frequency is available, a comb filter  as  shown 
in Fig. 7(c) can reduce noise  while  preserving the signal. 

Even though voiced speech is only  approximately  periodic, 
the  concept of comb  filtering to reduce the background  noise 
in  noisy  speech  may  still  be  applicable. One approach to en- 
hancing degraded speech through  comb filtering was taken  by 
Shields [38] . A typical  impulse  response of a  comb  filter as 
applied  by Shields is shown  in Fig. 8(a).  The spacing “T” 
in the figure represents the  pitch period  and  a  different value 
of “T” is chosen  in processing different  parts of voiced speech 
to adapt globally to the  time varying nature of speech.  Frazier 
e t  al. [39],  observed that even with  accurate  fundamental 
frequency  information Shields’ adaptive comb filtering  tech- 
nique  distorts  speech signals significantly due to  the time 
varying nature of speech even on a  short-time  (local) basis. 
To reduce  some of this  distortion,  Frazier et al. [ 391  suggested 
a filter that  adapts itself both globally and locally to  the 
time varying nature of speech. A typical  impulse  response of 
Frazier’s adaptive  filter is shown in Fig. 8(b).  The spacing 
“Ti” in Fig. 8(b) is adapted to the local  variation of the pitch 
periods of voiced speech. A typical  algorithm for speech 
enhancement by adaptive comb filtering (or adaptive  filtering) 
is shown  in Fig. 9. 

B. Speech  Enchancement Based on  Harmonic  Selection 
The adaptive  filtering  technique discussed in  Section IV-A 

requires  accurate  pitch  information  and  therefore  a  separate 
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Fig. 7. (a) A periodic time  waveform.  (b) Magnitude spectrum of the 
time waveform in (a). (c)  Frequency  response of an  ideal comb  fdter. 

system that estimates the  pitch  information is necessary. In 
the  context of an  application in which the  interfering back- 
ground noise is a  competing  speaker, Parsons [23] developed 
a  system which is closely related to comb filtering  with the 
pitch  information  obtained as an  integral part of the system. 
Voiced speech is windowed  and  a high-resolution short-time 
spectrum is obtained. In the  short-time  spectrum,  the period- 
icity of speech  exhibits itself as local spectral  peaks  some of 
which are due to  the main  speaker  and  some others of which 
are due to a  competing  speaker. Parsons developed  a  tech- 
nique in which each of the local spectral  peaks  in the high- 
resolution  short-time  spectrum is distinguished between the 
main speaker  and  a  competing  speaker.  Then  speech is gener- 
ated based on  the spectral content  that corresponds to  the 
peaks of the main  speaker. Since the essence of Parsons'  sys- 
tem is location  and  selection of speech  harmonics of a  speaker 
from  the high-resolution spectrum of degraded  speech, it can 

. .  

l-?.*T_i-+--T, 4 T p i  

(b) 
Fig. 8. (a) Impulse response  of a typical  adaptive comb  mter by  Shields 

(381. (b) Impulse tesponse  of  a  typical  adaptive  filter by Frazier 
et&. 1391. 
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Fig. 9. A typical  algorithm for speech  enhancement  by  adaptive 
fdteriug or adaptive  filtering. 

comb 

be approximately viewed as  a frequencydomain  implementa- 
tion of a pitch  information  extracter  and  an  adaptive  filter. 

C. Speech  Enhancement Based on  Adaptive  Noise Canceling 
Techniques 

A class of techniques  referred to as  adaptive  noise canceling 
have been  developed  which  are based on  the availability of 
both  the degraded signal y ( n )  = s(n) + d ( n )  and  a  reference 
signal r ( n )  which is uncorrelated  with s(n)  but correlated  with 
d(n) .  A block diagram representation of such  a  system is 
shown  in Fig. 10. By adaptively  filtering r ( n )  an estimate of 
the  component d(n)  that is correlated  with r (n )  is formed  and 
subtracted  from y ( n ) .  Adaptive noise canceling is applicable 
to processing  of inputs whose properties  are unknown,  and 
good  performance can be achieved  if a  suitable  reference  input 
is available. A detailed discussion of the principles, implemen- 
tations,  etc. of adaptive  noise cancelling can be  found in [40]. 

As mentioned in the  introduction,  the discussion in this 
paper is restricted to systems for which the  only signal  avail- 
able is the degraded  speech  and thus adaptive  noise canceling 
as outlined  above would not be  applicable. However, Sambur 
[ 241 developed a  system which utilizes the principles of adap- 
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Fig. 10. An adaptive noise cancelling system. 

(b) 
Fig. 1 1 .  (a) An adaptive noise cancelling technique for speech enhance- 

ment by  Sambur [ 241. (b) Anofher adaptive noise cancelling tech- 
nique for speech enhancement. 

tive noise  canceling by  generating  a  reference input, capital- 
izing on  the periodicity of voiced speech. Specifically, let the 
reference input r(n) be  given by r ( n )  = y ( n  - T), where T 
represents  the  pitch period. To  the  extent  that periodicity is 
strictly  observed, 

r(n) = s(n - T) + d(n - T) = s (n )  + d(n - T). (29) 

Reversing the roles of s(n)  and d(n)  in Fig. 10, r ( n )  can be 
viewed as uncorrelated  with d ( n )  to the  extent  that  the corre- 
lation of d(n)  is short  and  the adaptive  filter  has  a short  im- 
pulse response relative to  the pitch  period T. Since the  com- 
ponent s(n) in r ( n )  is identical to  the s (n)  in  the primary input 
y ( n ) ,  the  output of the adaptive  filter  in  Fig. 10 would  corre- 
spond to an estimate of s(n) .  The  adaptive noise  cancelling 
technique  proposed by Sambur is shown  in Fig. 1 I(a). An 
alternative  approach to Sambur's technique is shown  in Fig. 
1 l(b). In  the figure,  a  reference input r(n) is specified  as 

r ( n )  = y ( n )  - y (n  - T) . (30) 

To  the  extent  that periodicity is strictly  observed, 

Then r ( n )  is uncorrelated  with s(n) but is highly correlated 
with d(n)  thus satisfying the  condition  for  adaptive noise 
canceling. 

The  adaptive  noise canceling technique  in Fig. 1 l(b) can  be 
related to  comb filtering discussed in Section IV-A.  Specifi- 

cally, if we assume that  the adaptive  process  has converged 
and  the adaptive  filter is short enough so that d(n)  can be 
assumed to be  uncorrelated  with d(n - T ) ,  the results  in [401 
can be  used to show  that  the  frequency response of the  filter 
is given by 

where d'(n) = din - T). Since Pd(o) = P d t ( w ) ,  H(w) in (32) 
equals 112 and d(n)  in the figure is given by 

d(n) = 3 y ( n )  - 3 y ( n  - T). 
A 

From  (33) and Fig. 1 l(b), 

(33) 

Equation  (34) is the result  obtained by a comb filter whose 
impulse  response  equals 3 6(n )  - 3 6(n - TI. 

In this  section, we have  discussed  various speech  enhance- 
ment  techniques  which  capitalize  on  the  periodicity of voiced 
speech.  Depending on  how  the periodicity of voiced speech is 
specifically exploited,  different  techniques have  been  devel- 
oped. All of them, however, have the  common  feature  that 
they  are based only  on  the periodicity of voiced speech  and 
require  accurate  pitch  information.  Techniques  for  extracting 
the pitch  information  from  noisy  speech will be discussed in 
Section  VI.  Some  performance  evaluation  results  and  poten- 
tial advantages and disadvantages of the  techniques discussed 
in this  section will  be presented  in  Section  VII. 

V. SPEECH-ENHANCEMENT TECHNIQUES BASED 
ON A SPEECH MODEL 

A digital model  of'sampled speech that has been  used in  a 
number of practical  applications  and has a basis [ 6 ] - [ 8 ]  in 
the physics  of speech  production  system was shown  in Fig. 1. 
In the  model,  the  excitation  source is either  a  quasi-periodic 
train of  pulses for voiced sounds or  random noise for unvoiced 
sounds.  The digital f i ter  represents the effects of the vocal 
tract, lip  radiation,  and,  for voiced sounds,  the  glottal source. 
Since the vocal tract changes in  shape as a function of time, 
the digital filter in Fig. 1 is in  general time varying.  However, 
over a short interval of time,  the digital filter may be  approxi- 
mated as a  linear time invariant  system. Many systems  which 
capitalize  on the underlying  speech  model discussed above 
have been  proposed  in the  literature  for speech  enhancement 
and  in  this  section we  discuss some of those  techniques. 

In the speech  enhancement  technique based on an under- 
lying  speech  model, the parameters of the speech  model  are 
first estimated  and  then  speech is generated based on  the 
estimated  parameters. The parameters of the model  consist of 
the  source parameters  (pitch  information)  and the system 
parameters  (vocal-tract  information).  The  problem of esti- 
mating the source  parameters  from noisy speech will be dis- 
cussed in  Section  VI,  where we  discuss techniques  for  band- 
width  compression of noisy  speech,  and in this  section we 
consider  techniques  for  estimating  the  system  parameters. 
Given the  estimated parameters of a  speech  model,  speech can 
be  generated  by  a  synthesis  system based on  the same  under- 
lying  speech  model or by designing a  filter  with the  estimated 
speech  model  parameters  and then filtering the noisy speech. 
The  former  approach  requires  both  the  source  and  system 
parameters while the  latter  approach generally  requires  only 
the system  parameters as will be discussed later. 



1596 PROCEEDINGS OF THE IEEE, VOL. 67, NO. 12, DECEMBER 1979 

The  techniques to  estimate  the system  parameters of a 
speech  model, of course,  depend on  the  specific  model as- 
sumed. Even for  the same  speech  model,  however,  there  are 
again a variety of different  techniques that may be  used in 
estimating the model  parameters.  In  Section V-A, we discuss 
speech  enhancement  techniques based on an all-pole model 
of the vocal tract  and  in Section V-B, techniques based on a 
pole-zero model of the vocal tract.  In Section V-C, we discuss 
techniques based on  nonparametric speech  models. 

A .  Speech  Enhancement  Techniques  based  on an All-Pole 
Model of Speech 

Fig. 1 is modeled on  a  short-time basis  as all-pole of the form 
In  an all-pole model of speech, the transfer  function V(z) in 

where “p” represents the order of all-pole model. Thus  on  a 
short-time basis the speech waveform s(n) is assumed to satisfy 
a  difference  equation of the form 

where u(n) is a pulse train  for voiced speech or random noise 
for unvoiced  speech. 

Equation (36) is sometimes  referred to  as an  autoregressive 
model or as a  linear  prediction  model  since the  current sample 
s(n)  can be viewed as being predicted  from  a  linear  combi- 
nation of past  samples of s(n) with  an  error of u(n).  For  nota- 
tional  convenience, the all  pole  parameters will be denoted in 
vector  form  as 

a =  (37) 

The  problem of estimating a given a  segment of s(n)  has  been 
considered  extensively (411,  [42] in the  literature.  In  the 
absence of background  noise,  many  different  approaches [41] 
to estimate a lead to solving essentially the same  set of linear 
equations of the form 

R - a = r  (38) 

where R is a p X p matrix  and r is a p X 1  matrix.  Depending 
on how the matrices R and r are  specifically  obtained  from 
s(n),  equation (38) is referred to as either  the correlation or 
covariance method of linear  prediction  analysis.  The  principal 
advantages of the correlation method are that R in (38) is  a 
Toeplitz  matrix so that particularly  efficient  algorithms (43) 
to solve (38) exist  and the resulting all-pole coefficients  are 
guaranteed to be  stable. 

The problem of estimating the all-pole  parameters  from the 
noisy speech is a  much  more  difficult  problem and different 
approaches  generally lead to different  results.  One  approach 
is to simply solve (38) for all-pole parameters a where the 
components of R and r are  estimated  accounting for  the pres- 
ence of noise.  In the correlation method of linear  prediction 
analysis, the  components of R and r consist of the fEst p + 1 

points of the  correlation of s,(n) representing@) multiplied 
by  a  time-limited  window w(n)  as  introduced  in  Section 111-A. 
The  Fourier  transform of the correlation of sw(n)  is ISw(o)12 
and in Section I11  we have discussed various  techniques to  
estimate ISw(o)l from the noisy  speech.  Then  one  approach 
would be to estimate /Sw(o)( ’  from  the noisy  speech by one 
of the techniques discussed in Section 111, form R and r from 
the inverse transform of .this  estimate  and  then solve for a in 
(38). Techniques to estimate  the all-pole  coefficients  in  this 
way have been  considered by Magill and Un [28],  Kobatake 
e t  al. [44],  and Lim [ 181. 

A more  theoretical  approach to  the problem of estimating 
the  all  pole  coefficients a is to use well-known parameter 
estimation  rules. Before we discuss this  approach  in  greater 
detail, we review very briefly the general  principles of param- 
eter  estimation. 

Let A and R denote  the parameter  space  and the observation 
space,  and  assume that  there is a  probabilistic  mapping be- 
tween  these spaces with  a  point a in the parameter  space 
mapped to a  point r in  the observation  space.  The  parameter 
estimation  problem is to estimate  the value  of a from the 
observation r ,  using some  estimation  rule.  The  three  estima- 
tion rules  known as maximum  likelihood (ML), maximum 
a  posteriori (MAP), and  minimum meansquare  error (MMSE) 
estimation have many  desirable  properties  and thus have been 
studied [451, [461  extensively  in  the  literature. For non- 
random parameters, the ML estimation  rule is often used.  In 
the ML estimation,  the parameter value is chosen  such that  the 
chosen value most  likely  resulted  in the observation r. Thus 
the value of a is chosen  such that pRIA(r.Ia), the probability 
density  function of R conditioned on A ,  is  maximized at  the 
observed r and the chosen value of a. The MAP and MMSE 
estimation  rules  are  commonly used for  parameters that can 
be considered  as  random variables whose u priori density 
function is known.  In the MAP estimation  rule,  the  parameter 
value is chosen  such that  the a posterion density pAIR(a l r )  is 
maximized at  the observed r and the chosen value of a. ML 
and MAP estimation  rules  lead to  identical  estimates of the 
parameter value when the a priori density of the parameter 
in  the MAP estimation  rule is assumed to be flat over the 
parameter  space.  For  this  reason, the ML estimation  rule is 
often viewed  as a  special case of the MAP estimation  rule.  In 
the MMSE estimation  rule N R ) ,  the estimate of a, is obtained 
by  minimizing the  meansquare error E [ ( & ( R )  - a)’].  The 
MMSE estimate of a is given by E[a Ir] , the a  posteriori mean 
of a given r. Therefore,  when the maximum of the a poste- 
riori density  function pAIR(a l r )  coincides  with its mean, the 
MAP estimation  and MMSE estimation  rules  lead to  identical 
estimates. 

Lim and Oppenheim [ 291 have considered  estimation of the 
all-pole coefficients (I using M A P  estimation,  thus maximizing 
p(aly)  where’ y represents the samples of noisy  speech  with 
the assumption that  the  excitation is white Gaussian noise. 
The  approach was motivated  partly  by the  fact 1291, l471 
that  in  the absence of background noise the MAP estimation 
procedure  with  white Gaussian noise excitation  leads to  the 
correlation method of linear  prediction analysis which  has 

p (.) and the density function evaluated at x = x o  should  be distin- 
For a more accurate representation, a probabitity density function 

&shed. For notational convenience, Axo) will be used in both cases 
and the  distinction will be left  to  the  context in which  it is used. 
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Fig. 12. Linearized M A P  (LMAP) algorithm for estimation of the all pole 
parameters a and the speech vector 8 from the noisy speech vector y. 

been  successful in  the analysis  of both voiced and  unvoiced 
speech.  In the presence of background noise, the MAP param- 
eter  estimation  rule  leads to solving a  set of nonlinear  equa- 
tions  (29). However, if u is estimated  by maximizing p(u, s Iy), 
where s represents the samples  of  noise-free speech, then  an 
iterative  algorithm  which  requires solving only  sets of linear 
equations can  be developed.  The  iterative  algorithm,  referred 
to as linearized MAP (LMAP)  begins with  an initial estimate 
so and then estimates s as E[s  l&,y l .  With this  estimate of s, 
a new estimate $1 is obtained  by the correlation  method of 
linear  prediction analysis. With the new a,, the above pro- 
cedure is repeated to obtain a  newer  estimate &. It can  be 
shown (29)  that estimating s as E [ s [ & ,  y ]  is a  linear  problem 
and  further  that  the above iterative  procedure increases 
p ( ~ ,  s l y )  in  each  iteration. 

If an  infinite  amount of data is assumed to be available, it 
can be shown that estimating s as E [ s  (ai, y ]  is equivalent to 
filtering the noisy speech  with  a  noncausal Wiener filter whose 
frequency  response is given by 

(39) 

with 

where ak in (40) corresponds to ai and g2 represents the gain 
in the excitation. A typical LMAP algorithm  with the  assump 
tion of an  infinite  amount of data is shown  in Fig. 12. As is 
clear from  the figure, the  approach based on maximizing 
p ( o ,  s ly )  estimates not  only  the all-pole coefficients but  the 
noise-free speech  vector s. Thus  either acan be utilized  as the 
estimate of s(n) ,  or  the coefficients  can  be used to synthesize 
an estimate of s(n).  

In  the LMAP algorithm, when u is estimated  from ? by the 
correlation  method of linear  prediction analysis, the values 

are used to form  the  short-time  correlation which consists of 
components of the  form of s(i)  * s ( j ) .  The LMAP algorithm 
estimates s( i )s( j )  by 

As an alternative, s(i) * s( j )  may  be  estimated  directly  by 

s(i) ; s ( j )  = E[s( i )  * s(j)I G, y ]  . (42) 

An iterative  algorithm based on  (42) has been  referred to [ 291 
as revised  LMAP  (RLMAP) algorithm.  It can  be shown  that 

estimating s(i) s ( j )  using (42) again requires solving only  a 
set of linear  equations  and  as  with  the LMAP algorithm the 
assumption of infinite  data  leads to a  computationally  simple 
procedure which has a frequencydomain  representation. 
Furthermore, it can  be  shown [ 181, [29]  that each  iteration 
in  the RLMAP algorithm increases p (Q Iy) instead of p (u, s Iy), 
thus corresponding to a true MAP parameter  estimation  rule. 

As an  alternative  approach to estimate the &-pole param- 
eters  from  a noisy observation, we may  model the noisy all- 
pole  process by a  pole-zero  process,  estimate the poles  and 
zeros,  and then  identify  the all-pole parameters  from the esti- 
mated  poles  and zeros. Specifically, if we  assume the excita- 
tion  in  an all-pole process is white Gaussian noise  and the 
additive  noise is also white Gaussian uncorrelated  with the 
excitation,  then  it  can beshown  [48]  that  the noisy all-pole 
process  can be  modeled  by  a pole-zero system whose poles  are 
identical to those of the original all-pole system. By using a 
pole-zero parameter  estimation  iechnique,  the  poles  and  zeros 
of the pole-zero system  may  be  estimated  and the resulting 
poles  may  be identified as the poles of the original all-pole 
process. This  approach  has  been  applied  by  Done  and  Rush- 
forth  [30]  to estimate all-pole parameters  from  a  noisy time 
series, and may be  applied to estimate  the all-pole parameters 
from  noisy  speech. 

In the above we have  discussed  several approaches to esti- 
mating the parameters  in all-pole model of the vocal tract. . In 
the LMAP algorithm,  the noise-free speech is estimated  in  the 
process of estimating the all-pole parameters  and thus  the 
estimate of  noise-free speech can be  directly used as the  out- 
put of the  enhancement system. In  other  approaches, how- 
ever,  speech  has to be generated  from the estimated all-pole 
parameters.  One way to generate  speech is to use a  speech 
synthesis  system based on  the same  underlying  speech  model 
used in the analysis. This approach  requires  an  estimation of 
the  source parameters. An alternative  approach  which  does 
not  require  an  estimation of the source  parameters is to form 
P , ( o )  in (40)  from  the speech  model  parameters and  then 
form  an  optimum filter H(o) as in (21).  Then speech  can  be 
generated  by  filtering the noisy speech. If the filtering is 
performed  in  the same  manner as in SectionAIII-B,  i.e., H ( o )  
applied to Yw(o) to obtain  the  estimate Sw(o), the  tech- 
niques discussed in  this  section again can be  viewed as a par- 
ticular method of estimating the  short-time  spectral  amplitude 
of speech discussed in  Section 111. The difference lies in  the 
fact  that  the  techniques discussed in this  section were  devel- 
oped by attempting to capitalize on a  particular  speech  model. 

B. Speech-Enhancement  Techniques  Based  on a Pole-Zero 
Model of Speech 

Even though  the all-pole model of speech  has  been used in 
many  speech  communication  problems, it is known [7], [8] 
that a  variety of sounds can be  more  adequately  modeled  by 
a pole-zero system.  In  a pole-zero model of speech, the trans- 
fer  function V(z)  in Fig. 1 is modeled on a  short-time basis 
to be of the form 

(43) 
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Fig. 13. A noisy speech model based on a pole-zero speech model. 

where “q” represents the  order of  zeros. Thus on a  short-time 
basis the speech waveform s(n)  is assumed to satisfy  an auto- 
regressive  moving  average difference  equation of the  form 

P 4 

k = l  k =O 
s (n)  = a k  * s(n - k) + b k  - u(n - k) (44) 

where u(n) represents the source  excitation,  and a and b are 
the system  parameters of the model. An alternative  represen- 
tation of (44) is 

P 
x ( n )  = a k  * x(n  - k) + u(n) (454  

k = l  

and 

4 
s(n)  = b k  * x(n - k). (45b) 

k = O  

This corresponds to the overall system being represented as 
the cascade of an all-pole and  an all-zero model as indicated 
in Fig. 13. 

In general,  estimating the zero  parameters b in the presence 
of noise is a very difficult  problem  since  zeros  are  much  more 
easily masked by  the background  noise than poles.  Neverthe- 
less, techniques similar to those discussed in  Section V-A have 
been  developed to estimate the zeros in  the presence of noise. 
One  approach is to enhance  speech  first  by  the  techniques 
discussed in  Section I11 and  then use  available  pole-zero  pa- 
rameter  estimation  techniques  [491-[52]  applicable to noise- 
free signals. 

Another  approach to  the problem of estimating the  model 
parameters a and b is to use  well known  parameter  estimation 
rules. Musicus and Lim [ 3  1 I and Musicus [321 considered 
using the MAP estimation  rule  and have shown  that  the  itera- 
tive algorithms discussed in  Section V-A for an all-pole model 
can  be generalized to a pole-zero model.  Specifically, the 
LMAP algorithm can  be  generalized by attempting to maxi- 
mize p ( a ,  b, x , l y )  where x represents the samples of x ( n )  in 
(45)  and Fig. 13. TheAgeneralized algorithm begins with  an 
initial estimate $0 and , from which the  estimate x^ of x is 
formed as x^ = E[%[ ;io , bo, y 1 . With t$ estimate of x, a  new 
estimate a, and b l ,  is obtained as i i l ,  b l  = E[a ,  b,lx^]. With 
the new 3, and b, the  abovefrocedure is repeated to obtain 
an  updated  estimate i i 2  and b2. It can be  shown  (32)  that 
the  steps discussed above involve  solving only  sets of linear 
equations  and  further  that  the above  iterative  procedure in- 
creases p(a ,  b ,  x ( y )  in  each  iteration. 

In  the generalized  LMAP algorithm discussed above, when 
a and b are  estimated  from x̂ , the values x^ are used to  form 
products of the  form x ( i )  * x ( j ) .  The generalized  LMAP 
algorithm  estimates x ( i )  - x ( j )  as 

x ( i )  ̂ x ( j )  =E[x(i) la^,  g , y ]  -E[x( j ) la^,  g , y ] .  (46) 

As an  alternative, x ( i )  - x ( j )  may be  estimated  directly as 

x ( i )  - x ( j )  = E [ x ( i )  * r(j)l a, s, y I . (47) 

As with  the all-pole case, an iterative  algorithm based on (47) 
increases p(a,  bly) in  each  iteration  (32).  In  both  the general- 
ized LMAP and RLMAP algorithms, an  infinite  data assump- 
tion leads to a  computationally  simple  procedure which has 
a  frequency  domain  representation.  Generation ,of speech 
from  the  estimated  model  parameters is essentially the same  as 
in the all-pole model case  discussed in  Section V-A. 

C. Speech-Enhancement  Techniques Based on a 
Nonparametric  Model of Speech 

In Sections V-A and V-B,  we have considered  speech  en- 
hancement  techniques based on  a  parametric  model of the 
vocal-tract transfer  function V(z) .  Nonparametric  representa- 
tions  for V ( z )  such as homomorphic analysis  of speech  can 
also be  considered (53). For a  npnparametric  representation 
of V(z) ,  it is the impulse  response u(n) which is estimated 
rather  than the model  parameters.  Two  specific  speech  en- 
hancement  techniques which are based on a  nonparametric 
model of speech  are  a  system developed by Miller [25]  to 
remove  record noise and  the  orchestral  accompaniment  from 
early  recordings of Enrico  Caruso, and a  system by Suzuki 
[ 261, [27]. The  two systems were briefly discussed in Sec- 
tion 11. 

A simple alternative  approach to  capitalize on a  nonparamet- 
ric representation of speech is to first  enhance  speech  by  any 
of the  techniques discussed in Section 111, and  then  estimate 
the impulse  response  by  deconvolution  techniques [ 1 I ,  [54] 
based on a  nonparametric  representation of speech  such as 
homomorphic  speech analysis [531. A more  theoretical  ap- 
proach to estimating the impulse  response based on classical 
estimation  rules is a much  more  difficult  problem. Even 
though  iterative  algorithms similar to those discussed in Sec- 
tions V-A and V-B can in  principle be developed,  relating the 
algorithms to an  estimation  rule  such as  MAP estimation is 
not  an easy task. 

VI. TECHNIQUES FOR BANDWIDTH COMPRESSION OF 
NOISY SPEECH 

Much of the discussion in  the previous sections  focused on 
the  problem of processing  degraded  speech in  preparation  for 
listening,  with the objective of improving  quality,  intelligibility 
or  some  other  attribute. A related  but distinct  problem is that 
of processing degraded  speech in  preparation  for coding  by  a 
bandwidth  compression  system. It is commonly  understood 
that  robustness is a  problem in bandwidth  compression of 
speech, specifically that performance degrades quickly [ 5 5  I - 
[ 57 1 as the signal-to-noise ratio decreases. Thus it is impor- 
tant to develop  techniques  for  bandwidth  compression which 
specifically account  for  the presence of noise. 

There  are two basic approaches  typically  considered.  The 
first,  depicted  in Fig. 14 corresponds to using a  conventional 
bandwidth  compression  system  preceded  by  a  preprocessor to 
first  reduce the background noise. In this case  any of the 
variety of noise reduction systems which  were  discussed pre- 
viously could  potentially  be used. A number of systems for 
bandwidth  compression of noisy speech  in the form of Fig. 14 
have been  implemented  and  evaluated.  Typically, whereas the 
intelligibility of the  output of the noise reduction  system is less 
than  that of the  input,  the intelligibility of the  output of the 
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Fig. 14. Bandwidth compression of noisy  speech using a noise  reduction  system as a preprocessor. 
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Fig. 15. A system for classification of noisy  speech  by McAulay [ 631, [ 641. 

bandwidth  compression  system is higher than would be 
achieved if the noise recuction  system were not  present. 

An alternative  approach is to directly  incorporate  into  the 
bandwidth  compression  system  the  knowledge  that the model 
for  the  input signal is speech  plus  additive noise. For  example, 
various  systems for compression of undegraded  speech  are 
based on parametric  modeling of the speech waveform [41] ,  
[42].  The parameters  are  coded  and  transmitted  and  at  the 
receiver are  then used to  resynthesize  the  speech. One partic- 
ularly  successful  form for such a system  referred to  as linear 
predictive  coding  (LPC)  represents the speech signal  in the 
form of Fig.  1 with the vocal-tract  transfer  function  modeled 
on  a  short-time basis  as an  all-pole  filter. As  was discussed in 
Section V-A, there  'are available a variety of successful 
approaches to estimating  the  parameters of the vocal-tract 
transfer  function.  The remaining  parameters  are  those used to  
represent  the  excitation  function and  correspond to  a deci- 
sion as to  whether,  for  each  segment,  the  speech is voiced or 
unvoiced,  and if voiced a  determination of the  fundamental 
frequency. Again, for  the case of undegraded  speech,  there  are 
a variety of successful  systems for  estimating  the  excitation 
parameters [ 581 -[ 61 I .  

For speech  degraded by additive  background noise we can, 
in  a  similar  fashion, attempt  to  estimate  the  parameters.  In 
particular,  in  Section V-A  we discussed for  degraded  speech 
the  estimation of the  parameters  in an all-pole  model  and in 
Section V-B the  estimation of the  parameters  in  a  pole-zero 
model using MAP parameter  estimation  techniques.  In  the 
context of that discussion the  parametric  modeling was 
directed  at  an  enhancement  system.  Clearly,  however,  the 
parameters can be coded  with  the speech  resynthesized at  the 
receiver, just as is done with conventional LPC. In  addition 
to  the resulting  bandwidth  compression,  the  system also per- 
forms as a speech  enhancement  system. 

Another  example of a speech  compression  system which has 
been modified to  account  for  the  presence of additive noise is 
the  spectral  envelope  estimation  vocoder  developed by Paul 

[62]. In his speech  compression  system, the vocal tract  trans- 
fer  function is estimated  by first carrying out  a  highresolution 
spectral  analysis  for  each  speech  frame. The peaks  corre- 
sponding to  the spectral  envelope  at the  frequencies of the har- 
monics of the  fundamental  frequency are then  located.  Next, 
the  spectrum is interpolated  between  these  frequencies to  ob- 
tain an  estimate of the spectral  envelope,  corresponding to  the 
vocal-tract  transfer  function. In the  modification of the sys- 
tem when background  noise is present, the assumed spectrum 
for the background  noise is subtracted  from  the  spectral en- 
velope  obtained  for  the  degraded  speech. This new estimate 
for  the vocal tract  transfer  function is then used to  provide the 
parameters  for the synthesizer. 

The above  approaches  provide several alternatives  for ob- 
taining  parameters  representing  the  vocal-tract  transfer  func- 
tion.  In general it  appears to  be considerably more  difficult 
to  extract  excitation  parameters  from  degraded  speech. Essen- 
tally all  algorithms  for  determination of excitation  parameters 
with  undegraded  speech  become  seriously  degraded  with even 
moderate  signal-to-noise  ratios  and to  a large extent  the esti- 
mation of excitation  parameters  from  noisy  speech  remains  a 
current  area of research.  Particularly  difficult  and  unresolved 
is the  determination of whether  a given segment of speech is 
voiced,  unvoiced  or  silence. McAulay [63],  [64] has pro- 
posed one system for  optimum  speech classification based on 
the principles of decision  theory. The resulting  system is 
shown  in Fig. 15. This system  requires an estimate of the  fun- 
damental  frequency  under  the  hypothesis  that  the  speech is 
voiced. For voiced  speech,  one  approach  for  determination  of 
the  fundamental  frequency  that has been particularly success- 
ful is the  maximum  likelihood  pitch  estimator  as  proposed by 
Wise et al. [ 6 5 ] .  They  formulated  the  problem as that of esti- 
mating  an unknown  periodic signal in  white Gaussian noise of 
unknown  intensity.  The  resulting  procedure  for  obtaining  the 
optimum  estimate of the  pitch  period  corresponds to  con- 
structing  a  bank of comb  filters each tuned to  a slightly dif- 
ferent  pitch  period  and  choosing as the  estimate  the  pitch  cor- 
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responding to  the  comb fiiter  for which the  output energy is 
largest. 

Another,  somewhat  different  approach to  obtaining  an  exci- 
tation  for  the  synthesizer, which  requires  a  higher  data  rate  has 
been  proposed  by Magill and Un [28]. The overall  system for 
noise reduction is based on the use of all-pole  modelling of the 
vocal tract  transfer  function  as  outlined  in  Section V, with  an 
excitation  function  obtained  by passing the  result  of low-pass 
filtering the residual signal for  the noisy  speech  through  a  non- 
linear  distortion to  broaden  its  bandwidth. 

VII. PERFORMANCE EVALUATION 
The  performance  evaluation of the various  systems discussed 

in this  paper is a very difficult  task,  partly  because  the per- 
formance of a  system may vary depending  on  the  particular 
application  under  consideration.  Some  systems which improve 
speech  quality may decrease  speech  intelligibility. Some sys- 
tems which improve  speech  intelligibility  in the  context of 
bandwidth  compression may decrease  speech  intelligibility  in 
the  context of  speech  enhancement.  Some  systems which im- 
prove speech  quality when the speech  degradation is due to  
additive random noise may not even be applicable if the deg- 
radation is due to  a  competing  speaker. 

A  further  complicating  factor  in  evaluating  the  system per- 
formance is that  the  objective of various  systems discussed in 
this  paper is generally  an  improvement in some  aspects of 
human  perception  such as an  improvement in speech intelligi- 
bility  or  quality,  or  reduction of listener  fatigue.  Since  the 
human  perceptual  domain is not well understood,  a  careful 
system  evaluation  requires  a  subjective  test  such  as  a  speech  in- 
telligibility or  quality  test. A careful  subjective  test  can be 
tedious  and  time  consuming,  and  generally  requires processing 
a large amount of data. 

Because of the difficulty involved in  the  evaluation,  only  a 
few systems have been  carefully  evaluated  by  a  subjective  test 
for  some  particular  environments.  A  few  others have only 
been evaluated based on an  objective  measure  such as SIN 
ratio  improvement even though  such  an  objective  measure 
does not  correlate well with  a  subjective  measure.  In  this sec- 
tion, we summarize the  performance  evaluation  that has  been 
reported  for  some of the  systems  presented  in  this  paper. 
Since the  evaluation has been based on  different  procedures, 
test  material,  environments,  etc.,  no  attempt is made to com- 
pare  individual  systems.  In  Section  VILA, the  evaluation  of 
high-pass fiitering  and  clipping  for  speech  enhancement is 
summarized.  It  has  been  reported  that  this  system  noticeably 
improves  intelligibility  despite  the  fact  that  speech  quality is 
seriously  degraded.  In  Section VII-B, the  evaluation of high- 
pass filtering  for  the specific phoneme /s/ and  creating  short 
pauses before plosive sounds  for  speech  enhancement  has  been 
summarized. It is reported  that  this system  noticeably im- 
proves speech  intelligibility if tne  locations of the  phoneme I s /  
and the plosive sounds  are  accurately  known.  In  Section VIIC, 
the  evaluation of one of the  spectral  subtraction  techniques is 
summarized.  In  the  context of speech  enhancement  the sys- 
tem does  not  improve  speech  intelligibility but  improvesspeech 
quality.  In  the  context of bandwidth  compression,  the  system 
appears to  improve  intelligibility.  In  Section  VII-D, the evalu- 
ation of adaptive  comb  filtering  for  speech  enhancement is 
summarized.  Here again despite  an  improvement  in S/N ratio, 
the  system  reduces  intelligibility.  In  Section  VII-E, the evalua- 
tion of splicing of autocorrelation  function (SPAC) indicating 
an  improvement in speech  quality is summarized.  In  Section 
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Fig. 16. Intelligibility scores of high-pass filtering and clipping, and 
high-pass filtering, clipping and differentiation for enhancement of 
speech degraded by wide-band random noise. after Thomas and 
Ravindran [13 ) .  

VII-F, the  evaluation of the LMAP and RLMAP techniques is 
summarized. The LMAP technique  appears to improve  speech 
quality  both  in  the  context of speech  enhancement  and  band- 
width  compression. Based on an  objective  measure,  the LMAP 
and RLMAP techniques  estimate  speech  synthesis  parameters 
more  accurately  in the  context of bandwidth  compression. 

A.  High-Pass Filtering and Clipping 
As was discussed in Section II, highpass filtering  and  clipping 

have been  considered  for speech  enhancement  by  Thomas  and 
Ravindran [ 13 1 . Their  evaluation was based on a  speech  intel- 
ligibility test with  the test material of Harvard PB-50 (phoneti- 
cally  balanced) word lists when the  degradation is wide-band 
random noise. They also evaluated high-pass filtering, clipping 
and  differentiation  for  speech  enhancement.  The  results of 
their  evaluation  are shown in Fig. 16. ‘ 

Before we discuss the results of the  evaluation, we  review 
very briefly  speech  intelligibility tests. In a  typical  speech 
intelligibility test [ 6 6 ] ,  [67], listeners  are  presented  with  test 
material  and  asked to  identify  the  test  material  or answer 
questions  based on the test material. For example,  listeners 
may be  presented  with  sentences,  words  or  syllables  and  asked 
to  write the test  material  that  they heard or choose  one out of 
several options which  most  closely  resembles  what  they  heard. 
Alternatively,  listeners  may be presented  with  a  paragraph  and 
asked to  answer  questions  based on the  contents  of  the 
presented  paragraph. From  the responses of the  listeners  the 
intelligibility score, the percentage of “correct”  answers based 
on some  predetermined  criterion, is computed.  For  a given 
type of degradation, the intelligibility  score is generally ob- 
tained  for several different levels (amounts) of degradation. 
The amount of degradation is represented in terms of S/N 
ratio.  For  the same type  and level  of degradatoin,  the  intelli- 
gibility  score can vary considerably  depending on  the  test pro- 
cedure,  test  material, training of subjects,  etc.  Furthermore, 
the defiition of SIN ratio  employed varies from  one evalua- 
tion to  another.  Therefore, two systems  evaluated  differently 
and  possibly with a  different d e f i t i o n  of S/N ratio  cannot 
be compared based on the  intelligibility scores  alone. How- 
ever, it is generally  established  that if one  system is superior to  
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Fig. 19. Intelligibility scores of Frazier’s fdtering technique for en- 
hancement of speech degraded by a competing speaker. (After Perl- 
mutter e t  al. [ 73 1 .) 

the  adaptive  filtering was obtained  from noise-free speech. 
The  results of the  test  are shown  in  Fig.  19.  Their  results  indi- 
cate  that even with  accurate  pitch  information,  the  adaptive 
filtering  technique  decreases  intelligibility  at  the S/N ratios  at 
which the  intelligibility of unprocessed  nonsense  sentences 
range between 20 and 70 percent. 

A modification of Frazier’s  adaptive  filtering  technique was 
evaluated using nonsense  sentences as test  material  when the 
degradation is due to wide-band random noise [74].  The 
pitch  information used in the processing was obtained  from 
noise-free speech.  The  results of the  test  are  shown  in Fig. 20. 
Again, the  results  show  that even with  accurate  pitch  informa- 
tion,  the  adaptive  filtering  technique  tends  to decrease the in- 
telligibility at various S/N ratios.  Since  in  practice  accurate 
pitch  information is not  available  and  cannot  be  expected to  
be obtained  from  degraded  speech,  the  intelligibility  scores 
will be even lower than  shown in  Figs. 19  and 20. 

To the  extent  that voiced speech is periodic,  the S/N ratio 
improvement for voiced  speech using Frazier’s adaptive fil- 
tering  can be analytically  calculated.  For  the  modified  adaptive 
filters [ 741 , the S/N ratio  increase is 3.5, 7, and  10 dB corre- 
sponding to  the  filter  lengths of 3, 7, and  13  pitch  periods. 
It is interesting to  note  that  a hlgher S/N ratio increase  leads to  
a  lower intelligibility score.  This is partly  due to  the fact  that 
voiced speech is not  strictly  periodic  and  the  periodicity 
assumption is more seriously  violated by a  filter  with  a  longer 
impulse  response  thus causing a higher signal distortion. 
Despite the decrease in speech  intelligibility,  speech  processed 
by an  adaptive  filter  sounds  “less  noisy”  due to  the capability 
of the system to increase the S/N ratio. 

E. SPAC 
As was discussed  in  Section 11, a  speech  enhancement  system 

based on splicing of autocorrelation  function (SPAC) was 
developed by Suzuki [26]. The system was evaluated by 
Nakatsui [75] based on  a speech  quality  test when the 
degradation is due  to wide-band random noise. The  results of 
the  test  show  that  above 5 dB  of SIN ratio, SPAC does  not 
improve  speech  quality. In  fact,  at high SIN ratios, SPAC is 
expected to  decrease  speech  quality  since SPAC replaces one 
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Fig. 20. Intelligibility scores of Frazier’s adaptive fdtering technique 

wide-band random noise. (After  Lim et ol. [ 74 1 .) improved by Lim et d. [741 for enhancement of speech depaded by 

period of speech with a  corresponding  period of short-time 
autocorrelation function thus causing some speech  distortion. 
Below about 5 dB of SIN ratio,  however,  some  improvement 
in speech  quality  by SPAC was reported. 

F. LMAP and RLMAP 
The LMAP technique discussed in  Section V was evaluated 

by Lim [ 181  based on a  speech  quality  test using sentences as 
test  material  when the degradation is due to  wide-band ran- 
dom noise. The  results of the  test  indicate  that  the LMAP 
technique  improves  speech  quality at various S/N ratios  both 
in  the  context of speech  enhancement  and  bandwidth com- 
pression of noisy speech. 

Both the LMAP and RLMAP algorithms were evaluated  by 
Lim [ 181 based on an  objective measure  in the  context of 
bandwidth  compression of noisy speech. In the  evaluation,  a 
number of  sequences of noisy synthetic  data were generated 
by exciting known all .pole  fdters  with  white Gaussian noise 
or  a train of  pulses and  then  adding wide-band random noise 
at  various S/N ratios.  From  the noisy synthetic  data,  all  pole 
coefficients  were  estimated  by  the  correlation  method of 
linear prediction  analysis,  the LMAP and RLMAP algorithms 
discussed in  Section V. The  estimated all pole  coefficients 
were then  compared  with .the  known all pole  coefficients to  
form  an  error measure  defined  by 

where “k” is a constant, 4‘ and si represent  the  known  and 
estimated all pole  coefficients. The error  measure E defined 
by (48) has some correlation with  perceptually  important 
aspects of speech (41). In Fig. 21(a) is shown  the  error E 
averaged over  many  different sets of all pole  coefficients when 
the  excitation is white Gaussian noise. In Fig. 21(b) is shown 
the averaged error E when the excitation is a train of  pulses. 
The  results in Fig. 21  indicate that based on objective mea- 
sure given by (48) the LMAP or RLMAP algorithm  estimates 
the all pole coefficients  more  accurately than the  correlation 
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(3) 
Fw 21. Performance comparison  of  correlation method, LMAP and 

Synthetic data. (After Lim [18].) (a)  Random-noise excitation. 
RLMAP techniques in estimating aU-pole parsmeters from noisy 

(b) Pulse train  excitation. 

method of linear predictioh  at  various SIN ratios  when  the 
background noise is wide-band random noise. 

VIII. CONCLUSIONS 
In this paper, we have attempted  to survey a  variety of sys- 

tems  for  speech  enhancement  and to  incorporate  them  within 
a  common  framework. As  was evident  in the discussion it is 
possible to generate  an almost  unlimited  number of systems 
many of which are  conceptually  plausible.  Furthermore  many 
of these  systems  lead to an  improved  speech to noise ratio 
which is perceived as higher  quality,  particularly  when  the  test 
material is familiar to  the listener so that  intelligibility is not 
an issue. However, almost all  of these  systems  in  fact  reduce 
intelligibility  and  those  that  do  not  tend to degrade the 
quality. This suggests then  that  there remains  considerable 
further work to be  done  and  room  for  improvement. 

As an  additional  important  consideration  the  evaluation of 
an  enhancement  system is very much  dependent on the con- 
text  in which it is to  be used. In some  applications  it is intel- 
ligibility that is of overriding  importance  and in  others  it is 
quality. Additionally  a  system may perhaps  slightly  reduce in- 
telligibility but also reduce  listener  fatigue so that  with  an 
extended  listening task intelligibility is eventually  increased. 
To our knowledge  none of the  systems discussed have been 
evaluated in  terms of their  potential to reduce  listener  fatigue. 

Essentially all of the  systems considered  here have their basis 
in  a  mathematically  optimal  procedure  such  as  minimization 
of mean square  error  or  maximization of a  probability 

function,  followed  by  a  number of empirical  variations. It is 
generally known  that  these  criteria  are  not  particularly well 
matched to auditory  perception  and it remains to  develop  a 
mathematical  error  criterion  that  strongly  correlates  with 
human  perception. 

An area  in which speech  enhancement  systems have been 
successful is in  the  context of bandwidth  compression.  Since 
speech  bandwidthcompression  systems  tend to degrade 
quickly  in  the presence  of  background  noise,  preprocessing 
with  a  speechenhancement  system  prior to  bandwidth com- 
pression  leads to  higher  intelligibility  after  cornpression than 
would be obtained  without  the  preprocessor. In addition as 
was discussed in  Section VI some  systems  are  specifically  for- 
mulated as analysis~nthesis or bandwidthcompression 
systems  with  noisy  inputs. Of particular  difficulty in narrow- 
band  speech  compression  systems is the  determination  of 
excitation  parameters  including  pitch  and  a  voiced,  unvoiced 
or  silence  decision. 

We hope  that  the  framework developed  in  this  paper will 
provide the basis for  further research into  speech  enhancement 
techniques  and will avoid the rediscovery of existing  tech- 
ques. In our opinion,  the  problem  remains  an  important  and 
vital one  with  a need for  fresh  approaches  and  insights which 
we hope wilt emerge  over the  next several  years. 
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