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Abstract

There has been strong recent interest in high resolution techniques for reliably resolv-
ing closely-spaced sources and estimating their directions. The performance of can-
didate techniques has, until recently, been assessed empirically in most publications.
Several recent contributions have facilitated analytical performance assessment for
scenarios with a single unknown direction parameter for each source (1-D). However,
many practical geolocation applications require estimating multiple position-location
parameters for each source (e.g. azimuth, elevation and possibly range). This thesis
generalizes many of the 1-D results to scenarios with multiple parameters (multi-D).

The main results of the thesis are analytical expressions, valid for closely spaced
sources in multi-D scenarios, for the eigenstructure of the data covariance matrix, for
the singular value decomposition of its matrix factor, for the Cramér Rao lower bound
on directional variance, and for detection and resolution thresholds. The expressions
make explicit the impact of scenario parameters such as maximum source separation,
source configuration, source powers and correlations, and sensor array geometry.

The multi-D results herein in some ways parallel the prior 1-D results, but also
differ in interesting and significant ways. For a given number of closely-spaced sources,
we find for multi-D scenarios, in relation to 1-D scenarios, that 1) the direction finding
(DF) problem is much better conditioned, 2) the Cramér Rao variance lower bounds
are much lower, and 3) the source detection and resolution problems are easier.

The thesis provides an analytical framework for the direction finding problem in
multi-D scenarios, which should facilitate the assessment of candidate DF techniques,
help quantify the numerical-accuracy and hardware-alignment issues associated with
implementing high-resolution techniques, facilitate beamformer design and provide
insight helpful to the development of improved DF algorithms for multi-D scenarios.

Thesis Supervisor: Harry B. Lee
Title: Atlantic Aerospace Electronics Corporation

Thesis Supervisor: Alan V. Oppenheim
Title: Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Determining the direction of propagating signals incident upon a sensor array, in
the challenging case when the separation between signal sources is small, has been
a topic of strong interest over the last two decades. Numerous High Resolution di-
rection finding techniques have been proposed with the purpose of reliably resolving
closely-spaced sources and estimating their directions [1]-[5]. The performance of the
candidate techniques in terms of bias, variance, detection and resolution thresholds
has, until recently, been assessed only empirically [4], [6]-[8]. Such empirical assess-
ment is not entirely satisfactory since it is scenario dependent and does not provide
insight into fundamental performance limitations.

Several recent contributions have facilitated analytical performance assessment
for closely-spaced sources, and made explicit the impact upon performance of sce-
nario parameters such as sensor array geometry, source configuration, source powers
and correlations, and maximum source separation dw. Available analytical results
for closely-spaced sources include estimator bias and variance expressions for spe-
cific direction finding (DF) algorithms [9], [10], Cramér Rao bound expressions for
the minimum directional variance attainable with any unbiased algorithm [11], eigen-
structure expressions for the data covariance matrix that is central to DF algorithms
[12], and expressions for the detection and resolution thresholds [13]. These analyt-
ical formulations have generally been obtained for scenarios with a single unknown

direction parameter for each source (1-D scenarios). Many practical direction finding
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applications involve two or more unknown direction parameters for each source (e.g.
azimuth, elevation, and in some applications also range). Corresponding analytical
results for multi-D scenarios are not currently available.

The purpose of this thesis is to generalize many of the analytical results recently
developed for 1-D direction finding scenarios to multi-D scenarios. Thesis results for
closely-spaced sources in multi-D include expressions for the eigenstructure of the
data covariance matrix, for the Cramér Rao lower bound on directional variance, and
for the detection and resolution thresholds. The multi-D results developéd herein
in some ways parallel the prior 1-D results, but also differ from the 1-D results in
interesting and significant ways. For a given number of closely-spaced sources, we
find for multi-D scenarios, in relation to 1-D scenarios, that 1) the DF _problem is
much better conditioned, 2) the Cramér Rao variance lower bounds are much lower,

and 3) the source detection and resolution problems are easier.

1.1 Recent Developments in Spatial Spectrum Es-

timation

Many of the techniques proposed for estimating the direction of closely-spaced sources
were originally proposed for estimating the frequency spectrum of time series. Since
sampling of a function in time is analogous to sampling of a function in space, es-
timating the frequency of sinusoids in noise is similar to estimating the direction of
plane waves in noise. It is at times convenient to represent the unknown plane wave
direction as a spatial frequency w for 1-D scenarios, or as spatial frequency vector & for
multi-D scenarios. The following discussion reviews recent developments in spectrum
estimation in the context of estimating spatial frequency vector & [7], [8].

In a typical direction finding scenario, an array of sensors observes signals prop-
agating from a number of sources. The sensor array is characterized by the hgene'r‘ic
arrival vector d(&), which is the ideal (noise-free) array response to a unit amplitude,
zero phase signal with spatial frequency &. It is assumed that @(&J) is known for all

&. The function d(&) sometimes is called the array manifold.
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The sensor array data typically consists of N snapshot vectors §(t), where the it
element y;(t) denotes the output of the i** sensor at sampling time ¢, with¢ = 1,--- N.
The data is assumed to be a linear combination of generic arrival vectors for each of
the sources present, scaled by the respective signal amplitude, with additive noise.

Specifically, the data model addressed in this thesis is of the form

M

y(t) = _Z;&'(G)'j)wj(t) +€(1) (1.1)
i=

where & - - - Gp denote the (unknown) source spatial frequencies for each of M sources
present, z;() denotes the complex amplitude of the jt* source, and €(t) is a vector of
additive, uncorrelated white noise (e.g. sensor noise). The (spatial) frequency estima-
tion problem is to identify the &;, --+ &y from the snapshot vectors (1), --- F(INV)

and the known array manifold d@(&).
To obtain the benefits of averaging, most practical spectral estimation algorithms
average outer products of the snapshot vectors to compute a sample data covariance
matriz R. For large data sets (as N — o0), the sample data covariance matrix

converges with probability one to the asymptotic data covariance matriz R. That is

R N
B2 %t};i(t)ﬁ(t)" (1.2)
R = E{Ft)7(t)"} (1.3)
and
dim R =R (1.4)

To obtain spatial frequency estimates, the sample data covariance R is transformed to
generate a non-negative spectrum function S(&). The domain of this function is the
set of a,ll-possible spatial frequencies &; the values of & at spectr.um peaks (maxima)
are interpreted as estimates of source spatial frequencies. |

Table 1.1 lists the spectrum functions S(&) used by a number of popular algo-
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Spectral Estimation Algorithm Spectrum Function

Conventional Beamscan Scps(@) =

constant

Maximum Entropy Method SmMeM(@) = " _— (ii ) "2
a(@ ~1)first column

a(@)a(@)
i(@) B13(3)

Maximum Likelihood Method Smim(@) =

; d(@)ha(@) —
MUSIC S w) = E—
wusic(®) = 3T EnEh a@)
. , d(@) ()
MinNorm SMinNorm(@) = i
Minors () @(@)h ExtirEY 3(d)
En = columns of Ey are selected (noise-space) eigenvectors of R
f = selected to minimize the norm of £*E*Ent

subject to first element of Ent being equal to 1

Table 1.1: Spectrum Functions of Representative Spectrum Estimation Techniques

rithms. In each case, the algorithm operates on the covariance matrix R with the
generic arrival vector @(&) to generate the spectral value for direction &.

The Conventional Beamscan (CBS) method is the classic direction finding algo-
rithm and actually provides the best possible estimate of the spatial frequency & of
a single source received in the presence of (spatially) white noise [7]. Unfortunately,
the CBS method is not optimal in the presence of multiple sources, and breaks down
completely if two or more sources are closely-spaced.

The CBS method is analogous to classical time-series matched-filtering, (and also

16



analogous to Fourier spectral analysis of time series). The value of spectrum S¢ps(&)
is large when the vector @(&) equals one signal component d@(&;) (i.e. when & equals
the spatial frequency vector of one of the sources). For a scenario with a single source
at & and spatially white noise, the value of & at the peak of the Scps(&) spectrum is
an optimum, unbiased estimator of @ . For large data sets (R — R), the peak of the
Scps(@) spectrum is exactly at &;. The width of the Scps(&) peak is independent
of the data set size N; the width as measured between the 3 dB attenuation points
is commonly designated as the Rayleigh beamwidth.

For scenarios with more than one source, the Sgps(&) spectrum consists of the
sum of individual spectra of each of the sources. As a consequence, the spectral peak
frequencies in scenarios with multiple sources may not have means equal to-the source
locations &;, not even as R— R; thus the CBS estimator is biased. Furthermore if
two sources are spaced closer than one Rayleigh beamwidth, the Scps(&) spectrum
typically exhibits only one peak (in the vicinity of the two source spatial frequencies).
Therefore the CBS method typically does not resolve sources separated by less that
one Rayleigh beamwidth.

A large number of DF techniques has been developed in the past two decades
to overcome the resolution limitations of Conventional Beamscan. These so-called
High Resolution techniques can resolve sources with spacing less than the Rayleigh
beamwidth given favorable conditions (e.g. large data set (N — o0), high signal-to-
noise ratio (SNR), accurate array calibration, etc.)

Early High Resolution DF techniques were based upon classical methods of spec-
trum estimation, but made no use of any information about the underlying propa-
gating signal process. Representative early High Resolution techniques include Max-
imum Entropy Method (MEM) attributed to Burg [1] and the Maximum Likelihood
Method (MLM) technique attributed to Capon [2] with spectrum functions Sprenm (&)
and Sypm(&) as in Table 1.1. Under favorable conditions, these spectral estimators
resolve sources within a Rayleigh beamwidth, but the direction estimates (the spec-

tral peak locations) obtained with these methods typically are biased even for large

data sets (as B — R).
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Over the last decade a new class of High Resolution techniques has been in-
troduced, including MinNorm [3], [4], MUSIC [5] and related Eigenvector techniques
based upon the eigenanalysis of the covariance matrix R. For large data sets (E — R),
subject to data model assumptions, MinNorm and MUSIC provide asymptotically un-
biased estimates of the source spatial frequencies regardless of signal-to-noise ratios
and frequency separation of the sources.

In contrast to classical spectral methods, eigenvector techniques assume (require)
that the direction finding scenario consist of spatially discrete signal sources, that
the number of sources be less than the number of sensors, and that the noise be
uncorrelated and white (or pre-whitened). Under these conditions, the covariance
matrices R, R can be decomposed into orthogonal “signal” and “noise” vector sub-
spaces. Eigenvector direction finding techniques exploit the property that the generic
arrival vectors @(&,),- -+, @(@pm) for each of the sources lie within the “signal” vector
subspace of the asymptotic covariance matrix R, and therefore are perpendicular to
the corresponding “noise” vector subspace. The denominators of the spectrum func-
tions Syusic(@) and SuminNorm(&) in Table 1.1 involve the projection of @(&) onto
vectors in the noise subspace of R. Whenever @ equals a source spatial frequency, the
denominator tends to zero as R — R, and therefore the spectrum functions peaks are

asymptotically unbiased estimators of source spatial frequency.

1.2 Closely-Spaced Sources

The performance of High Resolution direction finding techniques is roughly compa-
rable when sources are well separated. Performance differences become evident in
the stressful case when sources are closely-spaced. Therefore the ability of a High
Resolution technique to resolve closely-spaced sources, and to accurately estimate
their parameters, has become a standard test in the literature of the “power” of the
technique.

The spatial spectra of the Maximum Entropy and of the Maximum Likelihood

estimation algorithms depend upon the inverse of sample covariance matrix R; the
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spectra of the so-called eigenvector techniques such as MinNorm and MUSIC depend
upon selected eigenvectors of R. (See Table 1.1). Therefore the performance of these
algorithms depends strongly on the eigenstructure of matrix B. Under the data model
assumptions, the sample covariance matrix R converges with probability one for large

data sets (as N — o0) to the asymptotic form
R = Rs+d’ (1.5)

where matrix term Rg reflects the spatial covariance contribution due to the incident
signals, and 0?1 reflects the additive, uncorrelated and spatially white sensor noise.
For closely spaced sources, signal covariance matrix Rs is ill-conditioned with the

result that direction estimates are very sensitive to hardware errors and finite data
sets.

Analytical expressions for the eigenstructure of the sample covariance matrix ﬁ,
if available, would facilitate the analysis of the statistical properties of the directional
spectra of Table 1.1, and hence facilitate performance analysis of the candidate DF
algorithms for closely-spaced sources. The eigenstructure of the sample covariance
matrix R can be expressed in terms of the eigenstructure of the asymptotic covariance
matrix R using classical perturbation theory results [9], [19]. Thus the eigenstructure
of R can be determined if the eigenstructure of R is available. The eigenstructure of
R is straightforwardly related to that of the signal component Rs of (1.5). Thus the
eigenstructure problem for closely-spaced sources is essentially that of identifying the
eigenstructure of asymptotic signal covariance component Rgs.

Direct analytical expressions for the eigenvalues and eigenvectors of Rs are not
available for general scenarios with more than 1 or 2 sources, due to the difficulty
in explicitly solving the polynomial characteristic equation of order greater than 2.
Thus, until receqtly, assessment of High Resolution estimator performance in terms
of bias, variance and resolution threshold has been largely empirical [4], [6], [7]. Such

empirical assessments leave unanswered important design questions; specifically they

e are scenario dependent,
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e do not establish fundamental performance limitations.

A recent contribution by Lee [12] developed an approach that facilitates analytical
identification of the eigenstructure of Rs for closely spaced sources in scenarios with
a single unknown direction parameter for each source (1-D scenarios). The results
are summarized in the next section.

Another useful tool for performance analysis is the Cramér Rao (CR) bound. The
CR bound provides a lower bound upon the variance achievable by any unbiased
estimator [20]. Therefore the CR bound is commonly used as a yardstick to measure
the directional accuracy of candidate DF algorithms. Analytical expressions for the
CR bound applicable to DF scenarios, if available, would indicate whether existing
High Resolution techniques are near-optimum, and potentially lead to newtechniques
which remedy any identified shortcomings.

Development of analytical results for the covariance matrix eigenstructtire and the
CR bound for closely-spaced sources has been a recent focus of interest [9]-[14]. The

work reported thus far has been for 1-D scenarios. The results are summarized below.

1.3 Available Analytical Results (1-D)

An important early contribution by Kaveh and Barabell [9] analyzed the statistical
properties of the MUSIC and MinNorm algorithms. Using a first order approximation
of the MUSIC spectral bias, the authors determine an expression for the minimum
(threshold) signal-to-noise ratio (SNR) at which MUSIC is able to reliably resolve two
closely-spaced equal-power uncorrelated sources observed by a uniform linear array.

Lee and Wengrovitz [10], [14] extended these results to arbitrary arrays, to beam-
space pre-processing, and to two (possibly) correlated sources of (possibly) unequal
powers. The authors also identified the beamforming pre-processor which minimizes
the MUSIC resolution threshold.

Lee [12] derived explicit expressions for the eigenstructure of asymptotic signal co-
variance Rg in (1.5) for the problem of M closely-spaced sources in 1-D scenarios. The

author showed that for closely-spaced sources, the eigenstructure of Rs decomposes
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so that eigenvalues and eigenvectors can be determined by straightforward linear al-
gebra operations, without eigenanalysis. Specifically, if the number of sources M is
less than the number of sensors, and if we denote the maximum source separation
as 6w, the ordered non-zero eigenvalues of Rg as A\;(6w) > --- > Ay(éw), and the

associated eigenvectors as €;(éw), i = 1,--- M, then example results of [12] are

1) Non-zero eigenvalues \;(éw) of Rg converge as §w — 0 to limiting eigenvalues

Xi6w?(=1) where ); are positive constants and i = 1,--- M.

2) Eigenvectors €;(6w) of Rs converge as éw — 0 to constant vectors €;, cor-
responding to the generic arrival vector d(w) and its derivatives, suitably or-

thonormalized.

3) Limiting condition number of R;s is —)‘&-&0'2(”1 -,

M

4) Remarkably, the quantities ); and €; are calculable via linear algebra operations;

solving a characteristic equation is not required.

Thus for closely spaced sources in 1-D, the eigenanalysis of Rs decomposes completely
into explicit expressions for each eigenvalue and eigenvector.

Lee and Li [13] addressed the problem of detecting the number of sources in a
cluster of M closely-spaced sources. Using the foregoing eigenvalue results, they
argued that the SNR threshold £p at which so-called Normal Algorithms can reliably
estimate the number of sources in 1-D scenarios is proportional to fw=2(M-1)_ That
is

Kp

€p = Sw2(M-1)

(1.6)

where Kp is a suitable constant.

Lee [11] extended general results on the CR bound due to Stoica and Nehorai [15]
to the case of closely-spaced sources. Explicit formulae for the CR lower bound on the
variance of unbiased (1-D) spatial frequency estimates were derived for closely-spaced

sources. The variance bound on the spatial frequency estimate &; for the j** source
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was found to be

1 b;

Verldi} 2 N R, sorer

S + O(6uw2 M=+ (1.7)

for small frequency separation éw, where N denotes the data set size, SNR; the
signal-to-noise ratio for the j** source, M the number of sources, and b; is a suitable
constant that depends upon the other scenario parameters of sensor array geometry,
source configuration, source powers and correlations. Lee used these results to argue
that the SNR resolution threshold £ for any unbiased estimator in 1-D scenarios is

proportional to & 6w=?M. That is

Kr

ér = N . fw2M

(1.8)

where KR is a suitable constant.

Results of the form (1.6)-(1.8) are quite useful in that they make explicit the
dependence of performance metrics £p, Var{®;} and £g upon the source separation
factor dw. For example, Eq. (1.8) indicates for a 1-D scenario with M = 3 sources
that reducing éw by a factor of 10 increases the resolution threshold SNR by 60 dB

for any sensor array and relative source configuration.

1.4 Thesis Objective

The purpose of this thesis is to generalize many of the foregoing results for 1-D
direction finding scenarios to multi-D scenarios. The two principal issues addressed
in the thesis are 1) the eigenstructure of the asymptotic signal covariance matrix
Rg, and 2) the Cramér Rao bound on spectral estimate variance, for closely-spaced
sources in multi-D. Major results include the following.

Building upon the work of Lee [12] for 1-D scenarios, analytical expressions are de-
veloped that facilitate identification of Rs eigenstructure for M closely-spaced sources

in multi-D scenarios. The approach used herein differs from that used by Lee for 1-D
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scenarios [12] in that covariance matrix Rg is factored as
Rs = BB* (1.9)

where rectangular matrix B has Taylor series in source separation parameter éw. The
thesis identifies explicit expressions for the small éw Singular Value Decomposition
(SVD) of the rectangular matrix B, building upon classical eigenstructure results
of Kato [17] and Coderch, Willsky, Sastry, and Castanon [18]. The eigenstructure
of Rs for small éw then follows immediately from (1.9). The SVD results are not
only important enabling tools for the multi-D eigenstructure problem, but also may
themselves constitute important results for other applications.

The properties of Rs eigenstructure for multi-D scenarios identified herein often
parallel those for 1-D scenarios, but also diverge in interesting and significant ways.
Example thesis results for non-degenerate multi-D scenarios with M closely-spaced

sources are

1) Non-zero eigenvalues X;(éw) of Rs converge as éw — 0 to limiting eigenvalues
Ai 6w i where ); are positive constants, and k; € {0,---m},foralli=1,---M
and with m < M — 1. Typically there are multiple limiting eigenvalues propor-
tional to §w?* for each k = 0,---m; the group of limiting eigenvalues propor-

tional to éw?* is designated as the k** eigenvalue shell.

2) Eigenvectors €;(6w) of Rs associated with each eigenvalue shell converge as
6w — 0 to constant limiting subspaces spanned by the generic arrival vector

and its partial derivatives, suitably orthonormalized.

3) Limiting condition number of Rg is /\—1&0'2’". Thus parameter m determines
M
condition number sensitivity to maximum source spacing éw.

4) Eigenvalues of Rg that exhibit the behavior A\;6w?* as §w — 0, have as multipli-
ers ); the non-zero eigenvalues of a constant low-rank matrix Rgy . Furthermore

as dw — 0, the associated eigenvectors of Rs span the column space of Rz po.
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Matrix Rk is independent of éw, and is straightforwardly calculable via linear

algebra operations.

Thus in multi-D, the eigenanalysis of Rs decomposes into a sequence of much
simpler shell problems; the k** shell problem involves eigenanalysis of the constant
low-rank matrix Rzro. Nevertheless, eigenanalysis is not required to determine the
span of limiting eigenvectors associated with each Ry g, nor to determine conditioning
sensitivity parameter m. For 1-D scenarios, k; =¢—1, m = M — 1 and matrices Ry
have rank 1, whereupon thesis results simplify to those of {12]. For non-degenerate
multi-D scenarios, typically m < M — 1, and thus Rs conditioning for small éw is
much improved relative to 1-D settings.

A major contribution of the thesis is to identify simple explicit expressions for the
matrices R0 for typical multi-D direction finding scenarios.

The eigenvzﬂue results are used to extend the 1-D SNR detection threshold results
of Lee and Li [13]. Based upon classical eigenstructure perturbation theory, the thesis
argues that the minimum SNR at which any eigenvalue based detection algorithm can
reliably estimate the number of sources in multi-D scenarios is proportional to fw=2™.
It is further argued that the minimum data set size N for reliable detection in multi-D

scenarios is proportional to éw=*™. That is

K7
1 \2
ND o (I{D) (1-11)

(SNR)? - buwim

for large N and small éw, where £p denotes the SNR detection threshold, Np the
data set size N detection threshold, and K7, is a suitable constant. Since typically
m < M — 1, we conclude from (1.6) and (1.10) that for small éw, the detection
threshold SNR typically is much smaller (more favorable) in multi-D than in 1-D
scenarios.

The second part of the thesis extends the general results on the CR bound in multi-
D due to Yau and Bresler [16], to develop CR bound expressions for closely-spaced

sources in multi-D which parallel those of Lee [11] in 1-D scenarios. For unbiased
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estimators in typical multi-D scenarios, the variance bound on &;;, the i** component
of spatial frequency vector @; for the j* source, is shown to satisfy

1 b,'j

510>
Va,r{wu} = N. SNRJ Sw2x-1

y + O(Sw~2x-1+1)y (1.12)

for small frequency separation dw, where N denotes the data set size, SNR; the
signal-to-noise ratio for the j** source, x € {m,m + 1} depends only on the number
of sources M and scenario dimensionality. The constants b;; depend upon the other
scenario parameters of sensor array geometry, source configuration, source powers
and correlations. Significantly the value of x in typical multi-D scenarios is less the
number of sources M; therefore for a given number of sources, the CR variance bound
typically is much smaller (more favorable) in multi-D than in 1-D scenarios.
Building upon the results of Lee in [11], the thesis uses the multi-D CR bound
results to argue that the minimum SNR at which any unbiased estimator can reliably
resolve M sources in multi-D scenarios is proportional to §w=2X. It is further argued
that the minimum data set size NV for reliable detection in multi-D scenarios is also

proportional to §w~2X. That is

K,

Ep ~ N b (1.13)
Np ~ —TB (1.14)

SNR - dw?x

for large N and small §w, where £r denotes the SNR resolution threshold, Mg the
data set size N resolution threshold, and K}, is a suitable constant. Since typically
X < M, we conclude from (1.8) and (1.13) that for small éw, the resolution threshold
SNR typically is much smaller (more favorable) in multi-D than in 1-D scenarios.
Thesis analysis is facilitated by identification of structural conditions character-
istic of a large class of DF scenarios, designated herein as non-degenerate. For such
scenarios, the eigenstructure conditioninvg parameter m, and the CR bound param-
eter x, are as small as possible for the given number of sources M. For degenerate

scenarios the direction estimation problem typically becomes more difficult; that is,
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the numerical conditioning of Rs typically degrades, the CR bound on directional
variance typically increases, and the detection and resolution thresholds typically
increase. Analysis leads to identification of sufficient conditions for non-degenerate
scenarios, and identification of practically important sensor geometries and source

configurations that result in degenerate scenarios.

1.5 Organization

The thesis is organized as follows.

The problem addressed in this thesis is detailed in Chapter 2, including the data
model assumptions and notation conventions, the classical perturbation theory re-
lation between R and R, and the prior CR bound expressions for 1-D and multi-D
scenarios. The thesis analysis approach is introduced, as well as the example DF
scenarios that are used in numerical simulations throughout the chapters to illustrate
theoretical results.

Prior results on the eigenstructure of perturbed matrices are reviewed in Chapter
3, including the eigenstructure of Rg identified by Lee [12] for closely-spaced sources
in 1-D scenarios, and the eigenstructure results of Kato [17] and Coderch et al. [18]
for any perturbed Hermitian matrix.

New results on the singular value decomposition (SVD) of perturbed rectangular
matrices are derived in Chapter 4, which extend the eigenstructure results of [17],
[18]. A particularly simple formulation for the small perturbation SVD structure is
developed for non-degenerate matrices that satisfy side conditions typically present
in DF scenarios.

In Chapter 5, the eigenstructure of Rs for closely-spaced sources is identified
from the SVD structure of its factor B. A reasonably complete characterization of
the eigenstructure of Rg for small source separations is obtained for nbn—degenerate
scenarios, including the limiting eigenvalues, the limiting eigenvectors, the limiting
numerical conditioning and the limiting span of Rg.

The eigenstructure results are applied in Chapter 6 to identify the minimum
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(threshold) SNR and data set size N necessary for reliable estimation (detection)
of the number of sources M by any algorithm based upon consideration of the sample
eigenvalues of R.

The eigenstructure of Rg for degenerate scenarios is addressed in Chapter 7. Ex-
pressions are developed that facilitate eigenstructure identification for two classes of
practically important degenerate scenarios, which arise from degenerate sensor array
geometry or degenerate source configuration.

Chapter 8 lays the foundation for CR bound analysis by reviewing the avail-
able CR bound expressions, and relating them to the MUSIC null spectrum. The
thesis approach to CR bound analysis is introduced, and sufficient conditions for
non-degenerate CR bounds are defined.

Explicit expressions for CR bounds on spatial frequency variance in multi-D sce-
narios are derived in Chapter 9, and illustrative examples are presented.

The CR bound results are applied in Chapter 10 to identify the minimum (thresh-
old) SNR and data set set size N necessary for reliable resolution of closely spaced-
sources by any unbiased direction estimation algorithm.

A discussion of thesis results is presented in Chapter 11.
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Chapter 2

Problem Addressed

In order to lay the foundation for the forthcoming analysis, this chapter introduces
a motivating direction finding problem in Section 2.1, the data model assumptions
and notation conventions in Section 2.2, the classical perturbation theory relation
between the eigenstructure of sample and asymptotic covariance matrices Rand Rin
Section 2.3, and the available CR bound expressions for 1-D and multi-D DF scenarios
in Section 2.4. The thesis analysis approach for closely-spaced sources is presented
in Section 2.5. Section 2.6 introduces example scenarios that are used in numerical

simulations throughout the thesis to illustrate theoretical results.

2.1 The Direction Finding Problem

In a typical direction finding (DF) scenario, an array of sensors observes signals
propagating from one or more spatially discrete sources. The problem of interest is to
determine the spatial location, or direction, of the sources by comparing the signals
observed at the collection of sensors with array calibration data.

A DF scenario is designated as one-dimensional (1-D) if only one unknown real
scalar direction parameter is to be determined for each source. An example 1-D DF
scenario is illustrated in Figure 2-1; a uniform linear array of three sensors observes

signals from a single source. To simplify discussion of the example scenario, we make

the following assumptions:
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Source: 4

Sensors: 1 2 3

Figure 2-1: Example 1-D Direction Finding Scenario

far-field source: the source-to-sensor distances are assumed to be large relative to
the sensor-to-sensor spacing, (or equivalently, that the propagating signal con-

sists of plane waves),

monochromatic source: the transmitted signal is a sinusoid at a single, constant

temporal frequency f,

identical omni-directional sensors: the complex gain response of each of the sen-

sors is unity in all directions.

The direction finding problem is to estimate the off-broadside direction of arrival
angle 6.

The key feature of propagating signals that can be exploited in direction finding is
that the signal waveform emitted by a source is received at a sensor with a propagation
delay that depends upon the source-to-sensor distance. In Figure 2-1, the source
signal received at sensor 2 is delayed relative to that received at sensor 3 and advanced
relative to that received at sensor 1 (since sensor 3 is closer and sensor 1 is farther from
the source than sensor 2). Under the far-field assumption, the incremental source-to-
sensor distance in Figure 2-1 between sensors 2 and 3, and between sensors 1 and 2,
is essentially d'sin(6), where d is inter-sensor spacing and 6 is the off-broadside angle.

For a given uniform sensor spacing d and uniform propagation speed in the medium
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¢, the signal at sensor 2 is delayed (advanced) relative to that at sensor 3 (sensor 1)
by a time ét, where
dsi
st = 2sn(0) (2.1)

c

Under the monochromatic source a.ssumption,'signal delay results in signal phase
shift. In the example scenario of Figure 2-1, if z(t) denotes the noise-free source
signal as might (ideally) be received at sensor 2 at time ¢, then z(¢)-e/2"%* denotes the
(phase-advanced) noise-free signaI received at sensor 3 at time ¢ (assuming identical
omni-directional sensors, and negligible magnitude attenuation between sensors for a
far-field source).

In reality, the source signals cannot be received noise-free. If ¢(t) denotes the
additive noise at the i** sensor at time ¢, and y;(t) the source signal as received at the
it* sensor with additive sensor noise, then for a far-field, monochromatic source and
identical omni-directional sensors in Figure 2-1, the received signals can be modeled

as

vi(t) = z(t)- e 4 (t)
y2(t) = z(t) + eft)
y3(t) = z(t)-ejd'“’-{—eg(t) (2.2)

where d is the intersensor distance, and w denotes the quantity

= 2 Gn(e) O (23)

Cc

Due to the appearance of w in the complex phasors in (2.2), w is commonly designated
as the spatial frequency of the source in 1-D scenarios. For constant source temporal
frequency f, and constant, uniform propagation speed ¢, w in (2.3) depends only on
the direction of arrival angle 8 of the source. Therefore, the direction finding problem
is often alternately stated as the problem of estimating spatial frequency w.

A direction finding scenario in which there are two or more unknown direction
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Source: *

Sensors:

Figure 2-2: Example Multi-D Direction Finding Scenario

parameters for each source is designated as multi-dimensional (multi-D). An example
two-dimensional (2-D) scenario is illustrated in Figure 2-1; a triangular array of three
sensors observes a single far-field signal source. The sensor coordinates in the sensor
plane are (dy,0), (0,0) and (0,d;). The source direction is measured by two parame-
ters: § measures azimuth angle in the sensor plane from the 7; axis, and ¢ measures
.elevation angle from the 73, 7; plane. The problem here is to estimate the two angular
direction parameters of azimuth @ and elevation ¢ for the far-field source.

If we assume in Figure 2-2 that the source is far-field and monochromatic, and
that the sensors are identical, unit gain in all directions (isotropic) and that noise is
additive, then analogously to equations (2.2) for 1-D, the received signals in Figure

2-2 can be modeled as

yi(t) = z(t)- 4 +e(t)
y2(t) z(t) + e2(t)
ya(t) = z(t)- edhv | es(t) (2.4)
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where at time ¢, z(t) is the noise-free signal at sensor 2, €;(t) is the additive noise
at the i** sensor, and y;(t) is the signal at the i** sensor with additive noise. The

parameters w, and w, denote the quantities

w = &rc—cos(O)cos(gé)
w = &'cisin(o)cos(qs) (2.5)

where f is the (monochromatic) source temporal frequency, c is the (uniform) prop-
agation speed in the medium, @ is source azimuth angle, and ¢ is source elevation
angle. Due to the appearance of w;, w, in the complex phasors in (2.4), w; is des-
ignated as the spdtial frequency component along the 7; axis, and w, as the spatial
frequency component along the %, axis. For convenience, the scalar spatial frequency

components are collected into a single real spatial frequency vector &. That is,

-

o = [wl,wg]t (2.6)

For constant source temporal frequency f, and constant propagation speed ¢, & de-
pends only on the direction of arrival angles 6 and ¢ of the source. Therefore, the
multi-D direction finding problem is often alternately stated as the problem of esti-

mating spatial frequency vector @.

To compactly represent the data model (2.4), it is convenient to adopt the vector

notation

Jt) = a@)(t)+E(t) 2.7)

where () is the noise-free signal at a reference sensor at time ¢, and

gt) = [0, y2(2), ys(t)]"

. . . t
i@) = [eJdlwl’ 1, e.rdzwz]

E(t) = [e(?), et), es(t)) (2.8)
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The data vector #(t) is commonly designated the vector snapshot of sensor out-
puts at time £. The vector @(&) is a function of spatial frequency vector &, but is
independent of the transmitted signal z(t). Thus @(&) represents the generic array
response to a unit amplitude signal arriving with spatial frequency vector &, and is

commonly designated the generic arrival vector for spatial frequency &.

2.2 Data Model

The data model addressed in this thesis is the narrowband source model, which gen-
eralizes the example data model (2.7) of the previous section to multiple sources, and
relaxes the simplifying assumptions of far-field, monochromatic sources and identical,
isotropic sensors. |

In a multi-D direction finding scenario with D unknown real scalar spatial fre-
quencies wy, + -+, wp to be determined for each source, it is convenient to collect the

scalar parameters into a real spatial frequency vector @. That is
S = [wi,-wp] (2.9)

In a multi-D scenario with M sources, we assume that source directions are spec-
ified by parameter vectors &;,---&p. The &y,--- Dy are to be estimated from ob-
servation data across an array of W sensors. The observed data consists of N vector

snapshots of the assumed form
¥it) = A-Zt)+€() t=1,---N (2.10)

At sample index ¢, ¥(t) is a noisy (complex) W element observed data vector, Z(t) is
an M element vector of source complex amplitudes, and €(t) is a W element vector
of additive complex noise. A is a constant matrix having special form

A = [d(&), - a(dm)] (W x M) (2.11)

34



where d@(&) is the generic arrival vector for signals with spatial frequency &. Typically
the i** element of vector @(d) reflects the magnitude and phase observed at the i**
sensor in response to a unit amplitude signal with spatial frequency &@.

In the data model (2.10), (2.11) the sources need not be monochromatic, but
are assumed to be narrowband with a center frequency f. Specifically, it is assumed
that the coherence length of the source modulating waveform is much larger than
the maximum sensor-to-sensor separation. Under the narrowband assumption signal
delay is essentially equivalent to complex phase shift.

The data model (2.10), (2.11) also supports generic arrival vectors d@(&) for sources
that are not far-field, and for sensors that are not identical and that do not have
isotropic response. Nevertheless to simplify the discussion, scenarios with far-field
sources and identical, isotropic sensors will be used in all examples in this thesis.
The followiﬁg example illustrates the structure of the generic arrival vector @(&) for

a simple 2-D scenario used repeatedly in thesis examples.

Example 2.1 : Consider a 2-D direction estimation problem consisting of a planar
array of identical unit-gain, isotropic sensors observing signals from a cluster of
far-field sources. The data model for this scenario takes the form (2.10), (2.11).

The generic arrival vector for a planar array of W unit gain isotropic sensors is
oy ol Pt ot o =t - t
d@) = [e”l“’, enY . e”W“’} (2.12)

where 7; = [ry;,r9]" is the location of the i** sensor in sensor plane, and & is

the projection of the source direction onto the sensor plane defined as

P 2r f cos f cos ¢ (2.13)

¢ | sinfcos¢

where 0 measures azimuth angle in the sensor plane from the 7; axis, and ¢

measures elevation angle from the 71, 7; plane as illustrated in Figure 2-2.
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2.2.1 Assumptions

The vectors @(@), Z(t) and €(¢) in data model (2.10), (2.11) are assumed to satisfy

the following conditions:

Al. the number W of sensors is greater than the number M of sources, i.e. W > M,
A2. matrix A is a W x M matrix of the form (2.11), with columns @(&,), - - - @(&ar).
A3. matrix A has linearly independent columns, provided &; # &; for ¢ # j.

A4. the elements of @(&) are bounded and possess partial derivatives of all orders
with respect to the elements of &, within a convex region of & space that includes

all source spatial frequency vectors &y, ---, Jar.
Z(t):

X1. the sequence of source amplitude vectors Z(t),t = 1--- N is fixed for all realiza-

tions of the data sequence (%),

X2. the sample source amplitude cross-power matrix

e

if(t):&'(t)h (M x M) (2.14)

t=1

P
is Hermitian positive definite.

X3. for large data sets (as N — 00), P converges with probability one to the asymp-

totic source amplitude cross-power matrix
P = E{#Zt)#t)} (M x M) (2.15)

which also is Hermitian positive definite.
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€(t):

E1. the noise vector €(t) varies randomly across the ensemble of data vectors §(t).
Specifically, the &(¢) for t = 1--- N, are samples of a zero-mean complex Gaus-

sian random process with

E{e@)e(s)} = {;—1 ::

E{e®)E(s)'} = 0 (2.16)

Following [15], [11], we designate the data model defined by (2.10), (2.11) and
the assumptions X1-X3, E1 as the conditional model. The unconditional model (or
stochastic model) differs from the foregoing in that assumptions X1-X3 are replaced
by assumptions that allow Z(t) also to vary randomly across the ensemble of data

vectors [15].

2.2.2 Notation

We use the following conventional notation:

(-)}  transpose,

(*)* complex conjugate,

(-)*  Hermitian transpose (conjugate transpose),

()™! conventional inverse,

()*  pseudo inverse,

|-] -matrix determinant,

-] 2-norm,

I,xq g X qidentity matrix,

l,xq P X q matrix of ones,
A® B Schur-Hadamard product (See Appendix A),
AQ® B Kronecker product (See Appendix A),
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~

z unbiased estimate of parameter z,
E{} Expectation,

Cov{}  matrix E{(% - #)(% - #)"},

A>B A — B is positive definite,

A>B A — B is non-negative definite,

“is defined to be”,

A = O(e?) the elements of A are of order ¢€?,

g

A =o(€e?) the elements of A are of order €2, ¢ > p,

XCY the elements in set X are contained in set Y.

Projection matrices play a fundamental role in our results. To simplify the dis-

cussion, we introduce the following additional notation.

Qrz)
Qizn

Pz
Py

2.3

2 zz¢+ projection matrix onto the column space of Z,

= ZMZM* = Z*Z projection matrix onto the row space of Z,

= Qiz projection matrix onto the column nullspace of Z,
£ 7- Qrzm projection matrix onto the row nullspace of Z.

Eigenstructure of R

To obtain the benefits of averaging, many practical direction finding algorithms com-

pute the sample data covariance matriz

N
Z_: F() g ()" (W x W) (2.17)

For the assumed data vector (2.10), with assumptions X1-X3, E1, the sample co-

variance matrix R converges as N — oo with probability one to the asymptotic data

covariance matriz

R 2 E{ft)i®)*} = Rs+o%I (W x W) (2.18)
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where R is the asymptotic signal (noise-free) covariance matriz

Rs £ ApA* (W x W) (2.19)

with matrices A, P as in (2.11), (2.15). It follows from (2.19) and assumption X3
that Rg is Hermitian non-negative definite.

The data covariance matrices R, R play a fundamental role in direction finding.
Many- direction finding techniques generate a non-negative spectrum function from
the sample data covariance matrix R (recall Table 1.1). The values of & at the peaks
of the spectrum function are taken to be estimates of the source spatial frequency
vectors. The spectrum functions for High Resolution algorithms typically depend
upon the inverse of R, or upon selected eigenvectors of R. Therefore, the performance
of direction finding techniques in terms of bias, variance, detection and resolution
thresholds depends critically upon the eigenstructure of R, or of the corresponding
asymptotic matrix R, for large data set size N.

From assumptions A1-A3 and X3, matrix Rs of (2.19) has M non-zero eigenval-
ues; therefore the eigenvalues and eigenvectors of R in (2.18) can be partitioned
as follows. Let Ay > X3 > --- > Xy and €& ---éy denote respectively the M
largest eigenvalues of R, and the corresponding (signal-space) eigenvectors. Let
Am+1 = -+ = Aw = 02 and €y - -+ Ew denote respectively the remaining eigenval-
ues and corresponding (noise-space) eigenvectors. Finally let £ denote the complete

matrix of eigenvectors

— A — —
E = [Es, En
AN = = A [ =
Es = [61 e eM] ) EN = [eM.H e ew] (2.20)
The corresponding eigenstructure of the sample covariance matrix R is denoted
using modifier ~ in place of 7, and can be similarly partitioned. Thus let A, > Xy >

cee > :\M and ?1 . .E‘M denote respectively the M largest eigenvalues of I:?, and the

corresponding (signal-space) eigenvectors. Let XM+1 > ... > Aw and E'M.H - Bw
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denote respectively the remaining eigenvalues and corresponding (noise-space) eigen-

vectors. Finally let E denote the complete matrix of eigenvectors

Es, En] (2.21)

Bs=[a..3u] , En% [Bwa...ow| (2.22)

To quantify performance of candidate DF algorithms, it is desirable to have avail-
able a model of the eigenstructure of the sample data covariance matrix E. The
sample quantities can be expressed as the sum of the asymptotic values and random

perturbations as follows
X,‘ = /_\,' + p; (223)

=1---W and

~

€ = a+17, (2.24)

for 2 = 1--- M, where the signal space eigenvalues are assumed to be distinct.

If the eigenstructure of the asymptotic covariance matrix R is available, then clas-
sical statistical results provide expressions for the mean and variance of the eigenvalue
and eigenvector sampling errors g; and 7;, in terms of the asymptotic eigenvalues );
and eigenvectors €. Drawing upon results of [9] for the eigenvalues and eigenvectors
of the sample covariance matrix Rofa complex Gaussian process, the asymptotic

(large N) first and second order statistics of y; and 7; are

E{w} = o(1/N) (2.25)

Elui} = 365 + ol/N) (2.26)

(i} = ——Aﬁz HERR (2.27)
k;éi
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- = X i = =
E{f:d}} = NZ k6 + o(1/N) (2.28)

= = )?
k i
E{Wtﬂf} = N(S\, __J'Xj)zeJet(l ij) + O(I/N) (229)

where §;; is the Kronecker delta and o(1/N) denotes terms of order 1/N? with ¢ > 1.
If the eigenvalues ); and €; of R were available, then the statistical properties of
the eigenstructure of R could be ascertained from the classical perturbation results
(2.25)-(2.29).

For the data model addressed, we recall from (2.18) that matrix R takes the form

R = Rs+a?l (2.30)

where Rgs reflects the covariance contribution of the M source signals, and o2 is the
variance of the additive noise. Due to the uncorrelated and white structure of the
noise component of R, the eigenstructure of R is simply obtained from that of Rs. The
eigenvalues of R are those of Rs incremented by the constant o%. The signal-space
eigenvectors of R (columns of Es in (2.20)) associated with the i** largest eigenvalue
of R are the eigenvectors of Rs associated with the :** largest non-zero eigenvalue of
Rs. The noise-space eigenvectors of R (columns of Ey) are the eigenvectors of Rg
associated with the zero eigenvalue of Rgs.

Therefore, identification of the eigenstructure of Rs is a fundamental enabling step
for obtaining analytical expressions for the performance of candidate direction finding
algorithms for closely-spaced sources. Reference [12] introduced simple expressions
for the eigenstructure of Rs for closely-spaced sources in 1-D scenarios. A major
result of this thesis is to derive analogous simple formulations for the eigenstructure

of Rs applicable to multi-D scenarios.
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2.4 Cramér Rao Bounds

The Cramér-Rao (CR) lower bound on the variance of unbiased direction estimates
provides a useful benchmark for assessing estimation accuracy of direction finding
algorithms [15]. The CR bound also can provide insight into the performance impact
of individual scenario parameters such as sensor array geometry, source configuration,
source powers and correlations [11].

Evaluation of the CR bound generally requires inverting the applicable Fisher
Information matrix F of dimension equal to the number of unknown (real and imag-
inary) model parameters. In the Conditional signal model specified by Assumptions
X1-X2 and E1, the unknown parameters are not only the source spatial frequency
vectors @y, - - - ,Wp of interest, but also the noise variance o? and the complex signal
amplitude vector sequence (1), - Z(N). These latter unknowns are essentially nui-
sance parameters for the DF problem, which enlarge 7 and make direct calculation
of F~! exceedingly cumbersome.

The CR bound of present interest is that on the covariance of the spatial frequency
vectors. This bound is given by a submatrix of F~1. Since only a submatrix of 7!
is required, it is useful for both analytical and numerical work to have available an
explicit formulation for the applicable submatrix of F~1. Such formulations have
been developed by Stoica and Nehorai for 1-D scenarios [15], and extended by Yau
and Bresler to multi-D scenarios [16].

For 1-D scenarios, the CR bound on sa,ihple frequency covariances takes the form

el(6-a)(8-a6)'} > B, 2.31)
{(@-a)(@-9) <

where A > B means that the matrix A — B is non-negative definite, and

= [wy,wa, - - ,wM]t (2.32)

£ (B1,B0, -, 0m] (2.33)

on

&; denotes an unbiased estimate of the spatial frequency w; for the j* source (j =
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1--- M). The matrix Bg is

Be = %{Rc [H@ﬁT]}" (2.34)
where
H £ D[I-A(A"A)7 A" D | (2.35)
D £ [dw),d(wn), - dlwm)] (2.36)
dw;) = %%’lmj (2.37)

Vector @(w) is the generic arrival vector for (scalar) spatial frequency w, matrix A
is the source arrival matrix (2.11) and P is the sample source amplitude covariance
matrix (2.14). The result (2.31), (2.34) is valid for 1-D scenarios under the conditional
signal model assumptions X1-X38 and E1. The result is due to Stoica and Nehorai
[15].

For multi-D scenarios, the CR bound applicable to the parameter vectors & - - - @War

also takes the form (2.31), this time with

0 2 fwn-wprewie e wpnl' (2.38)
Q£ [@11- - @p1 -+ @rag -+ Dpm]’ (2.39)
&;; denotes an unbiased estimate of i** element of &;, (1 = 1---D,j7 = 1--- M).

Compact expressions for Be in multi-D scenarios, again under the conditional signal
model assumptions X1-X38 and E1, have been identified by Yau and Bresler [16].
The detailed expression of [16] for B¢ in multi-D is given in Section 8.2.3.

A shortcoming of the B¢ expressions of [15] and [16] is that the dependence of
B¢ upon the scenario parameters such as sensor array geometry, source configuration,
source powers and correlations remains implicit. For the case of closely-spaced sources
in 1-D direction finding scenarios, simple explicit expressions have been developed by

Lee [11] in terms of the maximum source separation éw and the foregoing scenario
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parameters. These expressions provide great insight into the dependence of the CR
bound upon scenario elements, and facilitate derivation of fundamental performance
metrics such as the minimum (threshold) SNR at which closely-spaced sources are
resolvable. At present no analogous results for Multi-D scenarios are available in
the literature. The second major result of this thesis is to derive analogous explicit

expressions for Bg for closely-spaced sources in multi-D scenarios.

2.5 Analysis Approach

The main results of this thesis are obtained by identifying the eigenstructure of Rg,
and identifying expressions for the CR bound Bg, as source spacing becomes small.
Extending the approach of [11], [12] for 1-D scenarios, we express the spatial frequency

vector for the j** source as
&; = o+ bw-q; (2.40)

j=1,---M, where & is a nearby fixed reference vector, w is a variable real scale

factor, and
G = lajr-+aos] (2.41)

is a normalized offset vector with constant real elements. The §; are normalized so
that dw equals the maximum separation ||&; —&;|| between pairs of vectors &, - - - Das.

That is,
bw = max||d; — &l (2.42)
It

The analysis strategy is to examine the structure of Rs and of the Cramér Rao
bound B¢ as scaling factor éw — 0, while the §; are held constant. The leverage in
the representation (2.40) is that it replaces the M variable spatial vectors &@; -+ Wpm

by a single variable scalar parameter éw, thereby greatly simplifying analysis. The
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condition éw — 0 corresponds to the coalescing of all source parameter vectors to
the reference vector &o, while the relative (normalized) source configuration remains

unchanged.

Example 2.2 : To illustrate the analysis strategy, consider the 2-D problem of
estimating a 2-element spatial frequency vector &; = [wz;,wy;]* for each source
( = 1,2,3) in a cluster of 3 far-field sources in the triangular configuration
illustrated in Figure 2-3A. To implement the analysis approach, we express
each source spatial frequency vector as in (2.40). We define a reference vector
o in the vicinity of the source spatial frequency vectors, a scalar parameter éw

to be the maximum source separation, which in Figure 2-3A is
bw = ||& — G| - (2.43)

and finally define normalized offset vectors ¢1, ¢, ¢5 to satisfy (2.40). The
normalized source configuration are illustrated in Figure 2-3B. As éw — 0, the
actual source configuration in Figure 2-3A coalesces to the reference direction

Wo, but the normalized configuration in Figure 2-3B remains fixed.

2.5.1 Factoring Matrix Rgs

For the data model addressed, we recall from (2.19) that matrix Rs is Hermitian

positive definite and takes the form
Rs & APA" (W x W) (2.44)

with matrices A, P as in (2.11), (2.15). It is helpful in our analysis to express Rs as

an outer product of matrix factors B. That is

Rs = BB" (2.45)
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A. Actual Source Configuration B. Normalized Source Configuration

Figure 2-3: Actual and Normalized Source Configurations for a 2-D DF Scenario

where

I

B £ Al (W x M) (2.46)

and II is a square full-rank factor of P such that
P = In* (2.47)

A non-unique decomposition (2.47) exists since P is Hermitian positive definite by
assumption X2. With the representation (2.40), B is a function of the variable scale
factor dw, the reference frequency &y, the normalized offset vectors §; -+ g and the
constant matrix P. Our interest is to identify the limiting eigenstructure of (2.45) as
bw — 0.

The thesis approach to eigenanalysis of Rg is to first identify the limiting form of
the SVD of matrix B as éw — 0. The limiting SVD of B is simplified by structural
conditions satisfied by B for typical direction finding scenarios. Once expressions
for the limiting SVD of B are identified, the limiting eigenstructure of Rgs follows
straightforwardly from (2.45).
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2.5.2 Taylor Series Representations

Taylor series representations are central to our analysis of the closely-spaced source
problem. To facilitate identification of the small éw structure of covariance matrix
Rs and of CR bound B¢ in subsequent chapters, this section constructs the Taylor
series of the generic arrival vector @(&), and of the associated matrix A of (2.11) and
matrix B of (2.46).

Following our analysis approach of (2.40), we express the spatial frequency vector

@ as

where &y is the reference vector, éw is the scaling factor that satisfies (2.42), and ¢'is
a normalized spatial frequency vector. To explicitly denote dependence on the terms
of (2.48), we express the Taylor series of the generic arrival vector @(&d) about the

reference vector &y as

i@ = Y 6Ay 7@ (2.49)

p=0

where the columns of A, are the p™* order spatial derivatives of d(&) at Jp with respect

to the elements of & = [w;,ws, - - -wp]?. That is,

A [Pa@) &a@)  dG)

A =2
P ) —_ b) )
0wt 7 Qw1 Ow,y ouwh, F=do

(W x 7p) (2.50)

where 7, is the number of p** order spatial derivatives. Vector 4,(¢) is A, x 1 and
depends only on the normalized direction offset vector §. The A, and 7,(3) are
constant with dw; Ap is typically complex, while 4,(¢) is always real.

To illustrate (2.49), consider a 2-D application with & = [w,,w,]*, and ¢ = [gz, g]"
The p =0,1,2,3 terms in (2.49) are

Ay = [@(@o)]
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Ay = [@O(@), 30N (&)

Ay = [@G), d(G), 3°7(Go)
As = [@®N(&), @®)(&), @02(&), 30 (@)] (2.51)

with arrival vector partial derivatives denoted as

[3p=+pua‘(u3 )L}:‘ (2.52) |

OwE* Ouwl?

>

g (P=py) (Fo)
For 2-D Taylor series, the number of p** order partial derivatives is
n, = p+1 (2.53)

(ie. o =1, M =2, iz = 3, iz = 4,---). The associated vectors that depend on §

are
- -
-3
. 4;/6
qﬁ.‘/2 2
- - qz - — q,-,,-qy/2
Y(9) = [1], () = sy F2(D) = qugy |> (D) = \ (2.54)
% 219 9sqy/2
q
! | ¢/6 |
The general expression for 4,(¢) for 2-D scenarios is
- A - t
(9 = [Co,p(IL’, c1,p45 1‘1;» R cp.Pq:] (2.55)

where

A p 1

i=0,---p, and the first factor of (2.56) is the binomial coefficient.
Expressions analogous to (2.51) and (2.54) can be written for Taylor series of any

dimensionality.
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The Taylor series of the generic signal vector at each of the source spatial frequen-
cies &y, -+ Wy is simply (2.49) with corresponding Gy, - --gy. Therefore the Taylor

series for matrix A in (2.11) follows directly from (2.49):

A = [@(&),- - d(@m)]
> 6wPA,T, (2.57)

=0

where matrix A, is as in (2.50), and T', is a constant real i, X M matrix of the form

T, 2 [7(q), - ¥o(du)] (2.58)

For 2-D scenarios, with §; = [gzj, q;]

o = [1, 1]
Fl _ qz1, e q:M
| Qv1s qyM |
a4 /2, -+ @u/2
FZ = 9z19y1, °°* GzMqyM
@2 e Pul? |
s quls
2 2. ... g? 2
I, = 9z191/2, @2 paym/ (2.59)
0195/2 0 M@/
/6, - @3y/6

The matrix factor B of Rs is defined in (2.46) in terms of matrix A and constant
matrix II. Since matrix A has Taylor series (2.57), it follows that matrix B also has

Taylor series of the form

B=All= ) 6wPA,T,II (W x M) (2.60)

p=0
with A, as in (2.50), T, as in (2.58) and II as in (2.47).
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2.5.3 Sufficient Conditions for Non-Degenerate Scenarios

Analysis in this thesis is simplified by identification of structural conditions satisfied
in typical (i.e. non-degenerate) DF scenarios. This section defines these conditions.
Recall from (2.57) that for closely spaced sources, matrix A has a Taylor series of

the form

A = fawrzipr,, (W x M) (2.61)
=0
where A, is a constant W x fi, matrix as in (2.50), and T, is a constant &, x M
matrix as in (2.58). The number 7, is the number of p** order partial derivatives of
the generic arrival vector function @(&) with respect to the elements of &.

Reference to (2.51) shows that Ag has rank of unity, and successive A, have small
and increasing ranks. As a consequence, successive terms of (2.61) are of low and
slowly increasing rank, and a number of such terms typically must be included in a
partial sum to obtain a full-rank approximation of A. To characterize the minimum

number of such terms we define integer parameter m as follows:

Definition of m: Integer m is the smallest number such the partial Taylor sum

formed by the successive terms p = 0, - - - m of (2.61) has full rank.

Provided Conditions C1-C8 (detailed subsequently) are satisfied, m is determined
by the relationship

m~1 m
Yo, < M <Y 7y (2.62)

p=0 p=0

If Conditions C1-C3 are not all satisfied, m may not be determined by (2.62); in
such cases, alternate determining relations are defined in Chapter 7.

Conditions C1-C3 sufficient for (2.62) to determine m are the following:

C1. The generic arrival vector @(&) and its partial derivatives at & = o up to
order m — 1 with respect to the elements of & are linearly independent. That

is, matrices A, have full rank #, for p = 0---m — 1, and the columns of A,
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are linearly independent from the vector space spanned by the columns of the

sequence Ao, R A,,_.l for p=1---m — 1. Specifically,

Rank{A,} = #o
Rank{P[Ao,---A,_,]Ap} = n, forp=1---m—1 (2.63)

where Pz is the notation for the projection onto the nullspace of the columns

of Z as defined in Section 2.2.2.

C2. The matrices I', have full rank 7, for p = 0.--m — 1, and the rows of T,
are linearly independent from the space spanned by the rows of the sequence

Ioy--+y,T'p—q for p=1.--m — 1. Specifically

Rank{I‘o} = ﬁo
Ra,nk{I‘,,P[pg,...p:_I]} = fip forp=1.--m—1 (2.64)

where Bz is the notation for the projection onto the nullspace of the rows of

Z as defined in Section 2.2.2.

C3. For p = m, the component of the product A,,T,, which has columns orthogonal

to those of the sequence Ao, - - - , Am—1 and has rows orthogonal to those of the

sequence g, --,T',,_y has sufficient rank to complete the rank of A. That is,
. m~-1
Ra,nk{P[Ao‘,_,Am_ll AmFm P[F(';""'F?n—ll} = M -_ E 'f_lp (2.65)
p=0

Conditions C1-C2 are central the simplified SVD analysis of matrix A. Condition
C3 is sufficient to guarantee that m determined by (2.62) is such that the partial
Taylor series consisting of terms of order p = 0 through p = m, does in fact have full
rank M.

Condition C1 depends upon the array geometry and sensor directional response,
and is independent of source configuration or source powers and correlations. Condi-

tion C2 depends only upon the normalized source coordinates §; (j = 1--- M). Thus
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C2 depends only upon normalized source configuration, and is independent of the
array geometry, sensor directional response, or source powers and correlations.

Note that Conditions C1-C3 assume (require) that matrix A have more columns
than rows (W > M), and that matrix A be full rank (= M). These pre-requisites are
satisfied under thesis Assumptions A1-A3.

Thesis analysis of the eigenstructure of Rs and of the CR bound B¢ for closely
spaced sources exploits Conditions C1, C2 and C3. Additional Conditions are de-
fined in Chapter 8 to facilitate CR bound analysis; these additional conditions are
simply Conditions C1-C3 applied to a augmented matrix which includes matrix A
and additional columns.

For convenience, scenarios which satisfy Conditions C1, C2 and C3, are des-
ignated as non-degenerate scenarios. Examples show that Conditions C1-C3 are
satisfied for typical DF scenarios.

Furthermore, scenarios which satisfy only one of Conditions C1 or C2, are desig-
nated as partially degenerate scenarios. Partially degenerate scenarios are of second-
order interest in DF applications, and are addressed in the thesis primarily to contrast
with non-degenerate scenarios. Completely degenerate scenarios for which none of the
conditions are satisfied are of third-order interest in DF applications, and hence are
not addressed in this thesis.

Example scenarios are presented in the next section to illustrate non-degenerate

and partially degenerate scenarios.

2.6 Example Direction Finding Scenarios

We introduce three example direction finding scenarios which will be used in numerical
simulations to illustrate thesis results. All three examples build upon the 2-D scenario
of Example 2.1 which addressed a planar array of identical, unit-gain isotropic sensors
observing a cluster of far-field sources. Example 2.3 is a non-degenerate scenario for
which Conditions C1-C3 are satisfied. Examples 2.4 and 2.5 are partially degenerate

scenarios which respectively satisfy Condition C1 or C2.
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Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and
M = 6 far-field sources clustered near to the array broadside.

The generic arrival vector takes the form
(ot g Y
Q@) = [0, &%, ..., e"W“’] (2.66)

where 7; = [rz,ry]t is the location of the it sensor in sensor plane. The reference

parameter vector & is taken to be at array broadside (elevation angle ¢ = 90°). From

(2.13) we have
G = [0, O]t (2.67)

Matrices Ao, Al, A, and Aj; of (2.51) then are

1 Tzl Tyl 7'3,1 Tz1T 1":1
A = , Ai=7 , Az = —1
1 TeWw Tyw Tiw TzWTyWw Tzw
7'21 7'3:1 LN Trl"31 7'31
Ag=—j-| : : : (2.68)

3 2 2 3
Tew TawTyW TzWTyw  Tyw
The three example scenarios are defined as follows.

Example 2.3 : For this example, the array and source geometries are as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a “double chevron” configura-

tion per Figure 2-5A.

It can be verified that the columns of Ao, A;, A,, and A3 in (2.68) are all linearly
independent for this sensor array. Similarly, the rows of Ty, I';, I'; given by
(2.59) with M = 6 are all linearly independent for this source configuration.

Thus the partial Taylor sum of A with terms p = 0,1,2 is full rank M = 6,
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and thus m = 2. Consequently, Conditions C1, C2, C3 are all satisfied with

m = 2; this is an example of a non-degenerate scenario.

Example 2.4 : For this example, the array and source geometries are as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a circular configuration per

Figure 2-5B.

The sensor array is unchanged from Example 2.3, hence the columns of Ao, Ay,
A,, As are again all linearly independent. The rows of I'g, Iy, and T'; are given
by (2.59) with M = 6. It is clear from the figure that the rows of I'g, I';, and I’y
are not linearly independent for this source configuration since the normalized

source parameters satisfy the circle equation
@i+ = ¢ (2.69)

wtih constant ¢ for all j = 1.-- M, and the rows of I'y and I'; are linearly
dependent. The additional I'; term is required to fully span the row space of
matrix A. In this example the partial Taylor sum of A with terms p =0,1,2 is
not full rank, but the sum over p = 0,1,2, 3 is full rank M = 6, and thus m = 3.
Consequently, Condition C1 is satisfied, but Conditions C2, C3 are not. This
is an example of a partially degenerate scenario which satisfies Condition C1

only. We designate the scenario as source configuration degenerate.

Example 2.5 : For this example, the array and source geometries are as follows.

Array: Sensors in a circular geometry per Figure 2-4B,
Sources: Sources clustered around broadside in a “double chevron” configura-

tion per Figure 2-5A.

The source configuration is unchanged from Example 2.3, hence the rows of I'g,

I'1, and T'; are all linearly independent. For this sensor array, the columns of
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Ao, Al and Ag are not linearly independent since the sensor location parameters

satisfy the circle equation
ratry = ¢ (2.70)

with constant ¢ for all 7 = 1--- W, and the columns of Ao and Az are linearly
dependent. The additional Az term is required to fully span the column space
of matrix A. In this example the partial Taylor sum of A with terms p =0,1,2
is again not full rank, but the sum over p = 0,1,2,3 is full rank M = 6, and
thus m = 3. Consequently, Condition C2 is satisfied, but Conditions C1, C3
are not. This is an example of a partially degenerate scenario which satisfies

Condition C2 only. We designate the scenario as array geometry degenerate.
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Chapter 3

Prior Results on Eigenstructure of

Perturbed Matrices

This chapter reviews prior results on eigenstructure of perturbed matrices which are
relevant to identifying the eigenstructure of asymptotic signal covariance matrix Rs
for closely-spaced sources in multi-D direction finding scenarios. For the data model

addressed, matrix Rg is Hermitian of the form
Rs = APA* W x W (3.1)

where A is the matrix (2.11) of generic arrival vectors for each of the sources, P is the
Hermitian positive definite asymptotic source amplitude cross-power matrix (2.15),
and W denotes the number of sensors.

Recently published work by Lee [12] has shown that for closely spaced sources
in 1-D direction finding scenarios, the limiting eigenstructure of Rg, as source sep-
aration éw — 0, can be determined simply without eigenanalysis. For example, for
a typical 1-D scenario with M sources and fewer sources than sensors (M < W),
each of the M non-zero limiting eigenvalues of Rg is shown to be proportional to a
different power of §w?, from 6w° to §w?™-1). The proportionality constant for each
limiting eigenvalue is determined by straightforward linear algebra operations. The

corresponding limiting eigenvectors are shown to be the generic signal vector and its
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spatial derivatives in the source cluster direction, suitably orthonormalized. Thus
the eigendecomposition of Rs for closely spaced sources in 1-D scenarios is reduced
to simple linear algebra operations. In addition, the dependence of eigenvalues and
eigenvectors of Rgs on scenario parameters such as maximum source spacing éw is
made explicit. Unfortunately, the approach used to derive the results of [12] exploits
simplifications unique to 1-D scenarios, and thus extension of the approach to multi-D
scenarios is not readily apparent.

Fundamental results regarding the eigenvalues and eigenvectors of square matrices
with Taylor series in any small perturbation factor ¢ have been developed by Kato
[17], and extended by Coderch, Willsky, Sastry, and Castanon [18]. The authors
show that the limiting (as ¢ — 0) eigenvalues and the span of the corresponding
eigenvectors can be identified by eigenanalysis of a sequence of low rank, constant
matrices, designated as limiting eigenmatrices herein. In principle, this approach is
applicable to identifying the eigenstructure of R for closely spaced sources in multi-D
scenarios, with the identification € = éw. Unfortunately, in order to determine the
limiting eigenmatrices for the general eigenstructure problem addressed in [17], [18],
the authors derive expressions which are implicit and quite complex (compared to
the intuitively simple 1-D Rg eigenstructure results of [12]). The complexity of these
results typically precludes an explicit analytical identification of the number of limit-
ing eigenvalues proportional to each power of éw, or of the span of the corresponding
eigenvectors.

The thesis objective with regard to the eigenstructure of Rg is to obtain simple
and explicit multi-D results, analogous to the 1-D results of [12], which make explicit
the dependence of Rg eigenstructure on scenario parameters in multi-D direction
finding scenarios. This chapter reviews the prior eigenstructure results of [12], and
of [17], [18]. Chapters 4-7 build upon these prior results to derive simple expressions

for the eigenstructure of Rg in multi-D scenarios.
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3.1 Eigenstructure of Rg in 1-D [12]

The eigenstructure of a number of common covariance matrices has been identified by
Lee [12] for M closely spaced signals with scalar frequency parameters. The limiting
eigenstructures, as signal spacing 6w — 0, are remarkably simple. The results of [12]
applicable to covariance matrix Rs in 1-D direction finding scenarios are outlined
below.

Reference [12] considers square matrices of the form

2

R APA* (W x W) (3.2)

where P is a constant M x M Hermitian positive definite matrix, A- is of the form
(2.11), satisfies assumptions A1-A4, and Conditions C1-C3 with m = M — 1. The

signal frequencies are represented by scalar frequency parameters w; - - - wps as follows:
w;j = wp+ gjdw (3.3)

J=1---M. Here wy denotes a fixed reference frequency, the g; are normalized offsets
such that ¢; < g2 < ---qup with ¢ = —1/2 and qpr = +1/2, and dw is a variable scale
parameter corresponding to the separation of the extreme frequencies. The paper
analyzed the eigenstructure of (3.2) as the multiplier w — 0. Representation (3.3)
facilitates analysis of the eigenstructure of R; since the problem is reduced to one
with a single variable parameter éw. The condition w — 0 corresponds to coalescing
the signal frequencies about the reference frequency wo.

Reference [12] identifies explicit expressions for the eigenstructure of R; in terms
of the coefficients of the Taylor series of A. Following the notation in Section 2.5.2,

matrix A has a Taylor series in éw about wg of the form

A = ) buPA, (3.4)

=0
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where

A, = AT, (3.5)
with
. d? a(w
A, = —%-(p—)w_w (3.6)
I, = lat/p), - die/PY] (3.7)

for p=0,1:--, where @(w) is the generic arrival vector function of w, and q1, --- qum
are the normalized frequency offsets in (3.3).

The R, eigenstructure results of [12] are as follows:

E1. The non-zero ordered eigenvalues A (6w) > Ag(dw) > -+ > Ap(éw) of matrix
(3.2) are asymptotically (as éw — 0) proportional to non-negative even integer

powers of éw. That is

) Ai(bw) _
SBI_’“,O{ )\i.ng(e-l)'} =1 (3.8)

t=1,--- M, where J; is the positive constant

[pg,...pg»]"p[pg,...pg” | |[Ao.--A.-]"[Ao-~-A.-]

Ai =

: 3.9
(Ao Aia]" [Ao-+ Aia )

I‘g,...r?_l]hp [[‘g,...rh 1]

where A, and T, are the factors (3.6), (3.7) of Taylor series matrix coefficients
A, in (3.5). P is the asymptotic source amplitude cross-power matrix (2.15).

Notation | - | represents matrix determinant. (See Equations (3), (71) of [12]).

E2. The corresponding eigenvectors €;(6w), €2(8w),- - - €p(6w) of matrix (3.2) have

the limiting form
6}51—1}0 e;(&w) = €; (3.10)
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where the €; are constant vectors corresponding to the generic arrival vector

d(w) and its derivatives, suitably orthonormalized. Specifically,

€ = coAo

& = aP.di A i=1---M (3.11)

where ¢; are normalizing constants so that €"'€; = 1, and Pz) denotes the column

nullspace projection defined in Section 2.2.2. (See Equations (4), (54) of [12]).

Remarkably the quantities A; and €; in (3.9) and (3.11) are calculated via linear
algebra operations; eigenanalysis and the associated polynomial rooting are not re-
quired. The identified eigenstructure, together with classical perturbation techniques,
provides a powerful tool for analyzing the performance of High Resolution techniques
in 1-D scenarios.

Unfortunately, the simple results E1 and E2 apply only to 1-D scenarios. For
multi-D scenarios, matrices A; have more than one column and I’; have more than

one row. It is not immediately clear how to extend the analysis to multi-D scenarios.

3.2 Eigenstructure of Arbitrary Hermitian Per-

turbed Matrices [17], [18]

Fundamental results regarding the perturbation of linear operators have been de-
veloped by Kato [17] including results for eigenvalues and eigenvectors of perturbed
square matrices. The eigenvalue perturbation results of [17] have been simplified by
Coderch et al. [18]. Results of [17], [18] relevant to analysis in this thesis are outlined

below.

Reference [18] considers a square matrix Ag(€) with Taylor series about € = 0

Ao(e) = i €’ Aop (3.12)

p=0
where Ao, are known constant matrices, independent of variable parameter e. For
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present purposes, we consider the results applicable to Hermitian matrices Ao(€), (for
which Ag(€)* = Ao(€)), which form a sub-class of the more general matrices addressed
in [17], [18].

The analysis in [17], [18] derives the following result:

R1. For any Hermitian Ag(e) with Taylor series in €, each non-zero eigenvalue X;(¢€)

is asymptotically (as € — 0) proportional to a non-negative integer power of €.

That is,

lim{ "‘(6)} =1 (3.13)

e—0 Ai . Ck"

for suitable constants A; and k; € {0,1---}, for all ¢ = 1,---, rank{Ao(€)}.
(See text following Eq (4.10) of [18]).

For convenience, we designate the ;¥ as limz'tingb eigenvalues of Ag(e). Limiting
eigenvalues of Ag(e) proportional to € (i.e. constant) as ¢ — 0 can be identified
directly from (3.12) as the constant non-zero eigenvalues of leading Taylor series term
Ao p.

To characterize the remaining limiting eigenvalues of Ag(e), the development in
[17], [18] recursively defines a sequence of constant Hermitian matrices Axp and es-

tablishes the results:

R2. The non-zero eigenvalues of Aip are the constants A; in limiting eigenvalues of

Aq(e) of the form ); €*. (See Part 3 of Proposition 4.4 of [18]).

R3. The column space of Axp is spanned by the limiting eigenvectors of Ag(€) asso-

ciated with the group of limiting eigenvalues proportional to €* as ¢ — 0. (See

Section 4.1, Chapter II of [17]).
The essence of these results is that:

o cigenvalues of Ag(¢€) that tend to non-zero constants as € — 0, have as limiting
values the non-zero eigenvalues of Agp. The corresponding limiting eigenvectors

of Ao(€) are the principal eigenvectors of Agp [assuming distinct eigenvalues],
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e eigenvalues of Ag(e€) that exhibit the behavior \;e! as ¢ — 0, have as multipliers
Ai the non-zero eigenvalues of A;o. The corresponding limiting eigenvectors of

Ao(€) are the principal eigenvectors of A; [assuming distinct eigenvalues],

e etc.

Accordingly, if the Ao were readily available, straightforward analysis of the low-
rank constant Agg would reveal the limiting eigenvalues and the limiting span of the
eigenvectors of Ag(e), [or the limiting eigenvectors of Ag(€) directly, assuming distinct
eigenvalues]. For convenience, we designate the Ay as the limiting eigenmatrices of
Ao(e).

Unfortunately for many matrices Ao(e), the expressions for the A in terms of
the constant matrices Ag, which appear in the Taylor series (3.12) are quite complex.
Reference [17] derives very complicated, recursive formulations using function theory
that identify the limiting eigenmatrices Ay for all k£ > 0. Reference [18] builds upon
the results of [17] to derive the following simplified recursive expressions for Axg for

k =10,1,2,3, in terms of the matrix coefficients Ag, in the Taylor series of a Hermitian

matrix Ag(e):

AOO = AO,O

Ao = PoAg1 P
Ao = PP (Ao,z — Ao At oAO,l) Bop
Azp = PBPPR (Ao,s — Ao AGpAv2 — Ao2AfAos
+ Ao,lAg,vo,lAg,vo.l — Ao2(PoAo 1 Po)t Aoy
+ Ao2(PoAo1 Po)* Aop At gAor + AviATpAca(PoAoiPo)t Aoy

— Ao AfpAo1(PoAos Po)t A1 AfyAcy) PoPrPy (3.14)

(Proposition 4.12 of 18], with a sign correction). The Ao, are the known matrix

coeflicients of Taylor series (3.12), while the P, defined recursively as

np

P & I-AeAf, (3.15)
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are projections onto the null space of the limiting eigenmatrices. The definition of
Apo used in [17], [18] and an outline of the derivation of expressions (3.14) is presented
in Appendix B.

Although the foregoing results theoretically characterize the limiting eigenstruc-
ture of Hermitian Ag(e), they do not provide much insight into the limiting eigen-
structure. For example, reference to the expression for Asp in (3.14) reveals little

about:

¢ the rank of Az, and, therefore, the number of eigenvalues of Ag(€) which satisfy

(3.13) with &; = 3.
o the vector space spanned by the corresponding eigenvectors.

Furthermore, even the simplified expressions (3.14) for Axo rapidly become com-
plicated as k increases. Expressions for k > 3 are not provided in References [17],
[18] and are extremely laborious to derive from the recursive approach of Reference
[17]. Finally, it is not immediately clear how to simplify these expressions to obtain
the simple Rs eigenstructure of [12] for 1-D direction finding scenarios.

A major result of this thesis is the identification of very simple expressions for
limiting eigenmatrices Ay o whenever Ag(€) satisfies conditions which are characteristic
of Rs in typical multi-D direction finding scenarios (specifically Conditions C1, C2
and C3 of Chapter 2). The multi-D expressions derived herein extend the simple,

explicit expressions obtained for 1-D by Lee in [12] to multi-D DF scenarios.
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Chapter 4

SVD of Perturbed Matrices

The limiting eigenstructure results of References [17], [18] apply to square Hermitian
matrices Ao(€e) with Taylor series in e. This chapter develops analogous results for
the SVD structure of rectangular matrices By(e) with Taylor series in ¢, including
non-Hermitian or non-diagonalizable square matrices. The SVD results developed in
this chapter facilitate identification of the limiting eigenstructure of asymptotic signal
covariance matrix Rs. They also may have use in other applications.

Recall from Section 2.5.1 that Rg can be factored as
Rs = BB* (W x W) (4.1)
in terms of rectangular matrix B with Taylor series

B = i&w”Bp (W x M) (4.2)

p=0
where dw is a scalar measure of the maximum angular separation between the sources,
and the Taylor series matrix coefficients B, are identified in (2.60). If the SVD of
B can be identified, then the eigenstructure of Rgs follows immediately from (4.1).
From (4.1) and the definition of the SVD, the non-zero eigenvalues of Rg are the
squares of the non-zero singular values of B, and the eigenvectors of Rg are the

corresponding left singular vectors (defined subsequently) of B. Thus identification of
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the limiting SVD of rectangular matrix B is an important enabling step for identifying
the eigenstructure of covariance Rg.
To parallel the notation of the eigenstructure analysis of [18], this chapter assumes

that the matrix of interest is By(e) and can be expressed as a Taylor series

(>}
Bo(e) £ S ¢ By, (W x M) (4.3)
p=0
where By, are known constant matrices, independent of variable parameter e.
Any rectangular matrix possesses a singular value decomposition (SVD) [21, Ap-

pendix A]. For matrix By(€), the SVD takes the form
Bo(€) = U(e)Z(e) V(e)* (W x M) (4.4)

where the columns of W x W unitary matrix U(e) are orthonormal eigenvectors of
By(€)Bo(€)*, the columns of M x M unitary matrix V(¢) are orthonormal eigenvectors
of By(€)*By(e), and the only non-zero entries of the W x M matrix X(e) are the
singular values on the main diagonal, defined as positive square roots of nonzero
eigenvalues of By(€)Bo(€)*. For convenience, this thesis refers to the columns of U(e)
as the left singular vectors and to the columns of V'(¢) as the right singular vectors of
Bo(e).

Analysis in this chapter identifies the limiting singular values and corresponding
singular vectors of By(e) as € — 0. The results represent an extension of Kato-
Coderch eigenstructure results to the SVD problem. Side conditions are identified
which enormously simplify the SVD results; these conditions are satisfied in typical
direction finding scenarios. The SVD results not only provide a convenient tool for
the Rs eigenstructure problem, but may also themselves constitute important results
for other applications.

The development in this chapter begins in Section 4.1 with the identification of
simplifying side conditions. Section 4.2 specializes the prior eigenstructure results of
[17], [18] to the Hermitian matrices that arise in the SVD of By(€), namely the inner

and outer products of matrices Bg(€) with Taylor series in €. These specialized results,
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together with the prior limiting eigenstructure results of [17], [18], form the basis for
analysis of the limiting SVD of By(e) in Section 4.3. Section 4.4 develops an enabling
property that characterizes the limiting SVD of any matrix By(€) with Taylor series
in €. Section 4.5 then exploits this characterization to develop remarkably simple
expressions for the limiting SVD of matrices By(¢) that satisfy all the identified side
conditions. Section 4.6 similarly develops somewhat more complicated expressions for
the limiting SVD of matrices By(¢€) that satisfy some, but not all side conditions. The
SVD results are summarized in Section 4.7, and illustrative examples are presented

in Section 4.8.

4.1 Simplifying Conditions

This section defines side conditions which greatly simplify the SVD analysis. The

side conditions generalize Conditions C1-C3 of Section 2.5.3 to an arbitrary matrix
Bo(ﬁ).

As a first step, we denote the rank of By(¢) for small, but non-zero € as
R £ Rank{B(e)} (4.5)

We recall that By(e) has Taylor series (4.3). To characterize the minimum number
of terms of (4.3) required for a partial Taylor sum to have rank R, we define integer

parameter m as follows:

Definition of 7n: Integer /m is the smallest number such the partial Taylor sum

formed by the successive terms p = 0, - - - 7 of (4.3) has full rank.

Provided Conditions I-III (detailed subsequently) are satisfied, 1 is determined by
the relationship '
A—1 "
> Rank{B;,} < R < ) Rank{Bg,} (4.6)
p=0 p=0

where By, are the matrix coefficients of the Taylor series (4.3). If Conditions I-III
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are not all satisfied, /& may not be determined by (4.6); in such cases, alternate
determining relations are defined Section 4.6.

For convenience, we denote

>

Cpr
Ry

[Boyo, * - - Bop-1] (4.7)
[Bbo,---Bh,| (4.8)

[

‘to respectively aggregate the columns and rows of the Taylor series matrix coefficient
sequence Bo,o, e BO,p—l-

Conditions I-1II sufficient for (4.6) to determine 7 are the following:

I Rank{Pg,_,}Bop} = Rank{Bo,} forp=1,---m—1 (4.9)

II. Rank{Bo, Pir,_,)} = Rank{By,} forp=1,---m—1 (4.10)
1

I11. Rank{Pg,,_,}Bos Pirs_1} = R — D Rank{Bo,} (4.11)
p=0

where matrix P¢,_,) denotes the projection away from the vector space spanned by

the columns of the Taylor series matrix coefficient sequence By, - - - Bpp-1, namely
A
Pc,.s] = I—[Bog, Boa, - Bop-1][Boo; Boa, +*+ Bop-1]" (4.12)

for p > 1. Similarly Pg,_,; denotes the projection away from the vector space spanned

by the rows of the sequence By, - - - Bop-1, namely

) [ +
Br,_,) = 1- _Bg,o, Bg,l’ T 'B(’)‘,p-I] [B(')L,o, Bg,n T Bg,p—l]
_ 44 -
Boo Boo |
B, B,
= I —_— ?'1 (.)’1 (4'13)
| Bo,p—l J L Bo,p—l .

for p > 1.

63



We interpret Condition I-III as follows.

¢ Condition I specifies that the column space of Taylor series matrix coefficient
By, is linearly independent from those of prior coefficients By, - - - Bop-1, for

p=0---1n—1.

¢ Similarly, Condition II specifies that the row space of By, is linearly independent

from those of Byg, - Byp-1,for p=0---m — 1.

¢ Finally, Condition III specifies that the component of Taylor series matrix coeffi-
cient By 7 which has orthogonal columns and rows from those of prior coefficients

By, - - Bom-1, has sufficient rank to complete the span of By(e).

Conditions I and II are central to the simplified SVD analysis. Condition III is
sufficient to guarantee that /m determined by (4.6) is such that the partial Taylor
series of By(e) consisting of terms of order p = 0 through p = 7, does in fact have
rank R. We will find that whenever Conditions I, II and III are satisfied, the limiting
SVD of By(€) as € — 0 is entirely determined by the terms of (4.3) from By to Bom;
subsequent terms only add higher order effects.

Note that Conditions I-III do not place any restriction on the size or rank of By(e).
Specifically, Conditions I-III may be satisfied by arbitrarily sized matrices Bo(€) (i.e.
M<W,M =W or M > W), with partial rank or full rank (i.e. R < min{M, W}).

We designate matrices Bo(e€) that satisfy Conditions I-III as non-degenerate ma-
trices. We designate matrices Bo(€) that satisfy only one of Conditions I or II as
partially degenerate matrices.

Analysis in the next sections develops a partial characterization of the limiting
SVD of any matrix By(e) for small e. Section 4.4 then identifies a simple and explicit
characterization of the limiting SVD of non-degenerate By(e). Section 4.5 further

identifies a more complicated characterization of the limiting SVD of partially degen-

erate By(e).
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4.2 Specialization of Prior Eigenstructure Results

The point of departure of our SVD analysis are the prior results of [17], [18] for the
limiting eigenstructure of Hermitian matrices Ag(e). Since the SVD of By(e) is de-
fined in terms of the eigendecomposition of By(€)By(€)* and By(e)* Bo(e), this section
specializes the results of [17], [18] for Hermitian Ag(€) which are products of matrices
Bo(€) with Taylor series in e. Specifically, we examine the limiting eigenstructure of

matrices Ag(e) that satisfy

Condition IV. Matrices Ag(¢€) are the outer product
Ao(f) = Bo(C)Bo(G)h (W X W) (4.14)
of rectangular matrix By(€) with Taylor series

Bo(e) = z CpBo'p (W X M) (415)
. p=0
where By, are constant low-rank rectangular matrices, independent of €. Clearly

Ao(e) is Hermitian and has a Taylor series in e.

Matrices Ag(€) that satisfy Condition IV are outer products of matrices Bo(€), and
the Bo(€) have Taylor series in €. The first result derived characterizes eigenvalues of

such Ag(€) more precisely than prior result R1 of Section 3.2.

Lemma 4.1 : If matrix Ag(¢) satisfies Condition IV, then each non-zero eigenvalue
Xi(€) of Ag(e) is asymptotically (as € — 0) proportional to non-negative even

powers of €. That is,

) Xi(e) _
ll—r»%{/\; : 62’“} =1 (4.16)
for suitable constants ); and k; € {0,1---}, for all i =1,---, Rank{Ao(€)}.

Proof: See Appendix C.
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It follows from Lemma 4.1 and result R2 that for Ag(€) which satisfy Condition

IV, the odd-order limiting eigenmatrices satisfy
Agky10 = 0 (4.17)

for k=0,1---.
In addition, for Ag(¢) that satisfy Condition IV, the even-order limiting eigenma-

trices Ak can be characterized by:

Lemma 4.2 : If matrix Ag(e) satisfies Condition IV, then each even-order limiting

eigenmatrix Agro can be expressed as
Azk,o = Bk’QB{:,O (418)
with a suitable matrix By for each k¥ = 0,1---.

Proof: Matrix A can be expressed as an outer product of a suitable matrix B if and
only if matrix A is Hermitian and has non-negative eigenvalues [21]. Therefore
any matrix Ao(€) that satisfies Condition IV has non-negative eigenvalues for
any €, and specifically the limiting eigenvalues of Ag(€) are non-negative. It
follows from result R2 that the even-ordered limiting eigenmatrices Az o also
have non-negative eigenvalues. Since limiting eigenmatrices of Hermitian Aq(e)
are by construction also Hermitian, A5z can be expressed as in (4.18) as the

outer product of a suitable matrix By.

It can be straightforwardly verified that expressions (3.14) derived in [18] satisfy
(4.17), (4.18) whenever Ao(¢) satisfies Condition IV.

Note that Lemma 4.2 provides only the form of the limiting eigenmatrix matrices
of By(e)Bo(e)". The structure of the matrix factors By is not defined, and the By o
that satisfy (4.18) are not unique. In the following section, we define a structure for

matrices B o that not only satisfy (4.18), and also characterize the limiting SVD of
Bo(é).
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Relations (4.17) and (4.18) together outline the structure of all limiting eigenma-
trices Ago (k =0,1---) whenever Ay(¢) satisfies Condition IV. Since by definition the
SVD of By(e) depends on the eigenstructure of Hermitian matrices Bo(€)Bo(e)* and
Bo(€)*Bo(€) that satisfy Condition IV, the results of Lemmas 4.1 and 4.2 together
with the prior limiting eigenstructure results [17], [18] form the basis of our analysis

of the limiting SVD of By(¢€) in the next section.

4.3 Limiting Singular Matrices of By(e)

This section further characterizes the constant matrices Byg, and shows that the
limiting SVD of By(€) as € — 0 can be characterized in terms of the SVDs of the
Bio. The By matrices play a role for Bg(e€) analogous to that played by the constant
matrices Ag in characterizing the eigenstructure of Ag(€) as € — 0. (Recall Section

3.2). The By are therefore designated the limiting singular matrices of Bo(e).

4.3.1 Definition of By

As a first step, we characterize the singular values of By(¢€) as € — 0 by the result:

S1. For any By(€) with Taylor series in ¢, each non-zero singular value o;(€) is asymp-

totically (as € — 0) proportional to non-negative integer powers of e. That is,

lim{ "‘.(CZ‘_} =1 (4.19)

for suitable constants o; and k; € {0,1.--}, for all i = 1,-- -, Rank{Bo(¢)}.

Proof: By definition, the singular values of By(¢€) are the square roots of the eigenval-
ues of a corresponding square matrix Ag(€) = Bo(€)Bo(e)* that satisfies Condi-

tion IV. Proof of the result is immediate from Lemma 4.1, with o; = V/\;.

Result S1 is the SVD analog of the prior eigenvalue result R1. For convenience,
we designate o;€* as a limiting singular value of Bo(€). Furthermore, we designate

the group of limiting singular values proportional to € as the kt* limiting singular
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value shell. The limiting singular values of By(€) in shell £ = 0 (i.e. constant as
€ — 0) can be identified directly from Taylor series (4.15) as the constant non-zero
singular values of the leading term By .

To identify the remaining limiting singular values, we exploit result S1 to group
the singular values of By(€) according to the power of € of the limiting singular value.

We express the matrix X(e) in (4.4) as

S(e) = iz:k(e) (420

k=0

where the only non-zero entries of £x(¢) are on the main diagonal, and are the singular
values of By(¢€) proportional to € as € — 0. Thus if the i** main diagonal element of
¥(¢) is proportional to € as € — 0, then it is equal to the i** main diagonal element
of Xj;(€) and furthermore the :** main diagonal element of all other Xy (¢), k # ki, is
zero. Since By(€) has rank R, there can be at most R non-trivial terms in the sum

(4.20); m denotes the index of the last non-trivial term in (4.20). By construction,
> Rank{Zi(e)} = Rank{By(e)} = R (4.21)
k=0

The SVD (4.4) of Bg(€) can then be expressed as the series

B9 = U0 (£200) V(!

k=0

= i " Bi(¢) (4.22)
k=0

where

Bi(e) 2 U(e)e—lkzk(e)V(e)h (4.23)

are low-rank matrices whose column, row spaces are respectively spanned by the
columns of U(e), V(e) associated with the non-zero entries of Ty (e).

"The expansion of By(e) in series (4.22) differs from Taylor series (4.15) in that
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1. Eq. (4.22) represents By(e) as a finite sum, whereas the Taylor series typically

involves an infinite number of terms.

2. The matrix coefficients By(e) typically are non-constant with e, aggregating

many of the Taylor series components.

3. The column spaces of Byi(e), Bj;(e), with k& # j, are orthogonal, since they

consist of non-overlapping column sets of unitary matrix Uf(e).
4. The row spaces of By(e), B;(€), with k # j, are similarly orthogonal.

The question arises as to the behavior of the matrix coefficients By(e) as € — 0;
specifically, do the By(e) converge to constant matrices as € — 07

A preliminary observation is that the matrices (4.23) do not “blow up” as € — 0
since (4.19) shows that the factor (1/€*)Z,(e) — i as € — 0, where is a constant
diagonal matrix, and the columns of U(e€) and V(€) have unit norm.

To further address the convergence question, we note that the Bk(e) are by con-
struction related to the eigenstructure of the products By(e)Bo(e)* and Bo(e)” Bo(e)

by the properties

P1. The eigenvalues of By(€)Bo(e)* (or equivalently of Bo(e)*By(€)) proportional to

2k

€** as ¢ — 0, are equal to the squares of the non-zero singular values of Bk(e),

multiplied by €%*.
P2. The associated eigenvectors of By(€)Bo(€)* span the column space of By ().
P3. The associated eigenvectors of Bo(€)*Bo(e) span the row space of By(e)-

Therefore the small € properties of matrix coefficients By(e) can be inferred from
the eigenstructure properties identified in [17], [18]. Specifically, Appendix D shows

that the matrices By (e) have Taylor series in e. That is

Lemma 4.3 : If By(c) has Taylor series in ¢, then matrices Bi(e) also have Taylor

series in e.
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Thus, non-withstanding the denominator factor € in (4.23), matrices By(e) have lim-
iting values as € — 0.

We now define the limiting singular matrices By o:

Definition of Byo: Limiting singular matrix By is the order € (or constant) Taylor

series term of By(e). That is
A .2
Bro = lx_rg By(€) (4.24)

k=01,

The By exist since Bi(e) has a Taylor series in € per Lemma 4.3.
The By, defined above satisfy expression (4.18) for the limiting eigenmatrices of

Ba(€)Bo(€)*, since by definition of the SVD,

1. The non-zero eigenvalues of Bk,oB,’:'O are the constants ); in the limiting eigen-
values of By(e)Bo(e)? of the form ); €?*. (From property P1 as ¢ — 0, and
(4.24)).

2. The column space of Bk,oB,’:,o is spanned by limiting eigenvectors of By(€)Bo(e)"
associated with the group of limiting eigenvalues proportional to €2* as € — 0.

(From property P2 as € — 0, and (4.24)).

Therefore By B}, satisfies properties R2, R3, and can be used as in (4.18) to de-
termine the limiting eigenstructure of By(€)Bo(e)".

In the next section, we show that the Big can also be used to determine the

limiting SVD of By(e).

4.3.2 Limiting SVD of By(¢) Determined by the B

As a next step in relating the SVDs of Bgy(¢) and of By, we note the following By o

properties:

S2. The non-zero singular values of By are the constants o; in limiting singular

values of By(e) of the form o; €*.
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S3. The column, row spaces of By are respectively spanned by the left, right sin-
gular vectors of By(e) associated with the group of limiting singular values

proportional to ¢* as € — 0.

(Both properties follow from construction (4.23) of Bi(e) in terms of the SVD of
By(€), and by definition (4.24) of By as the limiting value of By(e)).

Accordingly, if one could readily determine the By from the matrix coefficients
By, of the Taylor series (4.3) for By(€), then straightforward analysis of the (low-rank
constant) By would reveal the limiting singular values and the limiting span of the
associated vectors of By(e).

Analysis so far has shown that limiting singular matrices By exist for any By(e)
with Taylor series in e. Moreover, the SVD’s of the By ¢ specify the limiting structure
of Bo(€) as € — 0. However we have not shown how to determine the Bip from
the Taylor series matrix coefficients By, Expressions for By in terms of Bo, are

developed in the following sections.

4.4 Partial Identification of the By

This section derives a property which partially identifies the limiting singular matrix
Bip in terms of the Taylor series matrix coeflicients By,. Section 4.5 exploits this
property together with Conditions I-III to derive simple explicit formulae for the By
in terms of the Taylor series coefficients By of non-degenerate By(€). Section 4.6
also uses this property together with either one of Conditions I or II to identify more
complex formulae for By of partially degenerate By(e).

The property of interest is:

Lemma 4.4 : For any By(€) with Taylor series in ¢, limiting singular matrices By o

have the recursive structure

BO,O k =0

Bk,O = P[Bo,o]BOJP[Bg'O] k=1 (425)
P[BO,O,"‘BI:—I,O] (Bo,k + Fk-l) P[B{,"o,---B,':

_1_01
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where By is the matrix coefficient of the k** order term in the Taylor series
of By(€), and Pig,,...B;_; o)» P, ,.-BE_ ] respectively denote projections onto

the column, row nullspace of limiting singular matrix sequence By, - - * Bi_1,0-

That is
P[Bo,o,'"Bk—l,o] é I- [BO,O’ Tt Bk—l,O] [BD,Oa Tty Bk—1,0]+ (426)
A
P[Bg.o'"'Bl’:—l.o] = I- [B(’)l,m T Bl?—l,O] [Bg,01 tte ,B£_1'0]+
+
BD,O BO (4]

)

Il
—~
|

(4.27)

Bi-1,0 By-1,0
Matrix Fi_; (k =2,---) is a suitable rectangular matrix with properties:

a) the column space of Fj_; is contained in that of Ta,ylbr series matrix coeffi-

cient sequence By, Bok-1.

b) the row space of F_; is contained in that of Taylor series matrix coefficient

sequence By, - Bo k-1,
Proof: See Appendix E.

To illustrate the form of F)_; that satisfies properties a) and b) of Lemma 4.4, we

may write

Boa
Froi = [Boa, -+ Bog-1] Gr-1 : (4.28)
Bo -1

for k = 2, - -, where G-, is an appropriate matrix. Note that the matrices B;o which
appear in (4.26) and (4.27) are the matrices which we seek to identify whereas matrices
By, which appear in (4.28) are the known matrix coefficients of the Taylor series. In
general, Bjo # By, so that the projection matrices Pg,,,..B,_, ,] and P[B.')',or"B;"'_;,o] do

not necessarily annihilate Fy_;.
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The SVD result (4.25) can be compared with the eigenstructure result (3.14) of
Reference [18] for Ao(€), by imposing the requirement

Bo(e) = Ao(¢) = Hermitian (4.29)

which cause the SVD and eigendecomposition to coincide. In this case, the matrices

(3.14) take the form (4.25) with

F = —Ao,1A0+,vo,1

F - Ao,lAg,voﬂ - AOJAS-.OAOJ

+ Ao,lA(tvo,lABL,vo,l — Ao2(PoAo1Po)t Ao
+ Ao,2(Po Ao Po)t Ao AfoAva + AoaAdoAoi(PoAoiPo)t Aoy
— Ao A Ao (PoAo P 0)* Ao, Ao Ao

AO,I

= [Ao1, Ao G2 (4.30)

0,2

with

_ [Ad0A01A%0 — AfoAo1(PoAoi1Po)t AviASy] [—Ado + AdpAca(PoAoFo)?)

Gy =
[—AS‘,O + (P0A0,1P0)+A0,1A3:o] —(PoAo 1 Po)*
(4.31)

Note that Lemma 4.4 characterizes the limiting singular matrix By as orthogonal
to Bj g, for k # j, and explicitly identifies one component associated with Taylor series
matrix coefficient By . This is sufficient to explicitly identify the first two limiting
matrices Byp and Byp. Lemma 4.4 does not however fully identify the By for £ > 1
since the structure of Gx_1 in (4.28) is not specified.

Lemma 4.4 is important since it characterizes Byg for any matrix By(e), and for
any k = 0,1,---. The following section shows that in the non-degenerate case when
Bo(€) satisfies Conditions I-III, the lemma is sufficient to identify a simple explicit

expression for all the By.
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4.5 Explicit By Expressions for Non-Degenerate
By(e€)

This section specializes the By characterization of the previous section to matrices
Bo(€) that satisfy Conditions I-IIl. For such non-degenerate matrices, remarkably
simple and explicit By o expressions are derived. |

The first two limiting singular matrices Bo,, and By, were explicitly identified
in Lemma 4.4. Under the simplifying conditions, the explicit identification can be

extended to Bygg, k > 1, as follows.

Theorem 4.1 : If By(¢) has a Taylor series in ¢, and satisfies Conditions I and II,

then
1 PiBog,-Busol = PFciol (4.32)
2) P[Bg,o»"'B;':_j,o] = P[Rk—ll (433)
3) Bro = Po,_q1BokPir_y] (4.34)

for k =1-.-m, where Ci-y and Ry, are as defined in (4.7) and (4.8) in terms
of the Taylor series coefficients By, - - - Bo k-1-
Proof: The proof is by induction.

Obviously (4.32), (4.33) are satisfied for £ = 1. Reference to (4.25) shows that
(4.34) also is satisfied for k& = 1.

To complete the induction we show that if (4.32)-(4.34) hold for k = j, then
(4.32)-(4.34) hold for £ = j + 1. Thus we assume

1) P[Bo,or'-Bj-1,o] = P[C,-..l] (4.35)
2) Pyt = PRial (4.36)
3) Bjo = P[C,--llBO.jP[R,-_ll (437)
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a,nd show

1) P[Bo.o,---Bj,o] = P[le (4.38)
2) Pgp,..8%) = P (4.39)
3) Bjt10 = Pg,)Bo,iFr)) (4.40)

for1 <j<rn—1l.

The first projection matrix of interest is

PBos, Bj10.Bio) = Hoja, (Pc;_41Bo.iAr;_, )]

Bo;, (Bo,;Ar;_y1)] (4.41)

It follows from Condition II of (4.10) that
Column Space{Bo,;jPr,_;;} = Column Space{By,;} (4.42)

for 7 < m — 1. Therefore

P[Cj"I ’ (Boxj[)lﬂj_ﬂ)] = 'P[Cj—lv BO,j] = 'P[CJ] (4'43)

Substitution of (4.43) into (4.41) establishes (4.38).

A parallel argument using Condition I of (4.9) in the place of (4.10) establishes
(4.39).

Finally use of (4.38), (4.39) in (4.25) establishes (4.40).

Theorem 4.1 presents a remarkably simple characterization of the limiting singular

matrices By whenever By(¢) satisfies both Conditions I and II. Specifically,

o The vector spaces spanned by the columns, rows of limiting singular matrix
sequence Bpg,- - Bk_10 are equal to those spanned by the columns, rows of

Taylor series matrix coefficient sequence By, - - - Bok-1.
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o The limiting singular matrix By o is simply the component of the k** order Taylor
series matrix coefficient By that is orthogonal to the vector spaces spanned by

rows and columns of Taylor series matrix coefficients of lower order.

The rank and span properties of the limiting SVD of non-degenerate Bo(e) can be

easily inferred from Theorem 4.1, as shown below.

4.5.1 Rank of B for Non-Degenerate By(e)

For non-degenerate By(e), we use Theorem 4.1 to show that the rank of limiting
singular matrix Bjo is simply equal to that of Taylor series matrix coeflicient By,

for k= 0--.7 — 1, but not necessarily for k¥ = . Specifically,

Lemma 4.5 : If By(e) has a Taylor series in"¢, and satisfies Conditions I and II,

then
Rank{B, k=0,---m—-1
Rank{Bio} = ank{ Bo} (4.44)
Rank{f)[cm_l]Bo’ﬁzP[Rﬁ'_ll} k=m
Proof: From (4.25) of Lemma 4.4, the result is trivial for £ = 0.
For k > 0, from (4.34) of Theorem 4.1, we have
Rank{Bro} = Rank{Pc,_,1BorPr,_,} (4.45)

for k = 1,.--m. Relation (4.9) of Condition I states that pre-multiplication of
Box by Pic,_,) does not affect rank for £ = 1, .- - /o — 1. Similarly, relation (4.10)
of Condition II states that post-multiplication of By by Pjg,_,; does not affect

rank for k = 1,--- 7 — 1. Hence (4.45) simplifies to (4.44) whenever Conditions
I and II are both satisfied.

For convenience we denote as nj the number of limiting singular values of By(e)

proportional to €*. From result S2, n; is equal to the rank of limiting singular matrix
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By o. Thus we define
ne 2 Rank{Bio} (4.46)

Using Lemma 4.5 we identify nj to be the rank of Taylor series matrix coefficient
By, for k = 0---7h — 1, subject to Conditions I and II. Condition III specifies the

rank of By 0, hence also n;. Therefore we have

Corollary- 4.1 : If Bo(e) has a Taylor series in €, and satisfies all Conditions I-III,
then the number n of limiting singular values of By(€) proportional to €* equals
the rank of the k** order Taylor series matrix coefficient By x, for k = 0, - - m—1.
Furthermore the sum of nj from k = 0 to k = 71 equals the rank R of By(e).

Specifically
nr = Rank{Bgx} for k=0,---m—1 (4.47)
and

> nr = Rank{By(¢)} = R (4.48)

=0
It follows from (4.48) and (4.21) that Byo = 0 for & > . Therefore for non-
degenerate matrices Bo(e) with Conditions I-III all satisfied, Theorem 4.1 identifies
explicit expressions for the limiting singular matrices By, - - B0 that characterize

the entire limiting SVD of By(e).

4.5.2 Limiting Singular Vectors for Non-Degenerate By(e)

We now identify the vector spaces spanned by the singular vectors of Bo(¢). From
result S3, the column, row spaces of limiting singular matrices By g respectively define
the span of the left, right singular vectors of By(€) associated with the group of limiting
singular values proportional to €*. The column, row spaces of By for non-degenerate

By(e€) are identified in terms of Taylor series coefficients By, as follows:
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Lemma 4.6 : If By(e) has a Taylor series in ¢, and satisfies Conditions I and II,

then

a) Column Space{Bxo} =

Column Space{Bo} k=0
Column Space{Pc,_,;Box} k=1,---m~1 (449)
Column Space{Pc,,_,1Bo,i Pirim-11} k=m
b) Row Space{Bio} =
Row Space{Box} k=0
Row Space{BoxPir,_,1} k=1,---m—1 (4.50)
Row Space{Pc,,_,)Bo,nPrs_11} k=m
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